
Python is a general-purpose interpreted, interactive, object-oriented, and
high-level programming language. It was created by Guido van Rossum
during 1985- 1990. Like Perl, Python source code is also available under the
GNU General Public License (GPL).

Python is a high-level, interpreted, interactive and object-oriented
scripting language. Python is designed to be highly readable. It uses
English keywords frequently where as other languages use punctuation,
and it has fewer syntactical constructions than other languages.

 Python is Interpreted: Python is processed at runtime by the interpreter.

You do not need to compile your program before executing it. This is similar

to PERL and PHP.

 Python is Interactive: You can actually sit at a Python prompt and interact

with the interpreter directly to write your programs.

 Python is Object-Oriented: Python supports Object-Oriented style or

technique of programming that encapsulates code within objects.

 Python is a Beginner's Language: Python is a great language for the

beginner-level programmers and supports the development of a wide range

of applications from simple text processing to WWW browsers to games.

Reserved Words
 The following list shows the Python keywords. These are reserved

words and you cannot use them as constant or variable or any
other identifier names. All the Python keywords contain lowercase
letters only.

and exec not

assert finally or

break for pass

class from print

continue global raise

def if return

del import try

elif in while

else is with

except lambda yield

Standard Data Types

The data stored in memory can be of many types. For example, a
person's age is stored as a numeric value and his or her address is stored
as alphanumeric characters. Python has various standard data types that
are used to define the operations possible on them and the storage
method for each of them.

Python has five standard data types −

 Numbers

 String

 List

 Tuple

 Dictionary

Python Numbers

Number data types store numeric values. Number objects are created
when you assign a value to them. For example −

var1 = 1

var2 = 10

You can also delete the reference to a number object by using the del
statement. The syntax of the del statement is −

del var1[,var2[,var3[....,varN]]]]

You can delete a single object or multiple objects by using the del
statement. For example −

del var

del var_a, var_b

Python supports four different numerical types −

 int (signed integers)

 long (long integers, they can also be represented in octal and hexadecimal)

 float (floating point real values)

 complex (complex numbers)

Examples

Here are some examples of numbers −

int long float complex

10 51924361L 0.0 3.14j

100 -0x19323L 15.20 45.j

-786 0122L -21.9 9.322e-36j

080 0xDEFABCECBDAECBFBAEl 32.3+e18 .876j

-0490 535633629843L -90. -.6545+0J

-0x260 -052318172735L -32.54e100 3e+26J

0x69 -4721885298529L 70.2-E12 4.53e-7j

 Python allows you to use a lowercase l with long, but it is recommended that

you use only an uppercase L to avoid confusion with the number 1. Python

displays long integers with an uppercase L.

 A complex number consists of an ordered pair of real floating-point numbers

denoted by x + yj, where x and y are the real numbers and j is the imaginary

unit.

Python Strings

Strings in Python are identified as a contiguous set of characters
represented in the quotation marks. Python allows for either pairs of
single or double quotes.

Python Lists

Lists are the most versatile of Python's compound data types. A list
contains items separated by commas and enclosed within square
brackets ([]). To some extent, lists are similar to arrays in C. One
difference between them is that all the items belonging to a list can be of
different data type.

The values stored in a list can be accessed using the slice operator ([]
and [:]) with indexes starting at 0 in the beginning of the list and
working their way to end -1. The plus (+) sign is the list concatenation
operator, and the asterisk (*) is the repetition operator. For example −

Tuples:

o Tuple is another form of collection where different type of data can

be stored.

o It is similar to list where data is separated by commas. Only the

difference is that list uses square bracket and tuple uses
parenthesis.

o Tuples are enclosed in parenthesis and cannot be changed.

Eg:

1. >>> tuple=('rahul',100,60.4,'deepak')

2. >>> tuple1=('sanjay',10)

3. >>> tuple

4. ('rahul', 100, 60.4, 'deepak')

5. >>> tuple[2:]

6. (60.4, 'deepak')

7. >>> tuple1[0]

8. 'sanjay'

9. >>> tuple+tuple1

10. ('rahul', 100, 60.4, 'deepak', 'sanjay', 10)

11. >>>

Dictionary:

o Dictionary is a collection which works on a key-value pair.

o It works like an associated array where no two keys can be

same.

o Dictionaries are enclosed by curly braces ({}) and values

can be retrieved by square bracket([]).

