Web Programming in Python
with Django!
e

Ty
‘django

Instructors:

Steve Levine "11
Maria Rodriguez '11
Geoffrey Thomas '10

sipb-iap-django@mit.edu

http://sipb.mit.edu/iap/django/

Wednesday, January 27"

SIPB IAP 2010

mailto:sipb-iap-django@mit.edu
http://sipb.mit.edu/iap/django/

Course Overview

What 1s Django?

Apps, Models, and Views
URL Structure

Templates

Admin Interface

Forms

Examples / Tutorials

What is Django?

django [jang0]

-noun

1.

a shiny web framework that allows one to
build dynamic, professional-looking websites
In python: Need to make a slick website?
Use django!

masculine form of popular Hasbro game
Jenga® (will not be discussed tonight)
magic

Funk-tacular Features

projects or “apps’’ are pluggable

object-relational mapper: combines the advantages
of having a database with the advantages of using
an object-oriented programming language

database allows for efficient data storage and

retrieval

Python all

ows for cleaner and more readable code

Funk-tacular Features

= automatic admin interface offers the functionality
of adding, editing, and deleting 1items within a
database 1n a graphical, user-friendly way

= flexible template language that provides a way to
retrieve data and display 1t on a webpage 1n its
desired format

= url design 1s elegant and easy to read

Marvelous Websites Made the
Django Way:
Models & Views

App Layer
User Interface
(HTTP Output)
l A
\V/ 1
Controller > View
< MVvC

A
My

Model

Marvelous Websites Made the
Django Way:
Models & Views

App Layer: Outputs HTML (controls how data is displayed to the user)
MVC Layer

1. Model: Models contains classes definitions for holding data

2. View: The View controls the access and filtration of data in order to be
passed onto the app layer for display.

3. Controller: The Controller receives and manages inputs to update the

Model layer. Additionally, it also updates the elements for the View layer
as necessary.

Database Layer: The models are stored in database tables in MySQL.

The Django Way

Django does not work quite like PHP, or other
server-side scripting languages

Django organizes your website into apps

An app represents one component of a website

Exam;

Apps can be usec

vle: a simp.

e web poll

| 1n multip]

, b

og, etc.

e C

1fferent

websites/projects (“‘pluggable”), and a website
can have multiple apps

Each app has its own data and webpages associated
with it — called models and views, respectively

Example: a poll that lets users vote on questions

Views (different webpages):

Page with questions + choices (actual voting page)

Statistics page that shows past results
Models (data):

Poll questions
Choices associated with each question

The actual voting data! (set of selected choices)

Amazing Apps

= When you create an app, Django makes a folder,
appname/ 1n your project directory

= It contains, among some other files:
= models.py
= ViIews.py

= urls.py (will be discussed later)

= The app looks like a package (ex., polls.view,
polls.models, etcC.)

Models

Magnificent Models

Models store data for your app
Key for making dynamic websites!

Models are implemented as Python classes, 1n
models.py file

Awesome feature of Django: the “object relational
mapper”

= Allows you to access/change a database (ex.,
MySQL) just by calling functions on your models

Magnificent Models

Example models:

from django.db import models

class Poll(models.Model):
question = models.CharField(max length=200)
pub date = models.DateTimeField('date published')

class Choice(models.Model):
poll = models.ForeignKey(Poll)
choice = models.CharField(max length=200)
votes = models.IntegerField()

Magnificent Models

= Can easily create instances of your model:

p = Poll(question="What's up?",
pub date=datetime.datetime.now())

= Save 1t to the database:
p.save()

= The object relational mapper takes care of all
the MySQL for you!

Magnificent Models

= The object relational mapper even automagically
sets up your MySQL database

= Example generated code:

BEGIN;
CREATE TABLE "polls_poll" (
"id" serial NOT NULL PRIMARY KEY,
"gquestion” varchar(200) NOT NULL,
"pub_date" timestamp with time zone NOT NULL
);
CREATE TABLE "polls_choice" (
"id" serial NOT NULL PRIMARY KEY,
"poll_id" integer NOT NULL REFERENCES "polls_poll" ("id"),
"choice" varchar(200) NOT NULL,
"votes" integer NOT NULL
),
COMMIT;

Magnificent Models

= Example methods and fields:

« Poll.objects.all() - returns list of all
objects

p.question
Poll.objects.filter(question startswith="'Wha
t')

(This function was autogenerated by Django!)

