
Derivatives Analytics with Python & Numpy

Dr. Yves J. Hilpisch

24 June 2011

EuroPython 2011

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 1 / 34

CV Yves Hilpisch

1 1993–1996 Dipl.-Kfm. (“MBA”) at Saarland University (Banks and Financial
Markets)

2 1996–2000 Dr.rer.pol. (“Ph.D.”) at Saarland University (Mathematical Finance)
3 1997–2004 Management Consultant Financial Services & Insurance Industry
4 2005–present Founder and MD of Visixion GmbH

I management and technical consulting work
I DEXISION—Derivatives Analytics on Demand (www.dexision.com)

5 2010–present Lecturer Saarland University
I Course: “Numerical Methods for the Market-Based Valuation of Options”
I Book Project: “Market-Based Valuation of Equity Derivatives—From Theory to

Implementation in Python”

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 2 / 34

www.dexision.com

1 Derivatives Analytics and Python

2 Data Analysis
Time Series
Cross-Sectional Data

3 Monte Carlo Simulation
Model Economy
European Options
American Options
Speed-up of 480+ Times

4 DEXISION—Our Analytics Suite
Capabilities
Technology

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 3 / 34

Derivatives Analytics and Python

What is Derivatives Anlytics about?

Derivatives Analytics is concerned with the valuation, hedging and risk management
of derivative financial instruments

In contrast to ordinary financial instruments which may have an intrinsic value (like
the stock of a company), derivative instruments derive their values from other
instruments
Tyical tasks in this context are

I simulation
I data analysis (historical, current, simulated data)
I discounting
I arithmetic operations (summing, averaging, etc.)
I linear algebra (vector and matrix operations, regression)
I solving optimization problems
I visualization
I ...

Python can do all this quite well—but C, C++, C#, Matlab, VBA, JAVA and other
languages still dominate the financial services industry

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 4 / 34

Derivatives Analytics and Python

Why Python for Derivatives Analytics?

1 Open Source: Python and the majority of available libraries are completely open
source

2 Syntax: Python programming is easy to learn, the code is quite compact and in
general highly readable (= fast development + easy maintenance)

3 Multi-Paradigm: Python is as good at functional programming as well as at object
oriented programming

4 Interpreted: Python is an interpreted language which makes rapid prototyping and
development in general a bit more convenient

5 Libraries: nowadays, there is a wealth of powerful libraries available and the supply
grows steadily; there is hardly a problem which cannot be easily attacked with an
existing library

6 Speed: a common prejudice with regard to interpreted languages—compared to
compiled ones like C++ or C—is the slow speed of code execution; however, financial
applications are more or less all about matrix/array manipulations and other
operations which can be done at the speed of C code with the essential library Numpy

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 5 / 34

Derivatives Analytics and Python

What does the financial market say about Python?

in the London area (mainly financial services) the number of Python developer
contract offerings evolved as follows (respectively for the three months period ending
on 22 April)

I 142 in year 2009
I 245 in year 2010
I 644 in year 2011

these figures imply a more than fourfold demand for the Python skill in 2011 as
compared to 2009

over the same period, the average daily rate for contract work increased from 400
GBP to 475 GBP1

obviously, Python is catching up at a rapid pace in the financial services industry ...

1Source: all figures from www.itjobswatch.co.uk/contracts/london/python.do on 24 April 2011.
Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 6 / 34

www.itjobswatch.co.uk/contracts/london/python.do

Data Analysis

In Derivatives Analytics you have to analyze different types of data

Fundamental types of data to be analyzed
I time series
I cross sections

Python libraries suited to analyze and visualize such data
I xlrd (www.python-excel.org): reading data from Excel files
I Numpy (numpy.scipy.org): array manipulations of any kind
I Pandas (code.google.com/p/pandas): time series analysis, cross-sectional data

analysis2
I matplotlib (matplotlib.sourceforge.net): 2d and 3d plotting

2Notably, this library was developed by a hedge fund.
Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 7 / 34

www.python-excel.org
numpy.scipy.org
code.google.com/p/pandas
matplotlib.sourceforge.net

Data Analysis Time Series

DAX time series—index level and daily log returns3

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

2000

3000

4000

5000

6000

7000

8000

D
A

X
 D

a
ily

 Q
u
o
te

s

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

0.05

0.00

0.05

0.10

D
A

X
 D

a
ily

 L
o
g
 R

e
tu

rn
s

3Source: http://finance.yahoo.com, 29 Apr 2011
Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 8 / 34

http://finance.yahoo.com

Data Analysis Time Series

Reading data from Excel file ...