Eg:

1. >>> dictionary={'name':'charlie','id':100,'dept':'it'}

2. >>> dictionary

3. {'dept': 'it', 'name': 'charlie', 'id': 100}

4. >>> dictionary.keys()

5. ['dept', 'name', 'id']

6. >>> dictionary.values()

7. ['it', 'charlie', 100]

Python Variables
Variable is a name of the memory location where data is stored. Once a variable is
stored that means a space is allocated in memory.

Assigning values to Variable:
We need not to declare explicitly variable in Python. When we assign any value to the
variable that variable is declared automatically.

The assignment is done using the equal (=) operator.

Eg:

Output:

1. >>>

2. 10

3. ravi

4. 20000.67

5. >>>

Multiple Assignment:
Multiple assignment can be done in Python at a time.

There are two ways to assign values in Python:

1. Assigning single value to multiple variables:

Eg:

1. x=y=z=50

2. print x

3. print y

4. print z
Output:

1. >>>

2. 50

3. 50

4. 50

5. >>>
2.Assigning multiple values to multiple variables:

Eg:

1. a,b,c=5,10,15

2. print a

3. print b

4. print c
Output:

1. >>>

2. 5

3. 10

4. 15

5. >>>
The values will be assigned in the order in which variables appears.

Eg

x = y = z = 1

Now check the individual value in Python Shell.
view plain copy to clipboard print ?

1. >>> x = y = z = 1

2. >>> print(x)

3. 1

http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php

4. >>> print(y)

5. 1

6. >>> print(z)

7. 1

8. >>>

Here is an assignment statement where the variables assign many values at
the same time.

Example :
x, y, z = 1, 2, "abcd"

In the above example x, y and z simultaneously get the new values 1, 2 and
"abcd".
view plain copy to clipboard print ?

1. >>> x,y,z = 1,2,"abcd"

2. >>> print(x)

3. 1

4. >>> print(y)

5. 2

6. >>> print(z)

7. abcd

You can reuse variable names by simply assigning a new value to them :
view plain copy to clipboard print ?

1. >>> x = 100

2. >>> print(x)

3. 100

4. >>> x = "Python"

5. >>> print(x)

6. Python

http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php

7. >>>

Swap variables

Python swap values in a single line and this applies to all objects in python.

Syntax
var1, var2 = var2, var1

Example :
view plain copy to clipboard print ?

1. >>> x = 10

2. >>> y = 20

3. >>> print(x)

4. 10

5. >>> print(y)

6. 20

7. >>> x, y = y, x

8. >>> print(x)

9. 20

10.>>> print(y)

11.10

12.>>>

Local and global variables in Python

In Python, variables that are only referenced inside a function are implicitly
global. If a variable is assigned a value anywhere within the function’s body,
it’s assumed to be a local unless explicitly declared as global.

Example :
view plain copy to clipboard print ?

http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php

1. var1 = "Python"

2. def func1():

3. var1 = "PHP"

4. print("In side func1() var1 = ",var1)

5.

6. def func2():

7. print("In side func2() var1 = ",var1)

8. func1()

9. func2()

Output :
In side func1() var1 = PHP

In side func2() var1 = Python

You can use a global variable in other functions by declaring it as global
keyword :

Example :
view plain copy to clipboard print ?

1. def func1():

2. global var1

3. var1 = "PHP"

4. print("In side func1() var1 = ",var1)

5.

6. def func2():

7. print("In side func2() var1 = ",var1)

8. func1()

9. func2()

http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php
http://www.w3resource.com/python/python-variable.php

Output :
In side func1() var1 = PHP

In side func2() var1 = PHP

 Basic Fundamentals:
This section contains the basic fundamentals of Python like :

i)Tokens and their types.

ii) Comments

a)Tokens:

o Tokens can be defined as a punctuator mark, reserved words and each individual

word in a statement.

o Token is the smallest unit inside the given program.

