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Introduction

 Most recent popular 
(scripting/extension) language

 although origin ~1991

 heritage: teaching language (ABC)

 Tcl: shell

 perl: string (regex) processing

 object-oriented

 rather than add-on (OOTcl)
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Python philosophy

 Coherence

 not hard to read, write and maintain

 power

 scope

 rapid development + large systems

 objects

 integration

 hybrid systems
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Python features

no compiling or linking rapid development cycle

no type declarations simpler, shorter, more flexible

automatic memory management garbage collection

high-level data types and 

operations

fast development

object-oriented programming code structuring and reuse, C++

embedding and extending in C mixed language systems

classes, modules, exceptions "programming-in-the-large" 

support

dynamic loading of C modules simplified extensions, smaller 

binaries

dynamic reloading of C modules programs can be modified without 

stopping

Lutz, Programming Python
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Python features

universal "first-class" object model fewer restrictions and rules

run-time program construction handles unforeseen needs, end-

user coding

interactive, dynamic nature incremental development and 

testing

access to interpreter information metaprogramming, introspective 

objects

wide portability cross-platform programming 

without ports

compilation to portable byte-code execution speed, protecting source 

code

built-in interfaces to external 

services

system tools, GUIs, persistence, 

databases, etc.

Lutz, Programming Python
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Python

 elements from C++, Modula-3 
(modules), ABC, Icon (slicing)

 same family as Perl, Tcl, Scheme, REXX, 
BASIC dialects
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Uses of Python

 shell tools
 system admin tools, command line programs

 extension-language work

 rapid prototyping and development

 language-based modules
 instead of special-purpose parsers

 graphical user interfaces

 database access

 distributed programming

 Internet scripting



Nov 4, 2019 Advanced Programming

Spring 2002

Using python

 /usr/local/bin/python

 #! /usr/bin/env python

 interactive use

Python 1.6 (#1, Sep 24 2000, 20:40:45)  [GCC 2.95.1 19990816 (release)] on sunos5

Copyright (c) 1995-2000 Corporation for National Research Initiatives.

All Rights Reserved.

Copyright (c) 1991-1995 Stichting Mathematisch Centrum, Amsterdam.

All Rights Reserved.

>>> 

 python –c command [arg] ...

 python –i script

 read script first, then interactive
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Python structure

 modules: Python source files or C extensions

 import, top-level via from, reload

 statements

 control flow

 create objects

 indentation matters – instead of {}

 objects

 everything is an object

 automatically reclaimed when no longer needed
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First example

#!/usr/local/bin/python

# import systems module

import sys         

marker = '::::::'

for name in sys.argv[1:]: 

input = open(name, 'r') 

print marker + name

print input.read()



Nov 4, 2019 Advanced Programming

Spring 2002

Basic operations

 Assignment:

 size = 40

 a = b  = c = 3

 Numbers

 integer, float

 complex numbers: 1j+3, abs(z)

 Strings

 'hello world', 'it\'s hot'

 "bye world"

 continuation via \ or use """ long text """"
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String operations

 concatenate with + or neighbors
 word = 'Help' + x

 word = 'Help' 'a'

 subscripting of strings
 'Hello'[2]  'l'

 slice: 'Hello'[1:2]  'el'

 word[-1]  last character

 len(word)  5

 immutable: cannot assign to subscript
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Lists

 lists can be heterogeneous
 a = ['spam', 'eggs', 100, 1234, 2*2]

 Lists can be indexed and sliced:

 a[0]  spam

 a[:2]  ['spam', 'eggs']

 Lists can be manipulated

 a[2] = a[2] + 23

 a[0:2] = [1,12]

 a[0:0] = []

 len(a)  5
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Control flow: if

x = int(raw_input("Please enter #:"))

if x < 0:

x = 0

print 'Negative changed to zero'

elif x == 0:

print 'Zero'

elif x == 1:

print 'Single'

else:

print 'More'

 no case statement
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Control flow: for

a = ['cat', 'window', 'defenestrate']

for x in a:

print x, len(x)

 no arithmetic progression, but
 range(10)  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

 for i in range(len(a)):

print i, a[i]

 do not modify the sequence being iterated 
over
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Loops: break, continue, else

 break and continue like C

 else after loop exhaustion
for n in range(2,10):

for x in range(2,n):

if n % x == 0:

print n, 'equals', x, '*', n/x

break

else:

# loop fell through without finding a factor

print n, 'is prime'
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Do nothing

 pass does nothing

 syntactic filler

while 1:

pass
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Defining functions

def fib(n):

"""Print a Fibonacci series up to n."""

a, b = 0, 1

while b < n:

print b,

a, b = b, a+b

>>> fib(2000)

 First line is docstring

 first look for variables in local, then global

 need global to assign global variables
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Functions: default argument 
values

def ask_ok(prompt, retries=4, 
complaint='Yes or no, please!'):

while 1:

ok = raw_input(prompt)

if ok in ('y', 'ye', 'yes'): return 1

if ok in ('n', 'no'): return 0

retries = retries - 1

if retries < 0: raise IOError, 
'refusenik error'

print complaint

>>> ask_ok('Really?')
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Keyword arguments

 last arguments can be given as keywords
def parrot(voltage, state='a stiff', action='voom', 

type='Norwegian blue'):

print "-- This parrot wouldn't", action,

print "if you put", voltage, "Volts through it."

print "Lovely plumage, the ", type

print "-- It's", state, "!"

parrot(1000)

parrot(action='VOOOM', voltage=100000)
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Lambda forms

 anonymous functions

 may not work in older versions

def make_incrementor(n):

return lambda x: x + n

f = make_incrementor(42)

f(0)

f(1)
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List methods

 append(x)

 extend(L)

 append all items in list (like Tcl lappend)

 insert(i,x)

 remove(x)

 pop([i]), pop()

 create stack (FIFO), or queue (LIFO)  pop(0)

 index(x)

 return the index for value x
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List methods

 count(x)

 how many times x appears in list

 sort()

 sort items in place

 reverse()

 reverse list
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Functional programming tools

 filter(function, sequence)
def f(x): return x%2 != 0 and x%3 0

filter(f, range(2,25))

 map(function, sequence)
 call function for each item

 return list of return values

 reduce(function, sequence)
 return a single value

 call binary function on the first two items

 then on the result and next item

 iterate
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List comprehensions (2.0)

 Create lists without map(), 
filter(), lambda

 = expression followed by for clause + 
zero or more for or of clauses

>>> vec = [2,4,6]

>>> [3*x for x in vec]

[6, 12, 18]

>>> [{x: x**2} for x in vec}

[{2: 4}, {4: 16}, {6: 36}]
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List comprehensions

 cross products:

>>> vec1 = [2,4,6]

>>> vec2 = [4,3,-9]

>>> [x*y for x in vec1 for y in vec2]

[8,6,-18, 16,12,-36, 24,18,-54]

>>> [x+y for x in vec1 and y in vec2]

[6,5,-7,8,7,-5,10,9,-3]

>>> [vec1[i]*vec2[i] for i in 
range(len(vec1))]

[8,12,-54]
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List comprehensions

 can also use if:

>>> [3*x for x in vec if x > 3]

[12, 18]

>>> [3*x for x in vec if x < 2]

[]
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del – removing list items

 remove by index, not value

 remove slices from list (rather than by 
assigning an empty list)

>>> a = [-1,1,66.6,333,333,1234.5]

>>> del a[0]

>>> a

[1,66.6,333,333,1234.5]

>>> del a[2:4]

>>> a

[1,66.6,1234.5]
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Tuples and sequences

 lists, strings, tuples: examples of 
sequence type

 tuple = values separated by commas

>>> t = 123, 543, 'bar'

>>> t[0]

123

>>> t

(123, 543, 'bar')
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Tuples

 Tuples may be nested

>>> u = t, (1,2)

>>> u

((123, 542, 'bar'), (1,2))

 kind of like structs, but no element names:

 (x,y) coordinates

 database records

 like strings, immutable  can't assign to 

individual items
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Tuples

 Empty tuples: ()

>>> empty = ()

>>> len(empty)

0

 one item  trailing comma

>>> singleton = 'foo',
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Tuples

 sequence unpacking  distribute 

elements across variables

>>> t = 123, 543, 'bar'

>>> x, y, z = t

>>> x

123

 packing always creates tuple

 unpacking works for any sequence
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Dictionaries

 like Tcl or awk associative arrays

 indexed by keys

 keys are any immutable type: e.g., tuples

 but not lists (mutable!)