from xlrd import open_workbook
from pandas import *
from datetime import *
from matplotlib.pyplot import *
from numpy import *

DAX Open Workbook , Read
xls = open_workbook('DAX_Daily_1990_2011.xls')
for s in xls.sheets ():

datesDAX = []; quoteDAX = []
for row in range(s.nrows -1,0,-1):

year = int(s.cell(row ,0).value)
month = int(s.cell(row ,1). value)
day = int(s.cell(row ,2). value)
datesDAX.append(date(year ,month ,day))
quoteDAX.append(float(s.cell(row ,8).value))

print

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 9 / 34

Data Analysis Time Series

... and plotting it with Pandas and matplotlib

DAXq = Series(quoteDAX ,index=datesDAX)
DAXr = Series(log(DAXq/DAXq.shift(1)),index=datesDAX)
DAXr = where(isnull(DAXr),0.0,DAXr)

Data Frames for Quotes and Returns
data = {'QUO':DAXq ,'RET':DAXr ,'RVO':rv}
DAX = DataFrame(data ,index=DAXq.index)

Graphical Output

figure ()
subplot(211)
plot(DAX.index ,DAX['QUO'])
ylabel('DAX Daily Quotes ')
grid(True);axis('tight ')
subplot(212)
plot(DAX.index ,DAX['RET'])
ylabel('DAX Daily Log Returns ')
grid(True);axis('tight ')

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 10 / 34

Data Analysis Time Series

DAX time series—252 moving mean return, volatility and correlation
between both4

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
1.0
0.8
0.6
0.4
0.2
0.0
0.2
0.4
0.6
0.8

R
e
tu

rn
 (

2
5

2
d
 M

o
v
)

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

V
o
la

 (
2

5
2

d
 M

o
v
)

1992 1994 1996 1998 2000 2002 2004 2006 2008 2010
1.0

0.5

0.0

0.5

1.0

C
o
rr

 (
2

5
2

d
 M

o
v
)

4Source: http://finance.yahoo.com, 29 Apr 2011
Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 11 / 34

http://finance.yahoo.com

Data Analysis Time Series

Pandas provides a number of really convenient functions

mean return , volatility and correlation (252 days moving = 1 year)
figure ()
subplot(311)
mr252 = Series(rolling_mean(DAX['RET'],252)*252 ,index=DAX.index)
mr252.plot (); grid(True); ylabel('Return (252d Mov)')
x,y=REG(mr252 ,0);plot(x,y)

subplot(312)
vo252 = Series(rolling_std(DAX['RET'],252)*sqrt(252),index=DAX.index)
vo252.plot (); grid(True); ylabel('Vola (252d Mov)')
x,y=REG(vo252 ,0);plot(x,y);vx=axis()

subplot(313)
co252 = Series(rolling_corr(mr252 ,vo252 ,252),index=DAX.index)
co252.plot (); grid(True); ylabel('Corr (252d Mov)')
x,y=REG(co252 ,0);plot(x,y);cx=axis()
axis([vx[0],vx[1],cx[2],cx[3]])

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 12 / 34

Data Analysis Cross-Sectional Data

DAX cross-sectional data—implied volatility surface5

7000 7200 7400 7600 7800 8000
Strike

12

13

14

15

16

17

18

19

20

21

Im
p
lie

d
 V

o
la

ti
lit

y

maturities: 21 (red dots), 49 (green crosses), 140 (blue triangles),
231 (yellow stones) and 322 days (purple hectagons)

5Source: http://www.eurexchange.com, 29 Apr 2011
Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 13 / 34

http://www.eurexchange.com

Monte Carlo Simulation Model Economy

Model economy—Black-Scholes-Merton continuous time

economy with final date T, 0 < T <∞
uncertainty is represented by a filtered probability space {Ω,F ,F, P}
for 0 ≤ t ≤ T the risk-neutral index dynamics are given by the SDE

dSt
St

= rdt+ σdZt (1)

St index level at date t, r constant risk-less short rate, σ constant volatility of the
index and Zt standard Brownian motion

the process S generates the filtration F, i.e. Ft ≡ F(S0≤s≤t)

a risk-less zero-coupon bond satisfies the DE

dBt
Bt

= rdt (2)

the time t value of a zero-coupon bond paying one unit of currency at T with
0 ≤ t < T is Bt(T) = e−r(T−t)

