
Python Programming, 2/e 1

Python Programming:
An Introduction to
Computer Science

Chapter 9
Simulation and Design

Python Programming, 2/e 2

Objectives
n  To understand the potential applications of

simulation as a way to solve real-world
problems.

n  To understand pseudorandom numbers and
their application in Monte Carlo simulations.

n  To understand and be able to apply top-down
and spiral design techniques in writing
complex programs.

Python Programming, 2/e 3

Objectives
n  To understand unit-testing and be able

to apply this technique in the
implementation and debugging of
complex programming.

Python Programming, 2/e 4

Simulating Racquetball
n  Simulation can solve real-world

problems by modeling real-world
processes to provide otherwise
unobtainable information.

n  Computer simulation is used to predict
the weather, design aircraft, create
special effects for movies, etc.

Python Programming, 2/e 5

A Simulation Problem
n  Denny Dibblebit often plays racquetball with

players who are slightly better than he is.
n  Denny usually loses his matches!
n  Shouldn’t players who are a little better win a

little more often?
n  Susan suggests that they write a simulation

to see if slight differences in ability can cause
such large differences in scores.

Python Programming, 2/e 6

Analysis and Specification
n  Racquetball is played between two players

using a racquet to hit a ball in a four-walled
court.

n  One player starts the game by putting the
ball in motion – serving.

n  Players try to alternate hitting the ball to keep
it in play, referred to as a rally. The rally ends
when one player fails to hit a legal shot.

Python Programming, 2/e 7

Analysis and Specification
n  The player who misses the shot loses

the rally. If the loser is the player who
served, service passes to the other
player.

n  If the server wins the rally, a point is
awarded. Players can only score points
during their own service.

n  The first player to reach 15 points wins
the game.

Python Programming, 2/e 8

Analysis and Specification
n  In our simulation, the ability level of the

players will be represented by the probability
that the player wins the rally when he or she
serves.

n  Example: Players with a 0.60 probability win a
point on 60% of their serves.

n  The program will prompt the user to enter
the service probability for both players and
then simulate multiple games of racquetball.

n  The program will then print a summary of the
results.

Python Programming, 2/e 9

Analysis and Specification
n  Input: The program prompts for and

gets the service probabilities of players
A and B. The program then prompts for
and gets the number of games to be
simulated.

Python Programming, 2/e 10

Analysis and Specification
n  Output: The program will provide a series of

initial prompts such as the following:
What is the probability player A wins a serve?
What is the probability that player B wins a server?
How many games to simulate?

n  The program then prints out a nicely
formatted report showing the number of
games simulated and the number of wins and
the winning percentage for each player.
Games simulated: 500
Wins for A: 268 (53.6%)
Wins for B: 232 (46.4%)

Python Programming, 2/e 11

Analysis and Specification
n  Notes:
n  All inputs are assumed to be legal

numeric values, no error or validity
checking is required.

n  In each simulated game, player A
serves first.

Python Programming, 2/e 12

PseudoRandom Numbers
n  When we say that player A wins 50% of

the time, that doesn’t mean they win
every other game. Rather, it’s more like
a coin toss.

n  Overall, half the time the coin will come
up heads, the other half the time it will
come up tails, but one coin toss does
not effect the next (it’s possible to get
5 heads in a row).

Python Programming, 2/e 13

PseudoRandom Numbers
n  Many simulations require events to occur with

a certain likelihood. These sorts of
simulations are called Monte Carlo simulations
because the results depend on “chance”
probabilities.

n  Do you remember the chaos program from
chapter 1? The apparent randomness of the
result came from repeatedly applying a
function to generate a sequence of numbers.

Python Programming, 2/e 14

PseudoRandom Numbers
n  A similar approach is used to generate

random (technically pseudorandom) numbers.
n  A pseudorandom number generator works by

starting with a seed value. This value is given
to a function to produce a “random” number.

n  The next time a random number is required,
the current value is fed back into the function
to produce a new number.

