
Python GUI

 GUI is a desktop app which helps you to interact with the
computers.

 They are used to perform different tasks in the desktops,
laptops, other electronic devices, etc..,

Example

 GUI apps like Text-Editors are used to create, read, update
and delete different types of files.

 GUI apps like Sudoku, Chess, Solitaire, etc.., are games
which you can play.

 GUI apps like Chrome, Firefox, Microsoft Edge, etc.., are
used to surf the Internet.

– tkinter

 tkinter is is an inbuilt Python module used to create
simple GUI apps. It is the most commonly used module
for GUI apps in the Python.

 Fastest and easiest way to create the GUI applications.

 Creating a GUI using tkinter is an easy task.

To create a tkinter:

1. Importing the module – tkinter
2. Create the main window (container)
3. Add any number of widgets to the main window
4. Apply the event Trigger on the widgets.

Importing tkinter is same as importing any other module in the

python code.

Note that the name of the module in Python 2.x is ‘Tkinter’ and

in Python 3.x is ‘tkinter’.

import tkinter

There are two main methods used you the user need to
remember while creating the Python application with GUI.

1. To create a main window, tkinter offers a method

tk(screenName=None, baseName=None, className=’Tk’,
useTk=1)

To change the name of the window, you can change the
className to the desired one.

The basic code used to create the main window of the
application is:

window=tkinter.Tk()

where m is the name of the main window object

2. mainloop():

 There is a method known by the name mainloop() is
used when you are ready for the application to run.

 mainloop() is an infinite loop used to run the
application, wait for an event to occur and process the
event till the window is not closed.

m.mainloop()

Example

import tkinter

window = tkinter.Tk()

to rename the title of the window

window.title("GUI")

pack is used to show the object in the window

label = tkinter.Label(window, text = "Hello World!").pack()

window.mainloop()

You will see a similar window like this.

Widgets

 tkinter also offers access to the geometric configuration of
the widgets which can organize the widgets in the parent
windows.

 Widgets are something like elements in the HTML

 You will find different types of widgets to the different
types of elements in the tkinter.

Example: Button, Canvas, Checkbutton etc

Geometry Management

 Widgets in the tkinter will have some geometry
measurements.

 These measurements give you to organize the widgets and
their parent frames, windows, etc..,

There are mainly three geometry manager classes class.

1. pack() method:It organizes the widgets in blocks before
placing in the parent widget.

2. grid() method:It organizes the widgets in grid (table-like
structure) before placing in the parent widget.

3. place() method:It organizes the widgets by placing them on
specific positions directed by the programmer

Organizing Layout And Widgets

To arrange the layout in the window, we will use Frame, class.

Example: Let's create a simple program to see how
the Frame works.

Steps:-

 Frame is used to create the divisions in the window. You
can align the frames as you like with side parameter
of pack() method.

 Button is used to create a button in the window. It takes
several parameters like text(Value of the Button), fg(Color
of the text), bg(Background color), etc..,

Note:- The parameter of any widget method must be where to
place the widget.

In the below code, we use to place in
the window, top_frame, bottom_frame

import tkinter

window = tkinter.Tk()
window.title("GUI")

creating 2 frames TOP and BOTTOM
top_frame = tkinter.Frame(window).pack()
bottom_frame = tkinter.Frame(window).pack(side = "bottom")

now, create some widgets in the top_frame and
bottom_frame
btn1 = tkinter.Button(top_frame, text = "Button1", fg =
"red").pack()# 'fg - foreground' is used to color the contents
btn2 = tkinter.Button(top_frame, text = "Button2", fg =
"green").pack()# 'text' is used to write the text on the Button

Above code produces the following window, if you didn't
change the above code.

Using pack()

Example: Now, we will see how to use the fill parameter
of pack()

import tkinter

window = tkinter.Tk()
window.title("GUI")

creating 3 simple Labels containing any text

sufficient width
tkinter.Label(window, text = "Suf. width", fg = "white", bg =
"purple").pack()

width of X
tkinter.Label(window, text = "Taking all available X width", fg =
"white", bg = "green").pack(fill = "x")

height of Y
tkinter.Label(window, text = "Taking all available Y height", fg =
"white", bg = "black").pack(side = "left", fill = "y")

window.mainloop()

Using grid()

Grid is another way to organize the widgets. It uses the Matrix
row column concepts. Something like 2 x 2 Matrix.

