
CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 1

1. Installation of Configuration of Python. Along with its all major

editors.

Python is an interpreted, object-oriented, high-level programming language with
dynamic semantics. Its high-level built in data structures, combined with dynamic
typing and dynamic binding, make it very attractive for Rapid Application Development,
as well as for use as a scripting or glue language to connect existing components
together. Python's simple, easy to learn syntax emphasizes readability and therefore
reduces the cost of program maintenance. Python supports modules and packages,
which encourages program modularity and code reuse. The Python interpreter and the
extensive standard library are available in source or binary form without charge for all
major platforms, and can be freely distributed.

Often, programmers fall in love with Python because of the increased productivity it
provides. Since there is no compilation step, the edit-test-debug cycle is incredibly fast.
Debugging Python programs is easy: a bug or bad input will never cause a segmentation
fault. Instead, when the interpreter discovers an error, it raises an exception. When the
program doesn't catch the exception, the interpreter prints a stack trace. A source level
debugger allows inspection of local and global variables, evaluation of arbitrary
expressions, setting breakpoints, stepping through the code a line at a time, and so on.
The debugger is written in Python itself, testifying to Python's introspective power. On
the other hand, often the quickest way to debug a program is to add a few print
statements to the source: the fast edit-test-debug cycle makes this simple approach very
effective.

HOW TO INSTALL PYTHON ?

Step 1: Download the Python 3 Installer

1. Open a browser window and navigate to the Download page for
Windows at python.org.

2. Underneath the heading at the top that says Python Releases for Windows, click
on the link for the Latest Python 3 Release - Python 3.x.x. (As of this writing, the
latest is Python 3.6.5.)

3. Scroll to the bottom and select either Windows x86-64 executable installer for
64-bit or Windows x86 executable installer for 32-bit. (See below.)

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 2

Step 2: Run the Installer

Once you have chosen and downloaded an installer, simply run it by double-clicking on
the downloaded file. A dialog should appear that looks something like this:

Then just click Install Now. That should be all there is to it. A few minutes later you
should have a working Python 3 installation on your system.

CONCLUSION :

In this practical we learned that what is python ,why is it needed ,and how to install
Python on our PC.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 3

2. Implement the following :

a. Create a program that asks the users to enter their name and their

age. Print Out : a message addressed to them that tells them the

year that they will turn 100 years old.

PROGRAM :

name = input('Enter your name :')

age = input('Enter your age : ')

age = 100 - int(age)

print('You will be 100 years old after {}'.format(age))

copies = int(input('Enter a number : '))

for i in range(1,int(copies+1)):

 print('You will be 100 years old after {x}'.format(x=2))

OUTPUT :

b. Ask the user for a number. Depending on whether the number is

even or odd, print out an appropriate message to the user. Hint:

how does an even / odd number react differently when divided by

2?

PROGRAM :

number = int(input('Enter a number : '))

if number%2 == 0 :

 print('Number is even')

else:

 print('Number is odd ')

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 4

OUTPUT :

c. Take a list ,say for example this one : [1, 1, 2, 3, 5, 8, 13, 21, 34, 55,

89], and write a program that prints out all the elements less than

5.

PROGRAM :

a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

b = []

for x in a :

 if x < 5:

 print(x)

 b.append(x)

print(b)

OUTPUT :

CONCLUSION :

In this practical we learned how to take input from the user and apply basic operations

on that input.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 5

3. Implement the following :

a. Create a program that asks the user for a number and then prints

out a list of all the divisors of that number. (If you don’t know

what a divisor is, it is a number that divides evenly into another

number. For example, 13 is a divisor of 26 because 26 / 13 has no

remainder.)

PROGRAM :

number = int (input('Enter a number : '))

a=[]

for i in range(1,number+1):

 if number % i == 0:

 a.append(i)

print(a)

OUTPUT :

b. Take two lists, say for example these two:

 a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
 b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

and write a program that returns a list that contains only the

elements that are common between the lists (without duplicates).

Make sure your program works on two lists of different sizes.

PROGRAM :

a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

c=[]

"""print(set([i for i in a for j in b if i==j]))"""

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 6

for i in a:

 for j in b:

 if i==j:

 c.append(i)

print(c)

OUTPUT :

c. Ask the user for a string and print out whether this string is a

palindrome or not. (A palindrome is a string that reads the same

forwards and backwards.)