 uses 'key: value' notation

>>> tel = {'hgs' : 7042, 'lennox': 7018}

>>> tel['cs'] = 7000

>>> tel
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Dictionaries

 no particular order

 delete elements with del
>>> del tel['foo']

 keys() method  unsorted list of keys
>>> tel.keys()

['cs', 'lennox', 'hgs']

 use has_key() to check for existence
>>> tel.has_key('foo')

0
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Conditions

 can check for sequence membership with is
and is not:
>>> if (4 in vec):

...  print '4 is'

 chained comparisons: a less than b AND b 
equals c:

a < b == c

 and and or are short-circuit operators:

 evaluated from left to right

 stop evaluation as soon as outcome clear
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Conditions

 Can assign comparison to variable:

>>> s1,s2,s3='', 'foo', 'bar'

>>> non_null = s1 or s2 or s3

>>> non_null

foo

 Unlike C, no assignment within 
expression
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Comparing sequences

 unlike C, can compare sequences (lists, 
tuples, ...)

 lexicographical comparison:

 compare first; if different  outcome

 continue recursively

 subsequences are smaller

 strings use ASCII comparison

 can compare objects of different type, but 
by type name (list < string < tuple)
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Comparing sequences

(1,2,3) < (1,2,4)

[1,2,3] < [1,2,4]

'ABC' < 'C' < 'Pascal' < 'Python'

(1,2,3) == (1.0,2.0,3.0)

(1,2) < (1,2,-1)
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Modules

 collection of functions and variables, 
typically in scripts

 definitions can be imported

 file name is module name + .py

 e.g., create module fibo.py

def fib(n): # write Fib. series up to n

...

def fib2(n): # return Fib. series up to n
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Modules

 import module:
import fibo

 Use modules via "name space":
>>> fibo.fib(1000)

>>> fibo.__name__

'fibo'

 can give it a local name:
>>> fib = fibo.fib

>>> fib(500)
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Modules

 function definition + executable statements

 executed only when module is imported

 modules have private symbol tables

 avoids name clash for global variables

 accessible as module.globalname

 can import into name space:
>>> from fibo import fib, fib2

>>> fib(500)

 can import all names defined by module:
>>> from fibo import *
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Module search path

 current directory

 list of directories specified in PYTHONPATH 
environment variable

 uses installation-default if not defined, e.g., 
.:/usr/local/lib/python

 uses sys.path
>>> import sys

>>> sys.path

['', 'C:\\PROGRA~1\\Python2.2', 'C:\\Program 
Files\\Python2.2\\DLLs', 'C:\\Program 
Files\\Python2.2\\lib', 'C:\\Program 
Files\\Python2.2\\lib\\lib-tk', 'C:\\Program 
Files\\Python2.2', 'C:\\Program Files\\Python2.2\\lib\\site-
packages']
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Compiled Python files

 include byte-compiled version of module if 
there exists fibo.pyc in same directory as 
fibo.py

 only if creation time of fibo.pyc matches 
fibo.py

 automatically write compiled file, if possible

 platform independent

 doesn't run any faster, but loads faster

 can have only .pyc file  hide source
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Standard modules

 system-dependent list

 always sys module

>>> import sys

>>> sys.p1

'>>> '

>>> sys.p2

'... '

>>> sys.path.append('/some/directory')
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Module listing

 use dir() for each module

>>> dir(fibo)

['___name___', 'fib', 'fib2']

>>> dir(sys)
['__displayhook__', '__doc__', '__excepthook__', '__name__', '__stderr__', '__st

din__', '__stdout__', '_getframe', 'argv', 'builtin_module_names', 'byteorder',

'copyright', 'displayhook', 'dllhandle', 'exc_info', 'exc_type', 'excepthook', '

exec_prefix', 'executable', 'exit', 'getdefaultencoding', 'getrecursionlimit', '

getrefcount', 'hexversion', 'last_type', 'last_value', 'maxint', 'maxunicode', '

modules', 'path', 'platform', 'prefix', 'ps1', 'ps2', 'setcheckinterval', 'setpr

ofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', 'stdout', 'version',

'version_info', 'warnoptions', 'winver']
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Classes

 mixture of C++ and Modula-3

 multiple base classes

 derived class can override any methods of its 
base class(es)

 method can call the method of a base class 
with the same name

 objects have private data

 C++ terms:
 all class members are public

 all member functions are virtual

 no constructors or destructors (not needed)
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Classes

 classes (and data types) are objects

 built-in types cannot be used as base 
classes by user

 arithmetic operators, subscripting can 
be redefined for class instances (like 
C++, unlike Java)
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Class definitions

Class ClassName:

<statement-1>

...

