Python Programming

Python Data Types

Beautiful is better than ugly
Explicit is better than implicit. Simple
is better than complex, Complex is better
than complicated. Flat is better than

nested. Sparse is better than dense,
Readability counts. Special ca en't
special enough to

break the rules

pass silently. Unless explicitly silenc {35043 J0 oW c
ambigulty, refuse the temptation to g J op 5,331 — eap|
— and preferably only one — obvious way to do it. Although t 10248 Suryuoy auo ﬁ
way may not be obvious at first unless you're Dutc) H aie savedsawen
better than never, Although never is often better ght ‘eapt poo8 e aq Aew
now. If the implementation is hard to explain, it's a bad M ‘viejdxs 01 A2 1
Idea. If the Implementation uoneuawa(duw ayl §| ‘eapi
is easy to explain, it peq e 5.3 ‘uejdxa 01 ey st uoneyuawdun s 31 mou
may be a good idea. 1y 8 ueyl 102G UANO Si JaNEU YENOL LY AU UBY) SS1eq
Namespaces are 51 MON 'Y2INg 2J,n0A SS3(UN 351 1B SNONGO 2 J0u Aew Lem
LB ERIETSTEETg 1oyl Y3noyiny 3 op o1 Aem snomgo — auo Lue Agessjaid pue —
EEEEEEL LN 2u0 3G pinoys asay) 'ssans o1 uopeidwa) 3yl asngas Amiique
more of those! 10 32e) ayy uj “paduaps Appydxa ssajup Kpuaps ssed
1anau pinoys sJeas3 fund s1eaq Anpesnsead yEnoyiy
"SaNJ U ¥easq
0} y2noua jenads
1 uaue sesed feads s1unod Apqepeay
“BSuUBp UeYyl JaNaq s asseds ‘paisau
uey) Janaq st el paeadiuod ueyl
31154 51 Xa)dw o) xduod uew B1Eq 5|
ajdung yoidw) ey Janag s|3nidx3
‘A1&n uey Janaq st inyaneag

HANDOUT #03

ISHAN VIRANTHA

B.Sc. Engineering (Hons) AM IESL

Tel:-071 429 39 50

3. Python Data Types

3.1 Python Variables

Variables are nothing but reserved memory locations to store values. It means that when you
create a variable, you reserve some space in the memory.Based on the data type of a variable, the
interpreter allocates memory and decides what can be stored in the reserved memory.

- —— -

S\ o F =

Defining python Variables

In Python When defining the variable no need to sfecifyt the data going to be store in the variable
like C programing.

Defining python Variables

counter = 100 # An integer assignment
miles = 1000.0 # A fleoating point
name = "John" # A string

print (counter)
print (miles)
print (name)

i R
Program output

100
1000.0
John

Python Variable Names

Following table has examples of legal variable names. You can name a variable anything as
long as it obeys the following three rules:

1. It can be only one word.

2. It can use only letters, numbers, and the underscore (_) character.

3. It can’t begin with a number.

Valid variable names Invalid variable names

balance current-balance [hyphens are not allowed)
currentBalance current balance (spaces are not allowed)
current_balance 4account [can't begin with a number)

_spam 42 (can't begin with a number)

SPAM total $um (special characters like $ are not allowed)
account4 'hello' (special characiers like ' are not allowed)

List of Python key word as follows

help> keywords

Here iz a list of the Python keywords. Enter any keyword to get more help.

Fal=ze def if raise
Hone del import return
Troe elif in try
and el=se is while
as except 1ambla with
assert finally nonlocal yvield
break for not

class from or

continne global pass

help> I

Type help() in python shell and type keywords to ge the list of key word in python

Python variables are dynamically typed

There are two types of variables in programing, static typed and dynamic typed .static typed
languages(c, c++ ,c# ,java..) are those in which type checking is done at compile-time, whereas
dynamic typed languages(Python,) are those in which type checking is done at run-time.

Dynamically typed vs Statically typed

Statically Typed (C/C++/Java)
* Need to declare variable
type before using it

= Cannot change variable
type at runtime

= Variable can hold only
one type of value
throughout its lifetime

int x;

char *y;

x = 10;

printf (“%d”, x)

y = “Hello World”

printf (“%s”, y)

Dynamically Typed — Python
* Do not need to declare
variable type

* Can change variable type
at runtime

= Variable can hold
different types of value
through its lifetime

x =10

print x

x = “Hello World”

print x

Scope of a Python Variable

Variables can only be seen or accessible within their scope. Two variable scopes are classified in
Python:

Local variables are defined and only used by the calling function. They are not recognized by
the main program or in any other calling functions.