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 14 / 34

Monte Carlo Simulation Model Economy

Model economy—Black-Scholes-Merton discrete time

to simulate the financial model, i.e. to generate numerical values for St, the SDE
(1) has to be discretized

to this end, divide the given time interval [0, T] in equidistant sub-intervals ∆t such
that now t ∈ {0,∆t, 2∆t, ..., T}, i.e. there are M + 1 points in time with M ≡ T/∆t
a discrete version of the continuous time market model (1)–(2) is

St
St−∆t

= e

(
r−σ

2
2

)
∆t+σ

√
∆tzt

(3)

Bt
Bt−∆t

= er∆t (4)

for t ∈ {∆t, ..., T} and standard normally distributed zt
this scheme is an Euler discretization which is known to be exact for the geometric
Brownian motion (1)

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 15 / 34

Monte Carlo Simulation European Options

Option valuation by simulation—European options

a European put option on the index S pays at maturity T

h(ST) ≡ max[K − ST , 0]

for a fixed strike price K

to value such an option, simulate I paths of St such that you get I values
ST,i, i ∈ {1, ..., I}
the Monte Carlo estimator for the put option value then is

V0 = e−rT
1

I

I∑
i=1

h(ST,i)

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 16 / 34

Monte Carlo Simulation European Options

Simulating the index level for European option valuation6

Jan 1, 2011 Jun 15, 2011 Dec 1, 2011

30

40

50

Average Drift

20 simulated index level paths; thick blue line = average drift

6Source: analytics.dexision.com
Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 17 / 34

analytics.dexision.com

Monte Carlo Simulation European Options

Numpy offers all you need for an efficient implementation (I)

#
Valuation of European Put Option
by Monte Carlo Simulation
#
from numpy import *
from numpy.random import standard_normal ,seed
from time import time
t0=time()

Parameters -- American Put Option
S0 = 36. # initial stock level
K = 40. # strike price
T = 1.0 # time -to -maturity
vol= 0.2 # volatility
r = 0.06 # short rate
Simulation Parameters
seed(150000) # seed for Python RNG
M = 50 # time steps
I = 50000 # simulation paths
dt = T/M # length of time interval
df = exp(-r*dt) # discount factor per time interval

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 18 / 34

Monte Carlo Simulation European Options

Numpy offers all you need for an efficient implementation (II)

Index Level Path Generation
S=zeros((M+1,I),'d') # index value matrix
S[0,:]=S0 # initial values
for t in range(1,M+1,1): # stock price paths

ran=standard_normal(I) # pseudo -random numbers
S[t,:]=S[t-1,:]* exp((r-vol**2/2)*dt+vol*ran*sqrt(dt))

Valuation
h=maximum(K-S[-1],0) # inner values at maturity
V0=exp(-r*T)*sum(h)/I # MCS estimator

Output
print"Time elapsed in Seconds %8.3f" %(time()-t0)
print"--"
print"European Put Option Value %8.3f" %V0
print"--"

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 19 / 34

Monte Carlo Simulation American Options

American options—solving optimal stopping problems (I)

to value American options by Monte Carlo simulation, a discrete optimal stopping
problem has to be solved:

V0 = sup
τ∈{0,∆t,2∆t,...,T}

EQ0 (B0(τ)hτ (Sτ)) (5)

it is well-known that the value of the American option at date t is then given by

Vt(s) = max[ht(s), Ct(s)] (6)

i.e. the maximum of the payoff ht(s) of immediate exercise and the expected payoff
Ct(s) of not exercising; this quantity is given as

Ct(s) = EQt (e−r∆tVt+∆t(St+∆t)|St = s) (7)

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 20 / 34

Monte Carlo Simulation American Options

American options—solving optimal stopping problems (II)

problem: given a date t and a path i, you do not know the expected value in
(7)—you only know the single simulated continuation value Yt,i
solution of Longstaff and Schwartz (2001): estimate the continuation values
Ct,i by ordinary least-squares regression—given the I simulated index levels St,i and
continuation values Yt,i (use cross section of simulated data at date t)

their algorithm is called Least Squares Monte Carlo (LSM)

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 21 / 34

Monte Carlo Simulation American Options

The LSM algorithm—regression for American put option7

7Source: analytics.dexision.com
Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 22 / 34

analytics.dexision.com

Monte Carlo Simulation American Options

The LSM algorithm—backwards exercise/valuation8

8Source: analytics.dexision.com
Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 23 / 34

analytics.dexision.com

Monte Carlo Simulation American Options

Again, the Python/Numpy implementation is straightforward (I)

#
Valuation of American Put Option
with Least -Squares Monte Carlo
#
from numpy import *
from numpy.random import standard_normal ,seed
from matplotlib.pyplot import *
from time import time
t0=time()

