

Understanding

PYTHON
By,
Anand Roy Choudhury
CSE Department,
IIT Bombay.

Overview

History
Assignment and Name conventions
Basic Data types
Sequences types: Lists, Tuples, and
Strings

Mutability
Modules
Errors and Exceptions

Brief History of Python

Invented in the Netherlands, early 90s
by Guido van Rossum

Open source
It is much more than a scripting
language,

Interpreted, object oriented and
functional language

Running Python

The Python Interpreter

Download from http://python.org/download/
Typical Python implementations offer both
an interpreter and compiler

On Ubuntu :
[mooc-34@edx ~]$ python
Python 2.7.3 (default, Feb 27 2014, 19:58:35)
Type "help", "copyright", "credits" or "license" for more
information.
>>>
On Unix:
% python
>>> 3+3
6
Python prompts with ‘>>>’.

http://python.org/download/

The Python Interpreter

Download from http://python.org/download/
Typical Python implementations offer both
an interpreter and compiler

On Ubuntu :
[mooc-34@edx ~]$ python
Python 2.7.3 (default, Feb 27 2014, 19:58:35)
Type "help", "copyright", "credits" or "license" for more
information.
>>>
On Unix:
% python
>>> 3+3
6
Python prompts with ‘>>>’.

http://python.org/download/

Running Interactively on UNIX

To exit Python
 In Unix, type CONTROL-D
 In Windows, type CONTROL-Z + <Enter>

Example :
>>> def cube(x):
... return x * x * x
...
>>> map(cube, [1, 2, 3, 4])
[1, 8, 27, 64]
>>>

Running Programs on Ubuntu

Extension : “.py”
Calling python program via the python
interpreter

>>> python intern.py
Make a python file (For eg. intern.py)
directly executable by
 Include the following line as the first line of python file

 #!$/usr/bin/env python
 For making the file executable run the following

command,
 $ sudo chmod +x intern.py
 Invoking file from Unix command line
 $./intern.py

The Basics

Basic Datatypes

Are Immutable
4 types :

Long
 Int
complex (complex numbers)
Floats x = 3.456

Strings
Can use “” or ‘’ to specify with “abc” == ‘abc’
Unmatched can occur within the string:
“m att’s”

Use triple double-quotes for multi-line strings or
strings than contain both ‘ and “ inside of them:

“““a‘b“c”””

Whitespace

Whitespace is meaningful in Python:
especially indentation and placement of
newlines
Use a newline to end a line of code

l Use \ when must go to next line prematurely
No braces {} to mark blocks of code, use
consistent indentation instead
l First line with less indentation is outside of the block
l First line with more indentation starts a nested block

Colons start of a new block in many
constructs, e.g. function definitions, if
then clauses, for loops etc.

Comments

Start comments with #, rest of line is
ignored

Can include a “documentation string” as
the first line of a new function or class
you define

Development environments, debugger,
and other tools use it: it’s good style to
include one

def fact(n):
 “““fact(n) assumes n is a positive integer
and returns facorial of n.”””
assert(n>0)

return 1 if n==1 else n*fact(n-1)

Assignment

Binding a variable in Python means setting a
name to hold a reference to some object
 Assignment creates references, not copies

Names in Python do not have an intrinsic
type, objects have types
 Python determines the type of the reference

automatically based on what data is assigned to it
You create a name the first time it appears on
the left side of an assignment expression:

x = 3
A reference is deleted via garbage collection
after any names bound to it have passed out
of scope

Naming Rules

Names are case sensitive and cannot start
with a number. They can contain letters,
numbers, and underscores.

 bob Bob _bob _2_bob_ bob_2 BoB
There are some reserved words:

and, assert, break, class, continue, def,
del, elif, else, except, exec, finally, for,
from, global, if, import, in, is, lambda,
not, or, pass, print, raise, return, try,
while

Assignment

You can assign to multiple names at
the same time

>>> x, y = 2, 3
>>> x
2
>>> y
3
This makes it easy to swap values
>>> x, y = y, x
Assignments can be chained
>>> a = b = x = 2

Accessing Non-Existent Name

Accessing a name before it’s been
properly created (by placing it on the left
side of an assignment), raises an error

>>> y

Traceback (most recent call last):
 File "<pyshell#16>", line 1, in -toplevel-
 y
NameError: name ‘y' is not defined
>>> y = 3
>>> y
3