PROGRAM :

print('Enter a word for checking pallindrome : ')

word=input()

word2="".join(reversed(word))

if word==word2 :

 print("Pallindrome")

else :

 print("not pallindrome")

OUTPUT :

CONCLUSION :

In this practical we learned the implementation of palindrome,working with given list

and for loop .

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 7

4. Implement the following :

a. Let’s say I give you a list saved in a variable: a = [1, 4, 9, 16, 25, 36,

49, 64, 81, 100]. Write one line of Python that takes this list a and

makes a new list that has only the even elements of this list in it.

PROGRAM :

i=[]

a = [1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

print([i for i in a if i%2 == 0])

OUTPUT :

b. Make a two-player Rock-Paper-Scissors game. (Hint: Ask for player

plays (using input), compare them, print out a message of

congratulations to the winner, and ask if the players want to start a

new game)

Remember the rules:

Rock beats scissors

Scissors beats paper

Paper beats rock

PROGRAM :

stop = False

while (not stop):

 answerP1 = input('Player 1: Please type your choice: Rock, Paper or Scissors:')

 answerP2 = input('Player 2: Please type your choice: Rock, Paper or Scissors:')

 if answerP1 == answerP2:

 print('DRAW GAME')

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 8

 elif answerP1 == 'Rock' and answerP2 == 'Paper':

 print('PLAYER 2 WINS')

 elif answerP1 == 'Rock' and answerP2 == 'Scissors':

 print('PLAYER 1 WINS')

 elif answerP1 == 'Paper' and answerP2 == 'Rock':

 print('PLAYER 1 WINS')

 elif answerP1 == 'Paper' and answerP2 == 'Scissors':

 print('PLAYER 2 WINS')

 elif answerP1 == 'Scissors' and answerP2 == 'Rock':

 print('PLAYER 2 WINS')

 elif answerP1 == 'Scissors' and answerP2 == 'Paper':

 print('PLAYER 1 WINS')

 else:

 print('Wrong answer, please type Rock, Paper or Scissors in your next

attempt!')

 answer = input('Do you want to start a new game? (Yes or No) : ')

 if answer == 'Yes' or 'yes':

 print('New game will start')

 elif answer == 'No'or 'no':

 stop = True

 print('GAME OVER')

 else:

 print('Wrong answer, please type Yes or No in your next attempt! : ')

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 9

c. Generate a random number between 1 and 9 (including 1 and 9).

Ask the user to guess the number, then tell them whether they

guessed too low, too high, or exactly right. (Hint: remember to use

the user input lessons from the very first exercise)

PROGRAM :

import random

rand_int = random.randint(1,9)

user_int= int(input('Enter your guessed number : '))

if rand_int == user_int :

 print('Equals')

elif rand_int > user_int :

 print('Less')

elif rand_int < user_int :

 print('Greater ')

print('The random number was {}'.format(rand_int))

OUTPUT :

CONCLUSION :

In this practical we learned how to use if with elif and how to find factors of a number.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 10

5. Implement the following :

a. This week’s exercise is going to be revisiting an old exercise

(see Exercise 5), except require the solution in a different way.

Take two lists, say for example these two:
 a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
 b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

and write a program that returns a list that contains only the

elements that are common between the lists (without duplicates).

Make sure your program works on two lists of different sizes. Write

this in one line of Python using at least one list comprehension.

PROGRAM :

a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

print(set([i for i in a for j in b if i==j]))

OUTPUT :

b. Ask the user for a number and determine whether the number is

prime or not. (For those who have forgotten, a prime number is a

number that has no divisors.). You can (and should!) use your answer

to Exercise 4 to help you. Take this opportunity to practice using

functions, described below.

PROGRAM :

num = int(input('Enter your number : '))

c=[]

for i in range(1,num+1):

https://www.practicepython.org/exercise/2014/03/05/05-list-overlap.html

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 11

 if num % i == 0:

 c.append(i)

 if len(c) >= 3:

 print('Entered number {} is not prime .'.format(num))

else:

 print('Entered number {} is prime .'.format(num))

print(c)

OUTPUT :

c. Write a program that takes a list of numbers (for example, a = [5,

10, 15, 20, 25]) and makes a new list of only the first and last

elements of the given list. For practice, write this code inside a

function.