There are following tokens in Python:

o Keywords.

o Identifiers.

o Literals.

o Operators.

Python Keywords
Keywords are special reserved words which convey a special meaning to the
compiler/interpreter. Each keyword have a special meaning and a specific operation. List
of Keywords used in Python are:

True False None and as

asset def class continue break

else finally elif del except

global for if from import

raise try or return pass

nonlocal in not is lambda

Identifiers
Identifiers are the names given to the fundamental building blocks in a program.

These can be variables ,class ,object ,functions , lists , dictionaries etc.

There are certain rules defined for naming i.e., Identifiers.

I. An identifier is a long sequence of characters and numbers.

II.No special character except underscore (_) can be used as an identifier.

III.Keyword should not be used as an identifier name.

IV.Python is case sensitive. So using case is significant.

V.First character of an identifier can be character, underscore (_) but not digit.

Python Literals
Literals can be defined as a data that is given in a variable or constant.

Python support the following literals:

I. String literals:

String literals can be formed by enclosing a text in the quotes. We can use both single as
well as double quotes for a String.

Eg:

"Aman" , '12345'

Types of Strings:

There are two types of Strings supported in Python:

a).Single line String- Strings that are terminated within a single line are known as Single
line Strings.

Eg:

1. >>> text1='hello'
b).Multi line String- A piece of text that is spread along multiple lines is known as
Multiple line String.

There are two ways to create Multiline Strings:

1). Adding black slash at the end of each line.

Eg:

1. >>> text1='hello\

2. user'

3. >>> text1

4. 'hellouser'

5. >>>
2).Using triple quotation marks:-

Eg:

1. >>> str2='''''welcome

2. to

3. SSSIT'''

4. >>> print str2

5. welcome

6. to

7. SSSIT

8. >>>
II.Numeric literals:

Numeric Literals are immutable. Numeric literals can belong to following four different
numerical types.

Int(signed
integers)

Long(long integers) float(floating
point)

Complex(complex)

Numbers(can be both

positive and negative)

with no fractional

part.eg: 100

Integers of unlimited size

followed by lowercase or

uppercase L eg:

87032845L

Real numbers with

both integer and

fractional part eg:

-26.2

In the form of a+bj where a forms

the real part and b forms the

imaginary part of complex number.

eg: 3.14j

III. Boolean literals:

A Boolean literal can have any of the two values: True or False.

IV. Special literals.

Python contains one special literal i.e., None.

None is used to specify to that field that is not created. It is also used for end of lists in
Python.

Eg:

1. >>> val1=10

2. >>> val2=None

3. >>> val1

4. 10

5. >>> val2

6. >>> print val2

7. None

8. >>>

V.Literal Collections.

Collections such as tuples, lists and Dictionary are used in Python.

List:

o List contain items of different data types. Lists are mutable i.e., modifiable.

o The values stored in List are separated by commas(,) and enclosed within a

square brackets([]). We can store different type of data in a List.

o Value stored in a List can be retrieved using the slice operator([] and [:]).

o The plus sign (+) is the list concatenation and asterisk(*) is the repetition

operator.

Eg:

1. >>> list=['aman',678,20.4,'saurav']

2. >>> list1=[456,'rahul']

3. >>> list

4. ['aman', 678, 20.4, 'saurav']

5. >>> list[1:3]

6. [678, 20.4]

7. >>> list+list1

8. ['aman', 678, 20.4, 'saurav', 456, 'rahul']

9. >>> list1*2

10. [456, 'rahul', 456, 'rahul']

11. >>>

Python Operators
Operators are particular symbols which operate on some values and produce an output.

The values are known as Operands.

Eg:

1. 4 + 5 = 9
Here 4 and 5 are Operands and (+) , (=) signs are the operators. They produce the
output 9.

