Cours Réseaux Informatiques Description et usages
...
Les travaux de l'ARPA (Advanced Research Project Agency) débutèrent au milieu des années 70 et avaient pour but de développer un réseau à commutation de paquets pour relier ses centres de recherches dans le but de partager des équipements informatiques et échanger des données et du courrier. Le but était de concevoir un réseau résistant à des attaques militaires. Il ne fallait donc pas qu'il comporte de points névralgiques dont la destruction aurait entraîné l'arrêt complet du réseau. C'est ainsi, que dès le départ le réseau ARPANET fut conçu sans n ud particulier le dirigeant, et de telle sorte que si une voie de communication venait à être détruite, alors le réseau soit capable d'acheminer les informations par un autre chemin. C'est vers 1980 qu'est apparu le réseau Internet, tel qu'on le connaît maintenant, lorsque l'ARPA commença à faire évoluer les ordinateurs de ses réseaux de recherche vers les nouveaux protocoles TCP/IP et qu'elle se mit à subventionner l'université de Berkeley pour qu'elle intègre TCP/IP à son système d'exploitation Unix (BSD). Ainsi la quasi totalité des départements d'informatique des universités américaines put commencer à se doter de réseaux locaux qui en quelques années seront interconnectés entre eux sous l'impulsion de la NSF (National Science Foundation).2 Même si dès son origine Internet comprenait des sociétés privées, celles-ci étaient plus ou moins liées à la recherche et au développement, alors qu'à l'heure actuelle les activités commerciales s'y sont considérablement multipliées, et ceci surtout depuis l'arrivée du web en 1993.
Figure 2.1: Les grandes dates d'Internet.
La figure 2.1 (source ISOC, www.isoc.org) donne un résumé des grandes étapes de l'évolution d'Internet au niveau mondial qui comportait en 1996 plus de 100 000 réseaux différents permettant de regrouper presque 10 millions d'ordinateurs dans le monde. Mais les statistiques sont difficiles à établir et sont parfois fantaisistes ou biaisées par des considérations politiques ou commerciales.
Figure: Évolution du nombre de machines connectées à Internet
Une bonne source d'information est encore l'ISOC dont sont extraites les données de la figure 2.2. Pour ce qui est de la France, après des tentatives avortées de constitution d'un réseau de la recherche, puis l'apparition du réseau EARN (European Academic and Research Network) basé sur des protocoles et des ordinateurs IBM, un début de réseau bâti sur des ordinateurs Unix et TCP/IP apparu sous le nom de FNET. C'est à la fin des années 80 que les campus universitaires s'équipèrent massivement de réseaux Ethernet et créèrent des réseaux régionaux basés sur TCP/IP. L'ouverture à l'Internet mondial (à l'époque presque exclusivement nord-américain) eut lieu en 1988 et ensuite la création de Renater (RÉseau National de Télécommunications pour l'Enseignement et la Recherche) en 1994 sont les grandes dates de l'évolution d'Internet en France.
Comme l'ensemble des protocoles TCP/IP n'est pas issu d'un constructeur unique, mais émane de la collaboration de milliers de personnes à travers le monde, une structure de fonctionnement originale a été imaginée dès le début. Après des évolutions successives, c'est maintenant l'IAB (Internet Architecture Board) qui est le comité chargé de coordonner l'architecture, les orientations, la gestion et le fonctionnement d'Internet. L'IAB comporte deux branches principales :
Par ailleurs, il existe l'ISOC (The Internet Society ) qui est liée à l'IAB et qui aide ceux qui souhaitent s'intégrer à la communauté d'Internet. De nombreux renseignements sur le fonctionnement et les organismes liés à Internet sont disponibles sur le web de l'ISOC www.isoc.org.
Aucun constructeur, ou éditeur de logiciel, ne peut s'approprier la technique TCP/IP, les documentations techniques sont donc mises à disposition de tous par l'INTERNIC (Internet Network Information Center à partir de son site web ds.internic.net/ds/dspg1intdoc.html). Les documents relatifs aux travaux sur Internet, les nouvelles propositions de définition ainsi que les modifications de protocoles, tous les standards TCP/IP, y sont publiés sous la forme de RFC (Request For Comments, appels à commentaires). Tous les RFC sont publiés par un membre de l'IAB et sont numérotés séquentiellement, une proposition de RFC s'appelle un Internet Draft qui sera discuté, modifié, et enfin adopté ou rejeté par les membres du domaine concerné par la note technique.
