
Python 3

Some material adapted

from Upenn cis391

slides and other sources

Importing and
Modules

Importing and Modules

 Use classes & functions defined in another file

 A Python module is a file with the same name

(plus the .py extension)

 Like Java import, C++ include

 Three formats of the command:

import somefile

from somefile import *

from somefile import className

 The difference? What gets imported from the

file and what name refers to it after importing

import …

import somefile

 Everything in somefile.py gets imported.

 To refer to something in the file, append the
text “somefile.” to the front of its name:

somefile.className.method(“abc”)

somefile.myFunction(34)

from … import *

from somefile import *

 Everything in somefile.py gets imported

 To refer to anything in the module, just use

its name. Everything in the module is now in

the current namespace.

 Take care! Using this import command can

easily overwrite the definition of an existing
function or variable!

className.method(“abc”)

myFunction(34)

from … import …

from somefile import className

 Only the item className in somefile.py gets
imported.

 After importing className, you can just use
it without a module prefix. It’s brought into the
current namespace.

 Take care! Overwrites the definition of this
name if already defined in the current
namespace!

className.method(“abc”) imported

myFunction(34) Not
imported

Directories for module files

 Where does Python look for module files?

 The list of directories where Python will look
for the files to be imported is sys.path

 This is just a variable named ‘path’ stored
inside the ‘sys’ module

>>> import sys

>>> sys.path

['',
'/Library/Frameworks/Python.framework/Versions/2.5/lib/pyth
on2.5/site-packages/setuptools-0.6c5-py2.5.egg’, …]

 To add a directory of your own to this list,
append it to this list

sys.path.append(‘/my/new/path’)

Object Oriented Programming

in Python:

Defining Classes

It’s all objects…

 Everything in Python is really an object.

• We’ve seen hints of this already…
“hello”.upper()

list3.append(‘a’)

dict2.keys()

• These look like Java or C++ method calls.

• New object classes can easily be defined in

addition to these built-in data-types.

 In fact, programming in Python is typically

done in an object oriented fashion.

Defining a Class

 A class is a special data type which defines
how to build a certain kind of object.

 The class also stores some data items that
are shared by all the instances of this class

 Instances are objects that are created which
follow the definition given inside of the class

 Python doesn’t use separate class interface
definitions as in some languages

 You just define the class and then use it

Methods in Classes

 Define a method in a class by including

function definitions within the scope of the

class block

 There must be a special first argument self

in all of method definitions which gets bound

to the calling instance

 There is usually a special method called
__init__ in most classes

 We’ll talk about both later…

A simple class def: student

class student:

“““A class representing a

student ”””

def __init__(self,n,a):

self.full_name = n

self.age = a

def get_age(self):

return self.age

Creating and Deleting

Instances

Instantiating Objects

 There is no “new” keyword as in Java.

 Just use the class name with () notation and
assign the result to a variable

 __init__ serves as a constructor for the

class. Usually does some initialization work

 The arguments passed to the class name are
given to its __init__() method

 So, the __init__ method for student is passed

“Bob” and 21 and the new class instance is

bound to b:

b = student(“Bob”, 21)

Constructor: __init__

 An __init__ method can take any number of

arguments.

 Like other functions or methods, the

arguments can be defined with default values,

making them optional to the caller.

 However, the first argument self in the

definition of __init__ is special…

Self

 The first argument of every method is a

reference to the current instance of the class

 By convention, we name this argument self

 In __init__, self refers to the object

currently being created; so, in other class

methods, it refers to the instance whose

method was called

 Similar to the keyword this in Java or C++

 But Python uses self more often than Java

uses this

Self

 Although you must specify self explicitly

when defining the method, you don’t include it

when calling the method.

 Python passes it for you automatically

Defining a method: Calling a method:
(this code inside a class definition.)

def set_age(self, num): >>> x.set_age(23)

self.age = num

Deleting instances: No Need to “free”

 When you are done with an object, you don’t

have to delete or free it explicitly.

 Python has automatic garbage collection.

 Python will automatically detect when all of the

references to a piece of memory have gone

out of scope. Automatically frees that

memory.

 Generally works well, few memory leaks

 There’s also no “destructor” method for

classes

Access to Attributes

and Methods

Definition of student

class student:

“““A class representing a student

”””

def __init__(self,n,a):

self.full_name = n

self.age = a

def get_age(self):

return self.age

Traditional Syntax for Access

>>> f = student(“Bob Smith”, 23)

>>> f.full_name # Access attribute

“Bob Smith”

>>> f.get_age() # Access a method

23

Accessing unknown members

 Problem: Occasionally the name of an attribute

or method of a class is only given at run time…

 Solution:

getattr(object_instance, string)

 string is a string which contains the name of

an attribute or method of a class

 getattr(object_instance, string)

returns a reference to that attribute or method

getattr(object_instance, string)

>>> f = student(“Bob Smith”, 23)

>>> getattr(f, “full_name”)

“Bob Smith”

>>> getattr(f, “get_age”)

<method get_age of class

studentClass at 010B3C2>

>>> getattr(f, “get_age”)() # call it

23

>>> getattr(f, “get_birthday”)

Raises AttributeError – No method!

hasattr(object_instance,string)

>>> f = student(“Bob Smith”, 23)

>>> hasattr(f, “full_name”)

True

>>> hasattr(f, “get_age”)

True

>>> hasattr(f, “get_birthday”)

False

Attributes

Two Kinds of Attributes

 The non-method data stored by objects are
called attributes

 Data attributes
• Variable owned by a particular instance of a class

• Each instance has its own value for it

• These are the most common kind of attribute

 Class attributes
• Owned by the class as a whole

• All class instances share the same value for it

• Called “static” variables in some languages

• Good for (1) class-wide constants and (2)
building counter of how many instances of the
class have been made

Data Attributes

 Data attributes are created and initialized by
an __init__() method.