Python Programming, 2/e 15

PseudoRandom Numbers
n  This sequence of numbers appears to

be random, but if you start the process
over again with the same seed number,
you’ll get the same sequence of
“random” numbers.

n  Python provides a library module that
contains a number of functions for
working with pseudorandom numbers.

Python Programming, 2/e 16

PseudoRandom Numbers
n  These functions derive an initial seed

value from the computer’s date and
time when the module is loaded, so
each time a program is run a different
sequence of random numbers is
produced.

n  The two functions of greatest interest
are randrange and random.

Python Programming, 2/e 17

PseudoRandom Numbers
n  The randrange function is used to select a

pseudorandom int from a given range.
n  The syntax is similar to that of the range

command.
n  randrange(1,6) returns some number

from [1,2,3,4,5] and
randrange(5,105,5) returns a multiple of
5 between 5 and 100, inclusive.

n  Ranges go up to, but don’t include, the
stopping value.

Python Programming, 2/e 18

PseudoRandom Numbers
n  Each call to randrange generates a new

pseudorandom int.
>>> from random import randrange
>>> randrange(1,6)
5
>>> randrange(1,6)
3
>>> randrange(1,6)
2
>>> randrange(1,6)
5
>>> randrange(1,6)
5
>>> randrange(1,6)
5
>>> randrange(1,6)
4

Python Programming, 2/e 19

PseudoRandom Numbers
n  The value 5 comes up over half the

time, demonstrating the probabilistic
nature of random numbers.

n  Over time, this function will produce a
uniform distribution, which means that
all values will appear an approximately
equal number of times.

Python Programming, 2/e 20

PseudoRandom Numbers
n  The random function is used to

generate pseudorandom floating point
values.

n  It takes no parameters and returns
values uniformly distributed between 0
and 1 (including 0 but excluding 1).

Python Programming, 2/e 21

PseudoRandom Numbers
>>> from random import random
>>> random()
0.79432800912898816
>>> random()
0.00049858619405451776
>>> random()
0.1341231400816878
>>> random()
0.98724554535361653
>>> random()
0.21429424175032197
>>> random()
0.23903583712127141
>>> random()
0.72918328843408919

Python Programming, 2/e 22

PseudoRandom Numbers
n  The racquetball simulation makes use of the
random function to determine if a player has
won a serve.

n  Suppose a player’s service probability is
70%, or 0.70.

n  if <player wins serve>:
 score = score + 1

n  We need to insert a probabilistic function that
will succeed 70% of the time.

Python Programming, 2/e 23

PseudoRandom Numbers
n  Suppose we generate a random number

between 0 and 1. Exactly 70% of the interval
0..1 is to the left of 0.7.

n  So 70% of the time the random number will
be < 0.7, and it will be ≥ 0.7 the other 30%
of the time. (The = goes on the upper end
since the random number generator can
produce a 0 but not a 1.)

Python Programming, 2/e 24

PseudoRandom Numbers
n  If prob represents the probability of

winning the server, the condition
random() < prob will succeed with
the correct probability.

n  if random() < prob:
 score = score + 1

Python Programming, 2/e 25

Top-Down Design
n  In top-down design, a complex problem is

expressed as a solution in terms of smaller,
simpler problems.

n  These smaller problems are then solved by
expressing them in terms of smaller, simpler
problems.

n  This continues until the problems are trivial to
solve. The little pieces are then put back
together as a solution to the original problem!

Python Programming, 2/e 26

Top-Level Design
n  Typically a program uses the input,

process, output pattern.
n  The algorithm for the racquetball

simulation:
Print an introduction
Get the inputs: probA, probB, n
Simulate n games of racquetball using probA and
probB
Print a report on the wins for playerA and playerB

Python Programming, 2/e 27

Top-Level Design
n  Is this design too high level? Whatever

we don’t know how to do, we’ll ignore
for now.

n  Assume that all the components needed
to implement the algorithm have been
written already, and that your task is to
finish this top-level algorithm using
those components.

