
A D R I A N F . C L A R K

C E 7 0 5 : P R O G R AMM I NG
I N P Y T HON

COMPU T E R S C I E N C E A ND E L E C T R ON I C E N G I N E E R I N G
UN I V E R S I T Y O F E S S E X

Contents

1 Getting Started 6
1.1 Introduction . 6
1.2 Getting to grips with Linux . 7
1.3 Program development under Linux 11
1.4 Your first program . 11
1.5 Converting temperatures . 12
1.6 Printing a temperature conversion table 13
1.7 Conditionals . 15
1.8 while, break and continue statements 17
1.9 Some subtleties . 18

2 Getting started with numerical computing 21
2.1 Timing a pendulum . 21
2.2 Representing the data . 22
2.3 Functions and subroutines . 23
2.4 Making your own Python modules 25
2.5 Creating lists dynamically . 26
2.6 Lists of lists . 27

3 Plotting data 28
3.1 Plotting data using Gnuplot . 28
3.2 Plotting data using Matplotlib 30
3.3 Period of a simple pendulum 32
3.4 How close are theory and experiment? 33

4 Working with text 34
4.1 Chopping up text . 34
4.2 Handling the command line . 35
4.3 Temperature conversion revisited 36
4.4 Pig Latin . 38

5 Files, Exceptions and Dictionaries 40
5.1 Reading and writing files . 40
5.2 Exceptions . 43
5.3 Dictionaries . 44

6 Python as Software Glue 48
6.1 Capabilities built into Python 48
6.2 Using the operating system . 49
6.3 Extensions . 50

4 ADRIAN F. CLARK

7 Large-Scale Programming with Python 52
7.1 The approach to developing large programs 52
7.2 Testing code . 53
7.3 When does Python run out of steam? 54

8 Epilogue 56

Preface

These notes accompany a module in which postgraduate students learn
how to program using the Python language. It concentrates on Python
version 3, as there were some syntax changes between versions 2 and 3 of
the language.

The text is not a complete introduction to the language, it is a place
from which learning starts: students are expected to use the extensive
online resources on the language to fill in the gaps in what is written here.
The introduction to the basics of the language is pretty rapid (but the
audience is postgraduate students) and glosses over the minutiae of the
Python syntax as these should be clear from the example code. Comments
on these notes, and feedback in general, are welcomed.

The material in these notes is not lectured; the principles and examples
are intended to be demonstrated and discussed in interactive sessions in a
software laboratory, so that students can try things out for themselves as
they are explained. The intention is that students gain practical program-
ming skills that can be applied in their project work. For this reason, there
is a concentration on presenting complete, working programs throughout
the notes. Moreover, these programs are well-presented and commented
according to good programming practice, so that it is clear how programs
should be presented and documented when students come to do assign-
ments.

Most introductions to programming use a variety of examples, so they
are suitable for readers with a wide range of backgrounds. The majority
of students taking this module are following MSc schemes that involve
numerical work, so the emphasis here is on processing data and performing
numerical computations. (In any case, processing real-world data is more
interesting than learning how to sort an array of numbers in 100 different
ways, or how to interface to a database of products on yet another shopping
website.) In particular, the numerical and scientific Python modules numpy
and scipy are introduced, as are graph-plotting facilities.

1
Getting Started

1.1 Introduction

The module aims to teach you two things:

How to program. The aim is to give you the ability to program medium-
sized programs without too much trouble, and give you insights into
how to write larger ones. Most of the examples we look at will involve
processing numerical data.

The Python language. Python is an interpreted language with an easy-to-
learn syntax; it is fairly high-level and has many modern facilities. It
is easily portable between operating systems, and has become aston-
ishingly widely used in all areas of science and engineering. There are
also many add-ons that provide additional functionality; we shall look
at a couple of these later in the module. I do the vast majority of my
research in Python, resorting to compiled languages (usually C) only
when the code needs to run really quickly.

You should be aware that there are two versions of Python in widespread
use, v2.7 and v3.6, and they have slightly different syntax — you can easily
distinguish them by looking at the print statements. I’m going to teach
you v3.6 because that is what will be used from now on; but I use v2.7 in
my research and may often slip into using that syntax — the interpreter
will keep me right, and I’m sure you will too.

The module is presented as a series of three-hour sessions. I’ll give
demonstrations and speak for some of the time; but for the remainder
of the sessions, you’ll be writing programs — it’s very much a hands-on
module. During the early sessions in particular, you will be writing only
very short programs. The aim is for everyone to get them working before
the group as a whole moves on. I will help you out when you’re struggling
and try to make sure you understand what your program is doing.

If you have some programming experience already, you may find that
you are finished well before the end of the allotted time — in which case,
you’re welcome to leave early. However, note that I keep a record of who
has shown what to me, so don’t leave without showing me what you
have done. People who don’t finish in the allotted time should try to finish
their work in their own time and show me what they have done in the
next session.

CE705: PROGRAMMING IN PYTHON 7

As you work through the various exercises during the course, you can
probably find solutions to them on the Web and simply paste them into
your editor — but I strongly discourage you from doing this as entering
the code with your own fingers and learning how to overcome syntax
and run-time errors is a vital programming skill, one that you can only
learn by practice. In the long run, you’re only cheating yourself by using
other people’s code.

I don’t recommend that you buy a textbook for this module — there are
plenty of websites that purport to teach Python (though, to be honest, most
of them are not all that good). There is also good formal documentation
for the language and, more importantly, its library online. If you think you
need a book to help you on your way, I suggest you look at some in the
Library to find one that you understand, and then buy that — just make
sure it describes Python 3.

You’ll do all your program development under Linux. There are two
reasons for this. Firstly, I want you to gain a feel for what the computer
is doing, and using Linux from the command line is the best way I know
for achieving this. Sophisticated development tools such as Eclipse and
PyCharm are excellent; but you will be all the more effective as a pro-
grammer if you understand what they are doing for you and, should it be
necessary, can do them yourself. Secondly, it will be helpful for your career
in the long term if you have some familiarity of the Unix environment in
general and Linux in particular.

All the programs you write should yield identical results under Linux,
Windows and MacOS. You can also install the same program development
environment on your own hardware, but note that you must be able
to develop, run and demonstrate your software under Linux because
this module will involve you delivering programs that work in the
laboratory under Linux.

1.2 Getting to grips with Linux

If you have worked only on Windows in the past, you will be used to start-
ing an application and working within it for doing everything associated
with a task; for example, Word for preparing documents, Visual Studio
for software development, and so on. Although it is possible to work in
this way under Linux, that approach is not typical — the original Unix
philisophy was for each program to do one thing but do it well. It is
normal under Unix (e.g., Linux or MacOS X) to have several programs
running on different parts of your computer’s display at one. A fairly
typical screen layout for program development is shown in Figure 1.1,
featuring one editor window, a separate terminal window for running pro-
grams, and a web browser for looking at reference material. Moving from
task to task just involves clicking in the relevant window. Indeed, under
Linux you can configure the window manager to switch automatically to
whichever window the mouse cursor moves to (“focus follows mouse”)
and automatically bring it to the front (“auto-raise”).

The first thing you need to do is bring up a terminal window. You
can do this by selecting from menus etc but the easiest way is to type the

https://eclipse.org
https://www.jetbrains.com/pycharm/

8 ADRIAN F. CLARK

Figure 1.1: Typical screen layout under
Linux

keystroke Ctrl-Alt-t. You will then enter commands in the terminal
window to do the things you need to do. As with Windows, you can do most
things through the window manager but you will become more proficient
more quickly by learning the commands that the window manager is
executing on your behalf.

If you’re familiar with Windows, you’ll know that files can be stored
in folders, and that the components of a filename are separated with
the backslash character. Hence, a full filename might be something like
C:\alien\hello.py. Filenames on Linux (and MacOS) are similar in
concept though the syntax is different: a full filename might be something
like /home/alien/hello.py. You will see that it uses forward slashes
rather than backward ones and that there is no disk name (there is a more
elegant way of integrating disks into the filesystem in Linux).

When you login on Linux, you can think of yourself as being ‘in’ your
home directory (directory is the Unix jargon for folder). Typing the com-
mand

pwd

(for ‘print working directory’) into your terminal window will make your
shell (the program that interprets your commands, usually bash these
days) print it out.

To create a directory, use the mkdir command. You can then ‘move’ into
it:

mkdir ce705

cd ce705

pwd

The command to list the contents of a directory is ls. For an empty
directory such as ce705 in the above example, ls returns nothing. This is

CE705: PROGRAMMING IN PYTHON 9

a common characteristic of many Unix commands, which tend to avoid
extraneous output. Let us create a file and then use ls again:

touch TEMP

ls

You will see a single line of output containing the filename TEMP. (The
touch command simply opens and closes any files provided on the com-
mand line, which is a simple way of updating its modification time, or
creating an empty file if one is needed.) You might like to see more detail
than simply the filename, and providing the command qualifier -l (for
long) does this:

ls -l

You should see a line of output like

-rw-r--r-- 1 alien staff 0 10 Jul 09:13 TEMP

The first “word” summarizes the access permissions of the file: the creator
has read and write access to it, other members of the creator’s group has
read access to it, and the system manager has read access to it. (You can
create files that the system manager cannot read, but then they won’t be
backed up. The system manager can ‘become’ you to read them anyway,
so there is no hiding place.) The user who owns the file is alien, and he
is a member of the group staff. The file contains 0 bytes of text, and it
was created on 10 th July this year at 9:13 a.m.

Typing the full names of commands and filenames quickly becomes
tedious, so your shell will probably be set up to provide tab completion.
Whenever you type a command or filename, you can type the first letter
or two of it and then hit the TAB key: the shell will complete as much of
the filename as it can and output a list of the possible completions.

To delete a file, use the rm (remove) command

rm TEMP

If you’re a newbie, things might be set up so that you are asked if you
really do want to delete the file. Experienced users turn this feature off
(and figuring out how to turn it off is one way in which you become an
experienced user).

There are a number of shorthands for directories. Firstly, your current
directory can always be referred to as . (a single dot). The directory
immediately above the current one in the directory hierarchy is always ..
(two dots). Your login or home directory is always ~ (pronounced tilde or
twiddles), and the login directory of the user joe is ~joe. So when you’ve
been working in some weird corner of your files on some topic, typing a
command like

cd ~/ce705

will put you in the directory you created earlier.
As an aside, you will see when I give demonstrations that I have set

things up so that my working directory is part of the prompt issued by
bash. This is because I do different parts of my work in different directory
trees; I imagine you organise your files in a similar way.

10 ADRIAN F. CLARK

The final feature of the Unix shells that it is good to know about is
re-direction and pipes. Let us create a few files in our directory

touch f1 f2 f3 f4 f5 f6 f7

How could we count how many files are in it? For this small a number,
we could do it by hand but it would be good if we could get the computer
to do it for us. Unix provides commands for lots of useful tasks, and one
such program is wc (word count), which can actually count lines, words
and characters. So if we can pass the output from ls to wc, we can have
the machine do the work for us.

The first step is to save the output of ls in a file

ls > LISTING

This runs the ls command as usual but tells the shell to save the output
in the file called LISTING (which should not exist). Note carefully the
direction in which the angle-bracket is pointing: it is to the filename. In
Unix jargon, we have re-directed the output to the file. You can look at
the contents of the file by typing the command

cat LISTING

The cat (concatenate) program copies the contents of the file to your
screen. You will see that there is a line in the file for each file in your
directory, so counting the number of files is the same as counting the
number of lines in LISTING. To count the number of lines in LISTING, we
can pass it to the wc command:

wc -l < LISTING

The -l qualifier tells wc to output only the number of lines. Note that the
angle bracket points from the file to the program, the opposite way to
when we created LISTING.