Control Flow

The While statement
count = 0
while (count < 9):

 print 'The count is:', count
 count = count + 1
for Statements

words = ['cat', 'window', 'defenestrate']
for w in words:

print w

https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/compound_stmts.html

Control Flow

The if statement
x = int(input("Please enter an integer: "))
if x < 0:
 x = 0
 print 'Negative changed to zero'
elif x == 0:
 print 'Zero'
elif x == 1:
 print 'Single'
else:
 print 'More'
range() Function

for i in range(5):
print i

https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/library/stdtypes.html

pass / break / continue Statements
for letter in 'Python':

if letter == 'h':
break

print 'Current Letter :', letter

Control Flow

https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/library/stdtypes.html
https://docs.python.org/3/reference/simple_stmts.html
https://docs.python.org/3/reference/simple_stmts.html

Functions

Defining Functions:
>>> def fib(n):
write Fibonacci series up to n.Print a Fibonacci
series up to n.
... a, b = 0, 1
... while a < n:
... print a,
... a, b = b, a+b
... print “”
...
>>> # Now call the function we just defined:
... fib(2000)
0 1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
1597

Keyword Arguments

Functions can be called using
keyword arguments of the form kwarg=value.
For instance, the following function:

accepts one required argument (voltage) and
three optional arguments (state, action, and
type).

 def parrot(voltage, state='a stiff', action='voom', type='Norwegian'):
 print "-- This parrot wouldn't", action, end=' '
 print "if you put", voltage, "volts through it."
 print "-- Lovely plumage, the", type
 print "-- It's", state, "!"

https://docs.python.org/3/glossary.html

Function Call

This function can be called in any of the
following ways:

parrot(1000) # 1 positional argument
parrot(voltage=1000) # 1 keyword argument
parrot(voltage=1000000, action='VOOOOOM')

 #2 keyword arguments
parrot(action='VOOOOOM', voltage=1000000)
 # 2 keyword arguments
parrot('a million', 'bereft of life', 'jump')
 # 3 positional arguments
parrot('a thousand', state='pushing up the daisies')
 # 1 positional, 1 keyword

Java vs Python

23JAVA PYTHON

All variable names (along with their types) must be
explicitly declared.

In Python, you never declare anything.

Java container objects (e.g. Vector and ArrayList) hold
objects of the generic type Object, but cannot hold
primitives such as int.

Python container objects (e.g. lists and dictionaries) can
hold objects of any type, including numbers and lists.
When you retrieve an object from a container, it
remembers its type, so no casting is required.

public class HelloWorld
{
 public static void main (String[] args)
 {
 System.out.println("Hellold!");
 }
}

print "Hello, world!"

Each top-level public class must be defined in its own
file. If your application has 15 such classes, it has 15
files.

Multiple classes can be defined in a single file. If your
application has 15 classes, the entire application could
be stored in a single file,

Sequence types:
Tuples, Lists, and

Strings

Sequence Types

1.Tuple: (‘john’, 32, [CMSC])
• A simple immutable ordered sequence
of items

• Items can be of mixed types, including
collection types

2.Strings: “John Smith”
• Immutable
• Conceptually very much like a tuple

3.List: [1, 2, ‘john’, (‘up’, ‘down’)]
• Mutable ordered sequence of items of
mixed types

Similar Syntax

All three sequence types (tuples,
strings, and lists) share much of the
same syntax and functionality.

Key difference:
Tuples and strings are immutable
 Lists are mutable

The operations shown in this section
can be applied to all sequence types
most examples will just show the
operation performed on one

Sequence Types 1

Define tuples using parentheses and
commas

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
Define lists are using square brackets
and commas

>>> li = [“abc”, 34, 4.34, 23]
Define strings using quotes (“, ‘, or “““).
>>> st = “Hello World”
>>> st = ‘Hello World’
>>> st = “““This is a multi-line
string that uses triple quotes.”””