0 0 0 1

1 0 1 1

Example

import tkinter

window = tkinter.Tk()

window.title("GUI")

creating 2 text labels and input labels

tkinter.Label(window, text = "Username").grid(row = 0) # this is
placed in 0 0
'Entry' is used to display the input-field
tkinter.Entry(window).grid(row = 0, column = 1) # this is placed
in 0 1

tkinter.Label(window, text = "Password").grid(row = 1) # this is
placed in 1 0
tkinter.Entry(window).grid(row = 1, column = 1) # this is placed
in 1 1

'Checkbutton' is used to create the check buttons
tkinter.Checkbutton(window, text = "Keep Me Logged
In").grid(columnspan = 2) # 'columnspan' tells to take the width
of 2 columns
 # you can also use
'rowspan' in the similar manner

window.mainloop()

You will get the following output.

Using place()

You can access the place manager through the place method
which is available for all standard widget

When to use the Place Manager

 It is usually not a good idea to use place for ordinary
window and dialog layouts; its simply to much work to get
things working as they should.

 Use the pack or grid managers for such purposes.

 However, place has its uses in more specialized cases.

 Most importantly, it can be used by compound widget
containers to implement various custom geometry
managers.

 Another use is to position control buttons in dialogs.

In following example it packs a Label widget in a frame widget,
and then places a Button in the upper right corner of the
frame. The button will overlap the label.

 pane = Frame(master)
 Label(pane, text="Pane Title").pack()
 b = Button(pane, width=12, height=12,
 image=launch_icon, command=self.launch)
 b.place(relx=1, x=-2, y=2, anchor=NE)

You can combine the absolute and relative options. In such
cases, the relative option is applied first, and the absolute value
is then added to that position. In the following example, the
widget w is almost completely covers its parent, except for a 5
pixel border around the widget.

 w.place(x=5, y=5, relwidth=1, relheight=1, width=-10, height=-
10)

You can also place a widget outside another widget.

For example, why not place two widgets on top of each other:

 w2.place(in_=w1, relx=0.5, y=-2, anchor=S,
bordermode="outside")

Note the use of relx and anchor options to center the widgets
vertically. You could also use (relx=0, anchor=SW) to get left
alignment, or (relx=1, anchor=SE) to get right alignment.

https://effbot.org/tkinterbook/place.htm

Widgets

1. Button
To add a button in your application, this widget is
used.
The general syntax is:

w=Button(master, option=value)

https://effbot.org/tkinterbook/place.htm

master is the parameter used to represent the parent
window.
There are number of options which are used to
change the format of the Buttons. Number of options
can be passed as parameters separated by commas.
Some of them are listed below.

 activebackground: to set the background color when
button is under the cursor.

 activeforeground: to set the foreground color when button
is under the cursor.

 bg: to set he normal background color.
 command: to call a function.
 font: to set the font on the button label.
 image: to set the image on the button.
 width: to set the width of the button.
 height: to set the height of the button.

import tkinter as tk
r = tk.Tk()
r.title('Counting Seconds')
button = tk.Button(r, text='Stop', width=25,
command=r.destroy)
button.pack()
r.mainloop()

Output:

2. Canvas

It is used to draw pictures and other complex layout like
graphics, text and widgets.
The general syntax is:

w = Canvas(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 bd: to set the border width in pixels.
 bg: to set the normal background color.
 cursor: to set the cursor used in the canvas.
 highlightcolor: to set the color shown in the focus highlight.
 width: to set the width of the widget.
 height: to set the height of the widget.

from tkinter import *
master = Tk()
w = Canvas(master, width=40, height=60)
w.pack()
canvas_height=20
canvas_width=200

y = int(canvas_height / 2)
w.create_line(0, y, canvas_width, y)
mainloop()

