
Click to add Text

Nov 4, 2019 Advanced Programming

Spring 2002

Python

Henning Schulzrinne

Department of Computer Science

Columbia University
(based on tutorial by Guido van Rossum)

http://www.python.org/doc/current/tut/tut.html

Nov 4, 2019 Advanced Programming

Spring 2002

Introduction

 Most recent popular
(scripting/extension) language

 although origin ~1991

 heritage: teaching language (ABC)

 Tcl: shell

 perl: string (regex) processing

 object-oriented

 rather than add-on (OOTcl)

Nov 4, 2019 Advanced Programming

Spring 2002

Python philosophy

 Coherence

 not hard to read, write and maintain

 power

 scope

 rapid development + large systems

 objects

 integration

 hybrid systems

Nov 4, 2019 Advanced Programming

Spring 2002

Python features

no compiling or linking rapid development cycle

no type declarations simpler, shorter, more flexible

automatic memory management garbage collection

high-level data types and

operations

fast development

object-oriented programming code structuring and reuse, C++

embedding and extending in C mixed language systems

classes, modules, exceptions "programming-in-the-large"

support

dynamic loading of C modules simplified extensions, smaller

binaries

dynamic reloading of C modules programs can be modified without

stopping

Lutz, Programming Python

Nov 4, 2019 Advanced Programming

Spring 2002

Python features

universal "first-class" object model fewer restrictions and rules

run-time program construction handles unforeseen needs, end-

user coding

interactive, dynamic nature incremental development and

testing

access to interpreter information metaprogramming, introspective

objects

wide portability cross-platform programming

without ports

compilation to portable byte-code execution speed, protecting source

code

built-in interfaces to external

services

system tools, GUIs, persistence,

databases, etc.

Lutz, Programming Python

Nov 4, 2019 Advanced Programming

Spring 2002

Python

 elements from C++, Modula-3
(modules), ABC, Icon (slicing)

 same family as Perl, Tcl, Scheme, REXX,
BASIC dialects

Nov 4, 2019 Advanced Programming

Spring 2002

Uses of Python

 shell tools
 system admin tools, command line programs

 extension-language work

 rapid prototyping and development

 language-based modules
 instead of special-purpose parsers

 graphical user interfaces

 database access

 distributed programming

 Internet scripting

Nov 4, 2019 Advanced Programming

Spring 2002

Using python

 /usr/local/bin/python

 #! /usr/bin/env python

 interactive use

Python 1.6 (#1, Sep 24 2000, 20:40:45) [GCC 2.95.1 19990816 (release)] on sunos5

Copyright (c) 1995-2000 Corporation for National Research Initiatives.

All Rights Reserved.

Copyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam.

All Rights Reserved.

>>>

 python –c command [arg] ...

 python –i script

 read script first, then interactive

Nov 4, 2019 Advanced Programming

Spring 2002

Python structure

 modules: Python source files or C extensions

 import, top-level via from, reload

 statements

 control flow

 create objects

 indentation matters – instead of {}

 objects

 everything is an object

 automatically reclaimed when no longer needed

Nov 4, 2019 Advanced Programming

Spring 2002

First example

#!/usr/local/bin/python

import systems module

import sys

marker = '::::::'

for name in sys.argv[1:]:

input = open(name, 'r')

print marker + name

print input.read()

Nov 4, 2019 Advanced Programming

Spring 2002

Basic operations

 Assignment:

 size = 40

 a = b = c = 3

 Numbers

 integer, float

 complex numbers: 1j+3, abs(z)

 Strings

 'hello world', 'it\'s hot'

 "bye world"

 continuation via \ or use """ long text """"

Nov 4, 2019 Advanced Programming

Spring 2002

String operations

 concatenate with + or neighbors
 word = 'Help' + x

 word = 'Help' 'a'

 subscripting of strings
 'Hello'[2]  'l'

 slice: 'Hello'[1:2]  'el'

 word[-1]  last character

 len(word)  5

 immutable: cannot assign to subscript

Nov 4, 2019 Advanced Programming

Spring 2002

Lists

 lists can be heterogeneous
 a = ['spam', 'eggs', 100, 1234, 2*2]