2.2 Architecture des protocoles TCP/IP.
Figure 2.3: Architecture d'une pile TCP/IP
Les logiciels TCP/IP sont structurés en quatre couches de protocoles qui s'appuient sur une couche matérielle comme illustré dans la figure 2.3.
Cette architecture et ces différents protocoles permettent de faire fonctionner un réseau local, par exemple sur un bus Ethernet reliant un ordinateur client A qui interroge un serveur FTP B, comme illustré dans la figure 2.4 Mais, ceci permet surtout de constituer un internet, c'est-à-dire une interconnexion de réseaux éventuellement hétérogènes comme illustré dans la figure 2.5.
Figure: Interconnexion de deux réseaux
Ici les ordinateurs A et B sont des systèmes terminaux et le routeur est un système intermédiaire. Comme on peut le voir, la remise du datagramme nécessite l'utilisation de deux trames différentes, l'une du réseau Ethernet entre la machine A et le routeur, l'autre du réseau Token-Ring entre le routeur et la machine B. Par opposition, le principe de structuration en couches indique que le paquet reçu par la couche transport de la machine B est identique à celui émis par la couche transport de la machine A.
Lorsqu'une application envoie des données à l'aide de TCP/IP les données traversent de haut en bas chaque couche jusqu'à aboutir au support physique où elles sont alors émises sous forme se suite de bits.
Figure: Encapsulation des données par la pile des protocoles TCP/IP.
L'encapsulation illustrée dans la figure 2.6 consiste pour chaque couche à ajouter de l'information aux données en les commençant par des en-têtes, voire en ajoutant des informations de remorque. Dans le cas du protocole UDP à la place de TCP, les seuls changements sont que l'unité d'information passé à IP s'appelle un datagramme UDP dont l'en-tête a une taille de 8 octets.
2.3 Adressage.
Figure 2.7: Les cinq classes d'adressses IP
Plus précisément, une adresse IP est constituée d'une paire (id. de réseau, id. de machine) et appartient à une certaine classe (A, B, C, D ou E) selon la valeur de son premier octet, comme détaillé dans la figure 2.7. Le tableau ci-après donne l'espace d'adresses possibles pour chaque classe.
classe adresses
A 0.0.0.0 à 127.255.255.255
B 128.0.0.0 à 191.255.255.255
C 192.0.0.0 à 223.255.255.255
D 224.0.0.0 à 239.255.255.255
E 240.0.0.0 à 247.255.255.255
Ainsi, les adresses de classe A sont utilisées pour les très grands réseaux qui comportent plus de 216=65 536 ordinateurs. Au niveau mondial, il ne peut exister plus de 127 tels réseaux, par exemple celui de la défense américaine ou du MIT, mais la politique actuelle est de ne plus définir de tels réseaux. Les adresses de classe B sont utilisées pour les réseaux ayant entre 28=256 et 216=65 536 ordinateurs, 14 bits définissent l'adresse du réseau et 16 bits celle d'une machine sur le réseau. Seules 256 machines sont possibles sur un réseau de classe C dont le nombre possible dépasse les 2 millions (=221). L'obtention d'une adresse IP pour créer un nouveau réseau est gérée par l'INTERNIC de manière décentralisée, à savoir qu'un organisme national gère les demandes pour chaque pays. En France c'est l'INRIA (Institut National de Recherche en Informatique et Automatique) qui est chargé de cette tâche. Au lieu d'utiliser un adressage plat 1, 2, 3, ... la méthode retenue est plus efficace car elle permet une extraction rapide du numéro de réseau à l'intérieur d'une adresse IP ce qui facilitera le routage.
Toutes les combinaisons mathématiquement possibles pour identifier un réseau ou une machine ne sont pas permises car certaines adresses ont des significations particulières.