PROGRAM :

a = [5, 10, 15, 20,25]

print(a[0],a[len(a)-1])

li = input("Enter list : ")

new = li.split()

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 12

def func(li):

 return li[0],li[len(li)-1]

print(func(li))

OUTPUT :

CONCLUSION :

In this practical we learned about how to split in a list,how to append inside a list and

write a comprehensive command in one line.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 13

6. Implement the following :

a. Write a program that asks the user how many Fibonnaci numbers

to generate and then generates them. Take this opportunity to

think about how you can use functions. Make sure to ask the user

to enter the number of numbers in the sequence to generate.

PROGRAM :

fibo = int(input('Enter a number for fibo limit : '))

def fib(fibo):

 a = 0

 b = 1

 for i in range(1,fibo+1):

 c=a+b

 a=b

 b=c

 print(c)

 return c

fib(fibo)

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 14

b. Write a program (function!) that takes a list and returns a new list

that contains all the elements of the first list minus all the

duplicates.

PROGRAM :

def dep(a):

 return list(set(a))

a=[1,3,2,4,5,3,1,4]

print(a)

print(dep(a))

OUTPUT :

c. Write a program (using functions!) that asks the user for a long

string containing multiple words. Print back to the user the same

string, except with the words in backwards order. For example,

say I type the string:

 My name is Michele

Then I would see the string:

 Michele is name My is shown back to me.

PROGRAM :

s=input("ENter a string : ")

def rev(s):

 l=s.split()

 l.reverse()

 s=' '.join(l)

 print(s)

rev(s)

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 15

OUTPUT :

CONCLUSION :

In this practical we learned how to how to work with different methods of list, and how

to implement the functions by creating them.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 16

7. Implement the following :

a. Write a password generator in Python. Be creative with how you generate

passwords - strong passwords have a mix of lowercase letters, uppercase

letters, numbers, and symbols. The passwords should be random, generating

a new password every time the user asks for a new password. Include your

code in a main method.

PROGRAM :

import string

import random

def passwordGenerator(b):

 everything = ' '

 upper = string.ascii_uppercase

 lower = string.ascii_lowercase

 special = string.punctuation

 number = string.digits

 everything = upper + lower + special + number

 # print(everything)

 password = random.sample(everything, b)

 #print(password)

 random.shuffle(password)

 for i in password:

 password = "".join(password)

 return password

 a = int(input("Enter the desied length of the password "))

 print("The password is ", passwordGenerator(a))

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 17

b. Use the BeautifulSoup and requests Python packages to print out a list of all

the article titles on the New York Times homepage.

PROGRAM :

import requests

from bs4 import BeautifulSoup

source = requests.get("https://www.nytimes.com").text

soup = BeautifulSoup(source, 'lxml')

for article in soup.find_all('h2'):

 print(str(article.text))

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 18

c. Create a program that will play the “cows and bulls” game with

the user. The game works like this:

Randomly generate a 4-digit number. Ask the user to guess a 4-

digit number. For every digit that the user guessed correctly in the

correct place, they have a “cow”. For every digit the user guessed

correctly in the wrong place is a “bull.” Every time the user makes a

guess, tell them how many “cows” and “bulls” they have. Once

the user guesses the correct number, the game is over. Keep track

of the number of guesses the user makes throughout teh game

and tell the user at the end.

Say the number generated by the computer is 1038. An example

interaction could look like this:
 Welcome to the Cows and Bulls Game!

 Enter a number:

 >>> 1234

 2 cows, 0 bulls

 >>> 1256

 1 cow, 1 bull

 ...

Until the user guesses the number.

PROGRAM :

import random

n = str(random.randint(1000,9999))

print(n)

nlist = []

cow = 0

for i in n:

 nlist.append(i)

while cow < 4 and exit !="x":

 x = str(input("Choose a 4 digit number, x to exit: "))

 xlist = []

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 19

 cow = 0

 bull = 0

 if x!= "x":

 for i in x:

 xlist.append(i)

 for i in nlist:

 if i in xlist and nlist.index(i) == xlist.index(i):

 cow +=1

 if i in xlist and nlist.index(i) != xlist.index(i):

 bull +=1

 print(cow, "cow(s)", bull, "bull(s)")

 else:

 exit = "x"

print(nlist, xlist)

OUTPUT :

CONCLUSION :

In this practical we learned how to generate random numbers and use them for

different purposes as well as how to get text from URL using Beautiful Soap.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 20

8. Implement the following :
a. Using the requests and BeautifulSoup Python libraries, print to the screen the

full text of the article on this

website: https://in.mashable.com/tech/2135/honor-view-20-review-i-dont-

miss-my-oneplus-6t-anymoreThe article is long, so it is split up between 4

pages. Your task is to print out the text to the screen so that you can read the

full article without having to click any buttons. This will just print the full text

of the article to the screen. It will not make it easy to read, so next exercise we

will learn how to write this text to a .txt file.

