Une stratégie différente de répartition de l'information et de son traitement est proposée depuis 2001 par Microsoft, elle porte le nom de .NET (ou en anglais dot net). La conception de cette nouvelle architecture s'appuie sur quelques idées fondatrices que nous énonçons ci-dessous :
Afin de mettre en place cette nouvelle stratégie, microsoft procède par étapes. Les fondations de l'architecture .NET sont posées par l'introduction d'un environnement de développement et d'exécution des applications .NET. Cet environnement en version stabilisée depuis 2002 avec une révision majeure en 2005, porte la dénomination de .NET Framework, il est distribué gratuitement par microsoft sur toutes les versions de Windows (98, Me,..., Xp,...) et devient dès 2006 une brique de base de Windows.
L'outil Visual Studio .NET contient l'environnement RAD de développement pour l'architecture .NET. Visual Studio .NET permet le développement d'applications classiques Windows ou Internet.
Dans ce document nous comparons souvent C# à ses deux parents Java et Delphi afin d'en signaler les apports et surtout les différences.
Elle comporte plusieurs couches les unes abstraites, les autres en code exécutable :
La première couche CLS est composée des specifications communes communes à tous les langages qui veulent produire des applications .NET qui soient exécutables dans cet environnement et les langages eux-même. Le CLS est une sorte de sous-ensemble minimal de spécifications autorisant une interopérabilité complète entre tous les langages de .NET les règles minimales (il y en a en fait 41 ) sont :
Le C# est le langage de base de .NET, il correspond à une synthèse entre Delphi et Java (le concepteur principal de .NET. et de C# est l'ancien chef de projet Turbo pascal puis Delphi de Borland).
Afin de rendre Visual Basic interopérable sur .NET, il a été entièrement reconstruit par microsoft et devient un langage orienté objet dénommé VB.NET.
La seconde couche est un ensemble de composants graphiques disponibles dans Visual Studio
.NET qui permettent de construire des interfaces homme-machine orientées Web (services Web) ou bien orientées applications classiques avec IHM.
Les données sont accédées dans le cas des services Web à travers les protocoles qui sont des standards de l'industrie : HTTP, XML et SOAP.
La troisième couche est constituée d'une vaste librairie de plusieurs centaines de classes :
Toutes ces classes sont accessibles telles quelles à tous les langages de .NET et cette librairie peut être étendue par adjonction de nouvelles classes. Cette librairie a la même fonction que la bibliothèque des classes de Java.
La librairie de classe de .NET Framework est organisée en nom d'espace hierarchisés, exemple ci-dessous de quelques espaces de nom de la hiérarchie System :
Un nom complet de classe comporte le "chemin" hiérarchique de son espace de nom et se termine par le nom de la classe exemples :
La quatrième couche forme l'environnement d'exécution commun (CLR ou Common Language Runtime) de tous les programmes s'exécutant dans l'environnement .NET. Le CLR exécute un bytecode écrit dans un langage intermédiaire (MSIL ou MicroSoft Intermediate Language)
….
Rappelons qu'un ordinateur ne sait exécuter que des programmes écrits en instructions machines compréhensibles par son processeur central. C# comme pascal, C etc... fait partie de la famille des langages évolués (ou langages de haut niveau) qui ne sont pas compréhensibles immédiatement par le processeur de l'ordinateur. Il est donc nécessaire d'effectuer une "traduction" d'un programme écrit en langage évolué afin que le processeur puisse l'exécuter.
Les deux voies utilisées pour exécuter un programme évolué sont la compilation ou l'interprétation :
Un compilateur du langage X pour un processeur P, est un logiciel qui traduit un programme source écrit en X en un programme cible écrit en instructions machines exécutables par le processeur P.
Un interpréteur du langage X pour le processeur P, est un logiciel qui ne produit pas de programme cible mais qui effectue lui-même immédiatement les opérations spécifiées par le programme source.
Un compromis assurant la portabilité d'un langage : une pseudo-machine
Lorsque le processeur P n'est pas une machine qui existe physiquement mais un logiciel simulant (ou interprétant) une machine on appelle cette machine pseudo- machine ou p-machine. Le programme source est alors traduit par le compilateur en instructions de la pseudo-machine et se dénomme pseudo-code. La p-machine standard peut ainsi être implantée dans n'importe quel ordinateur physique à travers un logiciel qui simule son comportement; un tel logiciel est appelé interpréteur de la p-machine.