Python supports the following operators:

1. Arithmetic Operators.

2. Relational Operators.

3. Assignment Operators.

4. Logical Operators.

5. Membership Operators.

6. Identity Operators.

7. Bitwise Operators.

Arithmetic Operators:

Operator
s

Description

// Perform Floor division(gives integer value after division)

+ To perform addition

- To perform subtraction

* To perform multiplication

/ To perform division

% To return remainder after division(Modulus)

** Perform exponent(raise to power)

eg:

1. >>> 10+20

2. 30

3. >>> 20-10

4. 10

5. >>> 10*2

6. 20

7. >>> 10/2

8. 5

9. >>> 10%3

10. 1

11. >>> 2**3

12. 8

13. >>> 10//3

14. 3

15. >>>
Relational Operators:

Operators Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

== Equal to

!= Not equal to

<> Not equal to(similar to !=)

eg:

1. >>> 10<20

2. True

3. >>> 10>20

4. False

5. >>> 10<=10

6. True

7. >>> 20>=15

8. True

9. >>> 5==6

10. False

11. >>> 5!=6

12. True

13. >>> 10<>2

14. True

15. >>>
Assignment Operators:

Operators Description

= Assignment

/= Divide and Assign

+= Add and assign

-= Subtract and Assign

*= Multiply and assign

%= Modulus and assign

**= Exponent and assign

//= Floor division and assign

eg:

1. >>> c=10

2. >>> c

3. 10

4. >>> c+=5

5. >>> c

6. 15

7. >>> c-=5

8. >>> c

9. 10

10. >>> c*=2

11. >>> c

12. 20

13. >>> c/=2

14. >>> c

15. 10

16. >>> c%=3

17. >>> c

18. 1

19. >>> c=5

20. >>> c**=2

21. >>> c

22. 25

23. >>> c//=2

24. >>> c

25. 12

26. >>>
Logical Operators:

Operato
rs

Description

and Logical AND(When both conditions are true output will be true)

or Logical OR (If any one condition is true output will be true)

not Logical NOT(Compliment the condition i.e., reverse)

eg:

1. a=5>4 and 3>2

2. print a

3. b=5>4 or 3<2

4. print b

5. c=not(5>4)

6. print c
Output:

1. >>>

2. True

3. True

4. False

5. >>>
Membership Operators:

Operat
ors

Description

in Returns true if a variable is in sequence of another variable, else false.

not in Returns true if a variable is not in sequence of another variable, else false.

eg:

1. a=10

2. b=20

3. list=[10,20,30,40,50];

4. if (a in list):

5. print "a is in given list"

6. else:

7. print "a is not in given list"

8. if(b not in list):

9. print "b is not given in list"

10. else:

11. print "b is given in list"
Output:

1. >>>

2. a is in given list

3. b is given in list

4. >>>
Identity Operators:

Operato
rs

Description

is Returns true if identity of two operands are same, else false

is not Returns true if identity of two operands are not same, else false.

Example:

1. a=20

2. b=20

3. if(a is b):

4. print ?a,b have same identity?

5. else:

6. print ?a, b are different?

7. b=10

8. if(a is not b):

9. print ?a,b have different identity?

10. else:

11. print ?a,b have same identity?
Output:

1. >>>

2. a,b have same identity

3. a,b have different identity

4. >>>

Python Comments
Python supports two types of comments:

1) Single lined comment:

In case user wants to specify a single line comment, then comment must start with ?#?

Eg:

1. # This is single line comment.
2) Multi lined Comment:

Multi lined comment can be given inside triple quotes.

eg:

1. ''''' This

2. Is

3. Multipline comment'''
eg:

1. #single line comment

2. print "Hello Python"

3. '''''This is

4. multiline comment'''

Python If Statements
The if statement in python is same as c language which is used test a condition. If
condition is true, statement of if block is executed otherwise it is skipped.