PROGRAM :

import urllib.request

from bs4 import BeautifulSoup

url = "https://in.mashable.com/tech/2135/honor-view-20-review-i-dont-miss-

my-oneplus-6t-anymore"

with urllib.request.urlopen(url) as uri:

 html = uri.read()

soup = BeautifulSoup(html)

kill all script and style elements

for script in soup(["script", "style"]):

 script.extract() # rip it out

get text

text = soup.get_text()

break into lines and remove leading and trailing space on each

lines = (line.strip() for line in text.splitlines())

break multi-headlines into a line each

chunks = (phrase.strip() for line in lines for phrase in line.split(" "))

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 21

drop blank lines

text = '\n'.join(chunk for chunk in chunks if chunk)

print(text)

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 22

b. Write a function that takes an ordered list of numbers (a list where the

elements are in order from smallest to largest) and another number. The

function decides whether or not the given number is inside the list and

returns (then prints) an appropriate boolean.

Extras:

Use binary search.

PROGRAM :

def in_list(list,s):

 min=0

 max=len(list)-1

 while(min<=max):

 mid = int((min+max) / 2)

 if(list[mid] == s):

 return True

 if list[mid] < s:

 min = mid+1

 else:

 max = mid-1

 return False

print (in_list([1,2,3,4,5,8],4))

print (in_list([1,2,3,4,5,8],10))

print (in_list([1,2,3,4,5,8],0))

print (in_list([1,2,3,4,5,8],7))

OUTPUT :

CONCLUSION :

In this practical we learned different concepts regarding the scrapping of text from the

website ,and use of function for finding the elements in a list.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 23

9. Implement the following :

a. Take the code from the How To Decode A Website exercise , and

instead of printing the results to a screen, write the results to a txt

file. In your code, just make up a name for the file you are saving

to.

PROGRAM :

import requests

from bs4 import BeautifulSoup

source = requests.get("https://www.nytimes.com").text

def get_title(text):

 n=input(text)

 return str(n)

soup = BeautifulSoup(source, 'lxml')

with open(get_title('What do you want to name the file?'), 'w') as open_file:

 for article in soup.find_all('h2'):

 open_file.write(str(article.text))

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 24

b. Given a .txt file that has a list of a bunch of names, count how

many of each name there are in the file, and print out the results

to the screen.

PROGRAM :

count = dict()

with open("demo.txt",'r') as f :

 x=f.read()

 y=x.split()

 for i in y :

 count[i]=0

 for i in y :

 count[i]+=1

for key,val in count.items():

 print (key, "=>", val)

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 25

CONCLUSION :

 In this practical we learned the different concepts of how to write the contents of a

website into a text file and also how to calculate the number of letter of a text.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 26

10. Implement the following :

a. Develop programs to understand the control structures of python.

PROGRAM :

for item in range(5):

 print(item**2)

score =86

if score >= 90 :

 print('A')

elif score >=80:

 print('B')

counter = 1

while counter <= 5:

 print("Hello, world")

 counter = counter + 1

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 27

b. Develop programs to learn different types of structures (list,

dictionary, tuples) in python.

PROGRAM :

thislist = ["apple", "banana", "cherry"]

print(thislist[1])

thislist[1] = "blackcurrant"

print(thislist)

thistuple = ("apple", "banana", "cherry")

print(thistuple)

thistuple = ("apple", "banana", "cherry")

print(thistuple[1])

thisset = {"apple", "banana", "cherry"}

print(thisset)

thisset = {"apple", "banana", "cherry"}

for x in thisset:

 print(x)

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 28

print(thisdict)

x = thisdict["model"]

OUTPUT :

c. Develop programs to understand working of exception handling

and assertions.

PROGRAM :

try:

 fh = open("testfile", "r")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print ("\nError: can\'t find file or read data")

else:

 print ("Written content in the file successfully")

def KelvinToFahrenheit(Temperature):

 assert (Temperature >= 0),"Colder than absolute zero!"

 return ((Temperature-273)*1.8)+32

print (KelvinToFahrenheit(273))

print (int((KelvinToFahrenheit(505.78))))

print (KelvinToFahrenheit(-5))

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 29

OUTPUT :

d. Develop programs to learn concept of functions scoping, recursion

and list mutability.