This leaves the file LISTING in our directory and is generally a bit
cumbersome to do, so the shell provides a more elegant way to achieve
the same thing:

ls | wc -l

The vertical bar symbol is known as a pipe because it connects the out-
put of one command to the input of another. You can connect as many
programs together using pipes as you need. There are command-line pro-
grams for doing all sorts of things: selecting files that match a particular
pattern, sorting them, removing duplicates, and so on. People used to
write complete programs in the shell (so-called shell scripts) but they are
now increasingly written in languages such as Python.

This introduction just touches the surface of the commands and cap-
abilities of Linux, giving you enough to get started writing and run-
ning programs. There are a few fuller introductions on the web, such
as http://www.ee.surrey.ac.uk/Teaching/Unix/, written by Michael
Stonebank at the University of Surrey, and http://linuxcommand.org —
there are many others too. There are also books in the Library that discuss
Linux in particular and Unix in general.

http://www.ee.surrey.ac.uk/Teaching/Unix/
http://linuxcommand.org

CE705: PROGRAMMING IN PYTHON 11

1.3 Program development under Linux

Although there are many editors on Linux systems, and a few integrated de-
velopment environments (IDEs) such as Eclipse and PyCharm, it is recom-
mended that you use Emacs for this module. Emacs has been around
a long time but provides many features that are programmer-friendly:
syntax-awareness, brace-highlighting, incremental search, symbolic de-
bugging, managing compilation, and so on.

You start Emacs by opening up a terminal window and typing

emacs &

Note the ampersand at the end of the line: it tells the shell to run it in the
background so that you can continue typing commands in the window.

When the Emacs window comes up, please resist the temptation to
make it fill the screen. Feel free to make the window longer but it’s wise
not to make it wider: source code is best presented in lines of no longer
than 80 columns, the initial width of the Emacs window. In fact, for your
assignment I require lines of your program to be no longer than 80
characters.

You can use Emacs in the way you’re used to when using Windows,
by pulling down menus or clicking on buttons. However, as you become
more familiar with it, you’ll work more quickly if you learn the keyboard
shortcuts — I work entirely through shortcuts. Whichever way you work,
you will need to type Emacs commands from time to time, and you bring
up the command prompt by typing (in Emacs terminology) M-x (“meta-
X”). On a PC keyboard, this is Alt-X (hold down the Alt key, type x

simultaneously).
In utilities such as Word, you’ll be used to entering the text you want

and then saving it to a file. With Emacs, it’s better if you do things in
a different order: first edit the file you want — the keystrokes for this
are C-x C-f (control-X, control-F) — then type the name of the file you
want in answer to the prompt. If you end the filename in .py, Emacs
will switch into Python “mode” in which it understands the syntax of the
lines you type and that helps you get your code right.

Every time you save a file in Emacs, it creates a backup version of
the file (by appending the ~ character to the filename) which contains the
file’s content before you started editing it — and this applies to all files
edited by Emacs, not just program source. This is a really useful feature: I
can’t tell you the number of times I have reverted to a backup file when
later edits have gone horribly wrong.

1.4 Your first program

It has become a custom that your first program in any language should
simply print out the phrase “Hello, world.” Here it is in Python:

print ("Hello, world.")

The program consists of a single line, an invocation of the print function
with a string. In Python v2, print is a statement rather than a function so
the brackets around the string would be missing.

12 ADRIAN F. CLARK

The easiest way to run this program is to start the Python interpreter,
which you do by typing the command

python3

(The python command runs v2 of the interpreter.) The interpreter will
print out some messages and then prompt you with

>>>

Type the print statement above in response to the prompt and run it by
hitting the return key. Using the Python interpreter interactively is a good
way of trying things out when you’re not sure of a language or library
feature. There are even enhanced Python interpreters such as iPython.
However, using the interpreter interactively becomes increasingly pesky
as the length of your program increases, so it is best to store complete
programs in files and run them through the interpreter — this is how we
shall work for the entire module.

If you enter the “Hello, world.” program in the file hello.py using
Emacs, you can run it by typing the command

python3 hello.py

in a terminal window.
Everything is Unicode in Python, so there is nothing special to do if

you want to put Unicode characters in strings. If you haven’t encountered
the term before, Unicode is the modern way of representing characters
on computers: it supports not just the western alphabet but also accented
characters and characters derived from other alphabets — Chinese, Thai,
and so on.

You can quote a string using double quotes, as here, or single quotes —
this gives you an easy way of printing out a string containing one of these
types of quote but you can also use the syntax

"a \" within a quote"

I have rarely had to do this. There are some other ways of writing strings
which we’ll come to shortly.

1.5 Converting temperatures

To get us going on a more interesting problem, let us write a program to
convert temperatures from Fahrenheit to Celsius. The Fahrenheit scale
has its freezing point at 32 degrees and its boiling point at 212 degrees,
and this maps onto the familiar 100-degree Celsius scale. To convert a
Fahrenheit temperature f to Celsius c, the equation is therefore

c =
f −32

212−32
×100

which simplifies to

c =
f −32

1.8

A complete program that performs this conversion is:

http://ipython.org

CE705: PROGRAMMING IN PYTHON 13

f = 97.8

c = (f - 32) / 1.8

print (f, c)

The first line of this program stores the value 97.8 in a variable called
f. Variables are regions of computer memory in which numbers can be
stored. A convenient way to imagine memory is as named pigeon holes
(Figure 1.2), with each pigeon hole being able to store a single number.
Figure 1.3 shows a diagrammatic representation of a long line of pigeon
holes after the first line of the program has been executed, so that the
value 98.7 is in the pigeon hole f and the pigeon hole c has no value.

im
ag
e
fro
m
th
e
we
b

Figure 1.2: Pigeon holes for holding
letters

The second line calculates the Celsius temperature corresponding to
the value in f and stores it in c — this line of code is almost a direct copy
of the equation given above, though note the use of brackets to ensure
that the subtraction is done before the division.

The last line is a print statement, just as in our “Hello, world.” program,
but this time prints out the values of the variables f and c.

f97.8

c

Figure 1.3: You can think of computer
memory as a long line of pigeon holes

Variable names in Python can be of any number of characters and may
contain letters (including underscore) and digits, though the first character
must be a letter. Upper- and lower-case letters are considered as being dif-
ferent. Most programmers use longer variable names than the single-letter
ones used here, as in fahr_temp, fahrTemp, or fahrenheitTemperature
— though the author personally finds that really long variable names make
programs less easy to understand. It is wise to avoid starting variable
names with underscore as many Python programmers use such names for
internal variables within modules (you will come to understand what this
means later in these notes).

Incidentally, if you’ve programmed before and are used to programming
languages in which variables have to be declared as being of a particular
type, you’ll find Python is a little different. Firstly, nothing is declared,
though you get a run-time error if you read a variable before writing to it.
Observe that f contains integer values but c ends up with floating-point
ones; the Python interpreter takes care of the conversion (and gives a
run-time error if you’re trying to do something silly). In Python 3, dividing
one integer by another can yield a floating-point number, unlike earlier
versions of Python and most other programming languages.

1.6 Printing a temperature conversion table

In principle, one could modify the above program to hold whatever Fahren-
heit temperature is required and run it to find the corresponding Celsius
one, but this would be time-consuming and overly messy. It is probably
more useful to have a program that prints out the conversion from Fahren-
heit to Celsius for (say) every 10 degrees. As you would expect, this has
some similarities to the program we have just considered:

#!/usr/bin/env python3

"""A program to print out a Fahrenheit to Celsius conversion table,

from freezing point to boiling point in 10-degree steps."""

Cycle over the Fahrenheit values in 10-degree steps. For each

http://normanparkkindy.com.au/wp-content/uploads/2012/10/Pigeon-Holes.jpg

14 ADRIAN F. CLARK

Fahrenheit temperature, calculate the corresponding Celsius one

and print both out on the same line.

for f in range (32, 220, 10):

c = (f - 32) / 1.8

print (f, c)

Let us start with the second line of the program and work through it —
the meaning of the first line is explained a little later.

The second and third lines of the program form a quoted string but use
three double-quotes as delimiters rather than one — this is to allow it to
span several lines. (You can also use three single-quotes.) Why is it here?
It describes the purpose of the program — for more substantial programs, it
should be much longer, describing how the program is used, its algorithms,
any restrictions, and so on. This type of in-program documentation is a
mark of good programming, so it is a good habit to get into. To encourage
this, you’l score higher in your assignment if you provide such a comment.

The next line is blank. Blank lines help split up code into sections
and greatly aid readability. You will see that the code also has spaces
within lines to aid readability — these are good habits to get into too.

The next couple of lines both start with # characters. These are com-
ments: everything from the # to the end of the line is simply ignored by the
Python interpreter. You can put comments at the ends of lines of code too.
As in this case, you should make your comments explain the purpose
of sections of code rather than describing what the individual lines do
in words. As you might expect, clear comments are also a mark of good
programming, and you are expected to comment your own programs well.

The next line, the one that starts with for, is a loop, and the following
two lines are indented relative to this. These two lines are executed several
times and are called the body of the loop; we see that they are the now
familiar lines to convert Fahrenheit temperature to Celsius and print it out.
Note that Python requires the body of the loop to be indented by two or
more spaces relative to the for. With Emacs, simply typing the 〈tab〉 key
at the beginning of each line is enough to indent the code by the right
number of spaces — and Emacs understands the Python syntax, so the
indentation comes out right if there are loops within loops.

The for statement causes the variable f to take each of the values
returned by the function range in turn. The three arguments to range are
the first value to be returned, the value at which the loop ends, and the
amount added each time. Hence, the first time around the loop, f is set
to 32, the second time around the loop it is set to 32+ 10 = 42, the next
time to 42+ 10 = 52, and so on. The loop terminates when the value of f
is greater than or equal to 220. You will see that the statements within the
loop cause f to be converted to c and printed out for each of these values
of f. Running the program should yield the following output:

32 0.0

42 5.555555555555555

52 11.11111111111111

62 16.666666666666668

72 22.22222222222222

82 27.77777777777778

92 33.333333333333336

CE705: PROGRAMMING IN PYTHON 15

102 38.888888888888886

112 44.44444444444444

122 50.0

132 55.55555555555556

142 61.11111111111111

152 66.66666666666667

162 72.22222222222221

172 77.77777777777777

182 83.33333333333333

192 88.88888888888889

202 94.44444444444444

212 100.0

which is a bit ugly but correct. We shall look shortly at making this output
prettier.

That leaves us only one line of the program to consider. The first line
of the program is a Unix-ism which allows you to make the program
executable and then run it without having to precede its name with python

in the shell. If, for example, you enter the temperature conversion code
(correctly) into the file temptable.py, typing the command

chmod +x temptable.py

allows you to run it by typing

./temptable.py

rather than

python3 temptable.py

The chmod command need be typed only once as it changes the permissions
of the file, which you can check with ls -l. Also, note that under Unix you
do not have to add the filetype .py to files containing Python programs,
though you will have to tell Emacs to create them in Python mode by
typing

M-x python-mode

when you first edit it.

Exercise: length conversion. When you have typed in the temperature
conversion program and shown that it works, try writing a program that
converts feet and inches to metres. You will need to know that 1 inch is
2.54 cm and that there are 12 inches in a foot. Start with one inch and
print out the conversion in one-inch increments up to 3 feet.

1.7 Conditionals

Having gained some familiarity with the fundamentals of Python, it is
a good time to get to grips with its main flow-control mechanisms. In
fact, you have already encountered one of these, for. The next step up
in complexity is conditionals, and we shall look at these in the context of
the earlier temperature conversion table. We know that the freezing and
boiling points of water in Fahrenheit are 32◦F and 212◦F respectively, so
let us output these words alongside the appropriate lines:

16 ADRIAN F. CLARK

#!/usr/bin/env python3

"""A program to print out a Fahrenheit to Celsius conversion table,

from freezing point to boiling point in 10-degree steps."""

Cycle over the Fahrenheit values in 10-degree steps. For each

Fahrenheit temperature, calculate the corresponding Celsius one

and print both out on the same line.

for f in range (32, 220, 10):

c = (f - 32) / 1.8

print (f, c)

Indicate the freezing and boiling points of water (ugly code).

if f == 32:

print ("freezing point")

if f == 212:

print ("boiling point")

operator meaning

== is equal to
!= is not equal to
>= is greater than or equal to
> is greater than
<= is less than or equal to
< is less than

Figure 1.4: Comparison operators and
their meanings

The == operator is read as “is equal to”. All the supported comprison
operators are shown in Figure 1.4. The if statements are executed each
time around the loop but each of them succeeds precisely once. Note the
indentation of the print calls relative to the ifs. There are two important
points to bring out at this juncture. The first is that we are not printing
the text out alongside the conversion but rather on a line of its own. We
can fix this in several different ways; first, we shall look at an easy one but
then consider a more elegant one.

We can re-write the program as:

#!/usr/bin/env python3

"""A program to print out a Fahrenheit to Celsius conversion table,

from freezing point to boiling point in 10-degree steps."""

Cycle over the Fahrenheit values in 10-degree steps. For each

Fahrenheit temperature, calculate the corresponding Celsius one

and print both out on the same line.

for f in range (32, 220, 10):

c = (f - 32) / 1.8

Indicate the freezing and boiling points of water (quite ugly).

remark = ""

if f == 32: remark = "freezing point"

if f == 212: remark ="boiling point"

print (f, c, remark)

You will see that the variable remark is first set to an empty string (series of
characters) every time around the loop, and its value changed for certain
values of f. This lacks elegance and also helps bring out the second
point to be made: when the first if statement succeeds, the second one
cannot possibly. This is a fairly common problem in programming and
most programming languages provide a way around it. In Python, a more
elegant solution is:

#!/usr/bin/env python3

"""A program to print out a Fahrenheit to Celsius conversion table,

from freezing point to boiling point in 10-degree steps."""

Cycle over the Fahrenheit values in 10-degree steps. For each

Fahrenheit temperature, calculate the corresponding Celsius one

and print both out on the same line.

CE705: PROGRAMMING IN PYTHON 17

for f in range (32, 220, 10):

c = (f - 32) / 1.8

Indicate the freezing and boiling points of water.

if f == 32:

remark = "freezing point"

elif f == 212:

remark ="boiling point"

else:

remark = ""

print (f, c, remark)

The word elif is best read as “else if”. Working through this, you will
see that remark is set only once per iteration, and when one if, elif or
else succeeds, the others are not executed. As will be clear from these
two examples, the elif and else clauses are optional.

1.8 while, break and continue statements

for loops are good for controlling loops when the number of iterations
required is known, which is often the case for numerical programs such as
our temperature conversion table. However, they are not general enough
for every eventuality. The most general looping construct in Python is the
while loop, and the easiest way to understand it is to re-write the loop in
the temperature conversion program to use one:

#!/usr/bin/env python3

"""A program to print out a Fahrenheit to Celsius conversion table,

from freezing point to boiling point in 10-degree steps."""

Cycle over the Fahrenheit values in 10-degree steps. For each

Fahrenheit temperature, calculate the corresponding Celsius one

and print both out on the same line.

f = 32

while f < 220:

c = (f - 32) / 1.8

print (f, c)

f = f + 10

In this case, the loop management is spread over three lines, which is why
it’s less elegant for this task: there are three places where the loop control
can go wrong. Nevertheless, you will find that while loops are widely
used in general programming.

There are two other statements that work with while, and again the
best way to show them is with an example.

#!/usr/bin/env python3

"""A program to print out a Fahrenheit to Celsius conversion table.

This program has a deliberate bug in it."""

Cycle over the Fahrenheit values in 10-degree steps. For each

Fahrenheit temperature, calculate the corresponding Celsius one

and print both out on the same line. We do some funky things for

f > 100 and when f == 52.

f = 32

while f < 220:

if f > 100:

18 ADRIAN F. CLARK

break

if f == 52:

continue

c = (f - 32) / 1.8

print (f, c)

f = f + 10

print ("That’s all, folks!")

This does not print out the complete temperature conversion table that we
have seen up to now. The first thing of note is the break statement that is
executed when f > 100: this causes control to jump to the first statement
following the loop, which here prints out “That’s all, folks!” You will find
break is especially useful when reading input.

The second statement of interest in this example of code is continue,
which transfers control to the next iteration of the loop. In this program,
it introduces a bug because the line f = f + 10 is not executed and the
program loops indefinitely (until you interrupt it by typing Ctrl-C). The
continue statement is useful when you are working through a series of
steps on data but, for some reason, there is one value for which the com-
putation is not to be performed. We shall see examples of both continue

and break in programs later in the module.
One final thing that is worth mentioning is that the line

f = f + 10

is commonly written in the form

f += 10

which you can read as “add 10 to f.” You can do the same thing with the
other arithmetic operators.

1.9 Some subtleties

There are two subtleties in the versions of the temperature conversion
program that have been skipped over until now, and both have the same
underlying cause. The first of these is that we have compared the Fahren-
heit temperature when checking for the freezing and boiling points, not
the Celsius one. This is because f holds an integer (a whole number) while
c holds a floating-point (real number) value. The representation of real
numbers in a computer is not exact — indeed, it could never be for
irrational numbers such as π, e,

p
2 etc. Computation using floating-point

numbers in Python gives about 15 decimal digits of precision, and the
more computation you do, the less accurate your results become. (If you
are also taking CE816, I’ll explain why in that module.)

With this in mind, statements such as

if c == 100: remark = "boiling point"

are clearly dangerous. The two ways around this are

if round (c) == 100: remark = "boiling point"

which converts the real value in c to its nearest integer; and

if abs (c - 100) < 1.0e-5: remark = "boiling point"

CE705: PROGRAMMING IN PYTHON 19

which checks that the absolute difference between c and 100 is small
enough. I tend to use the latter: although it is less readable, it allows me
to change the amount of inaccuracy I am prepared to live with.

The second subtlety actually arises from the same cause, and that is
that range can be invoked with integer values only — you will get an error
if you say

for f in range (32.0, 220.0, 10.0):

If you were to make the second argument 212.0 rather than 220.0, the
number of iterations around the loop could depend on the accuracy of your
computer’s arithmetic, and hence could give different results on different
hardware. The designers of Python do not want this to happen and so
they do not allow you to program it.

The last thing to discuss about the temptable program is its output:
the number of decimal places in the output for c varies depending on
its value, and the table would be more readable if the values were all
neatly aligned vertically. This is fairly easy to achieve: all we need to
do is tell Python how the values of f and c are to be formatted. We shall
print f in a region that is three characters wide. We shall restrict c to two
decimal places; as there can be as many as three characters before the
decimal point and the decimal point itself is a character, we need a region
that is six characters wide to display the Celsius temperature. The variable
remark holds a string, so our print statement becomes

print ("%3d %6.2f %s" % (f, c, remark))

You will see that the parameter to print has three components: the first
is a string which we call the format string, the second is %, Python’s format
operator, and the third one a series of variables in parentheses (round
brackets). There must be exactly as many variables in parentheses as there
are percent characters in the format string. Comparing the numbers in
the format string with the preceding text, you will see what they mean.
The %d means that the corresponding variable (f here) contains an integer
(to be printed out as a decimal), the %f means it contains a floating-point
number, and the %s means it contains a string.

If you have programmed in C, C++, or scripting languages such as Perl
or Tcl, you will find this construct familiar. It is, however, now deemed
old-fashioned and Python 3 provides alternative ways for formatting data
for output; you are encouraged to read about them. The reason you are
being told about the older way is that it will make it easier for you to
read code in other programming languages and to migrate from them to
Python.

We end up with the following, our final version of the temperature table
program.

#!/usr/bin/env python3

"""A program to print out a Fahrenheit to Celsius conversion table,

from freezing point to boiling point in 10-degree steps."""

Cycle over the Fahrenheit values in 10-degree steps. For each

Fahrenheit temperature, calculate the corresponding Celsius one

and print both out on the same line.

20 ADRIAN F. CLARK

print ("Fahr Cels")

for f in range (32, 220, 10):

c = (f - 32) / 1.8

Indicate the freezing and boiling points of water.

if f == 32:

remark = "freezing point"

elif f == 212:

remark ="boiling point"

else:

remark = ""

print ("%3d %6.2f %s" % (f, c, remark))

2
Getting started with numerical computing

As has been mentioned a few times already, the main emphasis in this
module is on processing real-world data. In this chapter, we shall gather
some experimental data and write code to process it. In doing so, we
shall find that a good way to structure a program is to write functions
(sometimes called subroutines or modules, though the latter has a different
meaning in Python).

2.1 Timing a pendulum

There are many possible sources of experimental data that we could use
but the one we shall focus on here is straightforward: the period of a
pendulum, the time it takes for one to make a single swing and return to
its starting position. It is said that Galileo used his pulse to time the swings
of a pendulum while he was in church and then derived the mathematical
formula that describes it; we shall follow his general approach, though we
shall use more modern timing equipment than a person’s pulse.

A typical pendulum consists of a weight, often called a bob, on the end
of a string. The end of the string not attached to the bob is fixed. A few
minutes’ play with this type of pendulum shows that one with a longer
string takes longer to swing than one with a shorter string, so our ultimate
aim is to find a relationship between pendulum length and period.

Consider an experiment to time the period of a pendulum using everyday
components. Constructing the pendulum itself is easy, just a piece of string
wrapped around a heavy weight; and it can be fixed into a doorway using
a drawing pin. Timing it is also easy as practically every smartphone has a
stopwatch app.

Initially, it might seem sensible to time a single swing; but a few mo-
ments’ thought should lead you to a different conclusion. It is difficult to
start or stop a stopwatch (or stopwatch app) exactly as the pendulum starts
its swing, so the measuring process is not exact. Timing a single swing will
mean that the inaccuracy you introduce by measuring is a large proportion
of the period you are trying to measure. Conversely, if you measure the
time required for several swings, your single measurement introduces the
same amount of error but it is amortised over however periods you timed.
This makes much more sense. Also, we should take the measurement not
once but several times. You will see that we end up with a table of results
rather like that in Table 2.1. Each entry in the table shows the time taken

22 ADRIAN F. CLARK

and the number of swings for which the pendulum was timed; note that
three timings are recorded for a length of 10 cm but only two for 12 cm.
(Also note that these values are purely for illustrative purposes; I would
be really surprised if a real pendulum of these lengths had these periods!)

time taken (s)
length (cm) #1 #2 #3

10 60.1/4 60.0/4 61.1/4
12 65.1/4 65.0/4

Table 2.1: Timings and number of swings
of a single pendulum of different lengths

2.2 Representing the data

The first thing to do is find a good way of representing the data in Table 2.1
in a Python program. If we are interested in the relationship between
pendulum length and period, we obviously need to have both available
within the program. From the previous chapter, the only way that we know
is to do something like

pendlen1 = 10

pendlen2 = 12

timing1 = 15.10

timing2 = 16.26

where the values of timing1 and timing2 were calculated by hand. This
is pretty ugly as we would have to write different code for working with
pendlen1 and timing1 from that for pendlen2 and timing2. The designer
of the Python language realised this and provided a way to store related
pieces of data in a structure known as a list:

pendlen = [10, 12]

timing = [15.10, 16.26]

Note that the values are enclosed in square brackets in the assignment
statement — this is how the Python interpreter knows a list is involved.
The best way to think of a list is as a series of consecutive pigeon holes,
using the analogy introduced in Chapter 1 — see Figure 2.1. Note that
the ordering of the elements in the lists is the same for both pendlen and
timing: the first element is next to the name and the second one in the
memory location above it.

Note that lists can contain any data type: we are using integers and
floating-point numbers here for pendlen and timing respectively, but lists
can also contain any of the other data types we shall encounter in the
course, even other lists!

pendlen10

12

timing15.10

16.26

Figure 2.1: Lists can be thought of as
consecutive pigeon holesHaving stored the values in lists, how do we get at the individual

elements of them? Come to that, how can the program find out how many
elements are in a list? The follow section of code illustrates both of these:

pendlen = [10, 12]

timing = [15.10, 16.26]

n = len (pendlen)

for i in range (0, n):

print (pendlen[i], timing[i])

CE705: PROGRAMMING IN PYTHON 23

You will see that the len function returns the number of entries in a list.
We print out the list one element at a time in the following for loop, by
appending an element number or index to the relevant variable name in
square brackets, so that running the program gives:

10 15.1

12 16.26

which is what we expect.

2.3 Functions and subroutines

Considering we are using a computer, it is a pretty poor idea to have to
average the various timings in Table 2.1 by hand! It would be much better
to have the computer do that for us. We need to calculate the average
for each row in the table (i.e., for each element of timing), and it would
be poor programming to have to write that code several times. Instead,
Python lets us define a piece of code in one place, known as a function
or subroutine (or sometimes a method), and use it several times. This is
attractive for a wily programmer, as he or she will need to debug the code
only once.

What we want is something that we can use by typing something like:

ave = mean (pendlen)

rowtime = mean ([60.1/4, 60.0/4, 61.1/4])

print (ave, rowtime)

Here, ave and rowtime are just ordinary variables, pendlen is the list
defined earlier in the chapter, and mean is a function. In this case, mean
takes one argument, a list of numbers, and returns a single result. You
will see that the first call is passed a variable that contains a list while
the second contains an explicit list — note the square brackets — of the
numbers in a row of Table 2.1.

A function to calculate the mean of a list of numbers is pretty straight-
forward to write:

def mean (vals):

"Calculate the mean of a list of values."

sum = 0

nv = len (vals)

for i in range (0, nv):

sum += vals[i]

result = sum / nv

return result

You will see that the function definition starts with the keyword def,
and that is followed by the function or subroutine name and then its
parameters, and the line is terminated by a colon. (To get the jargon
right, parameters appear in the definition of a routine while arguments are
what you pass in when making a call or invocation.)

The body of the routine is indented relative to the def, as you would
now expect. The first line of a routine should be a string containing a
succinct summary of what it does and how it is used; this can be extracted
by Python’s automatic documentation tools, which will be discussed in

24 ADRIAN F. CLARK

a later chapter. The remainder of the routine does the actual work: it
sets a variable to zero, then accumulates the values of all the entries in
the list; when that has been done, it divides the sum by the length of the
list to form the mean. Note how critical the indentation is to having the
routine work correctly. The crucial line is the return statement, which
tells Python what value is given back to the part of the program that called
it — in this case, to be assigned to ave in the first invocation and rowtime

in the second.
You will see that the above code contains sum = 0. If you have pro-

grammed in other languages before, you might think that line should read
sum = 0.0 to ensure that sum is a floating-point variable — after all, we
subsequently divide it by an integer and integer division usually discards
any fractional part. This is not the case in Python 3: if the result of dividing
one integer by another has a fractional part, the resulting value becomes
floating-point. This is a really useful language feature; it was not the case
in Python 2, and is not the case in other programming languages.

One thing that you need to ensure is that mean has been defined before
it is used; in this program, that means putting it towards the top of the
code. In programs that I write, routines go after the top-of-program
documentation and import statements.

Exercise. Write a program that implements this mean function to calculate
the mean of a list of values, and check it gives the right results for pendlen
and the rows of Table 2.1. Having got the bit between your teeth, extend
the program so that you have routines to calculate the median, standard
deviation, skewness and kurtosis — definitions for skewness and kurtosis
are given below and there is discussion of them on the Web.

Calculating the median involves sorting the values into ascending order
and then choosing the middle one. There is a built-in routine for sorting
lists, you just need to find out what its name is and how to use it.

To be able to calculate the standard deviation etc., you will need to
calculate powers and root susing Python’s maths library:

>>> import math

>>> print (math.sqrt (2))

>>> 1.4142135623730951

This notation of separating a module from functions residing in it using
a dot is a common notation in Python and you will soon get used to it.
You cannot use a dot in the middle of an ordinary variable though; use
underscore instead. Remembering to type math.sqrt to calculate a square
root instead of just sqrt is tiresome, so Python lets one “pull in” all the
names in a way that means we don’t have to type the module name all the
time:

>>> from math import *
>>> print (sqrt(2))

>>> 1.4142135623730951

>>> print (math.sqrt(2))

>>> Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name ’math’ is not defined

CE705: PROGRAMMING IN PYTHON 25

The last expression fails because this style of import does not prefix func-
tion names with math. Also, this form of import needs to be used with
caution with multiple modules as you can end up overriding a routine
from one module with another of the same name from another module;
but it certainly saves typing.

The skewness measures the degree of asymmetry around the mean and
is given by

1
N

N−1
∑

i=0

� x j − x̄

σ

�3

(2.1)

where σ is the standard deviation. The kurtosis measures the ‘peakiness’
relative to a Gaussian and is given by

¨

1
N

N−1
∑

i=0

� x j − x̄

σ

�4
«

−3 (2.2)

2.4 Making your own Python modules

Having written routines to calculate all the statistical quantities outlined
above, you can store them together in a file, mylib.py say. It will look
something like:

def mean (vals):

...

def sd (vals):

...

def skewness (vals):

...

def kurtosis (vals):

...

In your main program to analyse the timings, you can then change the
code from

def mean (vals):

...

ave = mean (pendlen)

to

import mylib

...

ave = mylib.mean (pendlen)

Alternately, use

from mylib import *
...

ave = mean (pendlen)

just as with the maths library.

That’s all there is to writing a simple Python module!
One of the key skills in becoming a good programmer is identifying

when a chunk of code will be needed in several places in the program

26 ADRIAN F. CLARK

and then writing routines that can simply be called. In the same way, you
will find that code written for one program can be re-used in others.
As well as being less typing in the first place, this means that if you find a
bug in the code, it needs to be fixed in only one place — though, equally,
a bug in a shared routine pervades all the programs that use it. It is well
worth reflecting on why I suggested you write routines to calculate the
mean etc. as well as how you wrote them. That should also help you
understand why storing routines in modules is a good thing to do.

2.5 Creating lists dynamically

Bearing in mind that Table 2.1 contains a series of rows that needs to be
averaged, it is tempting to write:

pendlen = [10, 12]

timing[0] = mean ([60.1/4, 60.0/4, 61.1/4])

timing[1] = mean ([65.1/4, 65.0/4])

but this does not work. All the divisions of the total timings by the number
of swings is fine; the problem is to do with the way that lists work.

When executing the first line, the Python interpreter knows that [10,
12] represents a list of two elements and creates the variable pendlen

as being a list of two elements. When executing the second line, the
interpreter understands that the numbers in square brackets represents
a list of three entries and passes them to the mean function, then is given
the single value that it returns. But where is it to be stored? The variable
timing does not exist, and even if it did, Python would think of it as
holding a single value rather than an element of a list.

The simplest (but ugly) way around this is to write:

pendlen = [10, 12]

timing = [0, 0]

timing[0] = mean ([60.1/4, 60.0/4, 61.1/4])

timing[1] = mean ([65.1/4, 65.0/4])

where the initial values assigned to the elements of timing are overwritten
by the values calculated in the invocations of mean.

A more elegant way is to tell the Python interpreter that timing is a list
and to grow the length of that list as the program runs:

pendlen = [10, 12]

timing = []

timing += [mean ([60.1/4, 60.0/4, 61.1/4])]

timing += [mean ([65.1/4, 65.0/4])]

However, there are so many brackets here that this may look confusing!
The second line of code tells the interpreter that timing is a list which
contains no elements (try this yourself and use the len function on it).
Each of the following two lines uses the operator +=, which you should
think of as meaning “append to the list,” and in each of them it has to
append a list — and the way to convert the single value returned by mean

into a list is to enclose it in square brackets. If you find this confusing, the
following code is identical in effect:

CE705: PROGRAMMING IN PYTHON 27

pendlen = [10, 12]

timing = []

timing.append (mean ([60.1/4, 60.0/4, 61.1/4]))

timing.append (mean ([65.1/4, 65.0/4]))

Having the ability to extend lists as a program runs is a really useful feature
of Python but the syntax here is definitely confusing.

2.6 Lists of lists

Although the approach mentioned above is fine, to use it we have had to
write a fair amount of code. If I were writing the program to work with
the data of Table 2.1, I would first store the timings in a list of lists:

pendlen = [10, 12]

timing = [

[60.1/4, 60.0/4, 61.1/4],

[65.1/4, 65.0/4],

]

You will see that each element of timing contains a list of the various
timings that were made, as the following interactive session shows:

>>> pendlen = [10, 12]

>>> timing = [[60.1/4, 60.0/4, 61.1/4], [65.1/4, 65.0/4]]

print (timing[1])

>>> [16.275, 16.25]

which is the second complete list held in the list variable timing.
It is then straightforward to convert all of these into their means:

n = len (timings)

for i in range (0, n):

timing[i] = mean (timing[i])

This is well worth studying and getting to grips with as it will let you write
more elegant code yourself.

3
Plotting data

This chapter continues working with the pendulum data of Chapter 2.
Here, we shall explore plotting the data on a graph using Python. We shall
also derive a mathematical model for the period of a pendulum and plot
that on the same graph, and then write software to assess how good the
fit between the two is.

3.1 Plotting data using Gnuplot

Although this is rather tangential to learning Python, we shall start by
looking at a general-purpose graphing program. Imagine we have a file,
pend.txt, containing the lengths of a pendulum and the corresponding
periods, with one pair per line:

10 15.10

12 16.26

14 18.31

16 20.05

(Again, these values are fictitious.) The easiest way to plot them on a Unix
machine is with a program called Gnuplot. If the $ below represents your
shell’s prompt, you start Gnuplot simply by typing its name:

$ gnuplot

G N U P L O T

Version 5.0 patchlevel 1 last modified 2015-06-07

Copyright (C) 1986-1993, 1998, 2004, 2007-2015

Thomas Williams, Colin Kelley and many others

gnuplot home: http://www.gnuplot.info

faq, bugs, etc: type "help FAQ"

immediate help: type "help" (plot window: hit ’h’)

gnuplot> plot ’pend.txt’

The resulting output appears in Figure 3.1; it looks pretty ugly but does
show the data, and is quick and easy to use.

We can make the graph much more attractive by customising its output
with the following commands:

set grid

unset key

CE705: PROGRAMMING IN PYTHON 29

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

��� ��� ��� ��� ��� ��� ���

����������
Figure 3.1: Default appearance of a
Gnuplot graph

set xlabel "length (cm)"

set ylabel "time (sec)"

set style data linespoints

set xrange [9.5:16.5]

replot

which yields the output shown in Figure 3.2. This has a grid in the back-
ground, the legend (key) has been turned off, there are axis labels, and
data points do not lie on the surrounding box.

���

�����

���

�����

���

�����

���

�����

���

�����

���

�����

��� ��� ��� ��� ��� ��� ���

���
�
��
�
�
�
�

�����������

Figure 3.2: Improved appearance of a
Gnuplot graph: axis labels, grid, etc

You can quit Gnuplot by typing quit or ^D, the Unix end-of-file character.
You can also use Gnuplot to plot equations; indeed, the plot we shall
produce in Python with theoretical curve and experimental data below
could have been drawn purely via Gnuplot — though doing so would
defeat one of the objectives of this chapter, namely teaching you how to
use Python’s most popular graph-plotting package. The best thing about
Gnuplot is that it is widely available, straightforward to use, and fairly
easy to remember. In fact, it is quite common to use Python to write out
commands for programs such as Gnuplot and then invoke it to process
the commands; this is one of the reasons that Python is sometimes called

30 ADRIAN F. CLARK

‘software glue.’

3.2 Plotting data using Matplotlib

The standard way of producing graphs from Python programs is using
Matplotlib. The word ‘standard’ does not mean that it is distributed as
an intrinsic part of Python in the same way as the maths library; rather, it
means that the package is widely used and fairly easy to install.

The particular interface to Matplotlib that we shall use is called pylab,
which aims to be used in a similar way to the graph-plotting functionality of
the popular Matlab package. Let us start with a pair of lists, one containing
pendulum lengths and the other the corresponding mean timings

pendlen = [10, 12, 14, 16]

timing = [15.10, 16.26, 18.31, 20.05]

The first thing we much do is make the pylab module available at the top
of the program:

import pylab

We are then able to call the various plotting routines. The following
sequence of calls produces the graph shown in Figure 3.3.

Plot the graph.

fig = pylab.figure ()

pylab.xlim ([9.5, 16.5])

ax = fig.add_subplot (111)

ax.grid (True)

ax.set_xlabel (’length (cm)’)

ax.set_ylabel (’period (secs)’)

ax.set_title (’Variation of pendulum period with length’)

ax.plot (pendlen, timing)

...and display what we’ve drawn.

pylab.show ()

You will see that they are broadly similar in meaning to the commands
that Gnuplot interprets.

The sequence of calls above seems quite logical: the first one ‘turns on’
graphics using pylab.figure and it returns a way of referring to the figure
the graph will appear on. The call to add_subplot creates a set of axes on
the figure and returns a way of referring to it, and the subsequent calls do
things on those axes. (It is well worth reading online about add_subplot
and its argument as it is not always clear why it is needed.) However, not
everything works this way: the call to limit the range of values plotted on
the x-axis should logically be called ax.xlim but is in fact pylab.xlim.
These idiosyncrasies will often catch you out — or, rather, they often catch
out the author.

CE705: PROGRAMMING IN PYTHON 31

10 11 12 13 14 15 16
length (cm)

15

16

17

18

19

20

21

p
e
ri

o
d
 (

se
cs

)
Variation of pendulum period with length

Figure 3.3: Plot produced using pylab

calls

Exercise: Plotting with Pylab. Extend the program you used to process the
pendulum measurements in the previous chapter so that it produces a plot
of the mean pendulum period against the pendulum length. When you
have it working, use Google to find out how to change the y-axis type to
be logarithmic. Does this look help you identify the relationship between
pendulum length and period? What about plotting the square of the period
against the length?

32 ADRIAN F. CLARK

Figure 3.4: Forces acting on a pendulum
(diagram stolen from the Wikipedia)

3.3 Period of a simple pendulum

Deriving an equation that relates the period of a pendulum to its length is
fairly straightforward, though we shall see that it is only an approximation.
Figure 3.4 shows the forces acting on the bob of a simple pendulum. Note
that the path of the pendulum sweeps out an arc of a circle and the bob is
at an angle θ (measured in radians) from the equilibrium. The blue arrow
shows the gravitational force acting on the bob, while the violet arrows are
that force resolved into components parallel and perpendicular to the bob’s
instantaneous motion. The direction of the bob’s instantaneous velocity
always points along the red axis, which is always tangential to the circle.
Consider Newton’s second law

F = ma (3.1)

where F is the sum of forces on the bob, m its mass and a its acceleration.
As we are only concerned with changes in speed, and because the bob is
forced to stay in a circular path, we need apply Newton’s equation to the
tangential direction only. Simple trigonometry tells us that

F = −mg sinθ (3.2)

i.e. that a = −g sinθ , where g is the acceleration due to gravity. The
negative sign on the right-hand side of these equations is present because
the force is acting to return the bob to the equilibrium position and hence
to reduce θ .

This linear acceleration a along the red axis can be related to the change
in angle θ by the arc length s = `θ , from which we obtain

v =
ds
d t

= `
dθ
d t

(3.3)

and

a =
d2s
d t2

= `
d2θ

d t2
(3.4)

which give us

`
d2θ

d t2
= −g sinθ (3.5)

so that
d2θ

d t2
+

g
`

sinθ = 0 (3.6)

This equation is difficult to solve. However, if θ is small, sinθ ≈ θ and we
can re-write the above equation as

d2θ

d t2
+

g
`
θ = 0 (3.7)

which describes simple harmonic motion.
Given the initial conditions θ = 0 ≡ θ0 and dθ

d t = 0 at t = 0, the
solution becomes

θt = θ0 cos
�
s

g
`

t
�

(3.8)

CE705: PROGRAMMING IN PYTHON 33

from which we can get an expression for the period τ of a pendulum

τ= 2π

√

√ `

g
(3.9)

Extend your program to calculate the theoretical period for each measured
length, and plot that on the same axes as your experimental values.

3.4 How close are theory and experiment?

We now have a pair of values for each period, the mean of the experimental
measurements and the corresponding theoretical value. If we write the
experimental mean value as Ei and the theoretical one as Ti , then we can
measure how similar they are using

1
N

N
∑

i=1

(Ei − Ti)
2 (3.10)

This is usually known as the mean square error or MSE. Clearly, the smaller
the MSE, the better the fit is.

Write a routine to calculate the MSE from a pair of Python lists of the same
length. Use it to put the MSE in the title of your graph.

4
Working with text

In this module, the main interface between human and computer is textual.
We have already seen the most important aspects of producing text: print
and the format operator %. In this chapter, we shall look in further detail
into how text is represented and manipulated in Python. Along the way,
we will learn how subscripting works in more detail.

4.1 Chopping up text

Let us start our exploration of text by learning how it is stored and how to
access parts of it. Consider the statements

text = "Hello, world"

print (len (text))

The len function returns the length of the argument it was called with;
you have already seen it used with lists. When given a string, it returns the
number of characters in it, 12 in this case. We can select a few characters
from it using subscripts such as

print (text[0])

print (text[0:5])

print (text[7:])

print (text[7:-1])

which yield “H”, “Hello”, “world” and “worl” and respectively. You will be
familiar with the single subscript in square brackets from our discussion
of lists in Chapter 2 but the others look somewhat confusing at first, so
some explanation is needed.

The individual characters of a string can be thought of as being stored
in the set of pigeon holes introduced in Chapter 1, one letter per pigeon
hole in exactly the same way as the list elements in Chapter 2. The letters
of the string are stored in the pigeon holes as shown in Figure 4.1.

subscript 0 1 2 3 4 5 6 7 8 9 10 11

value H e l l o , w o r l d

Figure 4.1: The layout of characters in a
string

text[0] makes sense from Chapter 2: it is the first element of the string.
As we can see from text[0:5] producing “Hello”, the first number in
square brackets is the first character; and the second number in brackets

CE705: PROGRAMMING IN PYTHON 35

is one more than the last character. This idea that the second number is
one more than the last element selected is a consistent idea in Python,
and you will see it crop up in several other places too.

The third example above, text[7:] selects from character location 7
to the end of the string, so this selects “world”. At first sight, text[7:-1]
looks odd as it seems as though you are indexing off the beginning of the
string. However, Python assumes that negative numbers in subscripts
relate to the end of the string, so the -1 here is equivalent to 11. The
part of the string defined by subscripts 7–11 is “worl”; as before, the last
subscript is one beyond the last character selected.

This notation of subscripts takes a little getting used to, and is different
from practically every other programming language in its support for
negative indices; however, it is consistent and you can get used to it. In
fact, you can also provide a pair of subscripts to the lists that you used in
in Chapter 2 and 3, and it will work in an analogous way.

If you have programmed in other languages, one other unusual thing
about Python is that strings are read-only. You might think that, with
subscripts working as they do, you would be able to program

text = "Hello, world"

text[5] = "x"

but the second line will cause an error. (I cannot tell you the number of
times I have made this mistake!) If you want to do this, you have to write
something like:

text = "Hello, world"

text = text[0:5] + "x" + text[6:]

When used between strings, the + operator concatenates them together. I
find this requirement for strings to be read-only very pesky.

With this knowledge in mind, we can think about writing programs that
manipulate text. However, before doing that in anger, it is helpful to know
how to take information from the command line.

4.2 Handling the command line

Our very first program printed out “Hello, world” and (if made execut-
able) could be ran by typing

./hello

It would be interesting to be able to type

./hello Joe

and have the program respond “Hello, Joe”; and to do this, the program
needs to be able to access the words entered on the command line. This is
a standard capability of Python and is straightforward to do.

#!/usr/bin/env python3

"""A revised "Hello World" program that responds to any name

passed in on the command line."""

import sys

36 ADRIAN F. CLARK

if len (sys.argv) < 2:

name = "world"

else:

name = sys.argv[1]

print ("Hello, " + name)

The main body of the program is a conditional, which is easy to under-
stand from Chapter 1, and the test is comparing the length of something
called sys.argv with 2. The variable sys.argv is a list of strings, and
sys.argv[1] refers to the second element. Why should the first argu-
ment provided on the command line end up in sys.argv[1] rather than
sys.argv[0]? After all, Python is supposed to start its subscripting at
zero. The answer is that sys.argv[0] contains the name of the program.

The line

import sys

will be familiar, as it is similar to the way in which we accessed Python’s
maths library in Chapter 2: it tells the Python interpreter to read in
the file of definitions called sys, which is another of Python’s standard
libraries. There are literally hundreds of modules available for Python,
doing everything from networking to 3D graphics. Most of them are not
standard parts of Python but can be installed from the Internet.

One thing that often trips people up is that the arguments you type on
the command line are delivered to your program as strings — so if you
enter the command

./myprog.py 1.6

and myprog.py contains a line

value = sys.argv[1] + 2

your program will fail because sys.argv[1] is a string and 2 is an integer.
To do this, you have to convert the string to be a number first:

value = float (sys.argv[1]) + 2

There is also an int function to convert a string to an integer.

4.3 Temperature conversion revisited

Your knowledge of Python has progressed to the point where you should
be able to read, if not write, longer programs. The following program
re-visits the temperature conversion topic of Chapter 1 (for the last time, I
promise!) but, rather than printing out a table, it is intended to be used to
convert temperatures, so that

./tempconv 32 f c

would convert 0◦F to Celsius, printing out

0.00C

To make the program a little more interesting, it supports not only Fahren-
heit and Celsius but also Kelvin, the SI unit of temperature, and Rankine,

CE705: PROGRAMMING IN PYTHON 37

absolute temperature with a Fahrenheit-sized degree (I have never actually
seen the latter used by any scientist).

Much of the program should be familiar. Try to identify what is and is
not familiar and work out what the unfamiliar parts do before progressing.
The new concepts are discussed following the listing.

#!/usr/bin/env python3

"""This program converts temperatures provided on the

command line.

Usage: %s <value> <from_unit> <to_unit>"""

import sys

Check we have enough arguments on the command line.

if len (sys.argv) < 4:

print (__doc__ % sys.argv[0], file=sys.stderr)

exit (1)

Pull the important values from the command line.

value = float (sys.argv[1])

from_unit = sys.argv[2].lower ()

to_unit = sys.argv[3].lower ()

Other important values.

abs_zero = 273.15

First, convert the temperature from whatever unit it

is in to Kelvin.

if from_unit == "c":

value += abs_zero

elif from_unit == "f":

value = (value - 32) / 1.8 + abs_zero

elif from_unit == "k":

pass

elif from_unit == "r":

value /= 1.8

else:

print ("I don’t know how to convert from ’%s’!" % \

from_unit, file=sys.stderr)

exit (1)

Now, convert from Kelvin to the output unit.

if to_unit == "c":

value -= abs_zero

elif to_unit == "f":

value = (value - abs_zero) * 1.8 + 32

elif to_unit == "k":

pass

elif to_unit == "r":

value *= 1.8

else:

print ("I don’t know how to convert to ’%s’!" % \

to_unit, file=sys.stderr)

exit (1)

Finally, output the result

print ("%.2f%s" % (value, to_unit.upper ()))

38 ADRIAN F. CLARK

There are several things of interest here. Firstly, whenever an error
message is generated, the print call includes the code file=sys.stderr.
In terms of what happens, this tells print to generate its output on a
stream called sys.stderr. This is similar to ordinary terminal output,
which is written on a stream called sys.output, but cannot be re-directed
using the shell’s “>” notation — so if you happen to re-direct the output of
tempconv to a file or pipe, you still see the error message in your terminal
window. This is good programming practice.

So what does the file= part of the call do? Python allows parameters
to be passed to functions by name, and this simply says that it is the file

parameter that we want to set. You didn’t use this in the functions you
wrote in Chapter 2 but this is valuable when writing more sophisticated
routines — for example, I use it in programs for defining 3D graphics
shapes such as spheres and cubes which default to a particular colour but
allow the user to specify a different one. A further example is given in
Chapter 6.

The call to exit is hopefully clear: it stops your program from running.
The number passed into the call is returned to the shell as a status value,
with non-zero meaning error.

Finally, you will see lines such as

from_unit = sys.argv[2].lower ()

It is clear that this sets the variable from_unit to whatever is in sys.argv[2].
The invocation of lower converts the text in sys.argv[2] to lower case
so that, for example, “F” becomes “f”, simplifying the tests for the units.
From what you know, you would expect it to be

from_unit = lower (sys.argv[2])

In fact, this almost works: lower is a function applied to strings, so the
code

import string

from_unit = string.lower (sys.argv[2])

is valid Python. However, it is deprecated, meaning that it is obsolete and
likely to disappear at some point in the future. The syntax with the call
attached to the variable using a dot is a feature of what is known as object-
oriented programming, which is what most computer scientists regard as
the Right Way To Do It. I am less convinced, and it is certainly the case that
most novice programmers struggle with object-oriented programming.

Incidentally, there are many useful functions in the string module.
You can find documentation on them online or by typing the command

pydoc string

in a terminal window.

4.4 Pig Latin

Pig Latin is not a language spoken by pigs, it’s a language game in which
ordinary English words are altered as they are spoken. There are several
variants of the game but the one we shall consider has the rules:

http://en.wikipedia.org/wiki/Pig_Latin

CE705: PROGRAMMING IN PYTHON 39

• if a word begins with a vowel, append “way” to it

• if there are more than two characters in the word, move the first letter
to the end and append “ay”

• otherwise, the word is short, so just append “yay” to it

Applying these rules, the line of text

now is the winter of our discontent made glorious

summer by this son of York

from Shakespeare’s play Richard III becomes

ownay isway hetay interway ofway ourway iscontentday

ademay loriousgay ummersay byyay histay onsay ofway

yorkway

which is, admittedly, quite tricky to say (but I think that’s the point).
Writing a program to perform this conversion is a step up in complexity

from our earlier examples but definitely achievable using Python’s text
manipulation capabilities. The task is actually made much easier because
the shell separates any text written on the command line into individual
words. Of course, there is functionality in Python to do the splitting too:
it’s the split method for strings, so you can simply write

words = "now is the winter".split ()

to have the individual words appear in the list words. You also need to
know that the loop

for w in words:

print (w, end=" ")

print ()

prints each element in the list words separated by a single space. The
print call with no arguments following the loop ends the line of output
that the loop itself has created.

Exercise: Pig Latin. Have a go at writing a program that ‘translates’ and
writes out words of English provided on the command line as igpay atinlay.
My own solution to this is 18 lines of code, excluding comments.

5
Files, Exceptions and Dictionaries

This chapter covers three topics: first, how to read and write files; then
how to handle exceptions; and finally dictionaries, which are most easily
thought of as lists for which the subscript is text rather than an integer.
Although these are distinct, unrelated language features, we shall see how
their combination contributes to useful programs.

5.1 Reading and writing files

To manipulate a file, there are four fundamental operations:

• open the file

• write to an open file

• read from an open file

• close an open file

We shall look at each of these in turn, and then see an example of how
they may be used in practice.

mode meaning

r reading only
w writing
a appending
w+ updating

Table 5.1: Commonly-used access mode
for Python’s open function

Opening files

A file is opened, not surprisingly, using the open function

f = open ("myfile.txt", "r")

The first argument in the call is the name of the file to be opened, and the
second is the access mode, which describes how the file is to be accessed.
The commonly-used access modes for reading and writing text files are
listed in Table 5.1; if omitted, the file is opened read-only. When a file
is opened for writing (w), any existing content in the file is immediately
discarded, while when opening a file for updating (w+) it is not; confusing
these is a common problem. Another common mistake is to use shell
shorthands such as .. and ~ in filenames, as they are not automatically
expanded as they would be by a shell (there are routines in the module
os.path that do this kind of thing). Hence common invocations of open
might be

fin = open (sys.argv[1], "r")

fout = open ("results.txt", "w")

CE705: PROGRAMMING IN PYTHON 41

The open function returns a value that you can use subsequently to indicate
the file that is to be written or read. Some languages call this a file, a file
handle, file pointer, or a channel.

Writing to files

The easiest way to write output to an opened file is via an argument to
print:

print ("Hello, world.", file=fout)

Clearly, fout needs to have been opened for writing. You have already
seen the use of file=sys.stderr when producing error messages, so this
shows us that sys.stderr is simply a file handle that has been opened for
writing.

As in most programming languages, output to files is normally buf-
fered, which means it is held in the computer’s memory until there is a
fair amount of text to be written out, and then the whole chunk is written
out in a single lump. This makes output much more efficient than it would
otherwise be (but still slows a program down dramatically). There is an
optional third argument in the open call that specifies the buffering mode
but a more common approach is simply to call the flush function to empty
the buffer if you want to be sure that the user sees the output:

print ("Warning: about to overwrite your file!", file=fout)

fout.flush ()

Text written to sys.stderr is normally unbuffered for obvious reasons,
and all other output is normally buffered.

Reading from files

In the Unix world, you will find that you read from files much more often
than you explicitly write to them because the shell’s re-direction facility is
so convenient. When you write programs to run under Windows (unless
you use one of the Unix-like shells), that will probably not be the case.
There are several different strategies for reading a file: you can read all
the lines at once and then chop them up, read one line at a time, and so
on. Here, we shall concentrate on the one-line-at-a-time approach as it is
moderately efficient (anyway, input is buffered in a similar way to output)
and scales better to huge files.

The key to reading a file line by line is identifying when the end of the
file has been reached. The best way of programming this has changed a
little as Python has evolved and the recommended way is now

with open ("myfile.txt", "r") as f:

for line in f:

process line

where the last line above would be replaced by code to process the line of
text in the variable line. This approach is, to the author’s eye, concise,
clear and elegant. Note that the file is closed automatically at the end
of the with clause (normally when all the lines in the file have been read),
avoiding having to do so explicitly.

42 ADRIAN F. CLARK

Closing files

When you need to close file handle f explicitly, simply

f.close ()

An example

How these functions work together is best illustrated by an example.
Consider a program, numlines, that reads in a file and prints it back
out with each line being prefixed with a line number. We want to invoke it
by typing:

> numlines myfile.txt

where > represents the shell’s prompt. The underlying algorithm is easy:

open the file

while not at end-of-file

read a line

increment the line number

print the line number and the line

close the file

Apart from checking and initialisation, there is almost a line-for-line match
to the resulting Python program:

#!/usr/bin/env python3

"""

Read a file given on the command line and output it with line numbers.

"""

import sys

Ensure we were given a filename on the command line.

if len (sys.argv) < 2:

print ("Usage: %s <file>" % sys.argv[0], file=sys.stderr)

exit (1)

Open the file, then read it line by line. For each line, strip

off the end-of-line delimiter and any trailing whitespace, then

output it with its line number.

with open (sys.argv[1]) as f:

n = 0

for line in f:

n += 1

print ("%5d %s" % (n, line))

If you enter this program and run it on a file, you will see that it works,
except that there is a blank line after every line of output. To understand
why this happens, you need to understand how text files are stored. Ba-
sically, there is a special character stored in a file to identify the end of
every line in a file, though the character used depends on the operating
system: Unix uses 〈linefeed〉 (^J), MacOS (before OSX) 〈return〉 (^M) and
DOS (and hence Windows) 〈return〉〈linefeed〉 (^M^J). Python is clever
enough to convert this character or characters into a generic “start a new
line” character, which is represented in a Python string as “\n”. However,
returning to the reason that the output contains blank lines, lines read in

CE705: PROGRAMMING IN PYTHON 43

from files retain the training \n character from the file. Hence, when you
print the variable line, there are two \n characters, one read from the
file and the second added by print.

There are several ways around the problem. One is

print ("%5d %s" % (n, line[:-1]))

and another is

print ("%5d %s" % (n, line), end="")

but a more elegant alternative is

line = line.rstrip () # remove the end-of-line delimiter

print ("%5d %s" % (n, line))

The rstrip function removes the newline and any other trailing whitespace
(spaces, tabs) from the right end of line.

5.2 Exceptions

When you run the line-numbering program above with the name of a file
that does not exist, it crashes:

> numlines.py nosuchfile

Traceback (most recent call last):

File "./numlines.py", line 16, in <module>

with open (sys.argv[1]) as f:

FileNotFoundError: [Errno 2] No such file or directory: ’nosuchfile’

This is pretty ugly — it would be better if your program produced a simple,
useful error message and exited. More generally, there may be unusual
events that happen as a program runs that you would like to handle and
allow the program to continue; but if it crashes like this, you cannot.
Python provides a way around this dilemma through the use of a try

clause. For the numlines program above, one solution is

try:

with open (sys.argv[1]) as f:

n = 0

for line in f:

n += 1

print ("%5d %s" % (n, line))

except:

print ("Problem reading %s!" % sys.argv[1], file=sys.stderr)

exit (1)

The whole section of code that may cause (the jargon is “throw” or “raise”)
an exception has been enclosed in a try clause, and the accompanying
except clause is what happens if an exception happens.

The example above catches and produces an error message for all
exceptions irrespective of their cause. You can also choose to catch just
some exceptions; e.g., the code below handles only ValueError exceptions:

while True:

try:

x = int (input ("Please enter a number: "))

44 ADRIAN F. CLARK

break

except ValueError:

print ("Oops! That was not a valid number. Try again...")

else:

print ("You entered %d." % x)

if x == 0: break

This example also shows the use of an optional else clause for except,
which is executed if no exception happens. There is also a finally clause
which is executed irrespective of whether or not an exception has happened;
I am not too convinced about its usefulness.

Just as you can handle exceptions when they occur, you can create
exceptions. For example, in the program that processed pendulum timings
in Chapter 2, a sensible thing to do is to ensure that the lists pendlen and
period have the same lengths. This could be programmed as

if len (pendlen) != len (period):

raise ValueError ("List length mismatch")

and causes a ValueError exception to occur, producing the message in its
string argument. We shall see a better way of doing this kind of checking
using assert in Chapter 7.

There are many exceptions other than ValueError and the documenta-
tion of modules and libraries will normally explain which exceptions can
occur where and under what circumstances. It is also possible to create
new types of exception but that involves object-oriented programming,
which is not covered in this course.

You might ask yourself when to raise exceptions and when to produce
error messages and exit. The rule of thumb that the author uses is that
routines he writes that go into a library generate exceptions, so that a
person using the library can catch and handle them if he or she so wishes;
but my main program and routines written that support only it produce
error messages and exit.

5.3 Dictionaries

The easiest way to think of a dictionary is as an array which is indexed by
a text string rather than a number, as a list is indexed. There is a natural
order to list indices: they start at zero and increment by one for each
element; however, there is no such order to the elements of a dictionary.
When you gather together the keys (“subscripts”) of a dictionary, you
will see that they are in an arbitrary order. You might also like to know
that Python’s name for this kind of data structure is unusual; a more
common name is a hash. Although a really useful data structure, you
should be aware that accessing an element of a dictionary is about an
order of magnitude slower than accessing a list, so you should use them
only when necessary and not as a more convenient alternative to lists.

The easiest way to see how dictionaries work is in an interactive session
with the Python interpreter:

>>> sound = {}

>>> sound["cat"] = "meow"

CE705: PROGRAMMING IN PYTHON 45

>>> sound["dog"] = "woof"

>>> sound["hen"] = "cluck"

>>> s = "dog"

>>> print ("The", s, "says", sound[s])

>>> The dog says woof

>>> sound["owl"] = 2820

The first line here creates an empty dictionary and the following three
lines set entries in it. At first, it seems a little strange that a dictionary is
created using braces {..} but accessed using brackets [..], though you
quickly get used to it. The following pair of lines illustrate how an entry
in a dictionary may be used.

Dictionaries may contain any data type, and the last line above sets
one element of sound to an integer. In real-world programs, a fairly
common data structure is a dictionary of lists, where each member of a
dictionary is a list of information — a list, of course, can have a different
datatype in each element too.

A common requirement is to determine whether or not a particular
string is a valid dictionary entry (i.e., that the dictionary has an entry with
that name). In Python 3, the way you do this is to write something like

if s in sound:

print (sound[s])

To give an example, imagine you need to increment a counter every time a
word is encountered but to create and initialise a counter when the word
is met for the first time. The code would look something like

if word in count:

count[word] += 1

else:

count[word] = 1

Note that this is a fairly new feature of the language; in Python 2, you
would have written

if sound.has_key (s):

print sound[s]

which is much less clear. You will see this when reading old Python
programs.

Another common requirement is to obtain all the valid keys of a dic-
tionary. This is straightforward:

kk = sound.keys ()

The value returned by keys is a list, so it is common to write something
like:

for k in sorted (sound.keys()):

print (k)

so that the keys are printed out in alphabetic order.
To illustrate the use of a dictionary, let us return to the “Hello, world”

program that started our exploration of Python. In Chapter 4, we saw a
variant of this in which a name could optionally be given on the command
line, so that (where > represents the command prompt) we obtained:

46 ADRIAN F. CLARK

> hello

Hello, world!

> hello Joe

Hello, Joe!

We shall now extend that program to support an optional argument that
specifies the language to use, so that we can also get:

> hello -french Joe

Bonjour, Joe!

If the language specified on the command line is not supported, boring
old English is used.

#!/usr/bin/env python3

"""

A multilingual ’hello world’ program.

Usage: hello [-lang] [name]

where <lang> is a supported language. Unsupported languages are ignored.

"""

import sys

Set up a dictionary that has the relevant text for all the languages

that we shall support.

HELLO = {

"english": "Hello, %s.",

"french": "Bonjour, %s.",

"geordie": "Wot fettle the day, %s.",

}

Initialization.

greeting = HELLO["english"]

who = "world"

Walk along the command line.

for arg in sys.argv[1:]:

if arg[0] == "-": # it’s a qualifier

word = arg[1:]

if word in HELLO:

greeting = HELLO[word]

else:

who = arg

Now output our greeting.

message = greeting % who

print (message)

Word-counting. A program that counts the number of times each word
is used in a document is sometimes useful — for example, researchers
have used it to explore the authenticity of some plays attributed to William
Shakespeare, Britain’s most famous playwright. Write a program to do
this, taking the name of the file to be read from the command line.

The output from your program should look something like:

3 aardvark

297 anaconda

CE705: PROGRAMMING IN PYTHON 47

...

42 zorilla

The solution to this will use the features discussed in this chapter. You may
find it helpful to read through your solution to the ‘pig latin’ exercise at
the end of Chapter 4 before starting.

6
Python as Software Glue

Up to now, we have concentrated on using the Python language itself for
programming up complete applications; this is mostly so that you can
master the language itself. In this chapter, we shall look briefly at using
Python for doing things beyond simply programming analysis applications.
The language can be used for developing an amazingly wide variety of
applications, ranging from cryptography to networking, and constructing
graphical user interfaces. We shall do this in three stages, firstly examining
modules that are part of all Python distributions (Section 6.1), then looking
at exploiting features built into the host operating system (Section 6.2)
and finally some of the hundreds of extensions available (Section 6.3).

6.1 Capabilities built into Python

These notes and the accompanying lectures have looked at the core data
types of Python: int, float, strings, lists, dictionaries, and so on. There
are actually quite a few more data types available, generally built on
top of these more fundamental ones using object-oriented programming
(which we do not cover in this course). For example, there are Python data
types for infinite-precision numbers, rational numbers, complex numbers,
quaternions, and so on.

You have used a small number of “methods” on strings: split to split
up a string into words, etc. The string module provides a great many more
useful things for manipulating strings; whenever you need to do something
with a piece of text, do look in the string module before thinking about
writing it yourself.

Still on the subject of processing strings, there is a powerful module
for parsing command lines, argparse, with capabilities well beyond the
simple command lines we have considered to date. As we shall see in
Section 6.3, using argparse makes it possible to construct graphical user
interfaces automatically.

There is a module for regular expressions (“regexes”), which are a way
of processing text based on the patterns of characters in them. To give a
simple example, the code

import re

line = "Dogs are cleverer than cats";

searchObj = re.search(r’(.*) are (.*?) .*’, line, re.M|re.I)

CE705: PROGRAMMING IN PYTHON 49

extracts the words “Dogs” and “cleverer”. As a more significant example,
the author has written Python code for a website that receives an uploaded
PDF document, converts it to plain text (using the os.system function
described in the next section), then uses search with regexes for UK map
references: two uppercase letters followed by an even number of digits,
with possible spaces between the letters and in the middle of the sequence
of digits. These are converted to WGS84 form (as used by GPS systems)
and the result plotted on a Google map, so that people using the website
can see where documents relate to geographically.

Python includes an extensive module for working with dates, times and
calendars. It is possible to print calendars, work out the number of days
between specific dates, parse strings to extract dates (in any of several
formats) and so on.

Python has built-in support for multi-threaded programs, allowing dif-
ferent threads of execution through a program to be created and managed.
One way in which this is used is in idle, the integrated development
environment included in Python distributions, and in an interactive Python
debugger. The latter is potentially useful but most people debug their
programs purely by inserting print calls into their scripts — though we
shall look at a further feature for helping avoid bugs in the next chapter.

There is support for several cryptography techniques and message digest
algorithms in the standard Python library. The library also includes the
ability to create and manage network connections, send and receive net-
work traffic, etc. Built on top of this is a web server and all the capabilities
needed to built web crawlers — even web browsers, as there are modules
for parsing and creating HTML and XML.

6.2 Using the operating system

If the standard Python modules do not provide everything you need for a
task but there is the required functionality in the operating system, then
there is a way in Python to make use of it. Of course, the resulting program
will not be portable between operating systems, and perhaps even between
machines if the required software is not available, but it will let you do
what you needed to do.

The easiest interface to the host operating system is the os.system

function. This takes a complete command, just (with some provisos) as
it would be typed into a shell window. To illustrate this with an example,
the Linux machines in CSEE’s software laboratories have installed on them
flite, a simple speech synthesiser. This program is invoked with the text
to be spoken on the command line, and it can be used in a Python script
as follows:

import os

text = "Go ahead, make my day."

os.system ("flite " + text)

The author uses this approach at the end of long-running jobs to let him
know that they have finished.

If you have a Mac, you can adapt this example to use the say command
instead of flite. Windows users don’t have such a command but there is

50 ADRIAN F. CLARK

a module called pyttsx which can be used instead.

6.3 Extensions

There are literally hundreds of extension modules available for Python.
Most of these provide access to capabilities that are not part of the stand-
ard Python distribution. A small number of them are considered in the
following paragraph but a web search should show you the kinds of things
that are available.

If algebra or calculus is something you find painful, there is sympy, a
symbolic algebra package. The following example shows how it may be
used for differentiation:

import sympy

a = sympy.Symbol(’a’)

b = sympy.Symbol(’b’)

e = (a + 2*b)**5

print (e)

print (e.diff(a))

print (e.diff(b))

which yields

(2*b+a)^5

5*(2*b+a)^4

10*(2*b+a)^4

One of the most widely-used and important extensions to Python is
numpy or numerical Python. This provides support for multi-dimensional
arrays, somewhat analogous to the popular Matlab software. A simple
example is:

import numpy

b = numpy.array([(1.5,2,3), (4,5,6)])

print (b)

c = b * 2

print (c)

which yields the output

[[1.5 2. 3.]

[4. 5. 6.]]

[[3. 4. 6.]

[8. 10. 12.]]

You will see that the entire array b has been multiplied by 2 in a single
line of code. More importantly, the operation takes place very quickly,
much more quickly than it would if all the loops had been programmed in
Python — and the speed advantage becomes more marked as the size of
the array increases. All serious numerical computation in Python makes
use of numpy, and several other capabilities are built on top of it. Perhaps
the most important of these is scipy or scientific Python which provides
useful stuff for computing in the scientific and engineering world such as
statistics, solving sets of equations, optimisation, root-finding, and so on.

CE705: PROGRAMMING IN PYTHON 51

One of the most common ways of distributing numerical data is via
spreadsheets (or, almost equivalently, CSV files). Although the latter can
be parsed using little more than split, a more sophisticated interface is
available through the pandas modules — and it also provides support for
the data structures used by more sophisticated data analysis tools.

Images can be read and written in a variety of formats using the PIL

module or its sibling Pillow. As well as input and output, these allow
the programmer to perform some image processing operations. If the
capabilities of these packages are not enough, there is a Python interface
to the extensive OpenCV software, which is used in the robotics and media
industries for analysing the content of images and videos. (The driverless
cars you read about use OpenCV.)

One recent extension to Python, which is still under fairly rapid de-
velopment, is Gooey, a module that allows any Python program that
uses argparse to process its command line to have an automatically-
constructed graphical user interface (GUI) in literally a couple of lines of
Python. GUI construction is usually fairly painful in any programming
language, so this is an amazingly useful extension!

Figure 6.1: Interacting with a virtual
reality system written entirely in Python

Finally in this whistle-stop tour of Python extensions is PyOGL, a module
that allows interactive 3D graphics to be programmed in Python; the
underlying graphics library is OpenGL. The author has used this extensively
to build and interact with 3D models in a virtual reality installation in one of
CSEE’s research laboratories. This employs a high-resolution, stereoscopic
back-projection system so that the user gains a good impression of depth,
and allows him or her to control interaction with the model in a variety of
ways. Figure 6.1 shows a person interacting with the model using a gestural
interface. The important point is that all the software components of this
installation are written in Python and all run in real time: 3D model,
networking, control, and interfaces to devices such as mice, keyboard,
cameras, Kinects — even a bicycle!

7
Large-Scale Programming with Python

The programs you have seen and written to date as part of this module are
all small. The program you will develop for your assignment just about
makes it into the medium category. This short chapter explores writing
even larger programs, the kind you may need to produce as part of your
project or in a commercial environment. It will introduce only two new
language features, instead concentrating on making best use of features of
Python that you already know about.

7.1 The approach to developing large programs

Modules. By far the best way to produce a large program is to write it
in small chunks! We have already seen this with the statistical routines
in Chapter 2: each one took the data in the same form and returned a
result that the program was able to use. Each individual routine was small
enough to be understood on its own and, just as important, could be tested
easily. (There will be a longer discussion of testing later in this chapter.)

Documentation. It may seem incongruous to discuss documentation when
considering how to write large programs, yet documentation is surprisingly
important. One aspect of documentation is the summary of what a routine
does in the quoted string immediately following its definition line, known
as its docstring. In the examples you have seen, this has been kept brief so
that you can concentrate on the code but ‘real programs’ tend to provide
much more information. For example, here is an example taken from the
author’s own code:

def annular_mean (im, y0=None, x0=None, rlo=0.0, rhi=None, alo=-math.pi,

ahi=math.pi):

"""

Return the mean of an annular region of an image.

Arguments:

im the image to be examined

y0 the y-value of the centre of the rotation (default: centre pixel)

x0 the x-value of the centre of the rotation (default: centre pixel)

rlo the inner radius of the annular region

rhi the outer radius of the annular region

alo the lower angle of the annular region (default: -pi)

ahi the higher angle of the annular region (default: pi)

CE705: PROGRAMMING IN PYTHON 53

"""

You will not have seen the apparent assignment to formal parameters in
the def before: these are default values that the variables will take if the
argument was not supplied; an invocation might be

annular_mean (im, rhi=20, rlo=10)

You can see that the documentation describes briefly what each parameter
is for as well as the purpose of the routine. Default arguments are discussed
in more detail in Chapter 8.

The second aspect of documentation is incorporating comments into the
code that describe what sections of it do — you will see examples of this
in all the programs in this document. These comments do not explain the
individual lines of code but instead concentrate on explaining algorithms
or the overall way in which the program works.

Sanity-checking. Good programs — and especially good library modules
— should sanity-check inside routines that the data passed in makes sense.
For example, if a routine (say, to calculate the RMS difference between
two sets of data) requires two lists of the same length, it should check for
this. The most concise and elegant way to do this is:

def rms_diff (x, y):

assert len (x) == len (y)

...

The assert statement executes the line of code associated with it; if the
result is False, execution of the program is aborted with a suitable error
message.

assert statements are especially useful as code is being developed, so
they need to go in as routines are being written, not as an after-thought. In
a production program, they are ignored if the Python interpreter is invoked
with the “-O” qualifier — though I don’t believe anyone ever bothers to
run Python this way.

7.2 Testing code

As you will be painfully aware by now from the programs you have writ-
ten yourself, making the syntax of a program right is easy compared to
making sure it runs and gives sensible outputs under all circumstances
— debugging code is probably more than 90% of the effort involved in
programming.

Experienced programmers are wily people and have come up with
tools to help make sure that a person does not introduce new bugs when
correcting other ones. This is done by developing a set of test cases for
which the answer is known and making sure the program gives the expected
answer for each test case. When a bug is encountered, a test is added to
the set of test cases that trips it, then the bug is corrected, and the entire
suite of test cases is run to make sure the code is as bug-free as possible.
This approach is known as regression testing.

54 ADRIAN F. CLARK

There are several ways in which regression testing can be done with
Python. The more sophisticated ways involve some object-oriented pro-
gramming, which is not being covered in this module; but a more straight-
forward approach can be used, which is appropriate for writing libraries
or modules (described in Section 2.4).

Adding the tests to a module is done in two stages. Firstly, the tests
have to be inserted into the “docstrings”, the documentation text at the
beginning of each individual routine — you will have seen these at the top
of the routines in these notes, though they have not contained tests. For
example, consider a simple routine that simply calculates the square of a
number. We could add tests to it as follows:

def square(x):

"""Returns the square of x.

>>> square(2)

4

>>> square(-2)

4

"""

return x * x

Inside the docstring, the triple angle bracket (>>>) identifies the Python
code that needs to be executed for the test, and the next line or lines give
the output that should be obtained.

The second stage is to add, right at the end of the file, the following
code:

if __name__ == "__main__":

import doctest

doctest.testmod()

The last two lines clearly import a module and run it; but the first line
will be somewhat unfamiliar. Whenever a Python program is executed, the
Python run-time system sets the name of the main program to be the string
“__main__”, and this is stored in a system variable called __name__. You
can see that the line is effectively saying if this is the main program, invoke
the routine doctest.testmod — and what that routine does is extract and
execute all the tests in the docstrings. For example, if a module called
mymodule.py has docstrings containing tests and the three lines listed
above at its end, the command

python3 mymodule.py

would cause all the tests in it to be executed.
Adding test cases to routines is considered as good programming prac-

tice, and you are encouraged to do this kind of thing with your own code.
It will prove especially useful as you start writing longer pieces of software.

7.3 When does Python run out of steam?

Python is a really good programming language for rapid development but,
although popular, it has not completely taken over the world. Are there

CE705: PROGRAMMING IN PYTHON 55

places in which Python is inappropriate to use? The answer is that there
are.

Although numpy and scipy make it possible for operations involving
entire arrays or arrays slices to be performed almost as quickly as in
compiled code (say, C or C++), if the algorithm cannot be decomposed
into such operations, it has to be written using loops in Python. This will
make it execute much more slowly. To give an example from the author’s
own experience, a particular image operation (region labelling) when
written in pure Python takes about 30 seconds; but when written using
the array-slicing code in scipy runs in under a second. If performance
is important, you should consider programming some or all of it in a
compiled language.

To run a Python program, one needs a Python interpreter and all the
support libraries. For an embedded system, where the processor is typically
slow and the memory footprint an important consideration, Python is likely
to be a poor choice. Similarly, Python is a poor choice for hard real-time
systems because there is no way of guaranteeing the response time of
Python code.

Finally, Python is a poor choice for any system in which you would be
unwilling for people to see the source code. There are ways of getting
around this restriction but they are not pretty.

For all other types of program — about 99% of the programs out there —
Python is a good choice.

8
Epilogue

The aim of this module has not been to turn you into an expert programmer;
rather, it has tried to give you enough knowledge to be able to write
programs for other modules and for your project. As with everything else,
the more you practise programming, the more adept you will become at it.

What has been missed out. You need to be aware that a number of features
of Python have been omitted here; the focus has been on giving you
enough knowledge to be able to write useful programs rather to cover the
entire language. Some of the things omitted are fairly straightforward to
understand, so you can easily read up about them on your own:

Global variables. Within a routine, you can explicitly declare that a vari-
able you are using is global — this provides an extra bit of sanity-
checking in programs. Conventional wisdom is that using global vari-
ables is bad, so you should use them only when you really have to.

Functions can return more than one value. In the programs you have seen
in these notes, a function returns a single value; however, the return

statement can take a list of things to be returned:

def mean_sd (data):

...

mean = ...

sd = ...

return mean, sd

ave, variation = mean_sd (mydata)

I personally find this to be a really useful feature of Python.

The following two features were mentioned fleetingly in Chapter 6 without
examples of how they are used. They are particularly valuable when
writing programs of a decent length, so it is well worth getting to grips
with them:

Default values in calls. When defining a routine, you can assign default
values to variables, which are used if no value was passed in. For
example, the simple script

def printx (x=10):

print (x)

CE705: PROGRAMMING IN PYTHON 57

printx (15)

printx ()

yields

15

10

as its output.

Passing arguments by keyword. In a similar way to default values, you can
pass arguments into routines by keyword:

def printxy (x=10, y=20):

print (x, y)

printx (15)

printx (y=10, x=20)

yields

15 20

20 10

Beyond these features, the most substantial thing omitted is object-oriented
programming. This omission was deliberate because the author believes
the advantages of using (or not) an object-oriented approach become
apparent only when you have some experience of ‘ordinary’ programming.

Going further. For some people, programming is as enjoyable as having
their teeth extracted; for others, it is a necessity that has to be endured;
but for a fortunate few, including the author, programming is a joy. If you
have been bitten by the programming bug, you might be interested to
learn how to enhance your knowledge.

The best advice I can give is to read other people’s code — anybody’s
code, novice or experienced, working or broken. See how easy it is to
understand and, when you find parts of it that are particularly clear, think
about how it has been presented to make it so. Looking at well-known
examples of good code is also valuable. Although written in C rather than
Python, one of the best examples of well-written code that the author has
come across is the source of the Tcl interpreter, written originally by John
Ousterhout and now maintained by the user community. This is an open
source piece of software, so you are able to download the source code and
browse through it.

Clearly from this chapter, you will see that there is more about the
Python language to be learned; but what about programming in general?
A few books that were influential to the author are summarised below; all
of them are in the Library.

Software Tools by Brian Kernighan and Phillip Plauger (Addison-Wesley,
1976). This was the first decent book ever written on structured pro-
gramming and strongly influenced at least two generations of software
developers. Although pretty old now, skimming through it should im-
part the essential ideas of what they are explaining: keep programs
simple, write things in short routines, and so on. I often re-read this
myself before embarking on a major piece of software.

58 ADRIAN F. CLARK

Programming Pearls by Jon Bentley (Addison-Wesley, 1986). This book
describes how a programmer can make their programs simultaneously
easier to understand, more elegant and more efficient, mostly through
a series of case studies. There is also More Programming Pearls by the
same author (Addison-Wesley, 1990).

The Pragmatic Programmer by Andrew Hunt and David Thomas (Addison-
Wesley, 1999). This book discusses how to become more effective
at programming, including ‘programming in the large’ issues such as
testing and version tracking. It is a good read but you will need some
experience before the things it talks about make really good sense.

Now, go forth and write beautiful programs!

	Getting Started
	Introduction
	Getting to grips with Linux
	Program development under Linux
	Your first program
	Converting temperatures
	Printing a temperature conversion table
	Conditionals
	while, break and continue statements
	Some subtleties

	Getting started with numerical computing
	Timing a pendulum
	Representing the data
	Functions and subroutines
	Making your own Python modules
	Creating lists dynamically
	Lists of lists

	Plotting data
	Plotting data using Gnuplot
	Plotting data using Matplotlib
	Period of a simple pendulum
	How close are theory and experiment?

	Working with text
	Chopping up text
	Handling the command line
	Temperature conversion revisited
	Pig Latin

	Files, Exceptions and Dictionaries
	Reading and writing files
	Exceptions
	Dictionaries

	Python as Software Glue
	Capabilities built into Python
	Using the operating system
	Extensions

	Large-Scale Programming with Python
	The approach to developing large programs
	Testing code
	When does Python run out of steam?

	Epilogue