<id. de réseau sur 16 bits>.<id. de sous-réseau sur 8 bits>.<id. de machine sur 8 bits>
L'administrateur d'un réseau peut décider de découper où il veut la zone des identificateurs de machines, mais le découpage «autour du .» facilite le travail des routeurs. On peut également adopter le même principe pour un réseau de classe C. Cette technique a pour effet de provoquer un routage hiérarchique.
Figure: Adressage de sous-réseau
La figure illustre le cas d'un réseau X.Y.0.0 découpé en deux sous-réseaux X.Y.1.0 et X.Y.2.0. Pour tout le reste d'Internet, il n'existe qu'un seul réseau X.Y.0.0 et tous les routeurs traitent les datagrammes à destination de ce réseau de la même façon. Par contre, le routeur R se sert du troisième octet (égal à 1 ou 2) de l'adresse contenue dans les datagrammes qui lui proviennent pour les diriger vers le sous-réseau auquel ils sont destinés assurant ainsi un routage hiérarchique.
Bien que la numérotation IP à l'aide d'adresses numériques soit suffisante techniquement, il est préférable pour un humain de désigner une machine par un nom. Mais se pose alors le problème de la définition des noms et de leur mise en correspondance avec les numéros IP. Au début des années 80, le réseau ARPANET comportait un peu plus de 200 ordinateurs et chacun possédait un fichier /etc/hosts identifiant les noms de ces ordinateurs suivis de leur numéro IP. Lorsqu'une modification intervenait, il suffisait de mettre à jour ce fichier. Pour faire face à l'explosion du nombre d'ordinateurs reliés à Internet, il a été mis en place un système de base de données distribuées : le système de noms de domaines (DNS : Domain Name System) qui fournit la correspondance entre un nom de machine et son numéro IP.
Figure: Système de noms de domaines.
Le mécanisme qui permet la résolution d'un nom en une adresse IP est géré par des serveurs de noms qui représentent une base de données distribuée des noms de domaine. Quand une personne a reçu l'autorité de gérer une zone elle doit maintenir au moins deux serveurs de noms : un primaire et un ou plusieurs secondaires. Les secondaires ont des serveurs redondants par rapport au primaire de manière à faire face à une défaillance d'un système. Lorsqu'une machine est ajoutée à une zone, l'administrateur de la zone doit ajouter son nom et son numéro IP dans le fichier disque du serveur primaire qui se reconfigure alors en fonction de ces nouvelles données. Quant à eux, les serveurs secondaires interrogent régulièrement (toutes les 3 h) le primaire et fait les mises à jour nécessaires en cas d'évolution de la base de données. Lorsqu'un serveur de noms reçoit une demande, il vérifie si le nom appartient à l'un des sous-domaines qu'il gère. Si c'est le cas il traduit le nom en une adresse en fonction de sa base de données et renvoie la réponse au demandeur. Sinon, il s'adresse à un serveur de nom racine qui connaît le nom et l'adresse IP de chaque serveur de noms pour les domaines de second niveau. Ce serveur de nom racine lui renvoie alors l'adresse d'un serveur de noms à contacter, et ainsi de suite, par interrogations successives de serveurs de noms il sera capable de fournir l'adresse demandée. Pour éviter de faire trop souvent de telles requêtes, tout serveur de noms stocke dans une mémoire cache les correspondances (numéro IP, nom de machine) de manière à pouvoir fournir la réponse immédiatement si une même demande lui parvient ultérieurement.
2.4 La couche liaison d'Internet.
...
2.4.1 Le réseau Ethernet
Ethernet est le nom donné à une des technologies les plus utilisées pour les réseaux locaux en bus. Elle a été inventée par Xerox au début des années 70 et normalisée par l'IEEE (Institute for Electrical and Electronics Engineers) vers 1980 sous la norme IEEE 802.
Tout d'abord, il existe plusieurs technologies physiques pour établir un réseau Ethernet.
Les adresses physiques Ethernet sont codées sur 6 octets (48 bits) et sont censées être uniques car les constructeurs et l'IEEE gère cet adressage de manière à ce que deux coupleurs ne portent pas la même adresse2.4. Elles sont de trois types
- unicast dans le cas d'une adresse monodestinataire désignant un seul coupleur
- broadcast dans le cas d'une adresse de diffusion générale (tous les bits à 1) qui permet d'envoyer une trame à toutes les stations du réseau
- multicast dans le cas d'une adresse multidestinataire qui permet d'adresser une même trame à un ensemble de stations qui ont convenu de faire partie du groupe que représente cette adresse multipoint.