 Lists can be indexed and sliced:

 a[0]  spam

 a[:2]  ['spam', 'eggs']

 Lists can be manipulated

 a[2] = a[2] + 23

 a[0:2] = [1,12]

 a[0:0] = []

 len(a)  5

Nov 4, 2019 Advanced Programming

Spring 2002

Control flow: if

x = int(raw_input("Please enter #:"))

if x < 0:

x = 0

print 'Negative changed to zero'

elif x == 0:

print 'Zero'

elif x == 1:

print 'Single'

else:

print 'More'

 no case statement

Nov 4, 2019 Advanced Programming

Spring 2002

Control flow: for

a = ['cat', 'window', 'defenestrate']

for x in a:

print x, len(x)

 no arithmetic progression, but
 range(10)  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 for i in range(len(a)):

print i, a[i]

 do not modify the sequence being iterated
over

Nov 4, 2019 Advanced Programming

Spring 2002

Loops: break, continue, else

 break and continue like C

 else after loop exhaustion
for n in range(2,10):

for x in range(2,n):

if n % x == 0:

print n, 'equals', x, '*', n/x

break

else:

loop fell through without finding a factor

print n, 'is prime'

Nov 4, 2019 Advanced Programming

Spring 2002

Do nothing

 pass does nothing

 syntactic filler

while 1:

pass

Nov 4, 2019 Advanced Programming

Spring 2002

Defining functions

def fib(n):

"""Print a Fibonacci series up to n."""

a, b = 0, 1

while b < n:

print b,

a, b = b, a+b

>>> fib(2000)

 First line is docstring

 first look for variables in local, then global

 need global to assign global variables

Nov 4, 2019 Advanced Programming

Spring 2002

Functions: default argument
values

def ask_ok(prompt, retries=4,
complaint='Yes or no, please!'):

while 1:

ok = raw_input(prompt)

if ok in ('y', 'ye', 'yes'): return 1

if ok in ('n', 'no'): return 0

retries = retries - 1

if retries < 0: raise IOError,
'refusenik error'

print complaint

>>> ask_ok('Really?')

Nov 4, 2019 Advanced Programming

Spring 2002

Keyword arguments

 last arguments can be given as keywords
def parrot(voltage, state='a stiff', action='voom',

type='Norwegian blue'):

print "-- This parrot wouldn't", action,

print "if you put", voltage, "Volts through it."

print "Lovely plumage, the ", type

print "-- It's", state, "!"

parrot(1000)

parrot(action='VOOOM', voltage=100000)

Nov 4, 2019 Advanced Programming

Spring 2002

Lambda forms

 anonymous functions

 may not work in older versions

def make_incrementor(n):

return lambda x: x + n

f = make_incrementor(42)

f(0)

f(1)

Nov 4, 2019 Advanced Programming

Spring 2002

List methods

 append(x)

 extend(L)

 append all items in list (like Tcl lappend)

 insert(i,x)

 remove(x)

 pop([i]), pop()

 create stack (FIFO), or queue (LIFO)  pop(0)

 index(x)

 return the index for value x

Nov 4, 2019 Advanced Programming

Spring 2002

List methods

 count(x)

 how many times x appears in list

 sort()

 sort items in place

 reverse()

 reverse list

Nov 4, 2019 Advanced Programming

Spring 2002

Functional programming tools

 filter(function, sequence)
def f(x): return x%2 != 0 and x%3 0

filter(f, range(2,25))

 map(function, sequence)
 call function for each item

 return list of return values

 reduce(function, sequence)
 return a single value

 call binary function on the first two items

 then on the result and next item

 iterate

Nov 4, 2019 Advanced Programming

Spring 2002

List comprehensions (2.0)

 Create lists without map(),
filter(), lambda

 = expression followed by for clause +
zero or more for or of clauses

>>> vec = [2,4,6]

>>> [3*x for x in vec]

[6, 12, 18]

>>> [{x: x**2} for x in vec}

[{2: 4}, {4: 16}, {6: 36}]

Nov 4, 2019 Advanced Programming

Spring 2002

List comprehensions

 cross products:

>>> vec1 = [2,4,6]

>>> vec2 = [4,3,-9]

