
Python Introduction

Vaibhav Garg, IEEE-MAIT

What is Python?

Python is a portable, interpreted, object-
oriented scripting language created by Guido
van Rossum.
Its development started at the National
Research Institute for Mathematics and
Computer Science in the Netherlands , and
continues under the ownership of the Python
Software Foundation.
Even though its name is commonly associated
with the snake, it is actually named after the
British comedy troupe, Monty Python’s Flying
Circus.

Why learn a scripting language?

Easier to learn than more traditional
compiled languages like C/C++

Allows concepts to be prototyped faster

Ideal for administrative tasks which can
benefit from automation

Typically cross platform

Why Python?

 So, why use Python over other scripting
languages?

Well tested and widely used

Great documentation

Strong community support

Widely Cross-platform

Open sourced

Can be freely used and distributed, even for
commercial purposes.

How do I install Python?

Simple… download it from
www.python.org and install it.

Most Linux distributions already come
with it, but it may need updating.

Current version, as of this presentation,
is 2.4.2 Click here to download this
version for Windows.

http://www.python.org/
http://www.python.org/ftp/python/2.4.2/python-2.4.2.msi

The print function

The print function simply outputs a string value to our
script‟s console.

print “Hello World!”

It‟s very useful for communicating with users or
outputting important information.

print “Game Over!”

We get this function for free from Python.
Later, we‟ll learn to write our own functions.

Adding Comments

Comments allow us to add useful information to our
scripts, which the Python interpreter will ignore
completely.
Each line for a comment must begin with the number
sign „#‟.

This is a programming tradition…
print “Hello World!”

Do yourself a favor and use them!

Quoting Strings

Character strings are denoted using quotes.
You can use double quotes…

print “Hello World!” # Fine.

Or, you can use single quotes…

print „Hello World!‟ # Also fine.

It doesn‟t matter as long as you don‟t mix them

print “Hello World!‟ # Syntax Error!

Triple Quotes

You can even use triple quotes, which make
quoting multi-line strings easier.

print “““

This is line one.

This is line two.

This is line three.

Etc…

”””

Strings and Control Characters

There are several control characters which allow us to
modify or change the way character strings get printed
by the print function.

They‟re composed of a backslash followed by a
character. Here are a few of the more important ones:

 \n : New line

 \t : Tabs

 \\ : Backslash

 \' : Single Quote

 \" : Double Quote

Variables

Like all programming languages, Python variables are
similar to variables in Algebra.
They act as place holders or symbolic representations
for a value, which may or may not change over time.
Here are six of the most important variable types in
Python:

 int Plain Integers (25)
 long Long Integers (4294967296)
 float Floating-point Numbers (3.14159265358979)
 bool Booleans (True, False)
 str Strings (“Hello World!”)
 list Sequenced List ([25, 50, 75, 100])

Type-less Variables

Even though it supports variable types, Python
is actually type-less, meaning you do not have
to specify the variable‟s type to use it.
You can use a variable as a character string
one moment and then overwrite its value with
a integer the next.
This makes it easier to learn and use the
language but being type-less opens the door
to some hard to find bugs if you‟re not careful.
If you‟re uncertain of a variable‟s type, use the
type function to verify its type.

Rules for Naming Variables

You can use letters, digits, and underscores
when naming your variables.

But, you cannot start with a digit.

 var = 0 # Fine.

 var1 = 0 # Fine.

 var_1= 0 # Fine.

 _var = 0 # Fine.

 1var = 0 # Syntax Error!

Rules for Naming Variables

Also, you can‟t name your variables
after any of Python‟s reserved
keywords.

 and, del, for, is, raise, assert, elif, from,
lambda, return, break, else, global, not,
try, class, except, if, or, while, continue,
exec, import, pass, yield, def, finally, in,
print

Numerical Precision

Integers

– Generally 32 signed bits of precision

– [2,147,483,647 .. –2,147,483,648]

– or basically (-232 , 232)

– Example: 25

Long Integers

– Unlimited precision or size

– Format: <number>L

– Example: 4294967296L

Floating-point

– Platform dependant “double” precision

– Example: 3.141592653589793

Type Conversion

The special constructor functions int, long, float, complex, and
bool can be used to produce numbers of a specific type.
For example, if you have a variable that is being used as a
float, but you want to use it like an integer do this:

myFloat = 25.12
myInt = 25
print myInt + int(myFloat)

With out the explicit conversion, Python will automatically
upgrade your addition to floating-point addition, which you
may not want especially if your intention was to drop the
decimal places.

Type Conversion

There is also a special constructor function called str
that converts numerical types into strings.

myInt = 25
myString = "The value of 'myInt' is "
print myString + str(myInt) # Concatenation as well

You will use this function a lot when debugging!
Note how the addition operator was used to join the two
strings together as one.

Arithmetic Operators

Arithmetic Operators allow us to perform mathematical
operations on two variables or values.

Each operator returns the result of the specified operation.

