
Python 3

Some material adapted

from Upenn cis391

slides and other sources

Importing and
Modules

Importing and Modules

 Use classes & functions defined in another file

 A Python module is a file with the same name

(plus the .py extension)

 Like Java import, C++ include

 Three formats of the command:

import somefile

from somefile import *

from somefile import className

 The difference? What gets imported from the

file and what name refers to it after importing

import …

import somefile

 Everything in somefile.py gets imported.

 To refer to something in the file, append the
text “somefile.” to the front of its name:

somefile.className.method(“abc”)

somefile.myFunction(34)

from … import *

from somefile import *

 Everything in somefile.py gets imported

 To refer to anything in the module, just use

its name. Everything in the module is now in

the current namespace.

 Take care! Using this import command can

easily overwrite the definition of an existing
function or variable!

className.method(“abc”)

myFunction(34)

from … import …

from somefile import className

 Only the item className in somefile.py gets
imported.

 After importing className, you can just use
it without a module prefix. It’s brought into the
current namespace.

 Take care! Overwrites the definition of this
name if already defined in the current
namespace!

className.method(“abc”) imported

myFunction(34)  Not
imported

Directories for module files

 Where does Python look for module files?

 The list of directories where Python will look
for the files to be imported is sys.path

 This is just a variable named ‘path’ stored
inside the ‘sys’ module

>>> import sys

>>> sys.path

['',
'/Library/Frameworks/Python.framework/Versions/2.5/lib/pyth
on2.5/site-packages/setuptools-0.6c5-py2.5.egg’, …]

 To add a directory of your own to this list,
append it to this list

sys.path.append(‘/my/new/path’)

Object Oriented Programming

in Python:

Defining Classes

It’s all objects…

 Everything in Python is really an object.

• We’ve seen hints of this already…
“hello”.upper()

list3.append(‘a’)

dict2.keys()

• These look like Java or C++ method calls.

• New object classes can easily be defined in

addition to these built-in data-types.

 In fact, programming in Python is typically

done in an object oriented fashion.

Defining a Class

 A class is a special data type which defines
how to build a certain kind of object.

 The class also stores some data items that
are shared by all the instances of this class

 Instances are objects that are created which
follow the definition given inside of the class

 Python doesn’t use separate class interface
definitions as in some languages

 You just define the class and then use it

Methods in Classes

 Define a method in a class by including

function definitions within the scope of the

class block

 There must be a special first argument self

in all of method definitions which gets bound

to the calling instance

 There is usually a special method called
__init__ in most classes

 We’ll talk about both later…

A simple class def: student

class student:

“““A class representing a

student ”””

def __init__(self,n,a):

self.full_name = n

self.age = a

def get_age(self):

return self.age

Creating and Deleting

Instances

Instantiating Objects

 There is no “new” keyword as in Java.

 Just use the class name with () notation and
assign the result to a variable

 __init__ serves as a constructor for the

class. Usually does some initialization work

 The arguments passed to the class name are
given to its __init__() method

 So, the __init__ method for student is passed

“Bob” and 21 and the new class instance is

bound to b:

b = student(“Bob”, 21)

Constructor: __init__

 An __init__ method can take any number of

arguments.

 Like other functions or methods, the

arguments can be defined with default values,

making them optional to the caller.

 However, the first argument self in the

definition of __init__ is special…

Self

 The first argument of every method is a

reference to the current instance of the class

 By convention, we name this argument self

 In __init__, self refers to the object

currently being created; so, in other class

methods, it refers to the instance whose

method was called

 Similar to the keyword this in Java or C++

 But Python uses self more often than Java

uses this

Self

 Although you must specify self explicitly

when defining the method, you don’t include it

when calling the method.

 Python passes it for you automatically

Defining a method: Calling a method:
(this code inside a class definition.)

def set_age(self, num): >>> x.set_age(23)

self.age = num

Deleting instances: No Need to “free”

 When you are done with an object, you don’t

have to delete or free it explicitly.

 Python has automatic garbage collection.

 Python will automatically detect when all of the

references to a piece of memory have gone

out of scope. Automatically frees that

memory.

 Generally works well, few memory leaks

 There’s also no “destructor” method for

classes

Access to Attributes

and Methods

Definition of student

class student:

“““A class representing a student

”””

def __init__(self,n,a):

self.full_name = n

self.age = a

def get_age(self):

return self.age

Traditional Syntax for Access

>>> f = student(“Bob Smith”, 23)

>>> f.full_name # Access attribute

“Bob Smith”

>>> f.get_age() # Access a method

23

Accessing unknown members

 Problem: Occasionally the name of an attribute

or method of a class is only given at run time…

 Solution:

getattr(object_instance, string)

 string is a string which contains the name of

an attribute or method of a class

 getattr(object_instance, string)

returns a reference to that attribute or method

getattr(object_instance, string)

>>> f = student(“Bob Smith”, 23)

>>> getattr(f, “full_name”)

“Bob Smith”

>>> getattr(f, “get_age”)

<method get_age of class

studentClass at 010B3C2>

>>> getattr(f, “get_age”)() # call it

23

>>> getattr(f, “get_birthday”)

Raises AttributeError – No method!

hasattr(object_instance,string)

>>> f = student(“Bob Smith”, 23)

>>> hasattr(f, “full_name”)

True

>>> hasattr(f, “get_age”)

True

>>> hasattr(f, “get_birthday”)

False

Attributes

Two Kinds of Attributes

 The non-method data stored by objects are
called attributes

 Data attributes
• Variable owned by a particular instance of a class

• Each instance has its own value for it

• These are the most common kind of attribute

 Class attributes
• Owned by the class as a whole

• All class instances share the same value for it

• Called “static” variables in some languages

• Good for (1) class-wide constants and (2)
building counter of how many instances of the
class have been made

Data Attributes

 Data attributes are created and initialized by
an __init__() method.