PROGRAM :

#recursion

def calc_factorial(x):

 """This is a recursive function

 to find the factorial of an integer"""

 if x == 1:

 return 1

 else:

 return (x * calc_factorial(x-1))

num = 4

print("The factorial of", num, "is", calc_factorial(num))

#scopes

def f():

 s = "Me too."

 print (s)

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 30

s = "I love Geeksforgeeks"

f()

print (s)

#list mutability

color = ["red", "blue", "green"]

print(color)

color[0] = "pink"

color[-1] = "orange"

print(color)

OUTPUT :

CONCLUSION :

In this practical we learned the different concepts regarding exceptions , assertions,

recursion , list mutability and also about the list ,tuples and dictionary.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 31

11. Implement the following :

a. Develop programs to understand working of exception handling

and assertions.

PROGRAM :

try:

 fh = open("testfile", "r")

 fh.write("This is my test file for exception handling!!")

except IOError:

 print ("\nError: can\'t find file or read data")

else:

 print ("Written content in the file successfully")

def KelvinToFahrenheit(Temperature):

 assert (Temperature >= 0),"Colder than absolute zero!"

 return ((Temperature-273)*1.8)+32

print (KelvinToFahrenheit(273))

print (int((KelvinToFahrenheit(505.78))))

print (KelvinToFahrenheit(-5))

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 32

b. Develop programs for data structure algorithms using python –

searching, sorting and hash tables.

PROGRAM :

#SEARCHING

def linear_search(values, search_for):

 search_at = 0

 search_res = False

Match the value with each data element

 while search_at < len(values) and search_res is False:

 if values[search_at] == search_for:

 search_res = True

 else:

 search_at = search_at + 1

 return search_res

l = [64, 34, 25, 12, 22, 11, 90]

print("12 is in the list : ",linear_search(l, 12))

print("91 is in the list : ",linear_search(l, 91))

#SORTING

def mergeSort(arr):

 if len(arr) > 1:

 mid = len(arr) // 2 # Finding the mid of the array

 L = arr[:mid] # Dividing the array elements

 R = arr[mid:] # into 2 halves

 mergeSort(L) # Sorting the first half

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 33

 mergeSort(R) # Sorting the second half

 i = j = k = 0

 # Copy data to temp arrays L[] and R[]

 while i < len(L) and j < len(R):

 if L[i] < R[j]:

 arr[k] = L[i]

 i += 1

 else:

 arr[k] = R[j]

 j += 1

 k += 1

 # Checking if any element was left

 while i < len(L):

 arr[k] = L[i]

 i += 1

 k += 1

 while j < len(R):

 arr[k] = R[j]

 j += 1

 k += 1

Code to print the list

def printList(arr):

 for i in range(len(arr)):

 print(arr[i], end=" ")

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 34

 print()

driver code to test the above code

if __name__ == '__main__':

 arr = [12, 11, 13, 5, 6, 7]

 print("Given array is", end="\n")

 printList(arr)

 mergeSort(arr)

 print("Sorted array is: ", end="\n")

 printList(arr)

#HASHTABLE

hash_table = [[] for _ in range(10)]

print (hash_table)

def hashing_func(key):

 return key % len(hash_table)

def insert(hash_table, key, value):

 hash_key = hashing_func(key)

 hash_table[hash_key].append(value)

print("1.insert")

print("2.view")

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 35

while(True):

 choice=int(input())

 if(choice==1):

 print("enter data")

 data=int(input())

 key=hashing_func(data)

 insert(hash_table,key,data)

 if(choice==2):

 print(hash_table)

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 36

c. Develop programs to learn regular expressions using python.

PROGRAM :

import re

import requests

the_idiot_url = 'https://www.gutenberg.org/files/2638/2638-0.txt'

def get_book(url):

 # Sends a http request to get the text from project Gutenberg

 raw = requests.get(url).text

 # Discards the metadata from the beginning of the book

 start = re.search(r"*** START OF THIS PROJECT GUTENBERG EBOOK .*

***",raw).end()

 # Discards the metadata from the end of the book

 stop = re.search(r"II", raw).start()

 # Keeps the relevant text

 text = raw[start:stop]

 return text

def preprocess(sentence):

 return re.sub('[^A-Za-z0-9.]+' , ' ', sentence).lower()

book = get_book(the_idiot_url)

processed_book = preprocess(book)

print("our book")

print(processed_book)

print("capitalize all i to I")

processed_book = re.sub(r'\si\s', " I ", processed_book)

print(processed_book)

print("words with -- in the middle")

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 37

print(re.findall(r'[a-zA-Z0-9]*--[a-zA-Z0-9]*', book))

print("counting no of words")

print(len(re.split(" ",processed_book)))

OUTPUT :

d. Develop chat room application using multithreading.