Global variables are common to most part of the code. They are recognized everywhere and can
be accessed by any functions.

= @&
L)

o H

if a == &:

b 1

def my_functionic):

d=3
print(c)
print(d)

my_function(7)

printia)
printib)

printi{c)
printi{d)

3.2 Python Data types

The data stored in memory can be of many types. For example, a person's age is stored as a
numeric value and his or her address is stored as string. Python has various standard data types,

can be listed as follows

Python Data types

l

\ 4

Basic Data types

\4

Higher Level Data types

\ 4

String (Str)

Numbers

String (Str)

44 List (list)

—+ Integer (int)

Tuple (tuple)

A 4

Float (float)

Dictionary (dict)

A 4

Complex

Set (set)

Strings in Python are identified as a contiguous set of characters represented in the quotation
marks. Python allows either pair of single or double quotes.

1. Creating string

Creating strings is as simple as assigning a value to a variable

creating string wvariables

= 'Hello World!'
= "Python Programming"”

print (varl)
print (var2)

#it i R
Program output

Hello World!
Python Programming

2. Accessing Values in Strings.

In python all string can acces through the variable nameand the part of string can acces through
indexing

Python string data type

str = 'Hello World!l'®

print (str) # Prints complete string

print (str[0]) # Prints first character of the string

print (str[2:5]) # Prints characters starting from 3rd to 5th
print (str[2:]) # Prints string starting from 3rd character
print (str * 2) # Prints string two times

print (str + "TEST") # Prints concatenated string

###HH R R R R T
Program output

Hello World!

H

1llo

llo World!

Hello World!Hello World!
Hello World!TEST

3. String Special Operators

Assume string variable a holds 'Hello' and variable b holds 'Python’, then

Operator Description Example
N Concatenation - Adds values on either side of the a + b will give
operator HelloPython
" Repetition - Creates new strings, concatenating a*2 will give
multiple copies of the same string -HelloHello
[Slice - Gives the character from the given index a[1] will give e
[Range Slice - Gives the characters from the given a[1:4] will give
' range ell
0 Membership - Returns true if a character exists in the Hin a will give
given string 1

Membership - Returns true if a character does not exist M notin a will

nat in _ . . -
in the given string give 1

4. String formating Operator (%)

Sring format operater is used when need to insert the value of a variable, or expression into a

string, For example, you can insert the value of a Decimal value into a string to display it to the
user as a single string:

Python old style example

Program to illustrate Formatted string (%)
print ("My name is %s and weight is %d kg!"™ % ('Zara', 21))

#it R
My name is Zara and weight is 21 kg!

Python new style example

Program teo illustrate Formatted string(%)
print ('My name is {} and weight is {} kg!'. format('saman', 55})

Ht i A A A A A i R A

My name is saman and weight is 55 kg!

The order of inserting variable value in a string can change using positional order or key word
order. See the following example.

defaonlt({implicit) order

default order = "{}, {} and {}".format('Saman’,’ 'Gayan’, 'nimal')
print('\n--- Default Order ---")
print{default order)

order nsing positional argument

positional order = "{1}, {0} and {2}".format(’'Saman’,’ 'Gayan’', 'nimal')
print('\n-—- Positional Order ---'")

print(positional order)

order n=sing keyword argument

keyword order = "{Hl}, {G} and {5}".format(5='Saman',G="Gayan' H="Himal"}
print('\n--- Eeyword Order ---'")
print (keyword order)

FHEFFEF R R AR A A R R R R H R A A H R E R R R H R H R H P H P H RS
Program ountpunt

—-—— Default Order --—-
Saman, Gayan and nimal

—-—— Po=itional Order —--—-
Gayan, Saman and nimal

-—— Eeyword Order ——-
Himal, Gayvan and Saman

https://msdn.microsoft.com/en-us/library/system.decimal%28v=vs.110%29.aspx

Here is the list of complete set of symbols which can be used along with % (old style)

S.No.