Syntax of python if statement:

1. if(condition):

2. statements
Example of if statement in python

1. a=10

2. if a==10:

3. print "Hello User"
Output:

Hello User

Python If Else Statements
Syntax:

1. if(condition): False

2. statements

3. else: True

4. statements

Example-

1. year=2000

2. if year%4==0:

3. print "Year is Leap"

4. else:

5. print "Year is not Leap"
Output:

Year is Leap

Nested If Else Statement:
When we need to check for multiple conditions to be true then we use elif Statement.

This statement is like executing a if statement inside a else statement.

Syntax:

1. If statement:

2. Body

3. elif statement:

4. Body

5. else:

6. Body
Example:

1. a=10

2. if a>=20:

3. print "Condition is True"

4. else:

5. if a>=15:

6. print "Checking second value"

7. else:

8. print "All Conditions are false"
Output:

All Conditions are false.

For Loop
for Loop is used to iterate a variable over a sequence(i.e., list or string) in the order that
they appear.

Syntax:

1. for <variable> in <sequence>:
Output:

1. 1

2.

3. 7

4.

5. 9
Explanation:

o Firstly, the first value will be assigned in the variable.

o Secondly all the statements in the body of the loop are executed with the same

value.

o Thirdly, once step second is completed then variable is assigned the next value in

the sequence and step second is repeated.

o Finally, it continues till all the values in the sequence are assigned in the variable

and processed.

Program to display table of Number:

1. num=2

2. for a in range (1,6):

3. print num * a
Output:

1. 2

2.

3. 4

4.

5. 6

6.

7. 8

8.

9. 10
Program to find sum of Natural numbers from 1 to 10.

1. sum=0

2. for n in range(1,11):

3. sum+=n

4. print sum
Output:

1. 55

Nested Loops
Loops defined within another Loop is called Nested Loop.

When an outer loop contains an inner loop in its body it is called Nested Looping.

Syntax:

1. for <expression>:

2. for <expression>:

3. Body
eg:

1. for i in range(1,6):

2. for j in range (1,i+1):

3. print i,

4. print
Output:

1. >>>

2. 1

3. 2 2

4. 3 3 3

5. 4 4 4 4

6. 5 5 5 5 5

7. >>>
Explanation:

For each value of Outer loop the whole inner loop is executed.

For each value of inner loop the Body is executed each time.

Program to print Pyramid:

1. for i in range (1,6):

2. for j in range (5,i-1,-1):

3. print "*",

4. print
Output:

1. >>>

2. * * * * *

3. * * * *

4. * * *

5. * *

6. *

While Loop
while Loop is used to execute number of statements or body till the condition passed in
while is true. Once the condition is false, the control will come out of the loop.

Syntax:

1. while <expression>:

2. Body
Here, body will execute multiple times till the expression passed is true. The Body may
be a single statement or multiple statement.

Eg:

1. a=10

2. while a>0:

3. print "Value of a is",a

4. a=a-2

print "Loop is Completed"

Output:

1. >>>

2. Value of a is 10

3. Value of a is 8

4. Value of a is 6

5. Value of a is 4

6. Value of a is 2

7. Loop is Completed

8. >>>
Explanation:

o Firstly, the value in the variable is initialized.

o Secondly, the condition/expression in the while is evaluated. Consequently if

condition is true, the control enters in the body and executes all the statements .

If the condition/expression passed results in false then the control exists the body

and straight away control goes to next instruction after body of while.

o Thirdly, in case condition was true having completed all the statements, the

variable is incremented or decremented. Having changed the value of variable

step second is followed. This process continues till the expression/condition

becomes false.

o Finally Rest of code after body is executed.

Program to add digits of a number:

1. n=153

2. sum=0

3. while n>0:

4. r=n%10

5. sum+=r

6. n=n/10

7. print sum
Output:

1. >>>

2. 9

3. >>>

Python Break
break statement is a jump statement that is used to pass the control to the end of the
loop.