• Simply assigning to a name creates the attribute

• Inside the class, refer to data attributes using self

—for example, self.full_name

class teacher:

“A class representing teachers.”

def __init__(self,n):

self.full_name = n

def print_name(self):

print self.full_name

Class Attributes

 Because all instances of a class share one copy of a
class attribute, when any instance changes it, the value
is changed for all instances

 Class attributes are defined within a class definition
and outside of any method

 Since there is one of these attributes per class and not
one per instance, they’re accessed via a different
notation:
• Access class attributes using self.__class__.name notation

-- This is just one way to do this & the safest in general.

class sample: >>> a = sample()

x = 23 >>> a.increment()

def increment(self): >>> a.__class__.x

self.__class__.x += 1 24

Data vs. Class Attributes

class counter:

overall_total = 0

class attribute

def __init__(self):

self.my_total = 0

data attribute

def increment(self):

counter.overall_total = \

counter.overall_total + 1

self.my_total = \

self.my_total + 1

>>> a = counter()

>>> b = counter()

>>> a.increment()

>>> b.increment()

>>> b.increment()

>>> a.my_total

1

>>> a.__class__.overall_total

3

>>> b.my_total

2

>>> b.__class__.overall_total

3

Inheritance

Subclasses

 A class can extend the definition of another
class
• Allows use (or extension) of methods and attributes

already defined in the previous one.

• New class: subclass. Original: parent, ancestor or
superclass

 To define a subclass, put the name of the
superclass in parentheses after the subclass’s
name on the first line of the definition.

Class Cs_student(student):

• Python has no ‘extends’ keyword like Java.

• Multiple inheritance is supported.

Redefining Methods

 To redefine a method of the parent class,
include a new definition using the same name
in the subclass.
• The old code won’t get executed.

 To execute the method in the parent class in
addition to new code for some method,
explicitly call the parent’s version of the
method.
parentClass.methodName(self, a, b, c)

• The only time you ever explicitly pass ‘self’ as an
argument is when calling a method of an
ancestor.

Definition of a class extending student

Class Student:
“A class representing a student.”

def __init__(self,n,a):
self.full_name = n
self.age = a

def get_age(self):
return self.age

Class Cs_student (student):
“A class extending student.”

def __init__(self,n,a,s):
student.__init__(self,n,a) #Call __init__ for student

self.section_num = s

def get_age(): #Redefines get_age method entirely
print “Age: ” + str(self.age)

Extending __init__

 Same as for redefining any other method…

• Commonly, the ancestor’s __init__ method is

executed in addition to new commands.

• You’ll often see something like this in the __init__

method of subclasses:

parentClass.__init__(self, x, y)

where parentClass is the name of the parent’s class.

Special Built-In

Methods and Attributes

Built-In Members of Classes

 Classes contain many methods and attributes

that are included by Python even if you don’t

define them explicitly.

• Most of these methods define automatic functionality

triggered by special operators or usage of that class.

• The built-in attributes define information that must be

stored for all classes.

 All built-in members have double underscores
around their names: __init__ __doc__

Special Methods

 For example, the method __repr__ exists for

all classes, and you can always redefine it

 The definition of this method specifies how to

turn an instance of the class into a string

•print f sometimes calls f.__repr__() to

produce a string for object f

• If you type f at the prompt and hit ENTER, then

you are also calling __repr__ to determine what

to display to the user as output

Special Methods – Example

class student:

...

def __repr__(self):

return “I’m named ” + self.full_name

...

>>> f = student(“Bob Smith”, 23)

>>> print f

I’m named Bob Smith

>>> f

“I’m named Bob Smith”

Special Methods

 You can redefine these as well:

__init__ : The constructor for the class

__cmp__ : Define how == works for class

__len__ : Define how len(obj) works

__copy__ : Define how to copy a class

 Other built-in methods allow you to give a

class the ability to use [] notation like an array

or () notation like a function call

Special Data Items

 These attributes exist for all classes.
__doc__ : Variable for documentation string for

class

__class__ : Variable which gives you a
reference to the class from any instance of it

__module__ : Variable which gives a reference
to the module in which the particular class is defined

__dict__ :The dictionary that is actually the
namespace for a class (but not its superclasses)

 Useful:
•dir(x) returns a list of all methods and

attributes defined for object x

Special Data Items – Example

>>> f = student(“Bob Smith”, 23)

>>> print f.__doc__

A class representing a student.

>>> f.__class__

< class studentClass at 010B4C6 >

>>> g = f.__class__(“Tom Jones”,

34)

Private Data and Methods

 Any attribute/method with 2 leading under-

scores in its name (but none at the end) is

private and can’t be accessed outside of

class

 Note: Names with two underscores at the

beginning and the end are for built-in

methods or attributes for the class

 Note: There is no ‘protected’ status in Python;

so, subclasses would be unable to access

these private data either.