PROGRAM :

OUTPUT :

12. Implement the following :

a. Learn to plot different types of graphs using PyPlot.

PROGRAM :

import pandas as pd

import matplotlib.pyplot as plt

create 2D array of table given above

data = [['E001', 'M', 34, 123, 'Normal', 350],

 ['E002', 'F', 40, 114, 'Overweight', 450],

 ['E003', 'F', 37, 135, 'Obesity', 169],

 ['E004', 'M', 30, 139, 'Underweight', 189],

 ['E005', 'F', 44, 117, 'Underweight', 183],

 ['E006', 'M', 36, 121, 'Normal', 80],

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 38

 ['E007', 'M', 32, 133, 'Obesity', 166],

 ['E008', 'F', 26, 140, 'Normal', 120],

 ['E009', 'M', 32, 133, 'Normal', 75],

 ['E010', 'M', 36, 133, 'Underweight', 40]]

dataframe created with

the above data array

df = pd.DataFrame(data, columns=['EMPID', 'Gender',

 'Age', 'Sales',

 'BMI', 'Income'])

create histogram for numeric data

df.hist()

show plot

plt.show()

df.plot.bar()

plot between 2 attributes

plt.bar(df['Age'], df['Sales'])

plt.xlabel("Age")

plt.ylabel("Sales")

plt.show()

df.plot.box()

individual attribute box plot

plt.boxplot(df['Income'])

plt.show()

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 39

plt.pie(df['Age'], labels={"A", "B", "C",

 "D", "E", "F",

 "G", "H", "I", "J"},

 autopct='% 1.1f %%', shadow=True)

plt.show()

plt.pie(df['Income'], labels={"A", "B", "C",

 "D", "E", "F",

 "G", "H", "I", "J"},

 autopct='% 1.1f %%', shadow=True)

plt.show()

plt.pie(df['Sales'], labels={"A", "B", "C",

 "D", "E", "F",

 "G", "H", "I", "J"},

 autopct='% 1.1f %%', shadow=True)

plt.show()

scatter plot between income and age

plt.scatter(df['income'], df['age'])

plt.show()

scatter plot between income and sales

plt.scatter(df['income'], df['sales'])

plt.show()

scatter plot between sales and age

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 40

plt.scatter(df['sales'], df['age'])

plt.show()

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 41

b. Implement classical ciphers using python.

PROGRAM :

#A python program to illustrate Caesar Cipher Technique

def encrypt(text,s):

 result = ""

 for i in range(len(text)):

 char = text[i]

 if (char.isupper()):

 result += chr((ord(char) + s-65) % 26 + 65)

 else:

 result += chr((ord(char) + s - 97) % 26 + 97)

 return result

#check the above function

text = "ATTACKATONCE"

s = 4

print ("Text : " ,text)

print ("Shift : ",str(s))

print ("Cipher: " ,encrypt(text,s))

OUTPUT :

CONCLUSION :

In this practical we learned different ciphers and how to encrypt them.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 42

13. Implement the following :

a. Draw graphics using Turtle.

PROGRAM :

import turtle

ninja = turtle.Turtle()

ninja.speed(10)

for i in range(180):

 ninja.forward(100)

 ninja.right(30)

 ninja.forward(20)

 ninja.left(60)

 ninja.forward(50)

 ninja.right(30)

 ninja.penup()

 ninja.setposition(0, 0)

 ninja.pendown()

 ninja.right(2)

turtle.done()

OUTPUT :

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 43

b. Develop programs to learn GUI programming using Tkinter.