>>> [x*y for x in vec1 for y in vec2]

[8,6,-18, 16,12,-36, 24,18,-54]

>>> [x+y for x in vec1 and y in vec2]

[6,5,-7,8,7,-5,10,9,-3]

>>> [vec1[i]*vec2[i] for i in
range(len(vec1))]

[8,12,-54]

Nov 4, 2019 Advanced Programming

Spring 2002

List comprehensions

 can also use if:

>>> [3*x for x in vec if x > 3]

[12, 18]

>>> [3*x for x in vec if x < 2]

[]

Nov 4, 2019 Advanced Programming

Spring 2002

del – removing list items

 remove by index, not value

 remove slices from list (rather than by
assigning an empty list)

>>> a = [-1,1,66.6,333,333,1234.5]

>>> del a[0]

>>> a

[1,66.6,333,333,1234.5]

>>> del a[2:4]

>>> a

[1,66.6,1234.5]

Nov 4, 2019 Advanced Programming

Spring 2002

Tuples and sequences

 lists, strings, tuples: examples of
sequence type

 tuple = values separated by commas

>>> t = 123, 543, 'bar'

>>> t[0]

123

>>> t

(123, 543, 'bar')

Nov 4, 2019 Advanced Programming

Spring 2002

Tuples

 Tuples may be nested

>>> u = t, (1,2)

>>> u

((123, 542, 'bar'), (1,2))

 kind of like structs, but no element names:

 (x,y) coordinates

 database records

 like strings, immutable  can't assign to

individual items

Nov 4, 2019 Advanced Programming

Spring 2002

Tuples

 Empty tuples: ()

>>> empty = ()

>>> len(empty)

0

 one item  trailing comma

>>> singleton = 'foo',

Nov 4, 2019 Advanced Programming

Spring 2002

Tuples

 sequence unpacking  distribute

elements across variables

>>> t = 123, 543, 'bar'

>>> x, y, z = t

>>> x

123

 packing always creates tuple

 unpacking works for any sequence

Nov 4, 2019 Advanced Programming

Spring 2002

Dictionaries

 like Tcl or awk associative arrays

 indexed by keys

 keys are any immutable type: e.g., tuples

 but not lists (mutable!)

 uses 'key: value' notation

>>> tel = {'hgs' : 7042, 'lennox': 7018}

>>> tel['cs'] = 7000

>>> tel

Nov 4, 2019 Advanced Programming

Spring 2002

Dictionaries

 no particular order

 delete elements with del
>>> del tel['foo']

 keys() method  unsorted list of keys
>>> tel.keys()

['cs', 'lennox', 'hgs']

 use has_key() to check for existence
>>> tel.has_key('foo')

0

Nov 4, 2019 Advanced Programming

Spring 2002

Conditions

 can check for sequence membership with is
and is not:
>>> if (4 in vec):

... print '4 is'

 chained comparisons: a less than b AND b
equals c:

a < b == c

 and and or are short-circuit operators:

 evaluated from left to right

 stop evaluation as soon as outcome clear

Nov 4, 2019 Advanced Programming

Spring 2002

Conditions

 Can assign comparison to variable:

>>> s1,s2,s3='', 'foo', 'bar'

>>> non_null = s1 or s2 or s3

>>> non_null

foo

 Unlike C, no assignment within
expression

Nov 4, 2019 Advanced Programming

Spring 2002

Comparing sequences

 unlike C, can compare sequences (lists,
tuples, ...)

 lexicographical comparison:

 compare first; if different  outcome

 continue recursively

 subsequences are smaller

 strings use ASCII comparison

 can compare objects of different type, but
by type name (list < string < tuple)

Nov 4, 2019 Advanced Programming

Spring 2002

Comparing sequences

(1,2,3) < (1,2,4)

[1,2,3] < [1,2,4]

'ABC' < 'C' < 'Pascal' < 'Python'

(1,2,3) == (1.0,2.0,3.0)

(1,2) < (1,2,-1)

Nov 4, 2019 Advanced Programming

Spring 2002

Modules

 collection of functions and variables,
typically in scripts

 definitions can be imported

 file name is module name + .py

 e.g., create module fibo.py

def fib(n): # write Fib. series up to n

...