When break statement is applied the control points to the line following the body of the
loop , hence applying break statement makes the loop to terminate and controls goes to
next line pointing after loop body.

eg:

1. for i in [1,2,3,4,5]:

2. if i==4:

3. print "Element found"

4. break

5. print i,
Output:

1. >>>

2. 1 2 3 Element found

3. >>>

Continue Statement
continue Statement is a jump statement that is used to skip the present iteration and
forces next iteration of loop to take place. It can be used in while as well as for loop
statements.

eg:

1. a=0

2. while a<=5:

3. a=a+1

4. if a%2==0:

5. continue

6. print a

7. print "End of Loop"
Output:

1. >>>

2. 1

3. 3

4. 5

5. End of Loop

6. >>>
Flow chart of continue:-

Python Pass
When you do not want any code to execute, pass Statement is used. It is same as the
name refers to. It just makes the control to pass by without executing any code. If we
want to bypass any code pass statement can be used.

Syntax:

1. pass
eg:

1. for i in [1,2,3,4,5]:

2. if i==3:

3. pass

4. print "Pass when value is",i

5. print i,
Output:

1. >>>

2. 1 2 Pass when value is 3

3. 3 4 5

4. >>>

PYTHON STRINGS
Strings are the simplest and easy to use in Python.

String pythons are immutable.

We can simply create Python String by enclosing a text in single as well as double
quotes. Python treat both single and double quotes statements same.

Accessing Strings:
o In Python, Strings are stored as individual characters in a contiguous memory

location.

o The benefit of using String is that it can be accessed from both the directions in

forward and backward.

o Both forward as well as backward indexing are provided using Strings in Python.

o Forward indexing starts with 0,1,2,3,....

o Backward indexing starts with -1,-2,-3,-4,....

eg:

1. str[0]='P'=str[-6] , str[1]='Y' = str[-5] , str[2] = 'T' = str[-4] , str[3] = 'H' =

str[-3]

2. str[4] = 'O' = str[-2] , str[5] = 'N' = str[-1].
Simple program to retrieve String in reverse as well as normal form.

1. name="Rajat"

2. length=len(name)

3. i=0

4. for n in range(-1,(-length-1),-1):

5. print name[i],"\t",name[n]

6. i+=1
Output:

>>>
R t
a a
j j
a a
t R
>>>

Strings Operators
There are basically 3 types of Operators supported by String:

1. Basic Operators.

2. Membership Operators.

3. Relational Operators.

Basic Operators:
There are two types of basic operators in String. They are "+" and "*".

String Concatenation Operator :(+)
The concatenation operator (+) concatenate two Strings and forms a new String.

eg:

>>> "ratan" + "jaiswal"
Output:

'ratanjaiswal'
>>>

Expression Output

'10' + '20' '1020'

"s" + "007" 's007'

'abcd123' + 'xyz4' 'abcd123xyz4'

NOTE: Both the operands passed for concatenation must be of same type, else it will show an
error.

Eg:

'abc' + 3
>>>
output:

Traceback (most recent call last):
 File "", line 1, in
 'abc' + 3
TypeError: cannot concatenate 'str' and 'int' objects
>>>

Replication Operator: (*)
Replication operator uses two parameter for operation. One is the integer value and the
other one is the String.

The Replication operator is used to repeat a string number of times. The string will be
repeated the number of times which is given by the integer value.

Eg:

1. >>> 5*"Vimal"
Output:

'VimalVimalVimalVimalVimal'

Expression Output

"soono"*2 'soonosoono'

3*'1' '111'

'$'*5 '$$$$$'

NOTE: We can use Replication operator in any way i.e., int * string or string * int. Both the
parameters passed cannot be of same type.

Membership Operators
Membership Operators are already discussed in the Operators section. Let see with
context of String.

There are two types of Membership operators:

1) in:"in" operator return true if a character or the entire substring is present in the
specified string, otherwise false.

2) not in:"not in" operator return true if a character or entire substring does not exist in
the specified string, otherwise false.

Eg:

1. >>> str1="javatpoint"

2. >>> str2='sssit'

3. >>> str3="seomount"

4. >>> str4='java'

5. >>> st5="it"

6. >>> str6="seo"

7. >>> str4 in str1

8. True

9. >>> str5 in str2

10. >>> st5 in str2

11. True

12. >>> str6 in str3

13. True

14. >>> str4 not in str1

15. False

16. >>> str1 not in str4

17. True

Relational Operators:
All the comparison operators i.e., (<,><=,>=,==,!=,<>) are also applicable to strings.
The Strings are compared based on the ASCII value or Unicode(i.e., dictionary Order).