(WA

10

11

Format Symbol & Conversion

%

character

0% s

string conversion via str() prior to formatting

%i

signed decimal integer

%d

signed decimal integer

%u

unsigned decimal integer

%0

octal integer

Ohx

hexadecimal integer (lowercase letters)

%X

hexadecimal integer (UPPERcase letters)

%%he

exponential notation (with lowercase 'e")

%E

exponential notation (with UPPERcase 'E")

9% f

floating point real number

old new output
Basic formatting
'%s %$s' % ('one', 'two') | '"{} {}'.format('one', 'two') one two
'sd 3d' $ (1, 2) "{} {}'.format(1l, 2) 12
Padding and Aligning of strings
'%$10s' & ('test',) '{:>10}'.format ('test') xxxxxxtest
'%-10s' % ('test',) '{:10}"'.format('test') testxxxxxx

N/A {:_ <10}'.format('test') test

1 « A 1 1 1

N/2 {:710}' .format ('test') xxxtestxxx
Numbers
'sd' % (42) '"{:d}'.format (42) 42
'$f' $ (3.14159265,) "{:£}'.format (3.14159265) 3.141593
Padding and Aligning of Numbers
'%$44d' $ (42) '{:4d}' .format (42) xx42
'$06.2f' % (3.1415926) '{:06.2f}"' . format(3.1415926) 003.14
'$044d' & (42,) '{:04d} "' .format (42) 0042

5. Escap character

An escape character is a character which do an alternative opeartion at where it placed in a
character sequence. Following table is a list of escape characters that can be represented with

backslash notation.

Escape . .
Sequence Description Example Output
‘ \\ HPrints Backslash Hprint ("\\") “\
Prints single- .
4 " T |
\ . print ("\'")
" Pirnts double . nwy "
\ - print ("\"")
Bell alert
\a sounds (eqg. print ("\a") (bell soud)
xterm)

https://en.wikipedia.org/wiki/Character_%28computing%29

Escape . .
Sequence Description Example Output
\b Removes previous]Srf;nt ("ab" + "\b" + ac
character c™)
ASCII formfeed (. " " hello
\f FF) print ("hello\fworld") world
ASCII linefeed (. " " hello
\n LF) print ("hello\nworld") world
ASCII horizontal
\t tab (TAB). print ("\t* hello") * hello
Prints TAB
6. Built-in String Methods
Python includes the following built-in methods (fucntions) to manipulate strings.
Sr.No. Methods with Description
capitalize() [

- Capitalizes first letter of string
center{width, fillchar) (4

5 Returns a space-padded string with the original string centered to a
total of width columns.
count(str, beg= 0,end=len(string))

3 Counts how many times str occurs in string or in a substring of
string if starting index beg and ending index end are given.
decode(encoding="UTF-8",errors="strict") [

4 Decodes the string using the codec registered for encoding.
encoding defaults to the default string encoding.

Numbers

Number data types store numeric values. Number objects are created when you assign a value to
them.Python supports three different numerical types —

[int (signed integers)

[float (floating point real values)
[J complex (complex numbers)

10

int float complex
10 0.0 3.14j
100 15.20 45.]
-786 -21.9 9.322e-36]
080 32.3+el8 B76]
-0490 -90. -.6545+0]
-0x2&0 -32.54e100 3e+26]
Oxe9 70.2-E12 4.53e-7]

A complex number consists of an ordered pair of real floating-point numbers denoted by
x + y], where x and y are real numbers and j is the imaginary unit.

List (list)

Lists are the most versatile of Python's compound data types. A list contains items separated by
commas and enclosed within square brackets ([]). To some extent, lists are similar to arrays in C.
One of the differences between them is that all the items belonging to a list can be of different
data type.

7. How to create a list?

In Python programming, a list is created by placing all the items (elements) inside a square
bracket [], separated by commas.

It can have any number of items and they may be of different types (integer, float, string etc.).

empty list
my_list = []

ers

list of inte S

my list = [1, 2, 3]
list with mixed datatypes
my list = [1, "Hello", 3.4]

Also, a list can even have another list as an item. This is called nested list.
nested list

my list = ["mouse”, [8, 4, 6], ["a']l

11

8. How to access elements from a list?

We can use the index operator [] to access an item in a list. Index starts from 0. So, a list having 5 elements
will have index from 0 to 4. The index must be an integer.

Nested list are accessed using nested indexing.

script.py

1 my_list = ['p’,'r’, "0, b", ']
2 # Output: p

3 print{my_list[@])

4

5 # Output: o

6 print{my_list[2])

7

3 # Output: e

a print{my list[4])

1@

11 # Error! Only integer can be used for indexing
12 # my_list[4.8]

13

14 # Mested List

15 n_list = [“Happy", [2,8,1,5]]
16

17 # Nested indexing

15

19 # Output: appy

28 print(n_list[e][Ll:])

21

22 # OQutput: 5

23 print{n_list[1][3])

Output will be as follows

=

=Y B TRy i B

=Y B TRy i B

m o

Sttt

=1)
=
=]
L

Lr

Python allows negative indexing for its sequences. The index of -1 refers to the last item, -2 to
the second last item and so on.