Python Programming, 2/e 28

Top-Level Design
n  First we print an introduction.
n  This is easy, and we don’t want to

bother with it.
n  def main():

 printIntro()

n  We assume that there’s a printIntro
function that prints the instructions!

Python Programming, 2/e 29

Top-Level Design
n  The next step is to get the inputs.
n  We know how to do that! Let’s assume

there’s already a component that can
do that called getInputs.

n  getInputs gets the values for probA,
probB, and n.

n  def main():
 printIntro()
 probA, probB, n = getInputs()

Python Programming, 2/e 30

Top-Level Design
n  Now we need to simulate n games of

racquetball using the values of probA
and probB.

n  How would we do that? We can put off
writing this code by putting it into a
function, simNGames, and add a call to
this function in main.

Python Programming, 2/e 31

Top-Level Design
n  If you were going to simulate the game by

hand, what inputs would you need?
n  probA
n  probB
n  n

n  What values would you need to get back?
n  The number of games won by player A
n  The number of games won by player B

n  These must be the outputs from the
simNGames function.

Python Programming, 2/e 32

Top-Level Design
n  We now know that the main program must

look like this:
def main():
 printIntro()
 probA, probB, n = getInputs()
 winsA, winsB = simNGames(n, probA, probB)

n  What information would you need to be able
to produce the output from the program?

n  You’d need to know how many wins there
were for each player – these will be the
inputs to the next function.

Python Programming, 2/e 33

Top-Level Design
n  The complete main program:

def main():
 printIntro()
 probA, probB, n = getInputs()
 winsA, winsB = simNGames(n, probA, probB)
 printSummary(winsA, winsB)

Python Programming, 2/e 34

Separation of Concerns
n  The original problem has now been

decomposed into four independent tasks:
n  printIntro
n  getInputs
n  simNGames
n  printSummary

n  The name, parameters, and expected return
values of these functions have been specified.
This information is known as the interface or
signature of the function.

Python Programming, 2/e 35

Separation of Concerns
n  Having this information (the signatures),

allows us to work on each of these pieces
indepently.

n  For example, as far as main is concerned,
how simNGames works is not a concern as
long as passing the number of games and
player probabilities to simNGames causes it
to return the correct number of wins for each
player.

Python Programming, 2/e 36

Separation of Concerns
n  In a structure chart (or module

hierarchy), each component in the
design is a rectangle.

n  A line connecting two rectangles
indicates that the one above uses the
one below.

n  The arrows and annotations show the
interfaces between the components.

Python Programming, 2/e 37

Separation of Concerns

Python Programming, 2/e 38

Separation of Concerns
n  At each level of design, the interface tells

us which details of the lower level are
important.

n  The general process of determining the
important characteristics of something and
ignoring other details is called abstraction.

n  The top-down design process is a
systematic method for discovering useful
abstractions.

Python Programming, 2/e 39

Second-Level Design
n  The next step is to repeat the process

for each of the modules defined in the
previous step!

n  The printIntro function should print
an introduction to the program. The
code for this is straightforward.

Python Programming, 2/e 40

Second-Level Design
def printIntro():
 # Prints an introduction to the program
 print("This program simulates a game of racquetball between two")
 print('players called "A" and "B". The abilities of each player is')
 print("indicated by a probability (a number between 0 and 1) that")
 print("the player wins the point when serving. Player A always")
 print("has the first serve.\n“)

n  In the second line, since we wanted double
quotes around A and B, the string is
enclosed in apostrophes.

n  Since there are no new functions, there are
no changes to the structure chart.

Python Programming, 2/e 41

Second-Level Design
n  In getInputs, we prompt for and get

three values, which are returned to the
main program.

def getInputs():

 # RETURNS probA, probB, number of games to simulate

 a = eval(input("What is the prob. player A wins a serve? "))

 b = eval(input("What is the prob. player B wins a serve? "))

 n = eval(input("How many games to simulate? "))

 return a, b, n

Python Programming, 2/e 42

Designing simNGames
n  This function simulates n games and

keeps track of how many wins there are
for each player.

n  “Simulate n games” sound like a
counted loop, and tracking wins sounds
like a good job for accumulator
variables.