La première p-machine d'un langage évolué a été construite pour le langage pascal assurant ainsi une large diffusion de ce langage et de sa version UCSD dans la mesure où le seul effort d'implementation pour un ordinateur donné était d'écrire l'interpréteur de p-machine pascal, le reste de l'environnement de développement (éditeurs, compilateurs,...) étant écrit en pascal était fourni et fonctionnait dès que la p-machine était opérationnelle sur la plate-forme cible.
Donc dans le cas d'une p-machine le programme source est compilé, mais le programme cible est exécuté par l'interpréteur de la p-machine.
Beaucoup de langages possèdent pour une plate-forme fixée des interpréteurs ou des compilateurs, moins possèdent une p-machine, Java de Sun est l'un de ces langages. Tous les langages de la plateforme .NET fonctionnent selon ce principe, C# conçu par microsoft en est le dernier, un programme C# compilé en p-code, s'exécute sur la p-machine virtuelle incluse dans le CLR.
Nous décrivons ci-dessous le mode opératoire en C#.
La compilation native consiste en la traduction du source C# (éventuellement préalablement traduit instantanément en code intermédiare) en langage binaire exécutable sur la plate-forme concernée. Ce genre de compilation est équivalent à n'importe quelle compilation d'un langage dépendant de la plate-forme, l'avantage est la rapidité d'exécution des instructions machines par le processeur central. La stratégie de développement multi-plateforme de .Net, fait que Microsoft ne fournit pas pour l’instant, de compilateur C# natif, il faut aller voir sur le net les entreprises vendant ce type de produit.
Programe source C# : xxx.cs
Programe exécutable sous Windows : xxx.exe (code natif processeur)
La compilation en bytecode (ou pseudo-code ou p-code ou code intermédiaire) est semblable à l'idée du p-code de N.Wirth pour obtenir un portage multi plate-formes du pascal. Le compilateur C# de .NET Framework traduit le programme source xxx.cs en un code intermédiaire indépendant de toute machine physique et non exécutable directement, le fichier obtenu se dénomme PE (portable executable) et prend la forme : xxx.exe.
Seule une p-machine (dénommée machine virtuelle .NET) est capable d'exécuter ce bytecode. Le bytecode est aussi dénommé MSIL. En fait le bytecode MSIL est pris en charge par le CLR et n'est pas interprété par celui-ci mais traduit en code natif du processeur et exécuté par le processeur sous contrôle du CLR..
Bien que se terminant par le suffixe exe, un programme issu d'une compilation sous .NET n'est pas un exécutable en code natif, mais un bytecode en MSIL; ce qui veut dire que vous ne pourrez pas faire exécuter directement sur un ordinateur qui n'aurait pas la machine virtuelle .NET, un programme PE "xxx.exe" ainsi construit .
Ci-dessous le schéma d'un programme source Exemple.cs traduit par le compilateur C# sous
.NET en un programme cible écrit en bytecode nommé Exemple.exe
Programe source C# : Exemple.cs
Programe exécutable sous .NET : Exemple.exe (code portable IL )
Rappelons que le CLR (Common Language Runtime) est un environnement complet d'exécution semblable au JRE de Sun pour Java, il est indépendant de l'architecture machine sous-jacente. Le CLR prend en charge essentiellement :
Une fois le programme source C# traduit en bytecode MSIL, la machine virtuelle du CLR se charge de l'exécuter sur la machine physique à travers son système d'exploitation (Windows, Unix,...)
... ... ...
Le CLR intégré dans l'environnement .NET est distribué gratuitement.
L'interprétation et l'exécution du bytecode ligne par ligne pourrait prendre beaucoup de temps et cela a été semble-t-il le souci de microsoft qui a adopté une stratégie d'optimisation de la vitesse d'exécution du code MSIL en utilisant la technique Just-in-time.
JIT (Just-in-time) est une technique de traduction dynamique durant l'interprétation. La machine virtuelle CLR contient un compilateur optimiseur qui recompile localement le bytecode MSIL afin de n'avoir plus qu'à faire exécuter des instructions machines de base. Le compilateur JIT du CLR compile une méthode en code natif dès qu'elle est appelée dans le code MSIL, le processus recommence à chaque fois qu'un appel de méthode a lieu sur une méthode non déjà compilée en code natif.