Outputt:

3. Checkbutton

 To select any number of options by displaying a number of
options to a user as toggle buttons. The general syntax is:
w = CheckButton(master, option=value)

There are number of options which are used to change the
format of this widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 Title: To set the title of the widget.
 activebackground: to set the background color when

widget is under the cursor.
 activeforeground: to set the foreground color when widget

is under the cursor.
 bg: to set he normal backgrouSteganography

Break

Secret Code:

Attach a File:nd color.

 command: to call a function.

 font: to set the font on the button label.
 image: to set the image on the widget.

from tkinter import *
master = Tk()
var1 = IntVar()
Checkbutton(master, text='male', variable=var1).grid(row=0,
sticky=W)
var2 = IntVar()
Checkbutton(master, text='female', variable=var2).grid(row=1,
sticky=W)
mainloop()

Output:

4. Entry

It is used to input the single line text entry from the
user.. For multi-line text input, Text widget is used.
The general syntax is:

w=Entry(master, option=value)

master is the parameter used to represent the parent window.
There are number of options which are used to change the
format of the widget. Number of options can be passed as

parameters separated by commas. Some of them are listed
below.

 bd: to set the border width in pixels.
 bg: to set the normal background color.
 cursor: to set the cursor used.
 command: to call a function.
 highlightcolor: to set the color shown in the focus highlight.
 width: to set the width of the button.
 height: to set the height of the button.

from tkinter import *
master = Tk()
Label(master, text='First Name').grid(row=0)
Label(master, text='Last Name').grid(row=1)
e1 = Entry(master)
e2 = Entry(master)
e1.grid(row=0, column=1)
e2.grid(row=1, column=1)
mainloop()

Output:

5. Frame

 It acts as a container to hold the widgets. It is used for
grouping and organizing the widgets. The general syntax is:
w = Frame(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 highlightcolor: To set the color of the focus highlight when
widget has to be focused.

 bd: to set the border width in pixels.
 bg: to set the normal background color.
 cursor: to set the cursor used.
 width: to set the width of the widget.
 height: to set the height of the widget.

from tkinter import *

root = Tk()
frame = Frame(root)
frame.pack()
bottomframe = Frame(root)
bottomframe.pack(side = BOTTOM)
redbutton = Button(frame, text = 'Red', fg ='red')
redbutton.pack(side = LEFT)
greenbutton = Button(frame, text = 'Brown', fg='brown')
greenbutton.pack(side = LEFT)
bluebutton = Button(frame, text ='Blue', fg ='blue')

bluebutton.pack(side = LEFT)
blackbutton = Button(bottomframe, text ='Black', fg ='black')
blackbutton.pack(side = BOTTOM)
root.mainloop()

Output:

6. Label

 It refers to the display box where you can put any text or image
which can be updated any time as per the code.
The general syntax is:
w=Label(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 bg: to set he normal background color.
 bg to set he normal background color.
 command: to call a function.
 font: to set the font on the button label.
 image: to set the image on the button.
 width: to set the width of the button.
 height” to set the height of the button.

from tkinter import *
root = Tk()
w = Label(root, text='GeeksForGeeks.org!')
w.pack()
root.mainloop()

Output:

7. Listbox

 It offers a list to the user from which the user can accept any
number of options.
The general syntax is:
w = Listbox(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 highlightcolor: To set the color of the focus highlight when
widget has to be focused.

 bg: to set he normal background color.
 bd: to set the border width in pixels.

 font: to set the font on the button label.
 image: to set the image on the widget.
 width: to set the width of the widget.
 height: to set the height of the widget.

from tkinter import *

top = Tk()
Lb = Listbox(top)
Lb.insert(1, 'Python')
Lb.insert(2, 'Java')
Lb.insert(3, 'C++')
Lb.insert(4, 'Any other')
Lb.pack()
top.mainloop()

Output:

8. Menubutton

It is a part of top-down menu which stays on the window all the
time. Every menubutton has its own functionality. The general
syntax is:
w = MenuButton(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 activebackground: To set the background when mouse is
over the widget.