12

script.py

1 fy list = ['p','r', 0", 'b","e"']

Output: e
print{my_list[-1])

Output: p
print{my_list[-5])

o s R W B A YR

9. How to slice lists in Python?

We can access a range of items in a list by using the slicing operator (colon).

o1 2 3 4 5 o6 7 8
9 8§ 7 6 -5 -4 -3 -2 -1
script.py
1 my list = ["p','r',"0",'g",'r','a’,'m","1","'z"]
2 # elements 3rd to 5th
3 print{my_list[2:5])
4
5 # elements beginning to 4th
6 print{my_ list[:-5])
7
8 # elements 6th to end
9 print{my_list[5:])
1a
11 # elements beginning to end
12 print(my_list[:])
Output will be as follows
[0 "8’ 'r']
['p's 'r"y "0y "g"]
['a’', 'm', "i', "z']
['p'> 'r'y "0’y "g", Pty A, 'mY, AT, T2

10. How to change or add elements to a list?

List are mutable, meaning, their elements can be changed unlike string or tuple. We can use
assignment operator (=) to change an item or a range of items.

13

script.py
1 # mistake wvalues
odd = [2, 4, 6, 8]

2

3

4 # change the 1st item
= odd[@] = 1
6
7
a8

Output: [1, 4, 6, 8]
print(odd)
)
18 # change 2nd to 4th items
11 odd[1:4] = [3, 5, 7]
12
13 # Output: [1, 3, 5, 7]

14 print(odd)
Output will be as follows

Python She

[T =9
(s3]

=] 0
[

(%3]

We can add one item to a list using append() method or add several items using extend()
method.

odd = [1, 3, 5]
odd.append(7)

Output: [1, 3, 5, 7]
print(odd)

odd.extend([9, 11, 13])

Output: [1, 3, 5, 7, 9, 11, 13]
print(odd)

We can also use + operator to combine two lists. This is also called concatenation.

The * operator repeats a list for the given number of times.

odd = [1, 3, 5]

Output: [1, 3, 5, 9, 7, &5
print(odd + [92, 7, 5])
#Output: [“re”, "re”, "re”]

print(["re”] * 3)

14

Furthermore, we can insert one item at a desired location by using the method insert() or insert

multiple items by squeezing it into an empty slice of a list.

script.py

1 odd = [1, 9]

2 odd.insert(1,3)

3

4 # Output: [1, 3, 9]
] print(odd)

B

7 edd[2:2] = [5, 7]
3

g # Output: [1, 3, 5, 7, 9]
18 print(ocdd)

Output will be as follows

Python She

11. How to delete or remove elements from a list?

We can delete one or more items from a list using the keyword del. It can even delete the list
entirely.

script.py
1 my list = ['p','r','0",'B",'1","e",'m"]
2

3 # delete one item

4 del my list[2]

3

] # OQutput: ['p', 'r', ‘b, '1", 'e', 'm"]
7 print(my_ list)

g

g # delete multiple items

18 del my list[1:5]

11

12 # OQutput: ['p', 'm']

13 print(my_list)

14

15 # delete entire list

16 del my list

17

18 # Error: List not defined

19 print(my_list)

Output will be as follows

Python shell

['p's 'F'y 'B", "1", 'e', 'm"]
['p's 'm']

e
.

Traceback (most recent call last):
File "<stdin:", line 19, in <module:
print{my_list)
NameError: name 'my_list' is not defined

We can use remove () method to remove the given item or pop () method to remove an item at
the given index.

The pop () method removes and returns the last item if index is not provided. This helps us
implement lists as stacks (first in, last out data structure).

We can also use the c1ear () method to empty a list.

12. Python List Membership Test

We can test if an item exists in a list or not, using the keyword in.
script.py

1 my_list = ['p','r','0','b","1",'e","'m"]
2

3 # Output: True

4 print('p' in my_list)

5

6 # Output: False

7 print('a' in my_list)

3

a # Output: True

18 print('c' not in my_list)

Example program 3.6

File Edit Format Run Options Window Help

a = 10 -
b = 20
list = [1, 2, 3, 4, 5 1]:

if { a in list):

print ("Line 1 - a is available in the giwven list")
else:

print ("Line 1 - a i= not awvailable in the given list")
if (b not in list }):

print ("Line 2 - b is not available in the given list")
else:

print ("Line 2 - b is awvailable in the given list")

a=2
if (a in list }):
print ("Line 3 - a i= awvailable in the given list")
else:
print ("Line 3 - a is not available in the given list")
~
Ln:19 Col: 58
S "

16

Example program 3.6 output

13.Iterating Through a List

NOTE1l NOTE2
IN C: In c:
for (1 = 0; i < n; i++)

for (int 1=0; i<9; 1i+=2)
{

In python3: dosomething (i) ;

}

for i in range(n):
In python3:

for i in range(0, 9, 2):
dosomething (1)

Tuple (tuple)

A tuple is another sequence data type that is similar to the list. A tuple consists of a number of
values separated by commas. Unlike lists, however, tuples are enclosed within parenthesis.