Eg:

1. >>> "RAJAT"=="RAJAT"

2. True

3. >>> "afsha">='Afsha'

4. True

5. >>> "Z"<>"z"

6. True
Explanation:

The ASCII value of a is 97, b is 98, c is 99 and so on. The ASCII value of A is 65,B is
66,C is 67 and so on. The comparison between strings are done on the basis on ASCII
value.

Slice Notation:
String slice can be defined as substring which is the part of string. Therefore further
substring can be obtained from a string.

There can be many forms to slice a string. As string can be accessed or indexed from
both the direction and hence string can also be sliced from both the direction that is left
and right.

Syntax:

1. <string_name>[startIndex:endIndex],

2. <string_name>[:endIndex],

3. <string_name>[startIndex:]
Example:

1. >>> str="Nikhil"

2. >>> str[0:6]

3. 'Nikhil'

4. >>> str[0:3]

5. 'Nik'

6. >>> str[2:5]

7. 'khi'

8. >>> str[:6]

9. 'Nikhil'

10. >>> str[3:]

11. 'hil'

Note: startIndex in String slice is inclusive whereas endIndex is exclusive.

String slice can also be used with Concatenation operator to get whole string.

Eg:

1. >>> str="Mahesh"

2. >>> str[:6]+str[6:]

3. 'Mahesh'
//here 6 is the length of the string.

String Functions and Methods:
There are many predefined or built in functions in String. They are as follows:

capitalize() It capitalizes the first character of the String.

count(string,begin,end) Counts number of times substring occurs in a String between begin and end index.

endswith(suffix

,begin=0,end=n)

Returns a Boolean value if the string terminates with given suffix between begin and

end.

find(substring ,beginIndex,

endIndex)

It returns the index value of the string where substring is found between begin index

and end index.

index(subsring, beginIndex,

endIndex)

Same as find() except it raises an exception if string is not found.

isalnum() It returns True if characters in the string are alphanumeric i.e., alphabets or numbers

and there is at least 1 character. Otherwise it returns False.

isalpha() It returns True when all the characters are alphabets and there is at least one

character, otherwise False.

isdigit() It returns True if all the characters are digit and there is at least one character,

otherwise False.

islower() It returns True if the characters of a string are in lower case, otherwise False.

isupper() It returns False if characters of a string are in Upper case, otherwise False.

isspace() It returns True if the characters of a string are whitespace, otherwise false.

len(string) len() returns the length of a string.

lower() Converts all the characters of a string to Lower case.

upper() Converts all the characters of a string to Upper Case.

startswith(str ,begin=0,end=n) Returns a Boolean value if the string starts with given str between begin and end.

swapcase() Inverts case of all characters in a string.

lstrip() Remove all leading whitespace of a string. It can also be used to remove particular

character from leading.

rstrip() Remove all trailing whitespace of a string. It can also be used to remove particular

character from trailing.

Examples:

1) capitalize()

1. >>> 'abc'.capitalize()
Output:

'Abc'
2) count(string)

1. msg = "welcome to sssit";

2. substr1 = "o";

3. print msg.count(substr1, 4, 16)

4. substr2 = "t";

5. print msg.count(substr2)
Output:

>>>
2
2
>>>
3) endswith(string)

1. string1="Welcome to SSSIT";

2. substring1="SSSIT";

3. substring2="to";

4. substring3="of";

5. print string1.endswith(substring1);

6. print string1.endswith(substring2,2,16);

7. print string1.endswith(substring3,2,19);

8. print string1.endswith(substring3);
Output:

>>>
True
False
False
False
>>>
4) find(string)

1. str="Welcome to SSSIT";

2. substr1="come";

3. substr2="to";

4. print str.find(substr1);

5. print str.find(substr2);

