
Python Programming Language

Python is a widely used high-level programming language for general-purpose

programming, created by Guido van Rossum and first released in 1991. An

interpreted language, Python has a design philosophy that emphasizes code

readability (notably using whitespace indentation to delimit code blocks rather than

curly brackets or keywords), and a syntax that allows programmers to express

concepts in fewer lines of code than might be used in languages such as C++ or Java.

The language provides constructs intended to enable writing clear programs on both

a small and large scale.

An increasingly popular prototyping language, Python is able to support rapid

application and games development. It has a well-defined language specification and

innovative syntax features that enable high levels of expressiveness. Python is the

preferred language for computer science research and supports multiple modes of

development such as:

 functional programming;

 object-oriented or imperative programming.

With its flexibility, speed, and machine learning functionality, it is expected to

dominate the machine learning landscape for some time to come.[1]

Why Companies Prefer Python?

Python has top the charts in the recent years over other programming languages like

C, C++ and Java and is widely used by the programmers. The language has

undergone a drastic change since its release 25 years ago as many add-on features

are introduced. The Python 1.0 had the module system of Modula-3 and interacted

with Amoeba Operating System with varied functioning tools. Python 2.0 introduced

in the year 2000 had features of garbage collector and Unicode Support. Python 3.0

introduced in the year 2008 had a constructive design that avoids duplicate modules

and constructs. With the added features, now the companies are using Python 3.5.

The software development companies prefer Python language because of its

versatile features and fewer programming codes. Nearly 14% of the programmers

use it on the operating systems like UNIX, Linux, Windows and Mac OS. The

programmers of big companies use Python as it has created a mark for itself in the

software development with characteristic features like-

 Interactive

 Interpreted

 Modular

 Dynamic

 Object-oriented

 Portable

 High level

 Extensible in C++ & C

Advantages or Benefits of Python

The Python language has diversified application in the software development

companies such as in gaming, web frameworks and applications, language

development, prototyping, graphic design applications, etc. This provides the

language a higher plethora over other programming languages used in the industry.

Some of its advantages are-

 Extensive Support Libraries

It provides large standard libraries that include the areas like string operations,

Internet, web service tools, operating system interfaces and protocols. Most of the

highly used programming tasks are already scripted into it that limits the length of

the codes to be written in Python.

 Integration Feature

Python integrates the Enterprise Application Integration that makes it easy to

develop Web services by invoking COM or COBRA components. It has powerful

control capabilities as it calls directly through C, C++ or Java via Jython. Python

also processes XML and other markup languages as it can run on all modern

operating systems through same byte code.

 Improved Programmer’s Productivity

The language has extensive support libraries and clean object-oriented designs that

increase two to ten fold of programmer’s productivity while using the languages like

Java, VB, Perl, C, C++ and C#.

 Productivity

With its strong process integration features, unit testing framework and enhanced

control capabilities contribute towards the increased speed for most applications and

productivity of applications. It is a great option for building scalable multi-protocol

network applications.

Limitations or Disadvantages of Python

Python has varied advantageous features, and programmers prefer this language to

other programming languages because it is easy to learn and code too. However, this

language has still not made its place in some computing arenas that includes

Enterprise Development Shops. Therefore, this language may not solve some of the

enterprise solutions, and limitations include-

 Difficulty in Using Other Languages

The Python lovers become so accustomed to its features and its extensive libraries,

so they face problem in learning or working on other programming languages.

Python experts may see the declaring of cast “values” or variable “types”, syntactic

requirements of adding curly braces or semi colons as an onerous task.

 Weak in Mobile Computing

Python has made its presence on many desktop and server platforms, but it is seen

as a weak language for mobile computing. This is the reason very few mobile

applications are built in it like Carbonnelle.

 Gets Slow in Speed

Python executes with the help of an interpreter instead of the compiler, which causes

it to slow down because compilation and execution help it to work normally. On the

other hand, it can be seen that it is fast for many web applications too.

 Run-time Errors

The Python language is dynamically typed so it has many design restrictions that are

reported by some Python developers. It is even seen that it requires more testing

time, and the errors show up when the applications are finally run.