A word about databases

= Although Django certainly does do a lot for you, it
helps to know a bit about databases

= When designing a model, useful to think about
g00d database practice

Good Database Design in a Nutshell:

1. Groups of related fields belong in the same table

2. New tables should be created for data fields that are
almost always empty

3. Most of the time the information contained 1n
unrelated fields will not need to be retrieved at the
same time, so those groups of fields should be 1n
separate fields as one another

Example Database:

(a) Patient Table

Patient Last First Room
1D Name Name No.

(b) Medication Table

Prescription Patient ID Medication Dosage Instruction
ID

(c) Schedule Table

Schedule Prescription Tim Next Admin M T W R F S S
ID ID e Date a u

Views

Vivacious Views

= Views are Python functions - they make the web
pages users see

= Can make use of models for getting data

= Can use anything that Python has to offer!

= ...and there's A LOT Python can do! Makes for
interesting websites

o

HOW?
f_‘ix

&

T DUNNO... /
Q’&‘ DYNAMIC TYPING j T JUsT TYPED
L TEGEACET import Dll’ﬂ'Tsmm‘t"lj
/ COME JoN U5l | | THATS IT?
T LEARNED IT LAST PROGRAMMING ... T ALS0 SAMPLED
NIGHT! EVERYTHING IS FUN AGAIN ! EVERYHING IN THE
15 S0 SIMPLE! ITS A WHOLE MEDICINE CABINET
/ NEW WORLD FOR COMPARISON.
HELLO WORLD 15 JusT N UP HERE! [
print "Hello, world) BUT HOW ARE BUT T THINK THIS
YOU FLYING? 1S THE PYTHON.

View functions take as input: HttpResponse object
— contains useful information about the client,
sess10ns, etc.

Return as output HttpResponse object — basically
HTML output

Most often, views don't actually write HTML — they
fill in templates! (discussed shortly)

Vivacious Views

= Example view:

from django.shortcuts import render to response
from mysite.polls.models import Poll

def index(request):
latest poll list = Poll.objects.all().order by('-pub date')[:5]
return render to response('polls/index.html', {'poll list': poll list})

Templates

Templates, Tags, & Tricks

The Django template language
consists of fags, which perform

many functions and may be
embedded 1n a text file to do neat

tricks.

Templates, Tags, & Tricks

Tags:
Ex. variable

{{ poll.question }}
Ex. for-loop

{% for choice in poll.choice set.all %}
{% endfor %}

Ex. if-statement
{% if patient _list %}

{% else %}

{% endif %}

Templates, Tags, & Tricks

Example: Displaying poll results

<html>

<h1l>{{ poll.question }}</hl>

{% for choice in poll.choice set.all %}

{{ choice.choice }} -- {{ choice.votes }}
vote{{ choice.votes|pluralize }}

% endfor %}

</html>

Django URL Structure

Utterly Unblemished URL's

Django structures your website URL's 1n an
interesting way

Recap: the URL 1s the text you type to get to a
website

For non-Django websites:

= http://www.example.com/some/directory/index.php

= Refers to a file /some/directory/index.php on the
server

Ditferent in Django! URL's are organized more
elegantly and more easily understandably

http://www.example.com/some/directory/index.php

Utterly Unblemished URL's

= Consider this example:
= http://example.com/articles/2005/03/
= URL specifies article date, not a reterence to a
specific file

= Allows a more logical organization, that 1s less
likely to change over time

http://example.com/articles/2005/03/

Utterly Unblemished URL's

= Overview of how Django works, using URL's

http://example.com/articles/2009/01/27

URLs URLConf
P v -
Views View: polls() View: articles() View: authors()
Y

Templates template: plain | | Template: fancy | Template: cute

Utterly Unblemished URL's

URL patterns map to Views
Views may use templates
Templates contain HTML (discussed later)

This puts a layer of abstraction between URL
names and files

The file urls.py that specifies how URL's get
mapped to views, using regular expressions

Utterly Unblemished URL's

= Example urls.py:

urlpatterns = patterns('’,
(r'~articles/2003/$', 'news.views.special case 2003'),
(r'~articles/(?P<year>\d{4})/$', 'news.views.year archive'),
(r'~articles/(?P<year>\d{4})/(?P<month>\d{2})/$', 'news.views.month archive'),
(r'~articles/(?P<year>\d{4})/(?P<month>\d{2})/(?P<day>\d+)/$', 'news.views.article detail'),
)

= http://example.com/articles/2009/03/14 will result

n news.views.article detail(request, year='2009',

month='03', day='14') being called

http://example.com/articles/2009/03/14

Utterly Unblemished URL's

= These are mostly like regular expressions, which
are outside of the scope of this class

Admin Interface

Awesome Automatic Admin

“Generating admin sites for your staff or clients to add, change and delete content is
tedious work that doesn’t require much creativity. For that reason, Django entirely
automates creation of admin interfaces for models.