<statement-N>

 must be executed

 can be executed conditionally (see Tcl)

 creates new namespace
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Namespaces

 mapping from name to object:

 built-in names (abs())

 global names in module

 local names in function invocation

 attributes = any following a dot

 z.real, z.imag

 attributes read-only or writable

 module attributes are writeable
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Namespaces

 scope = textual region of Python program 
where a namespace is directly accessible 
(without dot)

 innermost scope (first) = local names

 middle scope = current module's global names

 outermost scope (last) = built-in names

 assignments always affect innermost scope

 don't copy, just create name bindings to objects

 global indicates name is in global scope
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Class objects

 obj.name references (plus module!):
class MyClass:

"A simple example class"

i = 123

def f(self):

return 'hello world'

>>> MyClass.i

123

 MyClass.f is method object
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Class objects

 class instantiation:
>>> x = MyClass()

>>> x.f()

'hello world'

 creates new instance of class
 note x = MyClass vs. x = MyClass()

 ___init__() special method for 
initialization of object
def __init__(self,realpart,imagpart):

self.r = realpart

self.i = imagpart
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Instance objects

 attribute references

 data attributes (C++/Java data 
members)
 created dynamically

x.counter = 1

while x.counter < 10:

x.counter = x.counter * 2

print x.counter

del x.counter
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Method objects

 Called immediately:
x.f()

 can be referenced:
xf = x.f

while 1:

print xf()

 object is passed as first argument of 
function  'self'
 x.f() is equivalent to MyClass.f(x)
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Notes on classes

 Data attributes override method 
attributes with the same name

 no real hiding  not usable to 
implement pure abstract data types

 clients (users) of an object can add data 
attributes

 first argument of method usually called 
self
 'self' has no special meaning (cf. Java)
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Another example

 bag.py
class Bag:

def __init__(self):

self.data = []

def add(self, x):

self.data.append(x)

def addtwice(self,x):

self.add(x)    

self.add(x)
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Another example, cont'd.

 invoke:
>>> from bag import *

>>> l = Bag()

>>> l.add('first')

>>> l.add('second')

>>> l.data

['first', 'second']
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Inheritance

class DerivedClassName(BaseClassName)

<statement-1>

...

<statement-N>

 search class attribute, descending chain 
of base classes

 may override methods in the base class

 call directly via BaseClassName.method
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Multiple inheritance

class DerivedClass(Base1,Base2,Base3):

<statement>

 depth-first, left-to-right

 problem: class derived from two classes 
with a common base class
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Private variables

 No real support, but textual 
replacement (name mangling)

 __var is replaced by 
_classname_var

 prevents only accidental modification, 
not true protection
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~ C structs

 Empty class definition:

class Employee:

pass

john = Employee()

john.name = 'John Doe'

john.dept = 'CS'

john.salary = 1000
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Exceptions

 syntax (parsing) errors

while 1 print 'Hello World'

File "<stdin>", line 1

while 1 print 'Hello World'

^

SyntaxError: invalid syntax

 exceptions
 run-time errors

 e.g., ZeroDivisionError, 
NameError, TypeError
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Handling exceptions

while 1:

try:

x = int(raw_input("Please enter a number: "))

break

except ValueError:

print "Not a valid number"

 First, execute try clause

 if no exception, skip except clause

 if exception, skip rest of try clause and use except 

clause

 if no matching exception, attempt outer try
statement
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Handling exceptions

 try.py

import sys

for arg in sys.argv[1:]:

try:

f = open(arg, 'r')

except IOError:

print 'cannot open', arg

else:

print arg, 'lines:', len(f.readlines())

f.close

 e.g., as python try.py *.py



Nov 4, 2019 Advanced Programming

Spring 2002

Language comparison
Tcl Perl Python JavaScript Visual 

Basic

Speed development     

regexp   

breadth extensible   

embeddable  

easy GUI   (Tk) 

net/web     

enterprise cross-platform    

I18N    

thread-safe   

database access     


