
Introduction to Python

Python is a powerful high-level, object-oriented programming
language created by Guido van Rossum.

It has simple easy-to-use syntax, making it the perfect language
for someone trying to learn computer programming for the first
time.

It is used for:

 web development (server-side),
 software development,
 mathematics,
 system scripting.

What can Python do?

 Python can be used on a server to create web applications.
 Python can be used alongside software to create workflows.
 Python can connect to database systems. It can also read

and modify files.
 Python can be used to handle big data and perform complex

mathematics.
 Python can be used for rapid prototyping, or for production-

ready software development.

Why Python?

 Python works on different platforms (Windows, Mac, Linux,
Raspberry Pi, etc).

 Python has a simple syntax similar to the English language.
 Python has syntax that allows developers to write programs

with fewer lines than some other programming languages.
 Python runs on an interpreter system, meaning that code

can be executed as soon as it is written. This means that
prototyping can be very quick.

 Python can be treated in a procedural way, an object-
orientated way or a functional way.

Comments

Python has commenting capability for the purpose of in-code
documentation.

Comments start with a #, and Python will render the rest of the

line as a comment:

Example

Comments in Python:

#This is a comment.

print("Hello, World!")

Docstrings

Python also has extended documentation capability, called
docstrings.

Docstrings can be one line, or multiline.

Python uses triple quotes at the beginning and end of the
docstring:

Example

Docstrings are also comments:

"""This is a
multiline docstring."""
print("Hello, World!")

Creating Variables

Unlike other programming languages, Python has no command
for declaring a variable.

A variable is created the moment you first assign a value to it.

Example

x = 5

y = "John"

print(x)

print(y)

A variable can have a short name (like x and y) or a more
descriptive name (age, carname, total_volume). Rules for Python
variables:

 A variable name must start with a letter or the underscore
character

 A variable name cannot start with a number
 A variable name can only contain alpha-numeric characters

and underscores (A-z, 0-9, and _)
 Variable names are case-sensitive (age, Age and AGE are

three different variables)

Output Variables

The Python print statement is often used to output variables.

To combine both text and a variable, Python uses

the + character:

Example

x = "awesome"

print("Python is " + x)

Python Numbers

There are three numeric types in Python:

 int
 float

 complex

Example

 x = 1 # int
y = 2.8 # float
z = 1j # complex

 To verify the type of any object in Python, use

the type() function:

Example

 print(type(x))
print(type(y))
print(type(z))

Int

Int, or integer, is a whole number, positive or negative, without
decimals, of unlimited length.

Example

Integers:

x = 1

y = 35656222554887711

z = -3255522

print(type(x))

print(type(y))

print(type(z))

Run example »

Float

Float, or "floating point number" is a number, positive or
negative, containing one or more decimals.

Example

Floats:

x = 1.10

y = 1.0

z = -35.59

print(type(x))

print(type(y))

print(type(z))

Run example »

https://www.w3schools.com/python/showpython.asp?filename=demo_numbers_int
https://www.w3schools.com/python/showpython.asp?filename=demo_numbers_float

Float can also be scientific numbers with an "e" to indicate the
power of 10.

Example

Floats:

x = 35e3

y = 12E4

z = -87.7e100

print(type(x))

print(type(y))

print(type(z))

Run example »

Complex

Complex numbers are written with a "j" as the imaginary part:

Example

Complex:

x = 3+5j

y = 5j

z = -5j

print (type(x))

print(type(y))

print(type(z))

https://www.w3schools.com/python/showpython.asp?filename=demo_numbers_float2

Python Casting

Specify a Variable Type

There may be times when you want to specify a type on to a
variable. This can be done with casting. Python is an object-
orientated language, and as such it uses classes to define data

types, including its primitive types.

Casting in python is therefore done using constructor functions:

 int() - constructs an integer number from an integer literal,

a float literal (by rounding down to the previous whole
number) literal, or a string literal (providing the string
represents a whole number)

 float() - constructs a float number from an integer literal,

a float literal or a string literal (providing the string
represents a float or an integer)

 str() - constructs a string from a wide variety of data

types, including strings, integer literals and float literals

Example

Integers:

x = int(1) # x will be 1

y = int(2.8) # y will be 2

z = int("3") # z will be 3

Example

Floats:

x = float(1) # x will be 1.0

y = float(2.8) # y will be 2.8

z = float("3") # z will be 3.0

w = float("4.2") # w will be 4.2

Example

Strings:

x = str("s1") # x will be 's1'

y = str(2) # y will be '2'

z = str(3.0) # z will be '3.0'

Python Strings

String Literals

String literals in python are surrounded by either single quotation
marks, or double quotation marks.

'hello' is the same as "hello".

Strings can be output to screen using the print function. For

example: print("hello").

Like many other popular programming languages, strings in
Python are arrays of bytes representing unicode characters.
However, Python does not have a character data type, a single
character is simply a string with a length of 1. Square brackets
can be used to access elements of the string.

Example

Get the character at position 1 (remember that the first character
has the position 0):

a = "Hello, World!"

print(a[1])

Example

Substring. Get the characters from position 2 to position 5 (not
included):

b = "Hello, World!"
print(b[2:5])
Run example »

Example

The len() method returns the length of a string:

a = "Hello, World!"
print(len(a))

Example

The lower() method returns the string in lower case:

a = "Hello, World!"
print(a.lower())
Run example »

Example

The upper() method returns the string in upper case:

https://www.w3schools.com/python/showpython.asp?filename=demo_string2
https://www.w3schools.com/python/showpython.asp?filename=demo_string_lower

a = "Hello, World!"
print(a.upper())

Example

The replace() method replaces a string with another string:

a = "Hello, World!"
print(a.replace("H", "J"))

Command-line String Input

Python allows for command line input.

That means we are able to ask the user for input.

The following example asks for the user's name, then, by using

the input()method, the program prints the name to the screen:

Example

demo_string_input.py

print("Enter your name:")

x = input()

print("Hello, " + x)

Python Operators

Operators are used to perform operations on variables and
values.

Python divides the operators in the following groups:

 Arithmetic operators
 Assignment operators
 Comparison operators
 Logical operators
 Identity operators
 Membership operators
 Bitwise operators

Operator Name Example

+ Addition x + y

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform
common mathematical operations:

Python Assignment Operators

Assignment operators are used to assign values to variables:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

*= x *= 3 x = x * 3

// Floor division x // y

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Python Comparison Operators

Comparison operators are used to compare two values:

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Python Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both statements are

true

x < 5 and x <

10

or Returns True if one of the

statements is true

x < 5 or x < 4

not Reverse the result, returns False if

the result is true

not(x < 5 and x

< 10)

Python Identity Operators

Identity operators are used to compare the objects, not if they
are equal, but if they are actually the same object, with the same
memory location:

Operator Description Example

is Returns true if both variables are the

same object

x is y

is not Returns true if both variables are not

the same object

x is not y

Python Membership Operators

Membership operators are used to test if a sequence is presented

in an object:

Operator Description Example

in Returns True if a sequence with the

specified value is present in the object

x in y

not in Returns True if a sequence with the

specified value is not present in the object

x not in y

Python Bitwise Operators

Logical operators are used to combine conditional statements:

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits

is 1

~ NOT Inverts all the bits

<< Zero fill left shift Shift left by pushing zeros in from the

right and let the leftmost bits fall off

>> Signed right

shift

Shift right by pushing copies of the

leftmost bit in from the left, and let the

rightmost bits fall off