Django was written in a newsroom environment, with a very clear separation between
“content publishers” and the “public” site. Site managers use the system to add
news stories, events, sports scores, etc., and that content 1s displayed on the public
site. Django solves the problem of creating a unified interface for site
administrators to edit content.

The admin 1sn’t necessarily intended to be used by site visitors; it’s for site managers.”

Reference: http://docs.djangoproject.com/en/dev/intro/tutorial02/

Django administration

Username:

Password:

Login

~E=u

Django administration Weliome, alrian Documestation | Changt Bisiwied | Log oul

Site administration

Eicwar Ariiang
Groups whdd /Changs Wy AfLioAd
Ugsr deid Change Bond avulabile

Elnes dadd /Changs

Django administration e v i, Dy FALIDO® | Chaeee pasamid | L0 dul

.l.’lﬁli*, didd S Chinge :
\:Elecl poll to change | Add pod |4
Fall

Django administration Whar's ug?

Home » Polls » What's up? :
1 pa

Change poll

Date Date: |2007-12-01 | Today | [
published:

Time: 13:12:28 Mow @
Question: What's up?

% Del http://docs.djangoproject.com/en/dev/intro/tutorial02/

Forms

Fun with Forms

Why use them?

1. Automatically generate form widgets.
2. Input validation.

3. Redisplay a form after invalid input.

4. Convert submitted form data to Python data types.

Fun with Forms
Example:

<h1>{{ poll.question }}</hl>
% 1f error _message S%}<p>{{ error message }}</p>{% endif %}

<form action="/polls/{{ poll.id }}/vote/" method="post">
% csrf token %}
{% for choice in poll.choice set.all %}
<input type="radio" name="choice" id="choice{{ forloop.counter }}"
value="{{ choice.id }}" />
<label
for="choice{{ forloop.counter }}">{{ choice.choice }}</label>

% endfor %}
<input type="submit" value="Vote" />
</form>

Fun with Forms

Schedule

Wednesday, January 27.
11:06:53 PM.

113:10:00(518 |Rodriguez |chocolate [200000 g

Name: Rodriguez, Maria
Room: 518

Medication: chocolate
Dosage: 200000 g
Instruction: take with milk

' Administered |

Other Nifty Django Features

You can uses sessions in Django, just like the
sessions in PHP

Sessions allow you to store state across different
pages of your website

Common uses: store logged in username, shopping
cart information, etc.

If you write to a session 1n one view (webpage), it
will be visible 1n all views afterwards as well

Session 1s found in the HttpResponse object

Real Live Examples!

Real-World Apps

= MedSched
http://priyaram.scripts.mit.edu/practice/medsched/admin/
= Shiny!
http://sjlevine.scripts.mit.edu/django/shiny/

http://priyaram.scripts.mit.edu/practice/medsched/admin/
http://sjlevine.scripts.mit.edu/django/shiny/

Tutorial: Polling
Setting up Django through Scripts:

1. connect to athena:

>>ssh username @linerva.mit.edu

2. set up scripts

>>add scripts

>>SCT1pts

3. Follow 1nstructions from there to install Django
4. connect to scripts:

>>ssh scripts.mit.edu

>>cd ~/Scripts

Helpful Commands

From project

folder run mysql

type “show databases;” to see your databases

type “use <database_name>;” to use a database

type “‘show tables;” to view the tables 1n that

database

type “drop tal

vle <table_name>;” to drop a table

Drop affectec

| tables each time fields within your

models change.

Helpful Commands

= >>./manage.py syncdb
or

>>python manage.py syncdb
Updates database tables whenever you drop
tables or add applications to INSTALLED_APPS in
settings.py
= >>add scripts
>>for-each-server pkill -u maria python

Restarts the development server to see your changes.

Handy References

= Official Django website:
http://www.djangoproject.org/
= Contains an amazing tutorial that you should follow
= Information on setting up Django

= Documentation for various classes, functions, etc.

http://www.djangoproject.org/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