 activeforeground: To set the foreground when mouse is
over the widget.

 bg: to set he normal background color.
 bd: to set the size of border around the indicator.
 cursor: To appear the cursor when the mouse over the

menubutton.
 image: to set the image on the widget.
 width: to set the width of the widget.
 height: to set the height of the widget.
 highlightcolor: To set the color of the focus highlight when

widget has to be focused.

from tkinter import *

top = Tk()
mb = Menubutton (top, text = "GfG")
mb.grid()

mb.menu = Menu (mb, tearoff = 0)
mb["menu"] = mb.menu
cVar = IntVar()
aVar = IntVar()
mb.menu.add_checkbutton (label ='Contact', variable = cVar)
mb.menu.add_checkbutton (label = 'About', variable = aVar)
mb.pack()
top.mainloop()

Output:

9. Menu

It is used to create all kinds of menus used by the application.
The general syntax is:
w = Menu(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of this widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 title: To set the title of the widget.
 activebackground: to set the background color when

widget is under the cursor.

 activeforeground: to set the foreground color when widget
is under the cursor.

 bg: to set he normal background color.
 command: to call a function.
 font: to set the font on the button label.
 image: to set the image on the widget.

from tkinter import *

root = Tk()
menu = Menu(root)
root.config(menu=menu)
filemenu = Menu(menu)
menu.add_cascade(label='File', menu=filemenu)
filemenu.add_command(label='New')
filemenu.add_command(label='Open...')
filemenu.add_separator()
filemenu.add_command(label='Exit', command=root.quit)
helpmenu = Menu(menu)
menu.add_cascade(label='Help', menu=helpmenu)
helpmenu.add_command(label='About')
mainloop()

Output:

10. Message

It refers to the multi-line and non-editable text. It works same
as that of Label.
The general syntax is:
w = Message(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 bd: to set the border around the indicator.
 bg: to set he normal background color.
 font: to set the font on the button label.
 image: to set the image on the widget.
 width: to set the width of the widget.
 height: to set the height of the widget.

from tkinter import *
main = Tk()
ourMessage ='This is our Message'
messageVar = Message(main, text = ourMessage)
messageVar.config(bg='lightgreen')
messageVar.pack()
main.mainloop()

Output:

11. Radiobutton

It is used to offer multi-choice option to the user. It offers
several options to the user and the user has to choose one
option.
The general syntax is:
w = RadioButton(master, option=value)

There are number of options which are used to change the
format of this widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 activebackground: to set the background color when
widget is under the cursor.

 activeforeground: to set the foreground color when widget
is under the cursor.

 bg: to set he normal background color.
 command: to call a function.
 font: to set the font on the button label.
 image: to set the image on the widget.
 width: to set the width of the label in characters.
 height: to set the height of the label in characters.

from tkinter import *
root = Tk()
v = IntVar()
Radiobutton(root, text='GfG', variable=v,
value=1).pack(anchor=W)
Radiobutton(root, text='MIT', variable=v,
value=2).pack(anchor=W)
mainloop()

Output:

12. Scale

 It is used to provide a graphical slider that allows to select any
value from that scale. The general syntax is:
w = Scale(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 cursor: To change the cursor pattern when the mouse is
over the widget.

 activebackground: To set the background of the widget
when mouse is over the widget.

 bg: to set he normal background color.
 orient: Set it to HORIZONTAL or VERTICAL according to the

requirement.
 from_: To set the value of one end of the scale range.
 to: To set the value of the other end of the scale range.
 image: to set the image on the widget.
 width: to set the width of the widget.

from tkinter import *
master = Tk()
w = Scale(master, from_=0, to=42)
w.pack()
w = Scale(master, from_=0, to=200, orient=HORIZONTAL)
w.pack()
mainloop()

Output:

13. Scrollbar

It refers to the slide controller which will be used to implement
listed widgets.
The general syntax is:
w = Scrollbar(master, option=value)

master is the parameter used to represent the parent window.