 Underdeveloped Database Access Layers

As compared to the popular technologies like JDBC and ODBC, the Python’s

database access layer is found to be bit underdeveloped and primitive. However, it

cannot be applied in the enterprises that need smooth interaction of complex legacy

data.[2]

Unlike human languages, the Python vocabulary is actually pretty small. We call

this “vocabulary” the “reserved words”. These are words that have very special

meaning to Python. When Python sees these words in a Python program, they have

one and only one meaning to Python. Later as you write programs you will make up

your own words that have meaning to you called variables. You will have great

latitude in choosing your names for your variables, but you cannot use any of

Python’s reserved words as a name for a variable. When we train a dog, we use

special words like “sit”, “stay”, and “fetch”. When you talk to a dog and don’t use

any of the reserved words, they just look at you with a quizzical look on their face

until you say a reserved word. For example, if you say, “I wish more people would

walk to improve their overall health”, what most dogs likely hear is, “blah blah blah

walk blah blah blah blah.” That is because “walk” is a reserved word in dog

language. Many might suggest that the language between humans and cats has no

reserved words1 . The reserved words in the language where humans talk to Python

include the following:

 That is it, and unlike a dog, Python is already completely trained. When you say

“try”, Python will try every time you say it without fail. We will learn these reserved

words and how they are used in good time, but for now we will focus on the Python

equivalent of “speak” (in human-to-dog language). The nice thing about telling

Python to speak is that we can even tell it what to say by giving it a message in

quotes:

And we have even written our first syntactically correct Python sentence. Our

sentence starts with the function print followed by a string of text of our choosing

enclosed in single quotes.

Values and types

 A value is one of the basic things a program works with, like a letter or a number.

The values we have seen so far are 1, 2, and 'Hello, World!'. These values belong to

different types: 2is an integer, and 'Hello, World!'is a string, so-called because it

contains a “string” of letters. You (and the interpreter) can identify strings because

they are enclosed in quotation marks. If you are not sure what type a value has, the

interpreter can tell you.

Not surprisingly, strings belong to the type strand integers belong to the type int.

Less obviously, numbers with a decimal point belong to a type called float, because

these numbers are represented in a format called floating-point.

What about values like '17'and '3.2'? They look like numbers, but they are in

quotation marks like strings.

Variables

One of the most powerful features of a programming language is the ability to

manipulate variables. A variable is a name that refers to a value. An assignment

statement creates new variables and gives them values:

This example makes three assignments. The first assigns a string to a new variable

named message; the second gives the integer 17to n; the third assigns the

(approximate) value of π to pi. A common way to represent variables on paper is to

write the name with an arrow pointing to the variable’s value. This kind of figure is

called a state diagram because it shows what state each of the variables is in (think

of it as the variable’s state of mind). Figure 2.1 shows the result of the previous

example. The type of a variable is the type of the value it refers to[3].

Variable names and keywords

Programmers generally choose names for their variables that are meaningful—they

document what the variable is used for. Variable names can be arbitrarily long. They

can contain both letters and numbers, but they have to begin with a letter. It is legal

to use uppercase letters, but it is a good idea to begin variable names with a lowercase

letter (you’ll see why later).

The underscore character, _, can appear in a name. It is often used in names with

multiple words, such as my_nameor airspeed_of_unladen_swallow. If you give a

variable an illegal name, you get a syntax error:

76trombonesis illegal because it does not begin with a letter. more@is illegal

because it contains an illegal character, @. But what’s wrong with class? It turns out

that classis one of Python’s keywords. The interpreter uses keywords to recognize

the structure of the program, and they cannot be used as variable names. Python 2

has 31 keywords:

Operators and operands

Operators are special symbols that represent computations like addition and

multiplication. The values the operator is applied to are called operands [1]. The

operators +, -, *, /and ** perform addition, subtraction, multiplication, division and

exponentiation, as in the following examples:

Expressions and statements

 An expression is a combination of values, variables, and operators. A value all by

itself is considered an expression, and so is a variable, so the following are all legal

expressions (assuming that the variable xhas been assigned a value):

A statement is a unit of code that the Python interpreter can execute. We have seen

two kinds of statement: print and assignment. Technically an expression is also a

statement, but it is probably simpler to think of them as different things. The

important difference is that an expression has a value; a statement does not [1].

Functions Not all operators use the binary operator syntax. An alternative syntax is

termed the function call notation. In this notation the name of the operation is given

first, followed by a list of the arguments surrounded by parenthesis. For example,

the abs operation returns the absolute value of the argument:

 >>> abs(-3)

3

 Just as the parenthesis in an arithmetic expression indicated that the enclosed

expression needed to be evaluated first, the arguments to a function are first

calculated, and then the function is applied:

>>> abs(2 – 3 * 7)

first calculate 2-3*7, which is -19 19

 The function len returns the number of characters (that is, the length) of a string

>>> len(‘abc’)

 3

>>> len(‘ha’ * 4)

8

Overview on numerical add-on modules

 NumPy and SciPy are open-source add-on modules to Python that provide common

mathematical and numerical routines in pre-compiled, fast functions. These are

growing into highly mature packages that provide functionality that meets, or

perhaps exceeds, that associated with common commercial software like MATLAB.

The NumPy (Numeric Python) package provides basic routines for manipulating

large arrays and matrices of numeric data. The SciPy (Scientific Python) package

extends the functionality of NumPy with a substantial collection of useful

algorithms, like minimization, Fourier transformation, regression, and other applied

mathematical techniques.