 + Addition

 - Subtraction

 * Multiplication

 / Float Division

 ** Exponent

 abs Absolute Value

Comparison Operators

Comparison Operators return a True or False
value for the two variables or values being
compared.

 < Less than
 <= Less than or equal to
 > Greater than
 >= Greater than or equal to
 == Is equal to
 != Is not equal to

Boolean Operators

Python also supports three Boolean Operators, and, or,
and not, which allow us to make use of Boolean Logic in
our scripts.

Below are the Truth Tables for and, or, and not.

Boolean Operators

Suppose that… var1 = 10.

The and operator will return True if and only if both
comparisons return True.

print var1 == 10 and var1 < 5 (Prints False)

The or operator will return True if either of the comparisons
return True.

print var1 == 20 or var1 > 5 (Prints True)

And the not operator simply negates or inverts the
comparison‟s result.

print not var1 == 10 (Prints False)

Special String Operators

It may seem odd but Python even supports a few operators for
strings.

Two strings can be joined (concatenation) using the + operator.

print “Game ” + “Over!”

Outputs to the console.

A string can be repeated (repetition) by using the * operator.

print “Bang! ” * 3

Outputs “! ” to the console.

Flow Control

Flow Control allows a program or script
to alter its flow of execution based on
some condition or test.

The most important keywords for
performing Flow Control in Python are
if, else, elif, for, and while.

If Statement

The most basic form of Flow Control is the if statement.

If the player‟s health is less than or equal to 0 - kill him!

if health <= 0:

 print “You‟re dead!”

Note how the action to be taken by the if statement is
indented or tabbed over. This is not a style issue – it‟s
required.

Also, note how the if statement ends with a semi-colon.

If-else Statement

The if-else statement allows us to pick one of two
possible actions instead of a all-or-nothing choice.

health = 75

if health <= 0:
 print “You're dead!”
else:
 print “You're alive!”

Again, note how the if and else keywords and their
actions are indented. It‟s very important to get this
right!

If-elif-else Statement

The if-elif-else statement allows us to pick one of several
possible actions by chaining two or more if statements
together.

health = 24

if health <= 0:
 print "You're dead!"
elif health < 25:
 print "You're alive - but badly wounded!"
else:
 print "You're alive!“

while Statement

The while statement allows us to continuously repeat an action until some
condition is satisfied.

numRocketsToFire = 3
rocketCount = 0

while rocketCount < numRocketsToFire:
 # Increase the rocket counter by one
 rocketCount = rocketCount + 1
 print “Firing rocket #” + str(rocketCount)

for Statement

The for statement allows us to repeat an action based on the
iteration of a Sequenced List.

weapons = [“Pistol”, “Rifle”, “Grenade”, “Rocket Launcher”]

print “-- Weapon Inventory --”

for x in weapons:
 print x
for x in range(100):
 print x

for x in range(0,100,2):
 print x

The for statement will loop once for every item in the list.
Note how we use the temporary variable „x‟ to represent the
current item being worked with.

break Keyword

The break keyword can be used to escape from while and for
loops early.

numbers = [100, 25, 125, 50, 150, 75, 175]

for x in numbers:
 print x
 # As soon as we find 50 - stop the search!
 if x == 50:
 print "Found It!"
 break;

Instead of examining every list entry in “numbers”, The for
loop above will be terminated as soon as the value 50 is
found.

continue Keyword

The continue keyword can be used to short-circuit or
bypass parts of a while or for loop.

numbers = [100, 25, 125, 50, 150, 75, 175]

for x in numbers:
 # Skip all triple digit numbers
 if x >= 100:
 continue;
 print x

The for loop above only wants to print double digit

numbers. It will simply continue on to the next iteration
of the for loop if x is found to be a triple digit number.

Functions

A function allows several Python
statements to be grouped together so
they can be called or executed
repeatedly from somewhere else in the
script.

We use the def keyword to define a new
function.

Defining functions

Below, we define a new function called
“printGameOver”, which simply prints out, “Game
Over!”.

def printGameOver():

 print “Game Over!”

Again, note how indenting is used to denote the
function‟s body and how a semi-colon is used to
terminate the function‟s definition.

Function arguments

Often functions are required to perform
some task based on information passed
in by the user.

These bits of Information are passed in
using function arguments.

Function arguments are defined within
the parentheses “()”, which are placed
at the end of the function‟s name.

Function arguments

Our new version of printGameOver, can now print out
customizable, “Game Over!”, messages by using our
new argument called “playersName”.

def printGameOver(playersName):

 print “Game Over... ” + playersName + “!”

Now, when we call our function we can specify which
player is being killed off.

Function Return Values

A function can also output or return a value based on its work.
The function below calculates and returns the average of a list
of numbers.

def average(numberList):
 numCount = 0
 runningTotal = 0

 for n in numberList:
 numCount = numCount + 1
 runningTotal = runningTotal + n

 return runningTotal / numCount

Note how the list‟s average is returned using the return
keyword.

Conclusion

This concludes your introduction to Python.

You now know enough of the basics to
write useful Python scripts and to teach
yourself some of the more advanced
features of Python.