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 width: to set the width of the widget.
 activebackground: To set the background when mouse is

over the widget.
 bg: to set he normal background color.
 bd: to set the size of border around the indicator.
 cursor: To appear the cursor when the mouse over the

menubutton.

from tkinter import *
root = Tk()
scrollbar = Scrollbar(root)
scrollbar.pack(side = RIGHT, fill = Y)
mylist = Listbox(root, yscrollcommand = scrollbar.set)
for line in range(100):
 mylist.insert(END, 'This is line number' + str(line))
mylist.pack(side = LEFT, fill = BOTH)
scrollbar.config(command = mylist.yview)
mainloop()

Output:

14. Text

To edit a multi-line text and format the way it has to be
displayed.
The general syntax is:
w =Text(master, option=value)

There are number of options which are used to change the
format of the text. Number of options can be passed as

parameters separated by commas. Some of them are listed
below.

 highlightcolor: To set the color of the focus highlight when
widget has to be focused.

 insertbackground: To set the background of the widget.
 bg: to set he normal background color.
 font: to set the font on the button label.
 image: to set the image on the widget.
 width: to set the width of the widget.
 height: to set the height of the widget.

from tkinter import *
root = Tk()
T = Text(root, height=2, width=30)
T.pack()
T.insert(END, 'GeeksforGeeks\nBEST WEBSITE\n')
mainloop()

Output:

15. Toplevel

 This widget is directly controlled by the window manager. It
don’t need any parent window to work on.The general syntax
is:
w = TopLevel(master, option=value)

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 bg: to set he normal background color.
 bd: to set the size of border around the indicator.
 cursor: To appear the cursor when the mouse over the

menubutton.
 width: to set the width of the widget.
 height: to set the height of the widget.

from tkinter import *
root = Tk()
root.title('GfG')
top = Toplevel()
top.title('Python')
top.mainloop()

Output:

16. Spinbox

It is an entry of ‘Entry’ widget. Here, value can be input by
selecting a fixed value of numbers.The general syntax is:
w = SpinBox(master, option=value)

There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 bg: to set he normal background color.
 bd: to set the size of border around the indicator.
 cursor: To appear the cursor when the mouse over the

menubutton.
 command: To call a function.
 width: to set the width of the widget.
 activebackground: To set the background when mouse is

over the widget.
 disabledbackground: To disable the background when

mouse is over the widget.
 from_: To set the value of one end of the range.
 to: To set the value of the other end of the range.

from tkinter import *
master = Tk()
w = Spinbox(master, from_ = 0, to = 10)
w.pack()
mainloop()

 Output:

17. PanedWindow

It is a container widget which is used to handle number of
panes arranged in it. The general syntax is:
w = PannedWindow(master, option=value)

master is the parameter used to represent the parent window.
There are number of options which are used to change the
format of the widget. Number of options can be passed as
parameters separated by commas. Some of them are listed
below.

 bg: to set he normal background color.
 bd: to set the size of border around the indicator.
 cursor: To appear the cursor when the mouse over the

menubutton.
 width: to set the width of the widget.
 height: to set the height of the widget.

from tkinter import *
m1 = PanedWindow()
m1.pack(fill = BOTH, expand = 1)
left = Entry(m1, bd = 5)
m1.add(left)
m2 = PanedWindow(m1, orient = VERTICAL)
m1.add(m2)

top = Scale(m2, orient = HORIZONTAL)
m2.add(top)
mainloop()

Output:

18. LabelFrame

A labelframe is a simple container widget. Its primary purpose
is to act as a spacer or container for complex window layouts.

This widget has the features of a frame plus the ability to
display a label.

Syntax

w = LabelFrame(master, option, ...)

master − This represents the parent window.

options − Here is the list of most commonly used options
for this widget. These options can be used as key-value
pairs separated by commas.

 Bg The normal background color displayed behind the

label and indicator.
 Bd The size of the border around the indicator. Default is 2

pixels.

 Cursor If you set this option to a cursor name (arrow, dot
etc.), the mouse cursor will change to that pattern when it
is over the checkbutton.