Sequence Types 2

Access individual members of a tuple,
list, or string using square bracket
“array” notation

Note that all are 0 based…

>>> tu = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> tu[1] # Second item in the tuple.
 ‘abc’

>>> li = [“abc”, 34, 4.34, 23]
>>> li[1] # Second item in the list.
 34

>>> st = “Hello World”
>>> st[1] # Second character in string.
 ‘e’

Positive and negative indices

>>> t = (23, ‘abc’, 4.56, (2,3),
‘def’)
Positive index: count from the left, starting
with 0
 >>> t[1]
‘abc’
Negative index: count from right, starting
with –1
>>> t[-3]
4.56

Slicing: return copy of a subset

>>> t = (23, ‘abc’, 4.56, (2,3),
‘def’)

Return a copy of the container with a
subset of the original members. Start
copying at the first index, and stop
copying before second.
>>> t[1:4]
(‘abc’, 4.56, (2,3))
Negative indices count from end
>>> t[1:-1]
(‘abc’, 4.56, (2,3))

Slicing: return copy of a =subset

>>> t = (23, ‘abc’, 4.56, (2,3),
‘def’)
Omit first index to make copy starting
from beginning of the container

>>> t[:2]
(23, ‘abc’)

Omit second index to make copy starting
at first index and going to end

>>> t[2:]
(4.56, (2,3), ‘def’)

Copying the Whole Sequence

[:] makes a copy of an entire sequence
>>> t[:]
(23, ‘abc’, 4.56, (2,3), ‘def’)

Note the difference between these two
lines for mutable sequences

>>> l2 = l1 # Both refer to 1 ref,
 # changing one affects both
>>> l2 = l1[:] # Independent copies,
two refs

The ‘in’ Operator

Boolean test whether a value is inside a
container:

>>> t = [1, 2, 4, 5]
>>> 3 in t
False
>>> 4 in t
True
>>> 4 not in t
False
For strings, tests for substrings
>>> a = 'abcde'
>>> 'cd' in a
True
>>> 'ac' in a
False

The + Operator

The + operator produces a new tuple, list, or
string whose value is the concatenation of its
arguments.

>>> (1, 2, 3) + (4, 5, 6)
 (1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]
 [1, 2, 3, 4, 5, 6]

>>> “Hello” + “ ” + “World”
 ‘Hello World’

The * Operator

The * operator produces a new tuple, list, or
string that “repeats” the original content.

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> “Hello” * 3
‘HelloHelloHello’

Mutability:
Tuples vs. Lists

Lists are mutable

>>> li = [‘abc’, 23, 4.34, 23]
>>> li[1] = 45
>>> li
[‘abc’, 45, 4.34, 23]

We can change lists in place.
Name li still points to the same
memory reference when we’re done.

Tuples are immutable

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)
>>> t[2] = 3.14

Traceback (most recent call last):
 File "<pyshell#75>", line 1, in -toplevel-
 tu[2] = 3.14
TypeError: object doesn't support item assignment

You can’t change a tuple.
You can make a fresh tuple and assign
its reference to a previously used name.
>>> t = (23, ‘abc’, 3.14, (2,3), ‘def’)

The immutability of tuples means they’re
faster than lists.

Operations on Lists Only

>>> li = [1, 11, 3, 4, 5]

>>> li.append(‘a’) # Note the method
syntax
>>> li
[1, 11, 3, 4, 5, ‘a’]

>>> li.insert(2, ‘i’)
>>>li
[1, 11, ‘i’, 3, 4, 5, ‘a’]

The extend method vs +

+ creates a fresh list with a new memory ref
extend operates on list li in place.

>>> li.extend([9, 8, 7])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7]

Potentially confusing:
extend takes a list as an argument.
append takes a singleton as an argument.

>>> li.append([10, 11, 12])
>>> li
[1, 2, ‘i’, 3, 4, 5, ‘a’, 9, 8, 7, [10, 11,
12]]

Operations on Lists Only

Lists have many methods, including index,
count, remove, reverse, sort
>>> li = [‘a’, ‘b’, ‘c’, ‘b’]
>>> li.index(‘b’) # index of 1st
occurrence
1
>>> li.count(‘b’) # number of occurrences
2
>>> li.remove(‘b’) # remove 1st occurrence
>>> li
 [‘a’, ‘c’, ‘b’]

Operations on Lists Only

>>> li = [5, 2, 6, 8]

>>> li.reverse() # reverse the list *in place*
>>> li
 [8, 6, 2, 5]

>>> li.sort() # sort the list *in place*
>>> li
 [2, 5, 6, 8]

>>> li.sort(some_function)
 # sort in place using user-defined comparison

Tuple details

The comma is the tuple creation operator, not
parentheses

>>> 1,
(1,)

Python shows parentheses for clarity
>>> (1,)
(1,)

Don't forget the comma!
>>> (1)
1

Trailing comma only required for singletons
Empty tuples have a special syntactic form
>>> ()
()
>>> tuple()
()

Summary: Tuples vs. Lists

Lists slower but more powerful than tuples
Lists can be modified, and they have lots of
handy operations and mehtods