Python Programming, 2/e 43

Designing simNGames
n  Initialize winsA and winsB to 0
loop n times
 simulate a game
 if playerA wins
 Add one to winsA
 else
 Add one to winsB

Python Programming, 2/e 44

Designing simNGames
n  We already have the function signature:

def simNGames(n, probA, probB):
 # Simulates n games of racquetball between players A and B
 # RETURNS number of wins for A, number of wins for B

n  With this information, it’s easy to get
started!
def simNGames(n, probA, probB):
 # Simulates n games of racquetball between players A and B
 # RETURNS number of wins for A, number of wins for B
 winsA = 0
 winsB = 0
 for i in range(n):

Python Programming, 2/e 45

Designing simNGames
n  The next thing we need to do is simulate a

game of racquetball. We’re not sure how to
do that, so let’s put it off until later!

n  Let’s assume there’s a function called
simOneGame that can do it.

n  The inputs to simOneGame are easy – the
probabilities for each player. But what is the
output?

Python Programming, 2/e 46

Designing simNGames
n  We need to know who won the game.

How can we get this information?
n  The easiest way is to pass back the final

score.
n  The player with the higher score wins

and gets their accumulator incremented
by one.

Python Programming, 2/e 47

Designing simNGames
def simNGames(n, probA, probB):
 # Simulates n games of racquetball between players A and B

 # RETURNS number of wins for A, number of wins for B

 winsA = winsB = 0
 for i in range(n):

 scoreA, scoreB = simOneGame(probA, probB)
 if scoreA > scoreB:

 winsA = winsA + 1

 else:
 winsB = winsB + 1

 return winsA, winsB

Python Programming, 2/e 48

Designing simNGames

Python Programming, 2/e 49

Third-Level Design
n  The next function we need to write is
simOneGame, where the logic of the
racquetball rules lies.

n  Players keep doing rallies until the
game is over, which implies the use of
an indefinite loop, since we don’t know
ahead of time how many rallies there
will be before the game is over.

Python Programming, 2/e 50

Third-Level Design
n  We also need to keep track of the score

and who’s serving. The score will be
two accumulators, so how do we keep
track of who’s serving?

n  One approach is to use a string value
that alternates between “A” or “B”.

Python Programming, 2/e 51

Third-Level Design
n  Initialize scores to 0

Set serving to “A”
Loop while game is not over:
 Simulate one serve of whichever player is serving
 update the status of the game
Return scores

n  Def simOneGame(probA, probB):
 scoreA = 0
 scoreB = 0
 serving = “A”
 while <condition>:

n  What will the condition be?? Let’s take the
two scores and pass them to another function
that returns True if the game is over, False
if not.

Python Programming, 2/e 52

Third-Level Design

Python Programming, 2/e 53

Third-Level Design
n  At this point, simOneGame looks like

this:

n  def simOneGame(probA, probB):
 # Simulates a single game or racquetball between players A and
B
 # RETURNS A's final score, B's final score
 serving = "A“
 scoreA = 0
 scoreB = 0
 while not gameOver(scoreA, scoreB):

Python Programming, 2/e 54

Third-Level Design
n  Inside the loop, we need to do a single

serve. We’ll compare a random number
to the provided probability to determine
if the server wins the point
(random() < prob).

n  The probability we use is determined by
whom is serving, contained in the
variable serving.