On voit donc qu'un coupleur doit être capable de reconnaitre sa propre adresse physique, l'adresse de multicast, et toute adresse de groupe dont il fait partie.
Au niveau des trames, la normalisation IEEE 8022.5définit un format de trame légèrement différent de celui du véritable Ethernet. Ainsi, le RFC 894 définit les trames Ethernet et le RFC 1042 définit celles des réseaux IEE 802 comme illustré dans la figure 2.10.
Figure 2.10: Encapsulation Ethernet et IEEE 802.3.
Mais la variante la plus usitée est l'Ethernet.
Les deux trames utilisent des adresses matérielles source et destination de 6 octets (adresse Ethernet) et un CRC de 4 octets mais différent sur les points suivants.
- Dans le format Ethernet le troisième champ contient le type de données transmises selon que c'est un datagramme IP, une requête ou réponse ARP ou RARP. Puis, viennent les données transmises qui peuvent avoir une taille allant de 46 à 1500 octets. Dans le cas de données trop petites, comme pour les requêtes et réponse ARP et RARP (voir la sous-section 2.4.4) on complète avec des bits de bourrage ou padding.
De nombreux équipements matériels interviennent dans la constitution physique d'un réseau Ethernet, ce paragraphe décrit quelques uns de ceux qui interviennent aux niveaux 1 et 2 du modèle OSI.
Figure 2.11: Fonctionnement d'un pont..
SLIP (Serial Link Internet Protocol, RFC 1055) est un protocole permettant d'envoyer des paquets IP entre deux ordinateurs reliés par une liaison série (par exemple, grâce à deux modems branchés sur les ports RS-232 et une ligne téléphonique). Dans ce cas il n'y a pas besoin de prévoir un adressage de niveau 2, puisque la liaison est point à point (une seule machine à chaque extrémité du lien). Par contre, il s'agit de délimiter le début et la fin des paquets IP. L'encapsulation d'un paquet IP avant de l'envoyer sur la ligne consiste simplement à le faire terminer par le caractère spécial END (Oxc0) comme illustré dans la figure 2.12.
Figure 2.12: Encapsulation SLIP.
Pour éviter des problèmes de bruit, certaines implantations de SLIP font également débuter l'envoi du paquet IP par un caractère END. Pour qu'un caractère END faisant partie des données du paquet IP ne soit pas interprété comme la fin du paquet, l'émetteur le remplace par la séquence d'échappement SLIP_ESC ESC_END (0xdb 0xdc). Si le caractère SLIP_ESC fait partie des données à transmettre, alors la séquence SLIP_ESC ESC_ESC (0xdb 0xdd) est transmise à sa place.
2.4.3 La liaison PPP
PPP (Point to Point Protocol) (RFC 1661) est un protocole qui corrige les déficiences de SLIP en offrant les fonctionnalités suivantes.
- utilisation sur des liaisons point à point autres que série, comme X25 ou RNIS
- le transport de protocoles de niveau 3 (IP, Decnet, Appletalk, ...)
- la compression des en-têtes IP et TCP pour augmenter le débit de la liaison
- gestion d'un contrôle d'accès au réseau par authentification selon le protocole PAP qui nécessite la donnée d'un mot de passe au début de la communication ou le protocole CHAP qui permet l'échange de sceaux cryptés tout au long de la communication
- détection et correction d'erreurs de transmission
- ne pas utiliser des codes qui risquent d'être interprétés par les modems
- configuration automatique de la station client selon ses protocoles de couche réseau (IP, IPX, Appletalk).
Le protocole PPP est celui classiquement utilisé par les fournisseurs d'accès à Internet pour connecter leurs abonnés selon le schéma de la figure 2.13.
Figure: Connexion à Internet par modem et PPP.
Le processus de connexion d'un client équipé d'un ordinateur sous Windows, MacOS, Linux ou autre est le suivant.