• Simply assigning to a name creates the attribute

• Inside the class, refer to data attributes using self

—for example, self.full_name

class teacher:

“A class representing teachers.”

def __init__(self,n):

self.full_name = n

def print_name(self):

print self.full_name

Class Attributes

 Because all instances of a class share one copy of a
class attribute, when any instance changes it, the value
is changed for all instances

 Class attributes are defined within a class definition
and outside of any method

 Since there is one of these attributes per class and not
one per instance, they’re accessed via a different
notation:
• Access class attributes using self.__class__.name notation

-- This is just one way to do this & the safest in general.

class sample: >>> a = sample()

x = 23 >>> a.increment()

def increment(self): >>> a.__class__.x

self.__class__.x += 1 24

Data vs. Class Attributes

class counter:

overall_total = 0

class attribute

def __init__(self):

self.my_total = 0

data attribute

def increment(self):

counter.overall_total = \

counter.overall_total + 1

self.my_total = \

self.my_total + 1

>>> a = counter()

>>> b = counter()

>>> a.increment()

>>> b.increment()

>>> b.increment()

>>> a.my_total

1

>>> a.__class__.overall_total

3

>>> b.my_total

2

>>> b.__class__.overall_total

3

Inheritance

Subclasses

 A class can extend the definition of another
class
• Allows use (or extension) of methods and attributes

already defined in the previous one.

• New class: subclass. Original: parent, ancestor or
superclass

 To define a subclass, put the name of the
superclass in parentheses after the subclass’s
name on the first line of the definition.

Class Cs_student(student):

• Python has no ‘extends’ keyword like Java.

• Multiple inheritance is supported.

Redefining Methods

 To redefine a method of the parent class,
include a new definition using the same name
in the subclass.
• The old code won’t get executed.

 To execute the method in the parent class in
addition to new code for some method,
explicitly call the parent’s version of the
method.
parentClass.methodName(self, a, b, c)

• The only time you ever explicitly pass ‘self’ as an
argument is when calling a method of an
ancestor.

Definition of a class extending student

Class Student:
“A class representing a student.”

def __init__(self,n,a):
self.full_name = n
self.age = a

def get_age(self):
return self.age

Class Cs_student (student):
“A class extending student.”

def __init__(self,n,a,s):
student.__init__(self,n,a) #Call __init__ for student

self.section_num = s

def get_age(): #Redefines get_age method entirely
print “Age: ” + str(self.age)

Extending __init__

 Same as for redefining any other method…

• Commonly, the ancestor’s __init__ method is

executed in addition to new commands.

• You’ll often see something like this in the __init__

method of subclasses:

parentClass.__init__(self, x, y)

where parentClass is the name of the parent’s class.

Special Built-In

Methods and Attributes

Built-In Members of Classes

 Classes contain many methods and attributes

that are included by Python even if you don’t

define them explicitly.

• Most of these methods define automatic functionality

triggered by special operators or usage of that class.

• The built-in attributes define information that must be

stored for all classes.

 All built-in members have double underscores
around their names: __init__ __doc__

Special Methods

 For example, the method __repr__ exists for

all classes, and you can always redefine it

 The definition of this method specifies how to

turn an instance of the class into a string

•print f sometimes calls f.__repr__() to

produce a string for object f

• If you type f at the prompt and hit ENTER, then

you are also calling __repr__ to determine what

to display to the user as output

Special Methods – Example

class student:

...

def __repr__(self):

return “I’m named ” + self.full_name

...

>>> f = student(“Bob Smith”, 23)

>>> print f

I’m named Bob Smith

>>> f

“I’m named Bob Smith”

Special Methods

 You can redefine these as well:

__init__ : The constructor for the class

__cmp__ : Define how == works for class

__len__ : Define how len(obj) works

__copy__ : Define how to copy a class

 Other built-in methods allow you to give a

class the ability to use [] notation like an array

or () notation like a function call

Special Data Items

 These attributes exist for all classes.
__doc__ : Variable for documentation string for

class

__class__ : Variable which gives you a
reference to the class from any instance of it

__module__ : Variable which gives a reference
to the module in which the particular class is defined

__dict__ :The dictionary that is actually the
namespace for a class (but not its superclasses)

 Useful:
•dir(x) returns a list of all methods and

attributes defined for object x

Special Data Items – Example

>>> f = student(“Bob Smith”, 23)

>>> print f.__doc__

A class representing a student.

>>> f.__class__

< class studentClass at 010B4C6 >

>>> g = f.__class__(“Tom Jones”,

34)

Private Data and Methods

 Any attribute/method with 2 leading under-

scores in its name (but none at the end) is

private and can’t be accessed outside of

class

 Note: Names with two underscores at the

beginning and the end are for built-in

methods or attributes for the class

 Note: There is no ‘protected’ status in Python;

so, subclasses would be unable to access

these private data either.