Python Programming, 2/e 55

Third-Level Design
n  If A is serving, then we use A’s

probability, and based on the result of
the serve, either update A’s score or
change the service to B.

n  if serving == "A":
 if random() < probA:
 scoreA = scoreA + 1
 else:
 serving = "B"

Python Programming, 2/e 56

Third-Level Design
n  Likewise, if it’s B’s serve, we’ll do the

same thing with a mirror image of the
code.

n  if serving == "A":
 if random() < probA:
 scoreA = scoreA + 1
 else:
 serving = "B“
 else:
 if random() < probB:
 scoreB = scoreB + 1
 else:
 serving = "A"

Python Programming, 2/e 57

Third-Level Design
Putting the function together:

def simOneGame(probA, probB):
 # Simulates a single game or racquetball between players A and B
 # RETURNS A's final score, B's final score
 serving = "A"
 scoreA = 0
 scoreB = 0
 while not gameOver(scoreA, scoreB):
 if serving == "A":
 if random() < probA:
 scoreA = scoreA + 1
 else:
 serving = "B"
 else:
 if random() < probB:
 scoreB = scoreB + 1
 else:
 serving = "A"
 return scoreA, scoreB

Python Programming, 2/e 58

Finishing Up
n  There’s just one tricky function left,
gameOver. Here’s what we know:

def gameOver(a,b):
 # a and b are scores for players in a racquetball game
 # RETURNS true if game is over, false otherwise

n  According to the rules, the game is over
when either player reaches 15 points.
We can check for this with the boolean:
a==15 or b==15

Python Programming, 2/e 59

Finishing Up
n  So, the complete code for gameOver looks

like this:

def gameOver(a,b):
 # a and b are scores for players in a racquetball game
 # RETURNS true if game is over, false otherwise
 return a == 15 or b == 15

n  printSummary is equally simple!
def printSummary(winsA, winsB):
 # Prints a summary of wins for each player.
 n = winsA + winsB
 print "\nGames simulated:", n
 print "Wins for A: {0} ({1:0.1%})".format(winsA, winsA)/n)
 print "Wins for B: {0} ({1:0.1%})".format(winsB, winsB/n)

n  Notice % formatting on the output

Python Programming, 2/e 60

Summary of the
Design Process
n  We started at the highest level of our

structure chart and worked our way
down.

n  At each level, we began with a general
algorithm and refined it into precise
code.

n  This process is sometimes referred to as
step-wise refinement.

Python Programming, 2/e 61

Summary of the
Design Process
1.  Express the algorithm as a series of

smaller problems.
2.  Develop an interface for each of the

small problems.
3.  Detail the algorithm by expressing it in

terms of its interfaces with the smaller
problems.

4.  Repeat the process for each smaller
problem.

Python Programming, 2/e 62

Bottom-Up Implementation
n  Even though we’ve been careful with

the design, there’s no guarantee we
haven’t introduced some silly errors.

n  Implementation is best done in small
pieces.

Python Programming, 2/e 63

Unit Testing
n  A good way to systematically test the

implementation of a modestly sized program
is to start at the lowest levels of the
structure, testing each component as it’s
completed.

n  For example, we can import our program
and execute various routines/functions to
ensure they work properly.

Python Programming, 2/e 64

Unit Testing
n  We could start with the gameOver function.
n  >>> import rball
>>> rball.gameOver(0,0)
False
>>> rball.gameOver(5,10)
False
>>> rball.gameOver(15,3)
True
>>> rball.gameOver(3,15)
True

Python Programming, 2/e 65

Unit Testing
n  Notice that we’ve tested gameOver for

all the important cases.
n  We gave it 0, 0 as inputs to simulate the

first time the function will be called.
n  The second test is in the middle of the

game, and the function correctly reports
that the game is not yet over.

n  The last two cases test to see what is
reported when either player has won.

Python Programming, 2/e 66

Unit Testing
n  Now that we see that gameOver is working,

we can go on to simOneGame.
>>> simOneGame(.5, .5)
(11, 15)
>>> simOneGame(.5, .5)
(13, 15)
>>> simOneGame(.3, .3)
(11, 15)
>>> simOneGame(.3, .3)
(15, 4)
>>> simOneGame(.4, .9)
(2, 15)
>>> simOneGame(.4, .9)
(1, 15)
>>> simOneGame(.9, .4)
(15, 0)
>>> simOneGame(.9, .4)
(15, 0)
>>> simOneGame(.4, .6)
(10, 15)
>>> simOneGame(.4, .6)
(9, 15)

Python Programming, 2/e 67

Unit Testing
n  When the probabilities are equal, the scores

aren’t that far apart.
n  When the probabilities are farther apart, the

game is a rout.
n  Testing each component in this manner is

called unit testing.
n  Testing each function independently makes it

easier to spot errors, and should make testing
the entire program go more smoothly.