 Font The vertical dimension of the new frame.
 Height The vertical dimension of the new frame.
 labelAnchor Specifies where to place the label.
 Highlightbackground Color of the focus highlight when

the frame does not have focus
 Highlightcolor Color shown in the focus highlight when

the frame has the focus.
 Highlightthickness Thickness of the focus highlight.
 Relief With the default value, relief=FLAT, the

checkbutton does not stand out from its background. You
may set this option to any of the other styles

 Text Specifies a string to be displayed inside the widget.
 Width Specifies the desired width for the window.

from Tkinter import *

root = Tk()

labelframe = LabelFrame(root, text="This is a LabelFrame")
labelframe.pack(fill="both", expand="yes")

left = Label(labelframe, text="Inside the LabelFrame")
left.pack()

root.mainloop()

19. Tk MessageBox

You can create alert boxes in
the tkinter using messagebox method. You can also
create questionsusing the messasgebox method.

import tkinter
import tkinter.messagebox

window = tkinter.Tk()
window.title("GUI")

creating a simple alert box
tkinter.messagebox.showinfo("Alert Message", "This is just a
alert message!")
creating a question to get the response from the user [Yes or
No Question]
response = tkinter.messagebox.askquestion("Simple Question",
"Do you love Python?")
If user clicks 'Yes' then it returns 1 else it returns 0

if response == 1:
 tkinter.Label(window, text = "You love Python!").pack()
else:
 tkinter.Label(window, text = "You don't love Python!").pack()

window.mainloop()

You will see the following output.

Simple Shapes

You are going to draw some basic shapes with
the Canvas provided by tkinter in GUI.

See the example
import tkinter

window = tkinter.Tk()
window.title("GUI")

creating the 'Canvas' area of width and height 500px
canvas = tkinter.Canvas(window, width = 500, height = 500)
canvas.pack()

'create_line' is used to create a line. Parameters:- (starting x-
point, starting y-point, ending x-point, ending y-point)
line1 = canvas.create_line(25, 25, 250, 150)
parameter:- (fill = color_name)
line2 = canvas.create_line(25, 250, 250, 150, fill = "red")

'create_rectangle' is used to create rectangle. Parameters:-
(starting x-point, starting y-point, width, height, fill)
starting point the coordinates of top-left point of rectangle
rect = canvas.create_rectangle(500, 25, 175, 75, fill = "green")

you 'delete' shapes using delete method passing the name of
the variable as parameter.
canvas.delete(line1)
you 'delete' all the shapes by passing 'ALL' as parameter to
the 'delete' method
canvas.delete(tkinter.ALL)

window.mainloop()

You will see the following shapes in your GUI window.

Just run dir(tkinter.Canvas) to see all the available methods for
creating different shapes.

Images and Icons

You can add Images and Icons using PhotoImage method.

Let's how it works.
import tkinter

window = tkinter.Tk()
window.title("GUI")

taking image from the directory and storing the source in a
variable
icon = tkinter.PhotoImage(file = "images/haha.png")
displaying the picture using a 'Label' by passing the 'picture'
variriable to 'image' parameter
label = tkinter.Label(window, image = icon)
label.pack()

window.mainloop()

You can see the icon in the GUI.

Project

Creating Calculator

Every GUI apps include two steps.

 Creating User Interface

 Adding functionalities to the GUI

Let's start creating Calculator.
from tkinter import *

creating basic window
window = Tk()
window.geometry("312x324") # size of the window width:- 500,
height:- 375
window.resizable(0, 0) # this prevents from resizing the window
window.title("Calcualtor")

################################### functions
######################################
'btn_click' function continuously updates the input field
whenever you enters a number
def btn_click(item):
 global expression
 expression = expression + str(item)
 input_text.set(expression)

'btn_clear' function clears the input field
def btn_clear():
 global expression
 expression = ""
 input_text.set("")