PROGRAM :

from tkinter import *

import os

Designing window for registration

def register():

 global register_screen

 register_screen = Toplevel(main_screen)

 register_screen.title("Register")

 register_screen.geometry("300x250")

 global username

 global password

 global username_entry

 global password_entry

 username = StringVar()

 password = StringVar()

 Label(register_screen, text="Please enter details below", bg="blue").pack()

 Label(register_screen, text="").pack()

 username_lable = Label(register_screen, text="Username * ")

 username_lable.pack()

 username_entry = Entry(register_screen, textvariable=username)

 username_entry.pack()

 password_lable = Label(register_screen, text="Password * ")

 password_lable.pack()

 password_entry = Entry(register_screen, textvariable=password, show='*')

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 44

 password_entry.pack()

 Label(register_screen, text="").pack()

 Button(register_screen, text="Register", width=10, height=1, bg="blue",

command=register_user).pack()

Designing window for login

def login():

 global login_screen

 login_screen = Toplevel(main_screen)

 login_screen.title("Login")

 login_screen.geometry("300x250")

 Label(login_screen, text="Please enter details below to login").pack()

 Label(login_screen, text="").pack()

 global username_verify

 global password_verify

 username_verify = StringVar()

 password_verify = StringVar()

 global username_login_entry

 global password_login_entry

 Label(login_screen, text="Username * ").pack()

 username_login_entry = Entry(login_screen, textvariable=username_verify)

 username_login_entry.pack()

 Label(login_screen, text="").pack()

 Label(login_screen, text="Password * ").pack()

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 45

 password_login_entry = Entry(login_screen, textvariable=password_verify,

show='*')

 password_login_entry.pack()

 Label(login_screen, text="").pack()

 Button(login_screen, text="Login", width=10, height=1,

command=login_verify).pack()

Implementing event on register button

def register_user():

 username_info = username.get()

 password_info = password.get()

 file = open(username_info, "w")

 file.write(username_info + "\n")

 file.write(password_info)

 file.close()

 username_entry.delete(0, END)

 password_entry.delete(0, END)

 Label(register_screen, text="Registration Success", fg="green", font=("calibri",

11)).pack()

Implementing event on login button

def login_verify():

 username1 = username_verify.get()

 password1 = password_verify.get()

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 46

 username_login_entry.delete(0, END)

 password_login_entry.delete(0, END)

 list_of_files = os.listdir()

 if username1 in list_of_files:

 file1 = open(username1, "r")

 verify = file1.read().splitlines()

 if password1 in verify:

 login_sucess()

 else:

 password_not_recognised()

 else:

 user_not_found()

Designing popup for login success

def login_sucess():

 global login_success_screen

 login_success_screen = Toplevel(login_screen)

 login_success_screen.title("Success")

 login_success_screen.geometry("150x100")

 Label(login_success_screen, text="Login Success").pack()

 Button(login_success_screen, text="OK",

command=delete_login_success).pack()

Designing popup for login invalid password

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 47

def password_not_recognised():

 global password_not_recog_screen

 password_not_recog_screen = Toplevel(login_screen)

 password_not_recog_screen.title("Success")

 password_not_recog_screen.geometry("150x100")

 Label(password_not_recog_screen, text="Invalid Password ").pack()

 Button(password_not_recog_screen, text="OK",

command=delete_password_not_recognised).pack()

Designing popup for user not found

def user_not_found():

 global user_not_found_screen

 user_not_found_screen = Toplevel(login_screen)

 user_not_found_screen.title("Success")

 user_not_found_screen.geometry("150x100")

 Label(user_not_found_screen, text="User Not Found").pack()

 Button(user_not_found_screen, text="OK",

command=delete_user_not_found_screen).pack()

Deleting popups

def delete_login_success():

 login_success_screen.destroy()

def delete_password_not_recognised():

 password_not_recog_screen.destroy()

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 48

def delete_user_not_found_screen():

 user_not_found_screen.destroy()

Designing Main(first) window

def main_account_screen():

 global main_screen

 main_screen = Tk()

 main_screen.geometry("300x250")

 main_screen.title("Account Login")

 Label(text="Select Your Choice", bg="blue", width="300", height="2",

font=("Calibri", 13)).pack()

 Label(text="").pack()

 Button(text="Login", height="2", width="30", command=login).pack()

 Label(text="").pack()

 Button(text="Register", height="2", width="30", command=register).pack()

 main_screen.mainloop()

main_account_screen()

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 49

OUTPUT :

CONCLUSION :

In this practical we learned different concepts about tkinter and turtle.

CE376: PROGRAMMING IN PYTHON (Elective-II) 16CE071

 50

14. Implement the following :

a. Django Framework

PROGRAM :

OUTPUT :