Seule une p-machine (dénommée machine virtuelle .NET) est capable d'exécuter ce bytecode. Le bytecode est aussi dénommé MSIL. En fait le bytecode MSIL est pris en charge par le CLR et n'est pas interprété par celui-ci mais traduit en code natif du processeur et exécuté par le processeur sous contrôle du CLR..
On peut mentalement considérer qu'avec cette technique vous obtenez un programme C# cible compilé en deux passages :
Toujours à des fins d'optimisation de la vitesse d'exécution du code MSIL, la technique AOT Ahead-Of-Time est employée dans les versions récentes de .Net depuis 2005.
AOT (ahead-of-time) est une technique de compilation locale de tout le bytecode MSIL avant exécution (semblable à la compilation native). Le compilateur AOT du CLR compile, avant une quelconque exécution et en une seule fois, toutes les lignes de code MSIL et génère des images d’exécutables à destination du CLR.
Tout est objet dans C#, en outre C# est un langage fortement typé. Comme en Delphi et en Java vous devez déclarer un objet C# ou une variable C# avec son type avant de l'utiliser. C# dispose de types valeurs intrinsèques qui sont définis à partir des types de base du CLS (Common Language Specification).
Les classes encapsulant les types élémentaires dans .NET Framework sont des classes de type valeur du genre structures. Dans le CLS une classe de type valeur est telle que les allocations d'objets de cette classe se font directement dans la pile et non dans le tas, il n'y a donc pas de référence pour un objet de type valeur et lorsqu'un objet de type valeur est passé comme paramètre il est passé par valeur.
Dans .NET Framework les classes-structures de type valeur sont déclarées comme structures et ne sont pas dérivables, les classes de type référence sont déclarées comme des classes classiques et sont dérivables.
Afin d'éclairer le lecteur prenons par exemple un objet x instancié à partir d'une classe de type référence et un objet y instancié à partir d'un classe de type valeur contenant les mêmes membres que la classe par référence. Ci-dessous le schéma d'allocation de chacun des deux objets :
… … …
Les trois premières déclarations comportent syntaxiquement le mot clef struct ou Structure
indiquant le mode de gestion par valeur donc sur la pile des objets de ce type. La dernière déclaration en J# compatible syntaxiquement avec Java, utilise une classe qui par contre gère ses objets par référence dans le tas. C'est le CLR qui va se charger de maintenir une cohérence interne entre ces différentes variantes; ici on peut raisonnablement supposer que grâce au mécanisme d'emboîtage (Boxing) le CLR allouera un objet par référence encapsulant l'objet par valeur, mais cet objet encapsulé sera marqué comme objet-valeur.
Un type enum est un type valeur qui permet de déclarer un ensemble de constantes de base comme en pascal. En C#, chaque énumération de type enum, possède un type sous-jacent, qui peut être de n'importe quel type entier : byte, sbyte, short, ushort, int, uint, long ou ulong.
Le type int est le type sous-jacent par défaut des éléments de l'énumération. Par défaut, le premier énumérateur a la valeur 0, et l'énumérateur de rang n a la valeur n-1.
Soit par exemple un type énuméré jour :
enum jour { lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche} par défaut : rang de lundi=0, rang de mardi=1, ... , rang de dimanche=6
1°) Il est possible de déclarer classiquement une variable du type jour comme un objet de type jour, de l'instancier et de l'affecter :
jour unJour = new jour ( ); unJour = jour.lundi ;
int rang = (int)unJour; // rang de la constante dans le type énuméré
System.Console.WriteLine("unJour = "+unJour.ToString()+" , place = '+rang);
Résultat de ces 3 lignes de code affiché sur la console :
unJour = lundi , place = 0
2°) Il est possible de déclarer d'une manière plus courte la même variable du type jour et de l'affecter :
jour unJour ;
unJour = jour.lundi ;
int rang = (int)unJour;
System.Console.WriteLine("unJour = "+unJour.ToString()+" , place = '+rang);
Résultat de ces 3 lignes de code affiché sur la console :
unJour = lundi , place = 0
C# accepte que des énumérations aient des noms de constantes d'énumérations identiques :
enum jour { lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche}
enum weekEnd { vendredi, samedi, dimanche}
Dans cette éventualité faire attention, la comparaison de deux variables de deux types différents, affectées chacune à une valeur de constante identique dans les deux types, ne conduit pas à l'égalité de ces variables (c'est en fait le rang dans le type énuméré qui est testé). L'exemple ci-dessous illustre cette remarque :
enum jour { lundi, mardi, mercredi, jeudi, vendredi, samedi, dimanche}
enum weekEnd { vendredi, samedi, dimanche} jour unJour ;
weekEnd repos ; unJour = jour.samedi ;
repos = weekEnd.samedi;
if ( (jour)repos == unJour ) // il faut transtyper l'un des deux si l'on veut les comparer
System.Console.WriteLine("Le même jour");
else
System.Console.WriteLine("Jours différents");
Résultat de ces lignes de code affiché sur la console :
Jours différents
Les types servent à déterminer la nature du contenu d'une variable, du résultat d'une opération, d'un retour de résultat de fonction.