'btn_equal' calculates the expression present in input field
def btn_equal():
 global expression
 result = str(eval(expression)) # 'eval' function evalutes the
string expression directly
 # you can also implement your own function to evalute the
expression istead of 'eval' function
 input_text.set(result)
 expression = ""

expression = ""
'StringVar()' is used to get the instance of input field
input_text = StringVar()

creating a frame for the input field
input_frame = Frame(window, width = 312, height = 50, bd = 0,
highlightbackground = "black", highlightcolor = "black",
highlightthickness = 1)
input_frame.pack(side = TOP)

creating a input field inside the 'Frame'
input_field = Entry(input_frame, font = ('arial', 18, 'bold'),
textvariable = input_text, width = 50, bg = "#eee", bd = 0, justify
= RIGHT)
input_field.grid(row = 0, column = 0)
input_field.pack(ipady = 10) # 'ipady' is internal padding to
increase the height of input field

creating another 'Frame' for the button below the
'input_frame'
btns_frame = Frame(window, width = 312, height = 272.5, bg =
"grey")
btns_frame.pack()

first row
clear = Button(btns_frame, text = "C", fg = "black", width = 32,
height = 3, bd = 0, bg = "#eee", cursor = "hand2", command =
lambda: btn_clear()).grid(row = 0, column = 0, columnspan = 3,
padx = 1, pady = 1)
divide = Button(btns_frame, text = "/", fg = "black", width = 10,
height = 3, bd = 0, bg = "#eee", cursor = "hand2", command =
lambda: btn_click("/")).grid(row = 0, column = 3, padx = 1, pady
= 1)

second row
seven = Button(btns_frame, text = "7", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(7)).grid(row = 1, column = 0, padx = 1, pady =
1)
eight = Button(btns_frame, text = "8", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(8)).grid(row = 1, column = 1, padx = 1, pady =
1)

nine = Button(btns_frame, text = "9", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(9)).grid(row = 1, column = 2, padx = 1, pady =
1)
multiply = Button(btns_frame, text = "*", fg = "black", width =
10, height = 3, bd = 0, bg = "#eee", cursor = "hand2", command
= lambda: btn_click("*")).grid(row = 1, column = 3, padx = 1,
pady = 1)

third row
four = Button(btns_frame, text = "4", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(4)).grid(row = 2, column = 0, padx = 1, pady =
1)
five = Button(btns_frame, text = "5", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(5)).grid(row = 2, column = 1, padx = 1, pady =
1)
six = Button(btns_frame, text = "6", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(6)).grid(row = 2, column = 2, padx = 1, pady =
1)
minus = Button(btns_frame, text = "-", fg = "black", width = 10,
height = 3, bd = 0, bg = "#eee", cursor = "hand2", command =
lambda: btn_click("-")).grid(row = 2, column = 3, padx = 1, pady
= 1)

fourth row
one = Button(btns_frame, text = "1", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(1)).grid(row = 3, column = 0, padx = 1, pady =
1)
two = Button(btns_frame, text = "2", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(2)).grid(row = 3, column = 1, padx = 1, pady =
1)
three = Button(btns_frame, text = "3", fg = "black", width = 10,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(3)).grid(row = 3, column = 2, padx = 1, pady =
1)
plus = Button(btns_frame, text = "+", fg = "black", width = 10,
height = 3, bd = 0, bg = "#eee", cursor = "hand2", command =
lambda: btn_click("+")).grid(row = 3, column = 3, padx = 1, pady
= 1)

fourth row
zero = Button(btns_frame, text = "0", fg = "black", width = 21,
height = 3, bd = 0, bg = "#fff", cursor = "hand2", command =
lambda: btn_click(0)).grid(row = 4, column = 0, columnspan = 2,
padx = 1, pady = 1)
point = Button(btns_frame, text = ".", fg = "black", width = 10,
height = 3, bd = 0, bg = "#eee", cursor = "hand2", command =
lambda: btn_click(".")).grid(row = 4, column = 2, padx = 1, pady
= 1)

equals = Button(btns_frame, text = "=", fg = "black", width = 10,
height = 3, bd = 0, bg = "#eee", cursor = "hand2", command =
lambda: btn_equal()).grid(row = 4, column = 3, padx = 1, pady =
1)

window.mainloop()