Tuples are immutable and have fewer
features

To convert between tuples and lists use the
list() and tuple() functions:

li = list(tu)
tu = tuple(li)

MODULES

What is a Module?
 A module is a file containing Python
definitions and statements. The file name is the
module name with the suffix .py appended.
Within a module, the module’s name (as a
string) is available as the value of the global
variable __name__. For instance, use your
favorite text editor to create a file called
fibo.py in the current directory with the
following contents

fibo.py

Fibonacci numbers module
 def fib(n): # write Fibonacci series up to n
 a, b = 0, 1
 while b < n:
 print b,
 a, b = b, a+b
 print “”
 def fib2(n): # return Fibonacci series up to n
 result = []
 a, b = 0, 1
 while b < n:
 result.append(b)
 a, b = b, a+b
 return result

MODULE

 Now enter the Python interpreter and import this module with
the following command:

 >>> import fibo
 This does not enter the names of the functions defined
in fibo directly in the current symbol table; it only enters the
module name fibo there. Using the module name you can access
the functions:
>>> fibo.fib(1000)
1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)
 [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
>>> fibo.__name__
'fibo'

The Module Search Path

 When a module named createlist.py is imported,
the interpreter first searches for a built-in module
with that name. If not found, it then searches for a file
named createlist.py in a list of directories given by
the variable sys.path.
 sys.path is initialized from these locations:

The directory containing the input script (or the current
directory when no file is specified).

PYTHONPATH (a list of directory names, with the same syntax
as the shell variable PATH).

https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/library/sys.html
https://docs.python.org/3/using/cmdline.html

Syntax Errors
Syntax errors (or parsing errors), are perhaps the most common

kind of complaint you get while you are still learning Python:
>>> while True print 'Hello world‘
 File "<stdin>", line 1, in ?
 while True print 'Hello world’
 ^
 SyntaxError: invalid syntax

 The parser repeats the offending line and displays a little
‘arrow’ pointing at the earliest point in the line where the error was
detected. The error is caused by (or at least detected at) the
token preceding the arrow: in the example, the error is detected at
the function print(), since a colon (':') is missing before it. File name
and line number are printed so you know where to look in case the
input came from a script.

Errors and Exception

https://docs.python.org/3/library/functions.html

Errors and Exception

Exceptions:
 Even if a statement or expression is syntactically correct, it
may cause an error when an attempt is made to execute it.
Errors detected during execution are called exceptions . Most
exceptions are not handled by programs, however, and result in
error messages as shown here:
 >>> 10 * (1/0)
 Traceback (most recent call last): File "<stdin>", line 1, in ?
ZeroDivisionError: division by zero
 >>> 4 + spam*3
 Traceback (most recent call last): File "<stdin>", line 1, in ?
 NameError: name 'spam' is not defined
 >>> '2' + 2
 Traceback (most recent call last): File "<stdin>", line 1, in ?
 TypeError: Can't convert 'int' object to str implicitly

Handling Exception

 It is possible to write programs that handle selected
exceptions. Look at the following example, which asks the user
for input until a valid integer has been entered, but allows the
user to interrupt the program (using Control-C or whatever the
operating system supports); note that a user-generated
interruption is signalled by raising the KeyboardInterrupt
 exception.
 >>> while True:
 try:
 x = int(input("Please enter a number: "))
 break
 except ValueError:
 print "Oops! That was no valid number. Try again..."

https://docs.python.org/3/library/exceptions.html

Handling Exception

The try statement works as follows.
First, the try clause (the statement(s) between

the try and except keywords) is executed.
If no exception occurs, the except clause is skipped and

execution of the try statement is finished.
If an exception occurs during execution of the try clause,

the rest of the clause is skipped. Then if its type matches
the exception named after the except keyword, the
except clause is executed, and then execution continues
after the try statement.

If an exception occurs which does not match the
exception named in the except clause, it is passed on to
outer try statements; if no handler is found, it is
an unhandled exception and execution stops.

Enough to Understand the Code

Indentation matters to code meaning
Block structure indicated by indentation

First assignment to a variable creates it
Variable types don’t need to be declared.
Python figures out the variable types on its

own.
Assignment is = and comparison is ==
For numbers + - * / % are as expected

Special use of + for string concatenation and
% for string formatting (as in C’s printf)

Logical operators are words (and, or,
not) not symbols

The basic printing command is print

End

 ….Thank You

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