The main difference between lists and tuples is- Lists are enclosed in brackets ([]) and their
elements and size can be changed, while tuples are enclosed in parentheses (()) and cannot be

updated. Tuples can be thought of as read-only lists. For example-

L& 3.4.py - C:/Usersfvirantha/Desktop/python/3.4.py (3.6.2) = | =

File Edit Format Run Options Window Help
Python Tuople data type

tople = ('abcd', 786 , 2.23, "john', T70.2)
tinytople = (123, "John')

print (tople) # Prints complete tuople

print (tuople[0]) # Prints first element of the tople

print (tople[2:]) # Print=s element=z =tarting from 3rd element
print (tinytople * 2) # Prints tuople two times
print (tople + tinytuple) # Prints concatenated tuple

print (tople[l:3]) # Prints elements starting from 2Znd till 3rd

Lm:2 Col:0

17

rL& Python 3.6.2 Shell

L= | O

File Edit Shell Debug Options Window Help

Python 3.6.2 (v3.6.2:5fd33b5, Jul & 2017, 04:14:34)
0 32 bit (Intel)] on win32

-

(‘abed', 786, 2.23, 'john', 70.2)
abod

(186, 2.23)

(2.23, 'john', 70.2)

(123, 'John', 123, 'john')

(‘abed', 786, 2.23, 'john', 70.2, 123, 'john')
>>> |

[MSC w.15%0 =

Type "copyright", "credits" or "license ()" for more information

EESTART: C:/Users/virantha/Desktop/python/3.4.py

Lm:1l Col: 4

L

Difference between Tuples and List

L& 3.5.py - CfUsersfvirantha/Desktop/python/3.5.py (3.62) l-‘:- (S |m——

File Edit Format Run Optiens Window Help

#Difference between Tuples and List

tople = { 'abed', 786 , 2.23, 'john', T70.2)
list = ['abed', 786 , 2.23, 'john', 70.2]
tople[2] = 1000 # Invalid syntax with tuople
li=t[2] = 1000 # Valid =yntax with list

m

-

Lm: 7 ColD

L

Python Dictionary Data type

Python dictionary is an unordered collection of items. While other compound data types have
only value as an element, a dictionary has a key: value pair. While values can be of any data type
and can repeat, keys must be of immutable (unable to change) type (string, number or tuple with

immutable elements) and must be unique.

» Creating a dictionary is as simple as placing items inside curly braces {} separated by

comma.

empty dictionary
my dict = {}

dictionary with integer keys
my dict = {1: ‘apple', 2: ‘ball'}

dictionary with mixed keys
my dict = {"name’: ‘John", 1: [2, 4, 3]}

using dict()
my dict = dict({1:"apple”, 2:'ball’})

from sequence having each item as a pair
my dict = dict([(1, apple’'), (2,'ball’)])

18

As you can see above, we can also create a dictionary using the built-in function dict ().

» How to access elements from a dictionary?

Dictionary uses keys accsess the data . Key can be used either inside square brackets or with
the get() method.

script.py
1 my dict = {'name':"Jack’', 'age': 26}
Output: Jack

print{my_dict['name'])

Output: 26

print({my_dict.get('age'))

I B R 5 [O WY

When you run the program, the output will be:

Jack
26

» How to change or add elements in a dictionary?

We can add new items or change the value of existing items using assignment operator.If the
key is already present, value gets updated, else a new key: value pair is added to the dictionary.

script.py
1 my_dict = {'name':'Jack’', 'age': 26}

2

3 # update wvalue

4 my dict['age'] = 27

5

6 #0utput: {'age': 27, 'name': 'Jack'}

7 print{my_dict)

8

9 # add item

18 my_dict['address'] = 'Downtown'

11

12 # OQutput: {'address': 'Downtown', 'age': 27, 'name': 'Jack'}
13 print{my_dict)

When you run the program, the output will be:

{'name’: 'Jack', ‘age': 27}

{'name': "Jack®', ‘"age’: 27, ‘'address’: ‘Downtown'}

19

Tel:- 071429 39 50