6. print str.find(substr1,3,10);

7. print str.find(substr2,19);
Output:

>>>
3
8
3
-1
>>>
5) index(string)

1. str="Welcome to world of SSSIT";

2. substr1="come";

3. substr2="of";

4. print str.index(substr1);

5. print str.index(substr2);

6. print str.index(substr1,3,10);

7. print str.index(substr2,19);
Output:

>>>
3
17
3
Traceback (most recent call last):
 File "C:/Python27/fin.py", line 7, in
 print str.index(substr2,19);
ValueError: substring not found
>>>
6) isalnum()

1. str="Welcome to sssit";

2. print str.isalnum();

3. str1="Python47";

4. print str1.isalnum();
Output:

>>>
False
True
>>>
7) isalpha()

1. string1="HelloPython"; # Even space is not allowed

2. print string1.isalpha();

3. string2="This is Python2.7.4"

4. print string2.isalpha();
Output:

>>>
True
False
>>>

8) isdigit()

1. string1="HelloPython";

2. print string1.isdigit();

3. string2="98564738"

4. print string2.isdigit();
Output:

>>>
False
True
>>>

9) islower()

1. string1="Hello Python";

2. print string1.islower();

3. string2="welcome to "

4. print string2.islower();
Output:

>>>
False
True
>>>
10) isupper()

1. string1="Hello Python";

2. print string1.isupper();

3. string2="WELCOME TO"

4. print string2.isupper();
Output:

>>>
False

True
>>>
11) isspace()

1. string1=" ";

2. print string1.isspace();

3. string2="WELCOME TO WORLD OF PYT"

4. print string2.isspace();
Output:

>>>
True
False
>>>
12) len(string)

1. string1=" ";

2. print len(string1);

3. string2="WELCOME TO SSSIT"

4. print len(string2);

Output:

>>>
4
16
>>>
13) lower()

1. string1="Hello Python";

2. print string1.lower();

3. string2="WELCOME TO SSSIT"

4. print string2.lower();
Output:

>>>
hello python
welcome to sssit
>>>
14) upper()

1. string1="Hello Python";

2. print string1.upper();

3. string2="welcome to SSSIT"

4. print string2.upper();

Output:

>>>
HELLO PYTHON
WELCOME TO SSSIT
>>>
15) startswith(string)

1. string1="Hello Python";

2. print string1.startswith('Hello');

3. string2="welcome to SSSIT"

4. print string2.startswith('come',3,7);
Output:

>>>
True
True
>>>
16) swapcase()

1. string1="Hello Python";

2. print string1.swapcase();

3. string2="welcome to SSSIT"

4. print string2.swapcase();
Output:

>>>
hELLO pYTHON
WELCOME TO sssit
>>>
17) lstrip()

1. string1=" Hello Python";

2. print string1.lstrip();

3. string2="@@@@@@@@welcome to SSSIT"

4. print string2.lstrip('@');
Output:

>>>
Hello Python
welcome to world to SSSIT
>>>
18) rstrip()

1. string1=" Hello Python ";

2. print string1.rstrip();

3. string2="@welcome to SSSIT!!!"

4. print string2.rstrip('!');
Output:

>>>
 Hello Python
@welcome to SSSIT
>>>

	Reserved Words
	Standard Data Types
	Python Numbers
	Examples

	Python Strings
	Python Lists
	Tuples:

	Python Variables
	Assigning values to Variable:
	Multiple Assignment:
	Swap variables
	Local and global variables in Python
	 Basic Fundamentals:

	Python Keywords
	Identifiers
	Python Literals
	Python Operators
	Python Comments
	Python If Statements
	Python If Else Statements
	Nested If Else Statement:
	For Loop
	Nested Loops

	While Loop
	Python Break
	Continue Statement
	

	Python Pass
	PYTHON STRINGS
	Accessing Strings:
	Strings Operators
	Basic Operators:
	String Concatenation Operator :(+)

	Replication Operator: (*)
	Membership Operators
	Relational Operators:
	Slice Notation:

	String Functions and Methods:

