
Working with Excel files
in Python

Chris Withers with help from John Machin
EuroPython 2009, Birmingham

The Tutorial Materials
These can be obtained by CD, USB drive or downloaded from here:

• http://www.simplistix.co.uk/presentations/europython2009excel.zip

The Website
The best place to start when working with Excel files in python is the website:

• http://www.python-excel.org

http://www.python-excel.org/
http://www.simplistix.co.uk/presentations/europython2009excel.zip

Introduction
This tutorial covers the following libraries:

xlrd

• http://pypi.python.org/pypi/xlrd

• reading data and formatting from .xls files

• this tutorial covers version 0.7.1

• API documentation can be found at:

◦ https://secure.simplistix.co.uk/svn/xlrd/trunk/xlrd/doc/xlrd.html

xlwt

• http://pypi.python.org/pypi/xlwt

• writing data and formatting to .xls files

• this tutorial covers version 0.7.2

• Incomplete API documentation can be found at:

◦ https://secure.simplistix.co.uk/svn/xlwt/trunk/xlwt/doc/xlwt.html

• Fairly complete examples can be found at

◦ https://secure.simplistix.co.uk/svn/xlwt/trunk/xlwt/examples/

xlutils

• http://pypi.python.org/pypi/xlutils

• a collection of utilities using both xlrd and xlwt:

◦ copying data from a source to a target spreadsheet

◦ filtering data from a source to a target spreadsheet

• this tutorial covers version 1.3.0 and above.

• Documentation and examples can be found at:

◦ https://secure.simplistix.co.uk/svn/xlutils/trunk/xlutils/docs/

There are still reasons why automating an Excel instance via COM is necessary:

• manipulation of graphs

• rich text cells

• reading formulae in cells

• working with macros and names

• the more esoteric things found in .xls files

https://secure.simplistix.co.uk/svn/xlutils/trunk/xlutils/docs/
http://pypi.python.org/pypi/xlutils
https://secure.simplistix.co.uk/svn/xlwt/trunk/xlwt/examples/
https://secure.simplistix.co.uk/svn/xlwt/trunk/xlwt/doc/xlwt.html
http://pypi.python.org/pypi/xlwt
https://secure.simplistix.co.uk/svn/xlrd/trunk/xlrd/doc/xlrd.html
http://pypi.python.org/pypi/xlrd

Installation
There are several methods of installation available. While the following examples are for
xlrd, the exact same steps can be used for any of the three libraries.

Install from Source

On Linux:

NB: Make sure you use the python you intend to use for your project.

On Windows, having used WinZip or similar to unpack xlrd-0.7.0.zip:

NB: Make sure you use the python you intend to use for your project.

Install using Windows Installer

On Windows, you can download and run the xlrd-0.7.1.win32.exe installer.

Beware that this will only install to Python installations that are in the windows registry.

Install using EasyInstall
This cross-platform method requires that you already have EasyInstall installed. For more
information on this, please see:

• http://peak.telecommunity.com/DevCenter/EasyInstall

$ tar xzf xlrd.tgz
$ cd xlrd-0.7.1
$ python setup.py install

C:\> cd xlrd-0.7.1
C:\xlrd-0.7.1> \Python26\python setup.py install

easy_install xlrd

http://peak.telecommunity.com/DevCenter/EasyInstall

Installation using Buildout
Buildout provides a cross-platform method of meeting the python package dependencies of
a project without interfering with the system python.

Having created a directory called mybuildout, download the following file into it:

• http://svn.zope.org/*checkout*/zc.buildout/trunk/bootstrap/bootstrap.py

Now, create a file in mybuildout called buildout.cfg containing the following:

NB: The versions section is optional

Finally, run the following:

These lines:

• initialise the buildout environment

• run the buildout. This should be done each time dependencies change.

Now you can do the following:

Buildout lives at http://pypi.python.org/pypi/zc.buildout

[buildout]
parts = py
versions = versions

[versions]
xlrd=0.7.1
xlwt=0.7.2
xlutils=1.3.2

[py]
recipe = zc.recipe.egg
eggs =
 xlrd
 xlwt
 xlutils
interpreter = py
buildout.cfg

$ python bootstrap.py
$ bin/buildout

$ bin/py your_xlrd_xlwt_xltuils_script.py

http://pypi.python.org/pypi/zc.buildout
http://svn.zope.org/*checkout*/zc.buildout/trunk/bootstrap/bootstrap.py

Reading Excel Files
All the examples shown below can be found in the xlrd directory of the course material.

Opening Workbooks
Workbooks can be loaded either from a file, an mmap.mmap object or from a string:

Navigating a Workbook
Here is a simple example of workbook navigation:

The next few sections will cover the navigation of workbooks in more detail.

from mmap import mmap,ACCESS_READ
from xlrd import open_workbook

print open_workbook('simple.xls')

with open('simple.xls', 'rb') as f:
 print open_workbook(
 file_contents=mmap(f.fileno(),0,access=ACCESS_READ)
)

aString = open('simple.xls','rb').read()
print open_workbook(file_contents=aString)
open.py

from xlrd import open_workbook

wb = open_workbook('simple.xls')

for s in wb.sheets():
 print 'Sheet:',s.name
 for row in range(s.nrows):
 values = []
 for col in range(s.ncols):
 values.append(s.cell(row,col).value)
 print ','.join(values)
 print
simple.py

Introspecting a Book

The xlrd.Book object returned by open_workbook contains all information to do with
the workbook and can be used to retrieve individual sheets within the workbook.

The nsheets attribute is an integer containing the number of sheets in the workbook.
This attribute, in combination with the sheet_by_index method is the most common
way of retrieving individual sheets.

The sheet_names method returns a list of unicodes containing the names of all sheets in
the workbook. Individual sheets can be retrieved using these names by way of the
sheet_by_name function.

The results of the sheets method can be iterated over to retrieve each of the sheets in the
workbook.

The following example demonstrates these methods and attributes:

xlrd.Book objects have other attributes relating to the content of the workbook that are
only rarely useful:

• codepage
• countries
• user_name

If you think you may need to use these attributes, please see the xlrd documentation.

from xlrd import open_workbook

book = open_workbook('simple.xls')

print book.nsheets

for sheet_index in range(book.nsheets):
 print book.sheet_by_index(sheet_index)

print book.sheet_names()
for sheet_name in book.sheet_names():
 print book.sheet_by_name(sheet_name)

for sheet in book.sheets():
 print sheet
introspect_book.py

Introspecting a Sheet

The xlrd.sheet.Sheet objects returned by any of the methods described above contain
all the information to do with a worksheet and its contents.

The name attribute is a unicode representing the name of the worksheet.

The nrows and ncols attributes contain the number of rows and the number of columns,
respectively, in the worksheet.

The following example shows how these can be used to iterate over and display the
contents of one worksheet:

xlrd.sheet.Sheet objects have other attributes relating to the content of the worksheet
that are only rarely useful:

• col_label_ranges

• row_label_ranges

• visibility

If you think you may need to use these attributes, please see the xlrd documentation.

from xlrd import open_workbook,cellname

book = open_workbook('odd.xls')
sheet = book.sheet_by_index(0)

print sheet.name

print sheet.nrows
print sheet.ncols

for row_index in range(sheet.nrows):
 for col_index in range(sheet.ncols):
 print cellname(row_index,col_index),'-',
 print sheet.cell(row_index,col_index).value
introspect_sheet.py

Getting a particular Cell

As already seen in previous examples, the cell method of a Sheet object can be used to
return the contents of a particular cell.

The cell method returns an xlrd.sheet.Cell object. These objects have very few
attributes, of which value contains the actual value of the cell and ctype contains the
type of the cell.

In addition, Sheet objects have two methods for returning these two types of data. The
cell_value method returns the value for a particular cell, while the cell_type method
returns the type of a particular cell. These methods can be quicker to execute than
retrieving the Cell object.

Cell types are covered in more detail later. The following example shows the methods,
attributes and classes in action:

from xlrd import open_workbook,XL_CELL_TEXT

book = open_workbook('odd.xls')
sheet = book.sheet_by_index(1)

cell = sheet.cell(0,0)
print cell
print cell.value
print cell.ctype==XL_CELL_TEXT

for i in range(sheet.ncols):
 print sheet.cell_type(1,i),sheet.cell_value(1,i)
cell_access.py

Iterating over the contents of a Sheet

We've already seen how to iterate over the contents of a worksheet and retrieve the
resulting individual cells. However, there are methods to retrieve groups of cells more
easily. There are a symmetrical set of methods that retrieve groups of cell information
either by row or by column.

The row method and col method return all the Cell objects for a whole row or column
respectively.

The row_slice and col_slice methods return a list of Cell objects in a row or
column, respectively, bounded by and start index and an optional end index.

The row_types and col_types methods return a list of integers representing the cell
types in a row or column, respectively, bounded by and start index and an optional end
index.

The row_values and col_values methods return a list of objects representing the cell
values in a row or column, respectively, bounded by and start index and an optional end
index.

The following examples demonstrates all of the sheet iteration methods:

from xlrd import open_workbook

book = open_workbook('odd.xls')
sheet0 = book.sheet_by_index(0)
sheet1 = book.sheet_by_index(1)

print sheet0.row(0)
print sheet0.col(0)
print
print sheet0.row_slice(0,1)
print sheet0.row_slice(0,1,2)
print sheet0.row_values(0,1)
print sheet0.row_values(0,1,2)
print sheet0.row_types(0,1)
print sheet0.row_types(0,1,2)
print
print sheet1.col_slice(0,1)
print sheet0.col_slice(0,1,2)
print sheet1.col_values(0,1)
print sheet0.col_values(0,1,2)
print sheet1.col_types(0,1)
print sheet0.col_types(0,1,2)
sheet_iteration.py

Utility Functions

When navigating around a workbook, it's often useful to be able to convert between row
and column indexes and the Excel cell references that users may be used to seeing. The
following functions are provided to help with this:

The cellname function turns a row and column index into a relative Excel cell reference.

The cellnameabs function turns a row and column index into an absolute Excel cell
reference.

The colname function turns a column index into an Excel column name.

These three functions are demonstrated in the following example:

Unicode
All text attributes and values produced by xlrd will be either unicode objects or, in rare
cases, ascii encoded strings.

Each piece of text in an Excel file written by Microsoft Excel is encoded into one of the
following:

• Latin1, if it fits

• UTF_16_LE, if it doesn't find into Latin1

• In older files, by an encoding specified by an MS codepage. These are mapped to
Python encodings by xlrd and still results in unicode objects.

In rare cases, other software has been know to write no codepage or the wrong codepage
into Excel files. In this case, the correct encoding may need to be specified to
open_workbook:

Types of Cell
We have already seen the cell type expressed as an integer. This integer corresponds to a
set of constants in xlrd that identify the type of the cell. The full set of possible cell types is
listed in the following sections.

from xlrd import cellname, cellnameabs, colname

print cellname(0,0),cellname(10,10),cellname(100,100)
print cellnameabs(3,1),cellnameabs(41,59),cellnameabs(265,358)
print colname(0),colname(10),colname(100)
utility.py

from xlrd import open_workbook
book = open_workbook('dodgy.xls',encoding='cp1252')

Text

These are represented by the xlrd.XL_CELL_TEXT constant.

Cells of this type will have values that are unicode objects.

Number

These are represented by the xlrd.XL_CELL_NUMBER constant.

Cells of this type will have values that are float objects.

Date

These are represented by the xlrd.XL_CELL_DATE constant.

NB: Dates don't really exist in Excel files, they are merely Numbers with a particular
number formatting.

xlrd will return xlrd.XL_CELL_DATE as the cell type if the number format string looks
like a date.

The xldate_as_tuple method is provided for turning the float in a Date cell into a
tuple suitable for instantiating various date/time objects. This example shows how to use
it:

Caveats:

• Excel files have two possible date modes, one for files originally created on Windows
and one for files originally created on an Apple machine. This is expressed as the
datemode attribute of xlrd.Book objects and must be passed to xldate_as_tuple.

• The Excel file format has various problems with dates before 3 Jan 1904 that can
cause date ambiguities that can result in xldate_as_tuple raising an
XLDateError.

• The Excel formula function DATE()can return unexpected dates in certain
circumstances.

from datetime import date,datetime,time
from xlrd import open_workbook,xldate_as_tuple

book = open_workbook('types.xls')
sheet = book.sheet_by_index(0)

date_value =
xldate_as_tuple(sheet.cell(3,2).value,book.datemode)
print datetime(*date_value),date(*date_value[:3])
datetime_value =
xldate_as_tuple(sheet.cell(3,3).value,book.datemode)
print datetime(*datetime_value)
time_value =
xldate_as_tuple(sheet.cell(3,4).value,book.datemode)
print time(*time_value[3:])
print datetime(*time_value)
dates.py

Boolean

These are represented by the xlrd.XL_CELL_BOOLEAN constant.

Cells of this type will have values that are bool objects.

Error

These are represented by the xlrd.XL_CELL_ERROR constant.

Cells of this type will have values that are integers representing specific error codes.

The error_text_from_code function can be used to turn error codes into error
messages:

For a simpler way of sensibly displaying all cell types, see xlutils.display.

from xlrd import open_workbook,error_text_from_code

book = open_workbook('types.xls')
sheet = book.sheet_by_index(0)

print error_text_from_code[sheet.cell(5,2).value]
print error_text_from_code[sheet.cell(5,3).value]
errors.py

Empty / Blank

Excel files only store cells that either have information in them or have formatting applied
to them. However, xlrd presents sheets as rectangular grids of cells.

Cells where no information is present in the Excel file are represented by the
xlrd.XL_CELL_EMPTY constant. In addition, there is only one “empty cell”, whose value
is an empty string, used by xlrd, so empty cells may be checked using a Python identity
check.

Cells where only formatting information is present in the Excel file are represented by the
xlrd.XL_CELL_BLANK constant and their value will always be an empty string.

from xlrd import open_workbook,empty_cell

print empty_cell.value

book = open_workbook('types.xls')
sheet = book.sheet_by_index(0)
empty = sheet.cell(6,2)
blank = sheet.cell(7,2)
print empty is blank, empty is empty_cell, blank is empty_cell

book = open_workbook('types.xls',formatting_info=True)
sheet = book.sheet_by_index(0)
empty = sheet.cell(6,2)
blank = sheet.cell(7,2)
print empty.ctype,repr(empty.value)
print blank.ctype,repr(blank.value)
emptyblank.py

The following example brings all of the above cell types together and shows examples of
their use:

Names
These are an infrequently used but powerful way of abstracting commonly used
information found within Excel files.

They have many uses, and xlrd can extract information from many of them. A notable
exception are names that refer to sheet and VBA macros, which are extracted but should be
ignored.

Names are created in Excel by navigating to Insert > Name > Define. If you plan to
use xlrd to extract information from Names, familiarity with the definition and use of
names in your chosen spreadsheet application is a good idea.

from xlrd import open_workbook

def cell_contents(sheet,row_x):
 result = []
 for col_x in range(2,sheet.ncols):
 cell = sheet.cell(row_x,col_x)
 result.append((cell.ctype,cell,cell.value))
 return result

sheet = open_workbook('types.xls').sheet_by_index(0)

print 'XL_CELL_TEXT',cell_contents(sheet,1)
print 'XL_CELL_NUMBER',cell_contents(sheet,2)
print 'XL_CELL_DATE',cell_contents(sheet,3)
print 'XL_CELL_BOOLEAN',cell_contents(sheet,4)
print 'XL_CELL_ERROR',cell_contents(sheet,5)
print 'XL_CELL_BLANK',cell_contents(sheet,6)
print 'XL_CELL_EMPTY',cell_contents(sheet,7)

print
sheet = open_workbook(
 'types.xls',formatting_info=True
).sheet_by_index(0)

print 'XL_CELL_TEXT',cell_contents(sheet,1)
print 'XL_CELL_NUMBER',cell_contents(sheet,2)
print 'XL_CELL_DATE',cell_contents(sheet,3)
print 'XL_CELL_BOOLEAN',cell_contents(sheet,4)
print 'XL_CELL_ERROR',cell_contents(sheet,5)
print 'XL_CELL_BLANK',cell_contents(sheet,6)
print 'XL_CELL_EMPTY',cell_contents(sheet,7)
cell_types.py

Types

A Name can refer to:

• A constant

◦ CurrentInterestRate = 0.015
◦ NameOfPHB = “Attila T. Hun”

• An absolute (i.e. not relative) cell reference

◦ CurrentInterestRate = Sheet1!B4
• Absolute reference to a 1D, 2D, or 3D block of cells

◦ MonthlySalesByRegion = Sheet2:Sheet5!A2:M100
• A list of absolute references

◦ Print_Titles = [row_header_ref, col_header_ref])
Constants can be extracted.

The coordinates of an absolute reference can be extracted so that you can then extract the
corresponding data from the relevant sheet(s).

A relative reference is useful only if you have external knowledge of what cells can be used
as the origin. Many formulas found in Excel files include function calls and multiple
references and are not useful, and can be too hard to evaluate.

A full calculation engine is not included in xlrd.

Scope

The scope of a Name can be global, or it may be specific to a particular sheet. A Name's
identifier may be re-used in different scopes. When there are multiple Names with the
same identifier, the most appropriate one is used based on scope. A good example of this is
the built-in name Print_Area; each worksheet may have one of these.

Examples:

name=rate, scope=Sheet1, formula=0.015
name=rate, scope=Sheet2, formula=0.023
name=rate, scope=global, formula=0.040
A cell formula (1+rate)^20 is equivalent to 1.015^20 if it appears in Sheet1 but
equivalent to 1.023^20 if it appears in Sheet2, and 1.040^20 if it appears in any other
sheet.

Usage

Common reasons for using names include:

• Assigning textual names to values that may occur in many places within a workbook

◦ eg: RATE = 0.015
• Assigning textual names to complex formulae that may be easily mis-copied

◦ eg: SALES_RESULTS = A10:M999
Here's an example real-world use case: reporting to head office. A company's head office
makes up a template workbook. Each department gets a copy to fill in. The various ranges
of data to be provided all have defined names. When the files come back, a script is used to

validate that the department hasn't trashed the workbook and the names are used to
extract the data for further processing. Using names decouples any artistic repositioning of
the ranges, by either head office template-designing user or by departmental users who are
filling in the template, from the script which only has to know what the names of the
ranges are.

In the examples directory of the xlrd distribution you will find namesdemo.xls which
has examples of most of the non-macro varieties of defined names. There is also
xlrdnamesAPIdemo.py which shows how to use the name lookup dictionaries, and how
to extract constants and references and the data that references point to.

Formatting
We've already seen that open_workbook has a parameter to load formatting information
from Excel files. When this is done, all the formatting information is available, but the
details of how it is presented are beyond the scope of this tutorial.

If you wish to copy existing formatted data to a new Excel file, see xlutils.copy and
xlutils.filter.

If you do wish to inspect formatting information, you'll need to consult the following
attributes of the following classes:

xlrd.Book

colour_map
font_list
format_list
format_map

palette_record
style_name_map
xf_list

xlrd.sheet.Sheet

cell_xf_index
rowinfo_map
colinfo_map
computed_column_width
default_additional_space_above
default_additional_space_below
default_row_height

default_row_height_mismatch
default_row_hidden
defcolwidth
gcw
merged_cells
standard_width

xlrd.sheet.Cell

xf_index
Other Classes

In addition, the following classes are solely used to represent formatting information:

xlrd.sheet.Rowinfo
xlrd.sheet.Colinfo
xlrd.formatting.Font
xlrd.formatting.Format
xlrd.formatting.XF

xlrd.formatting.XFAlignment
xlrd.formatting.XFBackground
xlrd.formatting.XFBorder
xlrd.formatting.XFProtection

Working with large Excel files
If you're working with particularly large Excel files then there are two features of xlrd that
you should be aware of:

• The on_demand parameter can be passed as True to open_workbook resulting in
worksheets only being loaded into memory when they are requested.

• xlrd.Book objects have an unload_sheet method that will unload worksheet,
specified by either sheet index or sheet name, from memory.

The following example shows how a large workbook could be iterated over when only
sheets matching a certain pattern need to be inspected, and where only one of those sheets
ends up in memory at any one time:

from xlrd import open_workbook

book = open_workbook('simple.xls',on_demand=True)

for name in book.sheet_names():
 if name.endswith('2'):
 sheet = book.sheet_by_name(name)
 print sheet.cell_value(0,0)
 book.unload_sheet(name)
large_files.py

Introspecting Excel files with runxlrd.py
The xlrd source distribution includes a runxlrd.py script that is extremely useful for
introspecting Excel files without writing a single line of Python.

You are encouraged to run a variety of the commands it provides over the Excel files
provided in the course materials.

The following gives an overview of what's available from runxlrd, and can be obtained
using python runxlrd.py –-help:

runxlrd.py [options] command [input-file-patterns]

Commands:

2rows Print the contents of first and last row in each sheet
3rows Print the contents of first, second and last row in each sheet
bench Same as "show", but doesn't print -- for profiling
biff_count[1] Print a count of each type of BIFF record in the file
biff_dump[1] Print a dump (char and hex) of the BIFF records in the file
fonts hdr + print a dump of all font objects
hdr Mini-overview of file (no per-sheet information)
hotshot Do a hotshot profile run e.g. ... -f1 hotshot bench bigfile*.xls
labels Dump of sheet.col_label_ranges and ...row... for each sheet
name_dump Dump of each object in book.name_obj_list
names Print brief information for each NAME record
ov Overview of file
profile Like "hotshot", but uses cProfile
show Print the contents of all rows in each sheet
version[0] Print versions of xlrd and Python and exit
xfc Print "XF counts" and cell-type counts -- see code for details

[0] means no file arg
[1] means only one file arg i.e. no glob.glob pattern

Options:
 -h, --help show this help message and exit
 -l LOGFILENAME, --logfilename=LOGFILENAME
 contains error messages
 -v VERBOSITY, --verbosity=VERBOSITY
 level of information and diagnostics provided
 -p PICKLEABLE, --pickleable=PICKLEABLE
 1: ensure Book object is pickleable (default); 0:
 don't bother
 -m MMAP, --mmap=MMAP 1: use mmap; 0: don't use mmap; -1: accept heuristic
 -e ENCODING, --encoding=ENCODING
 encoding override
 -f FORMATTING, --formatting=FORMATTING
 0 (default): no fmt info 1: fmt info (all cells)
 -g GC, --gc=GC 0: auto gc enabled; 1: auto gc disabled, manual
 collect after each file; 2: no gc
 -s ONESHEET, --onesheet=ONESHEET
 restrict output to this sheet (name or index)
 -u, --unnumbered omit line numbers or offsets in biff_dump

Writing Excel Files
All the examples shown below can be found in the xlwt directory of the course material.

Creating elements within a Workbook
Workbooks are created with xlwt by instantiating an xlwt.Workbook object,
manipulating it and then calling its save method.

The save method may be passed either a string containing the path to write to or a file-
like object, opened for writing in binary mode, to which the binary Excel file data will be
written.

The following objects can be created within a workbook:

Worksheets

Worksheets are created with the add_sheet method of the Workbook class.

To retrieve an existing sheet from a Workbook, use its get_sheet method. This method
is particularly useful when the Workbook has been instantiated by xlutils.copy.

Rows

Rows are created using the row method of the Worksheet class and contain all of the
cells for a given row.

The row method is also used to retrieve existing rows from a Worksheet.

If a large number of rows have been written to a Worksheet and memory usage is
becoming a problem, the flush_row_data method may be called on the Worksheet.
Once called, any rows flushed cannot be accessed or modified.

It is recommended that flush_row_data is called for every 1000 or so rows of a normal
size that are written to an xlwt.Workbook. If the rows are huge, that number should be
reduced.

Columns

Columns are created using the col method of the Worksheet class and contain display
formatting information for a given column.

The col method is also used to retrieve existing columns from a Worksheet.

Cells

Cells can be written using either the write method of either the Worksheet or Row class.

A more detailed discussion of different ways of writing cells and the different types of cell
that may be written is covered later.

A Simple Example

The following example shows how all of the above methods can be used to build and save a
simple workbook:

Unicode
The best policy is to pass unicode objects to all xlwt-related method calls.

If you absolutely have to use encoded strings then make sure that the encoding used is
consistent across all calls to any xlwt-related methods.

If encoded strings are used and the encoding is not 'ascii', then any Workbook objects
must be created with the appropriate encoding specified:

from tempfile import TemporaryFile
from xlwt import Workbook

book = Workbook()
sheet1 = book.add_sheet('Sheet 1')
book.add_sheet('Sheet 2')

sheet1.write(0,0,'A1')
sheet1.write(0,1,'B1')
row1 = sheet1.row(1)
row1.write(0,'A2')
row1.write(1,'B2')
sheet1.col(0).width = 10000

sheet2 = book.get_sheet(1)
sheet2.row(0).write(0,'Sheet 2 A1')
sheet2.row(0).write(1,'Sheet 2 B1')
sheet2.flush_row_data()
sheet2.write(1,0,'Sheet 2 A3')
sheet2.col(0).width = 5000
sheet2.col(0).hidden = True

book.save('simple.xls')
book.save(TemporaryFile())
simple.py

from xlwt import Workbook
book = Workbook(encoding='utf-8')

Writing to Cells
A number of different ways of writing a cell are provided by xlwt along with different
strategies for handling multiple writes to the same cell.

Different ways of writing cells

There are generally three ways to write to a particular cell:

• Worksheet.write(row_index,column_index,value)

◦ This is just syntactic sugar for sheet.row(row_index).write(column_index,value)

◦ It can be useful when you only want to write one cell to a row

• Row.write(column_index,value)

◦ This will write the correct type of cell based on the value passed

◦ Because it figures out what type of cell to write, this method may be slower for
writing large workbooks

• Specialist write methods on the Row class

◦ Each type of cell has a specialist setter method as covered in the “Types of Cell”
section below.

◦ These require you to pass the correct type of Python object but can be faster.

In general, use Worksheet.write for convenience and the specialist write methods if you
require speed for a large volume of data.

Overwriting Cells

The Excel file format does nothing to prevent multiple records for a particular cell
occurring but, if this happens, the results will vary depending on what application is used
to open the file. Excel will display a “File error: data may have been lost”
while OpenOffice.org will show the last record for the cell that occurs in the file.

To help prevent this, xlwt provides two modes of operation:

• Writing to the same cell more than once will result in an exception
This is the default mode.

• Writing to the same cell more than once will replace the record for that cell, and
only one record will be written when the Workbook is saved.

The following example demonstrates these two options:

The most common case for needing to overwrite cells is when an existing Excel file has
been loaded into a Workbook instance using xlutils.copy.

Types of Cell
All types of cell supported by the Excel file format can be written:

Text

When passed a unicode or string, the write methods will write a Text cell.

The set_cell_text method of the Row class can also be used to write Text cells.

When passed a string, these methods will first decode the string using the Workbook's
encoding.

Number

When passed a float, int, long, or decimal.Decimal, the write methods will write a
Number cell.

The set_cell_number method of the Row class can also be used to write Number cells.

Date

When passed a datetime.datetime, datetime.date or datetime.time, the write
methods will write a Date cell.

The set_cell_date method of the Row class can also be used to write Date cells.

Note: As mentioned earlier, a date is not really a separate type in Excel; if you don't apply a
date format, it will be treated as a number.

Boolean

When passed a bool, the write methods will write a Boolean cell.

The set_cell_boolean method of the Row class can also be used to write Text cells.

from xlwt import Workbook

book = Workbook()
sheet1 = book.add_sheet('Sheet 1',cell_overwrite_ok=True)
sheet1.write(0,0,'original')
sheet = book.get_sheet(0)
sheet.write(0,0,'new')

sheet2 = book.add_sheet('Sheet 2')
sheet2.write(0,0,'original')
sheet2.write(0,0,'new')
overwriting.py

Error

You shouldn't ever want to write Error cells!

However, if you absolutely must, the set_cell_error method of the Row class can be
used to do so. For convenience, it can be called with either hexadecimal error codes,
expressed as integers, or the error text that Excel would display.

Blank

It is not normally necessary to write blank cells. The one exception to this is if you wish to
apply formatting to a cell that contains nothing.

To do this, either call the write methods with an empty string or None, or use the
set_cell_blank method of the Row class.

If you need to do this for more than one cell in a row, using the set_cell_mulblanks
method will result in a smaller Excel file when the Workbook is saved.

The following example brings all of the above cell types together and shows examples use
both the generic write method and the specialist methods:

from datetime import date,time,datetime
from decimal import Decimal
from xlwt import Workbook,Style

wb = Workbook()
ws = wb.add_sheet('Type examples')
ws.row(0).write(0,u'\xa3')
ws.row(0).write(1,'Text')
ws.row(1).write(0,3.1415)
ws.row(1).write(1,15)
ws.row(1).write(2,265L)
ws.row(1).write(3,Decimal('3.65'))
ws.row(2).set_cell_number(0,3.1415)
ws.row(2).set_cell_number(1,15)
ws.row(2).set_cell_number(2,265L)
ws.row(2).set_cell_number(3,Decimal('3.65'))
ws.row(3).write(0,date(2009,3,18))
ws.row(3).write(1,datetime(2009,3,18,17,0,1))
ws.row(3).write(2,time(17,1))
ws.row(4).set_cell_date(0,date(2009,3,18))
ws.row(4).set_cell_date(1,datetime(2009,3,18,17,0,1))
ws.row(4).set_cell_date(2,time(17,1))
ws.row(5).write(0,False)
ws.row(5).write(1,True)
ws.row(6).set_cell_boolean(0,False)
ws.row(6).set_cell_boolean(1,True)
ws.row(7).set_cell_error(0,0x17)
ws.row(7).set_cell_error(1,'#NULL!')
ws.row(8).write(
 0,'',Style.easyxf('pattern: pattern solid, fore_colour
green;'))
ws.row(8).write(
 1,None,Style.easyxf('pattern: pattern solid, fore_colour
blue;'))
ws.row(9).set_cell_blank(
 0,Style.easyxf('pattern: pattern solid, fore_colour
yellow;'))
ws.row(10).set_cell_mulblanks(
 5,10,Style.easyxf('pattern: pattern solid, fore_colour
red;')
)

wb.save('types.xls')
cell_types.py

Styles
Most elements of an Excel file can be formatted. For many elements including cells, rows
and columns, this is done by assigning a style, known as an XF record, to that element.

This is done by passing an xlwt.XFStyle instance to the optional last argument to the
various write methods and specialist set_cell_ methods. xlwt.Row and xlwt.Column
instances have set_style methods to which an xlwt.XFStyle instance can be passed.

XFStyle

In xlwt, the XF record is represented by the XFStyle class and its related attribute classes.

The following example shows how to create a red Date cell with Arial text and a black
border:

This can be quite cumbersome!

from datetime import date
from xlwt import Workbook, XFStyle, Borders, Pattern, Font

fnt = Font()
fnt.name = 'Arial'

borders = Borders()
borders.left = Borders.THICK
borders.right = Borders.THICK
borders.top = Borders.THICK
borders.bottom = Borders.THICK

pattern = Pattern()
pattern.pattern = Pattern.SOLID_PATTERN
pattern.pattern_fore_colour = 0x0A

style = XFStyle()
style.num_format_str='YYYY-MM-DD'
style.font = fnt
style.borders = borders
style.pattern = pattern

book = Workbook()
sheet = book.add_sheet('A Date')
sheet.write(1,1,date(2009,3,18),style)

book.save('date.xls')
xfstyle_format.py

easyxf

Thankfully, xlwt provides the easyxf helper to create XFStyle instances from human
readable text and an optional string containing a number format.

Here is the above example, this time created with easyxf:

The human readable text breaks roughly as follows, in pseudo-regular expression syntax:

 (<element>:(<attribute> <value>,)+;)+
This means:

• The text contains a semi-colon delimited list of element definitions.

• Each element contains a comma-delimited list of attribute and value pairs.

The following sections describe each of the types of element by providing a table of their
attributes and possible values for those attributes. For explanations of how to express
boolean values and colours, please see the “Types of attribute” section.

from datetime import date
from xlwt import Workbook, easyxf

book = Workbook()
sheet = book.add_sheet('A Date')

sheet.write(1,1,date(2009,3,18),easyxf(
 'font: name Arial;'
 'borders: left thick, right thick, top thick, bottom
thick;'
 'pattern: pattern solid, fore_colour red;',
 num_format_str='YYYY-MM-DD'
))

book.save('date.xls')
easyxf_format.py

font

bold A boolean value.
The default is False.

charset The character set to use for this font, which can be one of the following:
ansi_latin, sys_default, symbol, apple_roman,
ansi_jap_shift_jis, ansi_kor_hangul, ansi_kor_johab,
ansi_chinese_gbk, ansi_chinese_big5, ansi_greek,
ansi_turkish, ansi_vietnamese, ansi_hebrew,
ansi_arabic, ansi_baltic, ansi_cyrillic, ansi_thai,
ansi_latin_ii, oem_latin_i
The default is sys_default.

colour A colour specifying the colour for the text.
The default is the automatic colour.

escapement This can be one of none, superscript or subscript.
The default is none.

family This should be a string containing the name of the font family to use.
You probably want to use name instead of this attribute and leave this to
its default value.
The default is None.

height The height of the font as expressed by multiplying the point size by 20.
The default is 200, which equates to 10pt.

italic A boolean value.
The default is False.

name This should be a string containing the name of the font family to use.
The default is Arial.

outline A boolean value.
The default is False.

shadow A boolean value.
The default is False.

struck_out A boolean value.
The default is False.

underline A boolean value or one of none, single, single_acc, double or
double_acc.
The default is none.

color_index A synonym for colour
colour_index A synonym for colour
color A synonym for colour

alignment

direction One of general, lr, or rl.
The default is general.

horizontal One of the following:
general, left, center|centre, right, filled,
justified, center|centre_across_selection,
distributed
The default is general.

indent A indentation amount between 0 and 15.
The default is 0.

rotation An integer rotation in degrees between -90 and +90 or one of stacked
or none.
The default is none.

shrink_to_fit A boolean value.
The default is False.

vertical One of the following:
top, center|centre, bottom, justified, distributed
The default is bottom.

wrap A boolean value.
The default is False.

dire This is a synonym for direction.

horiz This is a synonym for horizontal.

horz This is a synonym for horizontal.

inde This is a synonym for indent.

rota This is a synonym for rotation.

shri This is a synonym for shrink_to_fit.

shrink This is a synonym for shrink_to_fit.

vert This is a synonym for vertical.

borders

left A type of border line*

right A type of border line*

top A type of border line*

bottom A type of border line*

diag A type of border line*

left_colour A colour.
The default is the automatic colour.

right_colour A colour.
The default is the automatic colour.

top_colour A colour.
The default is the automatic colour.

bottom_colour A colour.
The default is the automatic colour.

diag_colour A colour.
The default is the automatic colour.

need_diag_1 A boolean value.
The default is False.

need_diag_2 A boolean value.
The default is False.

left_color A synonym for left_colour
right_color A synonym for right_colour
top_color A synonym for top_colour
bottom_color A synonym for bottom_colour
diag_color A synonym for diag_colour
*This can be either an integer width between 0 and 13 or one of the following:
no_line, thin, medium, dashed, dotted, thick, double, hair,
medium_dashed, thin_dash_dotted, medium_dash_dotted,
thin_dash_dot_dotted, medium_dash_dot_dotted,
slanted_medium_dash_dotted

pattern

back_colour A colour.
The default is the automatic colour.

fore_colour A colour.
The default is the automatic colour.

pattern One of the following:
no_fill, none, solid, solid_fill, solid_pattern,
fine_dots, alt_bars, sparse_dots,
thick_horz_bands, thick_vert_bands,
thick_backward_diag, thick_forward_diag,
big_spots, bricks, thin_horz_bands,
thin_vert_bands, thin_backward_diag,
thin_forward_diag, squares, diamonds

The default is none.

fore_color A synonym for fore_colour
back_color A synonym for back_colour
pattern_fore_colour A synonym for fore_colour
pattern_fore_color A synonym for fore_colour
pattern_back_colour A synonym for back_colour
pattern_back_color A synonym for back_colour

protection

The protection features of the Excel file format are only partially implemented in xlwt.
Avoid them unless you plan on finishing their implementation.

cell_locked A boolean value.
The default is True.

formula_hidden A boolean value.
The default is False.

align

A synonym for alignment
border

A synonym for borders
Types of attribute

Boolean values are either True or False, but easyxf allows great flexibility in how you
choose to express those two values:

• True can be expressed by 1, yes, true or on
• False can be expressed by 0, no, false, or off

Colours in Excel files are a confusing mess. The safest bet to do is just pick from the
following list of colour names that easyxf understands.

The names used are those reported by the Excel 2003 GUI when you are inspecting the
default colour palette.

Warning: There are many differences between this implicit mapping from colour-names to
RGB values and the mapping used in standards such as HTML andCSS.

aqua
black
blue
blue_gray
bright_green
brown
coral
cyan_ega
dark_blue
dark_blue_ega
dark_green
dark_green_ega
dark_purple
dark_red

dark_red_ega
dark_teal
dark_yellow
gold
gray_ega
gray25
gray40
gray50
gray80
green
ice_blue
indigo
ivory
lavender

light_blue
light_green
light_orange
light_turquoise
light_yellow
lime
magenta_ega
ocean_blue
olive_ega
olive_green
orange
pale_blue
periwinkle
pink

plum
purple_ega
red
rose
sea_green
silver_ega
sky_blue
tan
teal
teal_ega
turquoise
violet
white
yellow

NB: grey can be used instead of gray wherever it occurs above.

Formatting Rows and Columns
It is possible to specify default formatting for rows and columns within a worksheet. This is
done using the set_style method of the Row and Column instances, respectively.

The precedence of styles is as follows:

• the style applied to a cell

• the style applied to a row

• the style applied to a column

It is also possible to hide whole rows and columns by using the hidden attribute of Row
and Column instances.

The width of a Column can be controlled by setting its width attribute to an integer where
1 is 1/256 of the width of the zero character, using the first font that occurs in the Excel file.

Do not be fooled by the height attribute of the Row class, it does nothing. Specify a style
on the row and set its font height attribute instead.

The following example shows these methods and properties in use along with the style
precedence:

Formatting Sheets and Workbooks
There are many possible settings that can be made on Sheets and Workbooks.

Most of them you will never need or want to touch.

If you think you do, see the “Other Properties” section below.

Style compression
While its fine to create as many XFStyle and their associated Font instances as you like,
each one written to Workbook will result in an XF record and a Font record. Excel has
fixed limits of around 400 Fonts and 4000 XF records so care needs to be taken when
generating large Excel files.

from xlwt import Workbook, easyxf
from xlwt.Utils import rowcol_to_cell

row = easyxf('pattern: pattern solid, fore_colour blue')
col = easyxf('pattern: pattern solid, fore_colour green')
cell = easyxf('pattern: pattern solid, fore_colour red')

book = Workbook()

sheet = book.add_sheet('Precedence')
for i in range(0,10,2):
 sheet.row(i).set_style(row)
for i in range(0,10,2):
 sheet.col(i).set_style(col)
for i in range(10):
 sheet.write(i,i,None,cell)

sheet = book.add_sheet('Hiding')
for rowx in range(10):
 for colx in range(10):
 sheet.write(rowx,colx,rowcol_to_cell(rowx,colx))
for i in range(0,10,2):
 sheet.row(i).hidden = True
 sheet.col(i).hidden = True

sheet = book.add_sheet('Row height and Column width')
for i in range(10):
 sheet.write(0,i,0)
for i in range(10):
 sheet.row(i).set_style(easyxf('font:height '+str(200*i)))
 sheet.col(i).width = 256*i

book.save('format_rowscols.xls')
format_rowscols.py

To help with this, xlwt.Workbook has an optional style_compression parameter
with the following meaning:

• 0 – no compression. This is the default.

• 1 – compress Fonts only. Not very useful.

• 2 – compress Fonts and XF records.

The following example demonstrates these three options:

Be aware that doing this compression involves deeply nested comparison of the XFStyle
objects, so may slow down writing of large files where many styles are used.

The recommended best practice is to create all the styles you will need in advance and
leave style_compression at its default value.

Formulae
Formulae can be written by xlwt by passing an xlwt.Formula instance to either of the
write methods or by using the set_cell_formula method of Row instances, bugs
allowing.

The following are supported:

• all the built-in Excel formula functions

• references to other sheets in the same workbook

• access to all the add-in functions in the Analysis Toolpak (ATP)

from xlwt import Workbook, easyxf

style1 = easyxf('font: name Times New Roman')
style2 = easyxf('font: name Times New Roman')
style3 = easyxf('font: name Times New Roman')

def write_cells(book):
 sheet = book.add_sheet('Content')
 sheet.write(0,0,'A1',style1)
 sheet.write(0,1,'B1',style2)
 sheet.write(0,2,'C1',style3)

book = Workbook()
write_cells(book)
book.save('3xf3fonts.xls')

book = Workbook(style_compression=1)
write_cells(book)
book.save('3xf1font.xls')

book = Workbook(style_compression=2)
write_cells(book)
book.save('1xf1font.xls')
stylecompression.py

• comma or semicolon as the argument separator in function calls

• case-insensitive matching of formula names

The following are not suppoted:

• references to external workbooks

• array aka Ctrl-Shift-Enter aka CSE formulas

• references to defined Names

• using formulas for data validation or conditional formatting

• evaluation of formulae

The following example shows some of these things in action:

Names
Names cannot currently be written by xlwt.

from xlwt import Workbook, Formula

book = Workbook()

sheet1 = book.add_sheet('Sheet 1')
sheet1.write(0,0,10)
sheet1.write(0,1,20)
sheet1.write(1,0,Formula('A1/B1'))

sheet2 = book.add_sheet('Sheet 2')
row = sheet2.row(0)
row.write(0,Formula('sum(1,2,3)'))
row.write(1,Formula('SuM(1;2;3)'))
row.write(2,Formula("A1+B1*SUM('ShEEt 1'!A1:b2)"))

book.save('formula.xls')
formulae.py

Utility methods
The Utils module of xlwt contains several useful utility functions:

col_by_name

This will convert a string containing a column identifier into an integer column index.

cell_to_rowcol

This will convert a string containing an excel cell reference into a four-element tuple
containing:

(row,col,row_abs,col_abs)
row – integer row index of the referenced cell

col – integer column index of the referenced cell

row_abs – boolean indicating whether the row index is absolute (True) or relative (False)

col_abs – boolean indicating whether the column index is absolute (True) or relative
(False)

cell_to_rowcol2

This will convert a string containing an excel cell reference into a two-element tuple
containing:

(row,col)
row – integer row index of the referenced cell

col – integer column index of the referenced cell

rowcol_to_cell

This will covert an integer row and column index into a string excel cell reference, with
either index optionally being absolute.

cellrange_to_rowcol_pair

This will convert a string containing an excel range into a four-element tuple containing:

(row1,col1,row2,col2)
row1 – integer row index of the start of the range

col1 – integer column index of the start of the range

row2 – integer row index of the end of the range

col2 – integer column index of the end of the range

rowcol_pair_to_cellrange

This will covert a pair of integer row and column indexes into a string containing an excel
cell range. Any of the indexes specified can optionally be made to be absolute.

valid_sheet_name

This function takes a single string argument and returns a boolean value indication
whether the sheet name will work without problems (True) or will cause complaints from
Excel (False).

The following example shows all of these functions in use:

from xlwt import Utils

print 'AA ->',Utils.col_by_name('AA')
print 'A ->',Utils.col_by_name('A')

print 'A1 ->',Utils.cell_to_rowcol('A1')
print 'A1 ->',Utils.cell_to_rowcol('A1')

print 'A1 ->',Utils.cell_to_rowcol2('A1')

print (0,0),'->',Utils.rowcol_to_cell(0,0)
print (0,0,False,True),'->',
print Utils.rowcol_to_cell(0,0,False,True)
print (0,0,True,True),'->',
print Utils.rowcol_to_cell(
 row=0,col=0,row_abs=True,col_abs=True
)

print '1:3 ->',Utils.cellrange_to_rowcol_pair('1:3')
print 'B:G ->',Utils.cellrange_to_rowcol_pair('B:G')
print 'A2:B7 ->',Utils.cellrange_to_rowcol_pair('A2:B7')
print 'A1 ->',Utils.cellrange_to_rowcol_pair('A1')

print (0,0,100,100),'->',
print Utils.rowcol_pair_to_cellrange(0,0,100,100)
print (0,0,100,100,True,False,False,False),'->',
print Utils.rowcol_pair_to_cellrange(
 row1=0,col1=0,row2=100,col2=100,
 row1_abs=True,col1_abs=False,
 row2_abs=False,col2_abs=True
)

for name in (
 '',"'quoted'","O'hare","X"*32,"[]:\\?/*\x00"
):
 print 'Is %r a valid sheet name?' % name,
 if Utils.valid_sheet_name(name):
 print "Yes"
 else:
 print "No"
utilities.py

Other properties
There are many other properties that you can set on xlwt-related objects. They are all listed
below, for each of the types of object. The names are mostly intuitive but you are warned to
experiment thoroughly before attempting to use any of these in an important situation as
some properties exist that aren't saved to the resulting Excel files and some others are only
partially implemented.

xlwt.Workbook

owner
country_code
wnd_protect
obj_protect
protect
backup_on_save
hpos

vpos
width
height
active_sheet
tab_width
wnd_visible
wnd_mini

hscroll_visible
vscroll_visible
tabs_visible
dates_1904
use_cell_values

xlwt.Row

set_style
height
has_default_height

height_mismatch
level
collapse

hidden
space_above
space_below

xlwt.Column

set_style
width_in_pixels

width
hidden

level
collapse

xlwt.Worksheet

name
visibility
row_default_height_mismatch
row_default_hidden
row_default_space_above
row_default_space_below
show_formulas
show_grid
show_headers
show_zero_values
auto_colour_grid
cols_right_to_left
show_outline
remove_splits
selected
sheet_visible
page_preview
first_visible_row
first_visible_col
grid_colour
dialog_sheet
auto_style_outline
outline_below
outline_right
fit_num_pages
show_row_outline
show_col_outline
alt_expr_eval
alt_formula_entries
row_default_height
col_default_height
calc_mode
calc_count
RC_ref_mode
iterations_on
delta

save_recalc
print_headers
print_grid
header_str
footer_str
print_centered_vert
print_centered_horz
left_margin
right_margin
top_margin
bottom_margin
paper_size_code
print_scaling
start_page_number
fit_width_to_pages
fit_height_to_pages
print_in_rows
portrait
print_colour
print_draft
print_notes
print_notes_at_end
print_omit_errors
print_hres
header_margin
footer_margin
copies_num
wnd_protect
obj_protect
protect
scen_protect
password

Some examples of Other Properties
The following sections contain examples of how to use some of the properties listed above.

Hyperlinks

Hyperlinks are a type of formula as shown in the following example:

Images

Images can be inserted using the insert_bitmap method of the Sheet class:

NB: Images are not displayed by OpenOffice.org

from xlwt import Workbook,easyxf,Formula

style = easyxf('font: underline single')

book = Workbook()
sheet = book.add_sheet('Hyperlinks')

sheet.write(
 0, 0,
 Formula('HYPERLINK("http://www.python.org";"Python")'),
 style)

link = 'HYPERLINK("mailto:python-
excel@googlegroups.com";"help")'
sheet.write(
 1,0,
 Formula(link),
 style)

book.save("hyperlinks.xls")
hyperlinks.py

from xlwt import Workbook
w = Workbook()
ws = w.add_sheet('Image')
ws.insert_bitmap('python.bmp', 0, 0)
w.save('images.xls')
images.py

Merged cells

Merged groups of cells can be inserted using the write_merge method of the Sheet
class:

Borders

Writing a single cell with borders is simple enough, however applying a border to a group
of cells is painful as shown in this example:

NB: Extra care needs to be taken if you're updating an existing Excel file!

from xlwt import Workbook,easyxf
style = easyxf(
 'pattern: pattern solid, fore_colour red;'
 'align: vertical center, horizontal center;'
)
w = Workbook()
ws = w.add_sheet('Merged')
ws.write_merge(1,5,1,5,'Merged',style)
w.save('merged.xls')
merged.py

from xlwt import Workbook,easyxf
tl = easyxf('border: left thick, top thick')
t = easyxf('border: top thick')
tr = easyxf('border: right thick, top thick')
r = easyxf('border: right thick')
br = easyxf('border: right thick, bottom thick')
b = easyxf('border: bottom thick')
bl = easyxf('border: left thick, bottom thick')
l = easyxf('border: left thick')

w = Workbook()
ws = w.add_sheet('Border')
ws.write(1,1,style=tl)
ws.write(1,2,style=t)
ws.write(1,3,style=tr)
ws.write(2,3,style=r)
ws.write(3,3,style=br)
ws.write(3,2,style=b)
ws.write(3,1,style=bl)
ws.write(2,1,style=l)

w.save('borders.xls')
borders.py

Split and Freeze panes

It is fairly straight forward to create frozen panes using xlwt.

The location of the split is specified using the integer vert_split_pos and
horz_split_pos properties of the Sheet class.

The first visible cells are specified using the integer vert_split_first_visible and
horz_split_first_visible properties of the Sheet class.

The following example shows them all in action:

Split panes are a less frequently used feature and their support is less complete in xlwt.

The procedure for creating split panes is exactly the same as for frozen panes except that
the panes_frozen attribute of the Worksheet should be set to False instead of True.

However, if you really need split panes, you're advised to see professional help before
proceeding!

from xlwt import Workbook
from xlwt.Utils import rowcol_to_cell

w = Workbook()
sheet = w.add_sheet('Freeze')
sheet.panes_frozen = True
sheet.remove_splits = True
sheet.vert_split_pos = 2
sheet.horz_split_pos = 10
sheet.vert_split_first_visible = 5
sheet.horz_split_first_visible = 40

for col in range(20):
 for row in range(80):
 sheet.write(row,col,rowcol_to_cell(row,col))

w.save('panes.xls')
panes.py

Outlines

These are a little known and little used feature of the Excel file format that can be very
useful when dealing with categorised data.

Their use is best shown by example:

from xlwt import Workbook
data = [
 ['','','2008','','2009'],
 ['','','Jan','Feb','Jan','Feb'],
 ['Company X'],
 ['','Division A'],
 ['','',100,200,300,400],
 ['','Division B'],
 ['','',100,99,98,50],
 ['Company Y'],
 ['','Division A'],
 ['','',100,100,100,100],
 ['','Division B'],
 ['','',100,101,102,103],
]
w = Workbook()
ws = w.add_sheet('Outlines')
for i,row in enumerate(data):
 for j,cell in enumerate(row):
 ws.write(i,j,cell)
ws.row(2).level = 1
ws.row(3).level = 2
ws.row(4).level = 3
ws.row(5).level = 2
ws.row(6).level = 3
ws.row(7).level = 1
ws.row(8).level = 2
ws.row(9).level = 3
ws.row(10).level = 2
ws.row(11).level = 3
ws.col(2).level = 1
ws.col(3).level = 2
ws.col(4).level = 1
ws.col(5).level = 2
w.save('outlines.xls')
outlines.py

Zoom magnification and Page Break Preview

The zoom percentage used when viewing a sheet in normal mode can be controlled by
setting the normal_magn attribute of a Sheet instance.

The zoom percentage used when viewing a sheet in page break preview mode can be
controlled by setting the preview_magn attribute of a Sheet instance.

A Sheet can also be made to show a page break preview by setting the page_preview
attribute of the Sheet instance to True.

Here's an example to show all three in action:

from xlwt import Workbook

w = Workbook()

ws = w.add_sheet('Normal')
ws.write(0,0,'Some text')
ws.normal_magn = 75

ws = w.add_sheet('Page Break Preview')
ws.write(0,0,'Some text')
ws.preview_magn = 150
ws.page_preview = True

w.save('zoom.xls')
zoom.py

Filtering Excel Files
Any examples shown below can be found in the xlutils directory of the course material.

Other utilities in xlutils
The xlutils package contains several utilities in addition to those for filtering. The
following are often useful:

xlutils.styles

This module contains one class which, when instantiated with an xlrd.Workbook, will let
you discover the style name and information from a given cell in that workbook as shown
in the following example:

NB: For obvious reasons, open_workbook must be called with
formatting_info=True in order to use xlutils.styles.

Full documentation and examples can be found in the styles.txt file in the docs folder
of xlutils' source distribution.

from xlrd import open_workbook
from xlutils.styles import Styles

book = open_workbook('source.xls',formatting_info=True)
styles = Styles(book)
sheet = book.sheet_by_index(0)

print styles[sheet.cell(1,1)].name
print styles[sheet.cell(1,2)].name

A1_style = styles[sheet.cell(0,0)]
A1_font = book.font_list[A1_style.xf.font_index]
print book.colour_map[A1_font.colour_index]
styles.py

xlutils.display

This module contains utility functions for easy and safe display of information returned by
xlrd.

quoted_sheet_name is called with the name attribute of an xlrd.sheet.Sheet
instance and will return an encoded string containing a quoted version of the sheet's name.

cell_display is called with an xlrd.sheet.Cell instance and returns an encoded
string containing a sensible representation of the cells contents, even for Date and Error
cells. If a date cell is to be displayed, cell_display must be called with the datemode
attribute of the xlrd.Book from which the cell came.

The following examples show both functions in action:

Full documentation and examples can be found in the display.txt file in the docs folder of
xlutils' source distribution.

from xlrd import open_workbook
from xlutils.display import quoted_sheet_name
from xlutils.display import cell_display

wb = open_workbook('source.xls')

print quoted_sheet_name(wb.sheet_names()[0])
print repr(quoted_sheet_name(u'Price(\xa3)','utf-8'))
print quoted_sheet_name(u'My Sheet')
print quoted_sheet_name(u"John's Sheet")

sheet = wb.sheet_by_index(0)
print cell_display(sheet.cell(1,1))
print cell_display(sheet.cell(1,3),wb.datemode)
display.py

xlutils.copy

This module contains one function that will take an xlrd.Book and returns an
xlwt.Workbook populated with the data and formatting found in the xlrd.Book.

This is extremely useful for updating an existing spreadsheet as the following example
shows:

It is important to note that some things won't be copied:

• Formulae

• Names

• anything ignored by xlrd

In addition to the modules described above, there are also xlutils.margins and
xlutils.save, but these are only useful in certain situations. Refer to their
documentation in the xlutils source distribution.

from xlrd import open_workbook
from xlwt import easyxf
from xlutils.copy import copy

rb = open_workbook('source.xls',formatting_info=True)
rs = rb.sheet_by_index(0)
wb = copy(rb)
ws = wb.get_sheet(0)

plain = easyxf('')
for i,cell in enumerate(rs.col(2)):
 if not i:
 continue
 ws.write(i,2,cell.value,plain)

for i,cell in enumerate(rs.col(4)):
 if not i:
 continue
 ws.write(i,4,cell.value-1000)

wb.save('output.xls')
copy.py

Structure of xlutils.filter
This framework is designed to filter and split Excel files using a series of modular readers,
filters and writers as shown in the diagram below:

The flow of information between the components is by method calls on the next
component in the chain. The possible method calls are listed in the table below, where
rdbook is an xlrd.Book instance, rdsheet is an xlrd.sheet.Sheet instance,
rdrowx, rdcolx, wtrowx and wtcolx and integer indexes specifying the cell to read
from and write to, wtbook_name is a string specifying the name of the Excel file to write to
and wtsheet_name is a unicode specifying the name of the sheet to write to:

start() This method is called before processing of a batch of
input. It can be called at any time. One common use
is to reset all the filters in a chain in the event of an
error
during the processing of an rdbook.

workbook(rdbook,wtbook_name) This method is called every time processing of a new
workbook starts

sheet(rdsheet,wtsheet_name) This method is called every time processing of a new
sheet in the current workbook starts

set_rdsheet(rdsheet) This method is called to indicate a change for the
source of cells mid-way through writing a sheet.

row(rdrowx,wtrowx) The row method is called every time processing of a
new row in the current sheet starts.

cell(rdrowx,rdcolx,wtrowx,wtcolx) This is called for every cell in the sheet being
processed. This is the most common method in which
filtering and queuing of onward calls to the next
component takes place.

finish This method is called once processing of all
workbooks has been completed.

Filter 1 Filter 2Reader Writer

process

Readers

A reader's job is to obtain one or more xlrd.Book objects and iterate over those objects
issuing appropriate calls to the next component in the chain. The order of calling is
expected to be as follows:

• start
◦ workbook, once for each xlrd.Book object obtained

▪ sheet, once for each sheet found in the current book

▪ set_rdsheet, whenever the sheet from which cells to be read needs to be
changed. This method may not be called between calls to row and cell, and
between multiple calls to cell. It may only be called once all cell calls for a
row have been made.

• row, once for each row in the current sheet

◦ cell, once for each cell in the row

• finish, once all xlrd.Book objects have been processed

Also, for method calls made by a reader, the following should be true:

• wtbook_name should be the filename of the file the xlrd.Book object originated
from.

• wtsheet_name should be rdbook.name
• wtrowx should be equal to rdrowx
• rdcolx should be equal to wtcolx

Because of these restrictions, an xlutils.filter.BaseReader class is provided that
will normally only need to have one of two methods overridden to get any required
functionality:

• get_filepaths – if implemented, this must return an iterable sequence of paths
to excel files that can be opened with python's builtin file.

• get_workbooks – if implemented, this must return an sequence of 2-tuples. Each
tuple must contain an xlrd.Book object followed by a string containing the
filename of the file from which the xlrd.Book object was loaded.

Filters

Implementing these components is where the bulk of the work will be done by users of the
xlutils.filter framework. A Filter's responsibilities are to accept method calls from
the preceding component in the chain, do any processing necessary and then emit
appropriate method calls to the next component in the chain.

There is very little constraint on what order Filters receive and emit method calls other
than that the order of method calls emitted must remain consistent with the structure
given above. This enables components to be freely interchanged more easily.

Because Filters may only need to implement few of the full set of method calls, an
xlutils.filter.BaseFilter is provided that does nothing but pass the method calls
on to the next component in the chain. The implementation of this filter is useful to see
when embarking on Filter implementation:

class BaseFilter:

 def start(self):
 self.next.start()

 def workbook(self,rdbook,wtbook_name):
 self.next.workbook(rdbook,wtbook_name)

 def sheet(self,rdsheet,wtsheet_name):
 self.rdsheet = rdsheet
 self.next.sheet(rdsheet,wtsheet_name)

 def set_rdsheet(self,rdsheet):
 self.rdsheet = rdsheet
 self.next.set_rdsheet(rdsheet)

 def row(self,rdrowx,wtrowx):
 self.next.row(rdrowx,wtrowx)

 def cell(self,rdrowx,rdcolx,wtrowx,wtcolx):
 self.next.cell(rdrowx,rdcolx,wtrowx,wtcolx)

 def finish(self):
 self.next.finish()

Writers

These components do the grunt work of actually copying the appropriate information from
the rdbook and serialising it into an Excel file. This is a complicated process and not for
the feint of hard to re-implement.

For this reason, an xlutils.filter.BaseWriter component is provided that does all
of the hard work and has one method that needs to be implemented. That method is
get_stream and it is called with the filename of the Excel file to be written.
Implementations of this method are expected to return a new file-like object that has a
write and, by default, a close method each time they are called.

Subclasses may also override the boolean close_after_write attribute, which is True
by default, to indicate that the file-like objects returned from get_stream should not
have their close method called once serialisation of the Excel file data is complete.

It is important to note that some things won't be copied from the rdbook by
BaseWriter:

• Formulae

• Names

• anything ignored by xlrd

Process

The process function is responsible for taking a series of components as its arguments. The
first of these should be a Reader. The last of these should be a Writer. The rest should be
the necessary Filters in the order of processing required.

The process method will wire these components together by way of their next attributes
and then kick the process off by calling the Reader and passing the first Filter in the chain
as its argument.

A worked example
Suppose we want to filter an existing Excel file to omit rows that have an X in the first
column.

The following example shows possible components to do this and shows how they would
be instantiated and called to achieve this:

In reality, we would not need to implement the Reader and Writer components, as there
are already suitable components included.

import os
from xlutils.filter import \
 BaseReader,BaseFilter,BaseWriter,process

class Reader(BaseReader):
 def get_filepaths(self):
 return [os.path.abspath('source.xls')]

class Writer(BaseWriter):
 def get_stream(self,filename):
 return file(filename,'wb')

class Filter(BaseFilter):
 pending_row = None
 wtrowxi = 0
 def workbook(self,rdbook,wtbook_name):
 self.next.workbook(rdbook,'filtered-'+wtbook_name)
 def row(self,rdrowx,wtrowx):
 self.pending_row = (rdrowx,wtrowx)
 def cell(self,rdrowx,rdcolx,wtrowx,wtcolx):
 if rdcolx==0:
 value = self.rdsheet.cell(rdrowx,rdcolx).value
 if value.strip().lower()=='x':
 self.ignore_row = True
 self.wtrowxi -= 1
 else:
 self.ignore_row = False
 rdrowx, wtrowx = self.pending_row
 self.next.row(rdrowx,wtrowx+self.wtrowxi)
 elif not self.ignore_row:
 self.next.cell(
 rdrowx,rdcolx,wtrowx+self.wtrowxi,wtcolx-1
)

process(Reader(),Filter(),Writer())
filter.py

Existing components
The xlutils.filter framework comes with a wide range of existing components, each of
which is briefly described below. For full descriptions and worked examples of all these
components, please see filter.txt in the docs folder of the xlutils source
distribution.

GlobReader

If you're processing files that are on disk, then this is probably the reader for you. It
returns all files matching the path specification it's instantiated with.

XLRDReader

This reader can be used at the start of a chain when you already have an xlrd.Book object
and you'll looking to process it with xlutils.filter.

TestReader

This reader is specifically designed for testing filterimplementations with known sets of
cells.

DirectoryWriter

If you want files you're processing to end up on disk, then this is probably the writer for
you. It stores files in the directory it is instantiated with.

StreamWriter

If you want to write exactly one workbook to a stream, such as a
tempfile.TemporaryFile or sys.stdout, then this is the writer for you.

XLWTWriter

If you want to change cells after the filtering process is complete then this writer can be
used to obtain the xlwt.Workbook objects that BaseWriter generates.

ColumnTrimmer

This filter will strip columns containing no useful data from the end of sheets. The
definition of “no useful data” can be controlled during instantiation of this filter.

ErrorFilter

This filter caches all method calls in a file on disk and will only pass them on the next
component in the chain when its finish method has been called and no error messages
have been logged to the python logging framework.

If Boolean or error Cells are encountered, an error message will be logged to the python
logging framework will will also usually mean that no methods will be emitted from this
component to the next component in the chain.

Finally, cell method calls corresponding to Empty cells in rdsheet will not be passed on
to the next component in the chain.

Calling this component's start method will reset it.

Echo

This filter will print calls to the methods configured when the filter is instantiated along
with the arguments passed.

MemoryLogger

This filter will dump stats to the path it was configured with using the heapy package if it is
available. If it is not available, no operations are performed.

For more information on heapy, please see http://guppy-pe.sourceforge.net/#Heapy

http://guppy-pe.sourceforge.net/#Heapy

Possible Tasks for Workshop
The following is a list of tasks that can be attempted by any attendee who hasn't brought
their own tasks to attempt.

Installation with IronPython

The libraries have been used successfully with IronPython, but this has not been
thoroughly tests or documented.

Installation with Jython

The libraries should all work with Jython, but no one has so far attempted to do so.

Inserting a row into a sheet

Starting with an existing Excel file, attempt to create a new Excel file with a row inserted at
a given position.

Splitting a Book into its Sheets

Starting with an existing Excel file, create a directory containing one file for each
worksheet in the original file.

Reporting errors in a directory full on Excel files

Scan a directory of Excel files and report the location of any error cells.

A progression of this task is to allow the passing of options to indicate what types of error
to report.

Removing Rows containing errors

Starting with an existing Excel file, create a filtering process that generates a new Excel file
that excludes any rows containing error cells.

A progression of this task is to generate a new Excel file that contains empty cells where
there were errors in the original file.

Filtering Excel files to and from a web server

This task is to create components for xlutils.filter that can read from a website and write
back to that website.

The task should result in an HTTPReader and an HTTPWriter.

Producing a report from a database

This task is to take a typical database query and dump it into an Excel file such that the
heading row is set up nicely with decent alignment in a frozen pane.

As a precursor to this task, you may need to set up a typical database!

	Working with Excel files in Python
	Chris Withers with help from John Machin
	EuroPython 2009, Birmingham

	The Tutorial Materials
	The Website

	Introduction
	xlrd
	xlwt
	xlutils

	Installation
	Install from Source
	Install using Windows Installer
	Install using EasyInstall
	Installation using Buildout

	Reading Excel Files
	Opening Workbooks
	Navigating a Workbook
	Introspecting a Book
	Introspecting a Sheet
	Getting a particular Cell
	Iterating over the contents of a Sheet
	Utility Functions

	Unicode
	Types of Cell
	Text
	Number
	Date
	Boolean
	Error
	Empty / Blank

	Names
	Types
	Scope
	Usage

	Formatting
	xlrd.Book
	xlrd.sheet.Sheet
	xlrd.sheet.Cell
	Other Classes

	Working with large Excel files
	Introspecting Excel files with runxlrd.py

	Writing Excel Files
	Creating elements within a Workbook
	Worksheets
	Rows
	Columns
	Cells
	A Simple Example

	Unicode
	Writing to Cells
	Different ways of writing cells
	Overwriting Cells

	Types of Cell
	Text
	Number
	Date
	Boolean
	Error
	Blank

	Styles
	XFStyle
	easyxf
	font
	alignment
	borders
	pattern
	protection
	align
	border
	Types of attribute

	Formatting Rows and Columns
	Formatting Sheets and Workbooks
	Style compression
	Formulae
	Names
	Utility methods
	col_by_name
	cell_to_rowcol
	cell_to_rowcol2
	rowcol_to_cell
	cellrange_to_rowcol_pair
	rowcol_pair_to_cellrange
	valid_sheet_name

	Other properties
	xlwt.Workbook
	xlwt.Row
	xlwt.Column
	xlwt.Worksheet

	Some examples of Other Properties
	Hyperlinks
	Images
	Merged cells
	Borders
	Split and Freeze panes
	Outlines
	Zoom magnification and Page Break Preview

	Filtering Excel Files
	Other utilities in xlutils
	xlutils.styles
	xlutils.display
	xlutils.copy

	Structure of xlutils.filter
	Readers
	Filters
	Writers
	Process

	A worked example
	Existing components
	GlobReader
	XLRDReader
	TestReader
	DirectoryWriter
	StreamWriter
	XLWTWriter
	ColumnTrimmer
	ErrorFilter
	Echo
	MemoryLogger

	Possible Tasks for Workshop
	Installation with IronPython
	Installation with Jython
	Inserting a row into a sheet
	Splitting a Book into its Sheets
	Reporting errors in a directory full on Excel files
	Removing Rows containing errors
	Filtering Excel files to and from a web server
	Producing a report from a database