Python Programming, 2/e 68

Simulation Results
n  Is it the nature of racquetball that small

differences in ability lead to large
differences in final score?

n  Suppose Denny wins about 60% of his
serves and his opponent is 5% better.
How often should Denny win?

n  Let’s do a sample run where Denny’s
opponent serves first.

Python Programming, 2/e 69

Simulation Results
This program simulates a game of racquetball between two
players called "A" and "B". The abilities of each player is
indicated by a probability (a number between 0 and 1) that
the player wins the point when serving. Player A always
has the first serve.

What is the prob. player A wins a serve? .65
What is the prob. player B wins a serve? .6
How many games to simulate? 5000

Games simulated: 5000
Wins for A: 3329 (66.6%)
Wins for B: 1671 (33.4%)

n  With this small difference in ability ,
Denny will win only 1 in 3 games!

Python Programming, 2/e 70

Other Design Techniques
n  Top-down design is not the only way to

create a program!

Python Programming, 2/e 71

Prototyping and
Spiral Development

n  Another approach to program
development is to start with a simple
version of a program, and then
gradually add features until it meets the
full specification.

n  This initial stripped-down version is
called a prototype.

Python Programming, 2/e 72

Prototyping and
Spiral Development
n  Prototyping often leads to a spiral

development process.
n  Rather than taking the entire problem and

proceeding through specification, design,
implementation, and testing, we first design,
implement, and test a prototype. We take
many mini-cycles through the development
process as the prototype is incrementally
expanded into the final program.

Python Programming, 2/e 73

Prototyping and
Spiral Development

n  How could the racquetball simulation
been done using spiral development?
n  Write a prototype where you assume

there’s a 50-50 chance of winning any
given point, playing 30 rallies.

n  Add on to the prototype in stages,
including awarding of points, change of
service, differing probabilities, etc.

Python Programming, 2/e 74

Prototyping and
Spiral Development
from random import random

def simOneGame():
 scoreA = 0
 scoreB = 0
 serving = "A"
 for i in range(30):
 if serving == "A":
 if random() < .5:
 scoreA = scoreA + 1
 else:
 serving = "B"
 else:
 if random() < .5:
 scoreB = scoreB + 1
 else:
 serving = "A"
 print(scoreA, scoreB)

>>> simOneGame()
0 0
0 1
0 1
…
2 7
2 8
2 8
3 8
3 8
3 8
3 8
3 8
3 8
3 9
3 9
4 9
5 9

Python Programming, 2/e 75

Prototyping and
Spiral Development
n  The program could be enhanced in

phases:
n  Phase 1: Initial prototype. Play 30 rallies

where the server always has a 50% chance
of winning. Print out the scores after each
server.

n  Phase 2: Add two parameters to represent
different probabilities for the two players.

Python Programming, 2/e 76

Prototyping and
Spiral Development

n  Phase 3: Play the game until one of the
players reaches 15 points. At this point, we
have a working simulation of a single
game.

n  Phase 4: Expand to play multiple games.
The output is the count of games won by
each player.

n  Phase 5: Build the complete program. Add
interactive inputs and a nicely formatted
report of the results.

Python Programming, 2/e 77

Prototyping and
Spiral Development

n  Spiral development is useful when
dealing with new or unfamiliar features
or technology.

n  If top-down design isn’t working for
you, try some spiral development!

Python Programming, 2/e 78

The Art of Design
n  Spiral development is not an alternative

to top-down design as much as a
complement to it – when designing the
prototype you’ll still be using top-down
techniques.

n  Good design is as much creative
process as science, and as such, there
are no hard and fast rules.

Python Programming, 2/e 79

The Art of Design
n  The best advice?
n  Practice, practice, practice