def fib2(n): # return Fib. series up to n

Nov 4, 2019 Advanced Programming

Spring 2002

Modules

 import module:
import fibo

 Use modules via "name space":
>>> fibo.fib(1000)

>>> fibo.__name__

'fibo'

 can give it a local name:
>>> fib = fibo.fib

>>> fib(500)

Nov 4, 2019 Advanced Programming

Spring 2002

Modules

 function definition + executable statements

 executed only when module is imported

 modules have private symbol tables

 avoids name clash for global variables

 accessible as module.globalname

 can import into name space:
>>> from fibo import fib, fib2

>>> fib(500)

 can import all names defined by module:
>>> from fibo import *

Nov 4, 2019 Advanced Programming

Spring 2002

Module search path

 current directory

 list of directories specified in PYTHONPATH
environment variable

 uses installation-default if not defined, e.g.,
.:/usr/local/lib/python

 uses sys.path
>>> import sys

>>> sys.path

['', 'C:\\PROGRA~1\\Python2.2', 'C:\\Program
Files\\Python2.2\\DLLs', 'C:\\Program
Files\\Python2.2\\lib', 'C:\\Program
Files\\Python2.2\\lib\\lib-tk', 'C:\\Program
Files\\Python2.2', 'C:\\Program Files\\Python2.2\\lib\\site-
packages']

Nov 4, 2019 Advanced Programming

Spring 2002

Compiled Python files

 include byte-compiled version of module if
there exists fibo.pyc in same directory as
fibo.py

 only if creation time of fibo.pyc matches
fibo.py

 automatically write compiled file, if possible

 platform independent

 doesn't run any faster, but loads faster

 can have only .pyc file  hide source

Nov 4, 2019 Advanced Programming

Spring 2002

Standard modules

 system-dependent list

 always sys module

>>> import sys

>>> sys.p1

'>>> '

>>> sys.p2

'... '

>>> sys.path.append('/some/directory')

Nov 4, 2019 Advanced Programming

Spring 2002

Module listing

 use dir() for each module

>>> dir(fibo)

['___name___', 'fib', 'fib2']

>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__name__', '__stderr__', '__st

din__', '__stdout__', '_getframe', 'argv', 'builtin_module_names', 'byteorder',

'copyright', 'displayhook', 'dllhandle', 'exc_info', 'exc_type', 'excepthook', '

exec_prefix', 'executable', 'exit', 'getdefaultencoding', 'getrecursionlimit', '

getrefcount', 'hexversion', 'last_type', 'last_value', 'maxint', 'maxunicode', '

modules', 'path', 'platform', 'prefix', 'ps1', 'ps2', 'setcheckinterval', 'setpr

ofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout', 'version',

'version_info', 'warnoptions', 'winver']

Nov 4, 2019 Advanced Programming

Spring 2002

Classes

 mixture of C++ and Modula-3

 multiple base classes

 derived class can override any methods of its
base class(es)

 method can call the method of a base class
with the same name

 objects have private data

 C++ terms:
 all class members are public

 all member functions are virtual

 no constructors or destructors (not needed)

Nov 4, 2019 Advanced Programming

Spring 2002

Classes

 classes (and data types) are objects

 built-in types cannot be used as base
classes by user

 arithmetic operators, subscripting can
be redefined for class instances (like
C++, unlike Java)

Nov 4, 2019 Advanced Programming

Spring 2002

Class definitions

Class ClassName:

<statement-1>

...

<statement-N>

 must be executed

 can be executed conditionally (see Tcl)

 creates new namespace

Nov 4, 2019 Advanced Programming

Spring 2002

Namespaces

 mapping from name to object:

 built-in names (abs())

 global names in module

 local names in function invocation

 attributes = any following a dot

 z.real, z.imag

 attributes read-only or writable

 module attributes are writeable

Nov 4, 2019 Advanced Programming

Spring 2002

Namespaces

 scope = textual region of Python program
where a namespace is directly accessible
(without dot)

 innermost scope (first) = local names

 middle scope = current module's global names

 outermost scope (last) = built-in names

 assignments always affect innermost scope

 don't copy, just create name bindings to objects

 global indicates name is in global scope

Nov 4, 2019 Advanced Programming

Spring 2002

Class objects

 obj.name references (plus module!):
class MyClass:

"A simple example class"

i = 123

def f(self):

return 'hello world'

>>> MyClass.i

123

 MyClass.f is method object

Nov 4, 2019 Advanced Programming

Spring 2002

Class objects

 class instantiation:
>>> x = MyClass()

>>> x.f()

'hello world'

 creates new instance of class
 note x = MyClass vs. x = MyClass()

 ___init__() special method for
initialization of object
def __init__(self,realpart,imagpart):

self.r = realpart

self.i = imagpart

Nov 4, 2019 Advanced Programming

Spring 2002

Instance objects

 attribute references

 data attributes (C++/Java data
members)
 created dynamically

x.counter = 1

while x.counter < 10:

x.counter = x.counter * 2

print x.counter

del x.counter

Nov 4, 2019 Advanced Programming

Spring 2002

Method objects

 Called immediately:
x.f()

 can be referenced:
xf = x.f

while 1:

print xf()

 object is passed as first argument of
function  'self'
 x.f() is equivalent to MyClass.f(x)

Nov 4, 2019 Advanced Programming

Spring 2002

Notes on classes

 Data attributes override method
attributes with the same name

 no real hiding  not usable to
implement pure abstract data types

 clients (users) of an object can add data
attributes

 first argument of method usually called
self
 'self' has no special meaning (cf. Java)

Nov 4, 2019 Advanced Programming

Spring 2002

Another example

 bag.py
class Bag:

def __init__(self):

self.data = []

def add(self, x):

self.data.append(x)

def addtwice(self,x):

self.add(x)

self.add(x)

Nov 4, 2019 Advanced Programming

Spring 2002

Another example, cont'd.

 invoke:
>>> from bag import *

>>> l = Bag()

>>> l.add('first')

>>> l.add('second')

>>> l.data

['first', 'second']

Nov 4, 2019 Advanced Programming

Spring 2002

Inheritance

class DerivedClassName(BaseClassName)

<statement-1>

...

<statement-N>

 search class attribute, descending chain
of base classes

 may override methods in the base class

 call directly via BaseClassName.method

Nov 4, 2019 Advanced Programming

Spring 2002

Multiple inheritance

class DerivedClass(Base1,Base2,Base3):

<statement>

 depth-first, left-to-right

 problem: class derived from two classes
with a common base class

Nov 4, 2019 Advanced Programming

Spring 2002

Private variables

 No real support, but textual
replacement (name mangling)

 __var is replaced by
_classname_var

 prevents only accidental modification,
not true protection

Nov 4, 2019 Advanced Programming

Spring 2002

~ C structs

 Empty class definition:

class Employee:

pass

john = Employee()

john.name = 'John Doe'

john.dept = 'CS'

john.salary = 1000

Nov 4, 2019 Advanced Programming

Spring 2002

Exceptions

 syntax (parsing) errors

while 1 print 'Hello World'

File "<stdin>", line 1

while 1 print 'Hello World'

^

SyntaxError: invalid syntax

 exceptions
 run-time errors

 e.g., ZeroDivisionError,
NameError, TypeError

Nov 4, 2019 Advanced Programming

Spring 2002

Handling exceptions

while 1:

try:

x = int(raw_input("Please enter a number: "))

break

except ValueError:

print "Not a valid number"

 First, execute try clause

 if no exception, skip except clause

 if exception, skip rest of try clause and use except

clause

 if no matching exception, attempt outer try
statement

Nov 4, 2019 Advanced Programming

Spring 2002

Handling exceptions

 try.py

import sys

for arg in sys.argv[1:]:

try:

f = open(arg, 'r')

except IOError:

print 'cannot open', arg

else:

print arg, 'lines:', len(f.readlines())

f.close

 e.g., as python try.py *.py

Nov 4, 2019 Advanced Programming

Spring 2002

Language comparison
Tcl Perl Python JavaScript Visual

Basic

Speed development     

regexp   

breadth extensible   

embeddable  

easy GUI   (Tk) 

net/web     

enterprise cross-platform    

I18N    

thread-safe   

database access     