If you installed Python(x,y) on a Windows platform, then you should be ready to go.

If not, then you will have to install these add-ons manually after installing Python,

in the order of NumPy and then SciPy. Installation files are available for both at:

 http://www.scipy.org/Download

 Follow links on this page to download the official releases, which will be in the

form of .exe install files for Windows and .dmg install files for MacOS. [5]

http://www.scipy.org/Download

Importing the NumPy module

There are several ways to import NumPy. The standard approach is to use a simple

import statement:

 >>> import numpy

 However, for large amounts of calls to NumPy functions, it can become tedious to

write numpy.X over and over again. Instead, it is common to import under the briefer

name np:

>>> import numpy as np

The central feature of NumPy is the array object class. Arrays are similar to lists in

Python, except that every element of an array must be of the same type, typically a

numeric type like float or int. Arrays make operations with large amounts of numeric

data very fast and are generally much more efficient than lists. An array can be

created from a list:

>>> a = np.array([1, 4, 5, 8], float)

>>> a

array([1., 4., 5., 8.])

>>> type(a)

 <type 'numpy.ndarray'>

Here, the function array takes two arguments: the list to be converted into the array

and the type of each member of the list. Array elements are accessed, sliced, and

manipulated just like lists:

>>> a[:2]

array([1., 4.])

>>> a[3] 8.0

>>> a[0] = 5.

>>> a

 array([5., 4., 5., 8.])

Arrays can be multidimensional. Unlike lists, different axes are accessed using

commas inside bracket notation. Here is an example with a two-dimensional array

(e.g., a matrix):

 >>> a = np.array([[1, 2, 3], [4, 5, 6]], float)
 >>> a

 array([[1., 2., 3.], [4., 5., 6.]])

>>> a[0,0]

1.0

>>> a[0,1]

2.0

Conditionals

The if construct

executes a block of statements (which must be indented) if the condition returns true.

If the condition returns false, the block skipped. The if conditional can be followed

by any number of elif (short for “else if”) constructs

 which work in the same manner. The else clause

can be used to define the block of statements which are to be executed if none of the

if-elif clauses are true. The function sign of a below illustrates the use of the

conditionals.

Running the program results in the output

Loops

The while construct

executes a block of (indented) statements if the condition is true. After execution of

the block, the condition is evaluated again. If it is still true, the block is executed

again. This process is continued until the condition becomes false. The else clause

 can be used to define the block of statements which are to be executed if condition

is false. Here is an example that creates the list [1, 1/2, 1/3,...]:

 The output of the program is

 Plotting in Python

matplotlib.pyplot is a collection of command style functions that make matplotlib

work like MATLAB. Each pyplot function makes some change to a figure: e.g.,

creates a figure, creates a plotting area in a figure, plots some lines in a plotting area,

decorates the plot with labels, etc. In matplotlib.pyplot various states are preserved

across function calls, so that it keeps track of things like the current figure and

plotting area, and the plotting functions are directed to the current axes (please note

that “axes” here and in most places in the documentation refers to the axes part of a

figure and not the strict mathematical term for more than one axis).

import matplotlib.pyplot as plt
plt.plot([1,2,3,4])
plt.ylabel('some numbers')
plt.show()

If matplotlib were limited to working with lists, it would be fairly useless for numeric

processing. Generally, you will use numpy arrays. In fact, all sequences are

converted to numpy arrays internally. The example below illustrates a plotting

several lines with different format styles in one command using arrays [7].

import numpy as np
import matplotlib.pyplot as plt

evenly sampled time at 200ms intervals
t = np.arange(0., 5., 0.2)

red dashes, blue squares and green triangles
plt.plot(t, t, 'r--', t, t**2, 'bs', t, t**3, 'g^')
plt.show()

References:

[1]. The Python Language Reference Website https://docs.python.org/3/reference

[2]. Mindfire Solutions software service provider,” Advantages and Disadvantages

of Python Programming Language”, https://medium.com/@mindfiresolutions.

usa/advantages-and-disadvantages-of-python-programming-language-fd0b394f2121

[3]. Allen Downey, “Think Python”, Green Tea Press, Needham, MA, USA

[4]. Timothy A. Budd, “Exploring Python”, PythonAnywhere.com.

[5]. Introduction to Numeric Python, Principles of modern molecular simulation

methods Course, College of Engineering,UC Santa Barbara University, USA

[6]. Jaan Kiusalaas, “NUMERICAL METHODS IN ENGINEERING WITH

Python”, Cambridge University press, Cambridge UK.

[7]. Pyplot tutorial, Matplotlib’s Python 2D plotting library, https://matplotlib.org.