... ... ...
Transtypage opérateur ( )
Les conversions de type en C# sont identiques pour les types numériques aux conversions utilisées dans un langage fortement typé comme Delphi par exemple. Toutefois C# pratique la conversion implicite lorsque celle-ci est possible. Si vous voulez malgré tout, convertir explicitement une valeur immédiate ou une valeur contenue dans une variable il faut utiliser l'opérateur de transtypage noté ( ). Nous nous sommes déjà servi de la fonctionnalité de transtypage explicite au paragraphe précédent dans l'instruction : int rang = (int)unJour; et dans l'instruction if ( (jour)repos == unJour )...
Transtypage implicite en C# :
.....
Transtypage explicite en C# :
int x;
x = (int) y ; signifie que vous demandez de transtyper la valeur contenue dans la variable y en un entier signé 32 bits avant de la mettre dans la variable x.
Comme en Java, une variable C# peut contenir soit une valeur d'un type élémentaire, soit une référence à un objet. Les variables jouent le même rôle que dans les langages de programmation classiques impératifs, leur visibilité est étudié dans le prochain chapitre.
Les identificateurs de variables en C# se décrivent comme ceux de tous les langages de programmation :
Identificateur C# :
Attention C# fait une différence entre majuscules et minuscules, c'est à dire que la variable BonJour n'est pas la même que la variable bonjour ou encore la variable Bonjour. En plus des lettres, les caractères suivants sont autorisés pour construire une identificateur C# : "$" , "_" , "µ" et les lettres accentuées.
Exemples de déclaration de variables : int Bonjour ; int µEnumération_fin$;
float Valeur ; char UnCar ; bool Test ;
etc ...
... ... ...
C# dispose de deux mots clefs pour qualifier des variables dont le contenu ne peut pas être modifié : const et readonly sont des qualificateurs de déclaration qui se rajoutent devant les autres qualificateurs de déclaration..
- Les constantes qualifiées par const doivent être initialisées lors de leur déclaration. Une variable membre de classe ou une variable locale à une méthode peut être qualifiée en constante const.
Lorsque de telles variables sont déclarées comme variables membre de classe, elles sont considérées comme des variables de classe statiques :
de x.
Les constantes qualifiées par readonly sont uniquement des variables membre de classes, elles peuvent être initialisées dans le constructeur de la classe (et uniquement dans le constructeur) :
-Rappelons enfin pour mémoire les constantes de base d'un type énuméré ( cf. enum )
C# peut représenter les entiers dans 2 bases de numération différentes : décimale (base 10), hexadécimale (base 16). La détermination de la base de représentation d'une valeur est d'ordre syntaxique grâce à un préfixe :
… … …
Les opérateurs du C# sont très semblables à ceux de Java et donc de C++, ils sont détaillés par famille, plus loin . Ils sont utilisés comme dans tous les langages impératifs pour manipuler, séparer, comparer ou stocker des valeurs. Les opérateurs ont soit un seul opérande, soit deux opérandes, il n'existe en C# qu'un seul opérateur à trois opérandes (comme en Java) l'opérateur conditionnel " ? : ".
Dans le tableau ci-dessous les opérateurs de C# sont classés par ordre de priorité croissante (0 est le plus haut niveau, 13 le plus bas niveau). Ceci sert lorsqu'une expression contient plusieurs opérateurs à indiquer l'ordre dans lequel s'effectueront les opérations.