Simulation Parameters
seed(150000) # seed for Python RNG
M = 50 # time steps
I = 4*4096 # paths for valuation
reg= 9 # no of basis functions
AP = True # antithetic paths
MM = True # moment matching of RN

Parameters -- American Put Option
r = 0.06 # short rate
vol= 0.2 # volatility
S0 = 36. # initial stock level
T = 1.0 # time -to -maturity
V0_right=4.48637 # American Put Option (500 steps bin. model)
dt = T/M # length of time interval
df = exp(-r*dt) # discount factor per time interval

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 24 / 34

Monte Carlo Simulation American Options

Again, the Python/Numpy implementation is straightforward (II)

Function Definitions
def RNG(I):

if AP == True:
ran=standard_normal(I/2)
ran=concatenate ((ran ,-ran))

else:
ran=standard_normal(I)

if MM == True:
ran=ran -mean(ran)
ran=ran/std(ran)

return ran
def GenS(I):

S=zeros((M+1,I),'d') # index level matrix
S[0,:]=S0 # initial values
for t in range(1,M+1,1): # index level paths

ran=RNG(I)
S[t,:]=S[t-1,:]* exp((r-vol**2/2)*dt+vol*ran*sqrt(dt))

return S
def IV(S):

return maximum(40.-S,0)

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 25 / 34

Monte Carlo Simulation American Options

Again, the Python/Numpy implementation is straightforward (III)

Valuation by LSM
S=GenS(I) # generate stock price paths
h=IV(S) # inner value matrix
V=IV(S) # value matrix
for t in range(M-1,-1,-1):

rg=polyfit(S[t,:],V[t+1,:]*df ,reg) # regression at time t
C=polyval(rg,S[t,:]) # continuation values
V[t,:]= where(h[t,:]>C,h[t,:],V[t+1,:]*df) # exercise decision

V0=sum(V[0,:])/I # LSM estimator

Output
print"Time elapsed in Seconds %8.3f" %(time()-t0)
print"--"
print"Right Value %8.3f" %V0_right
print"--"
print"LSM Value for Am. Option %8.3f" %V0
print"Absolute Error %8.3f" %(V0 -V0_right)
print"Relative Error in Percent %8.3f" %((V0-V0_right)/ V0_right*100)
print"--"

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 26 / 34

Monte Carlo Simulation Speed-up of 480+ Times

The Challenge—“dozens of minutes” in Matlab

realistic market models generally include multiple sources of randomness which are
possibly correlated

the simulation of such complex models in combination with Least Squares Monte
Carlo is computationally demanding and time consuming
in their research paper, Medvedev and Scaillet (2009) analyze the valuation of
American put options in the presence of stochastic volatility and stochastic short
rates

Medvedev and Scaillet (2009) write on page 16:

“To give an idea of the computational advantage of our method, a Matlab code
implementing the algorithm of Longstaff and Schwartz (2001) takes dozens of
minutes to compute a single option price while our approximation takes roughly a
tenth of a second.”

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 27 / 34

Monte Carlo Simulation Speed-up of 480+ Times

The Results—“only seconds” in Python

Python is well-suited to implement efficent, i.e. fast and accurate, numerical
valuation algorithms

I MCS/LSM with 25 steps/35,000 paths:

180 megabytes of data crunched in 1.5 seconds
I MCS/LSM with 50 steps/100,000 paths:

980 megabytes of data crunched in 8.5 seconds

reported times are from my 3 years old notebook ...

the speed-up compared to the times reported in Medvedev and Scaillet (2009) is
480+ times (1.5 seconds vs. 720+ seconds)

to reach this speed-up, our algorithm mainly uses variance reductions techniques
(like moment matching and control variates) which allows to reduce the number of
time steps and paths significantly

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 28 / 34

Monte Carlo Simulation Speed-up of 480+ Times

Results from 3 simulation runs for the 36 American put options of
Medvedev and Scaillet (2009)

1 --
2 Start Calculations 2011-06-22 13:43:02.163000
3 --
4 Name of Simulation Base_3_25_35_TTF_2.5_1.5
5 Seed Value for RNG 150000
6 Number of Runs 3
7 Time Steps 25
8 Paths 35000
9 Control Variates True

10 Moment Matching True
11 Antithetic Paths False
12 Option Prices 108
13 Absolute Tolerance 0.0250
14 Relative Tolerance 0.0150
15 Errors 0
16 Error Ratio 0.0000
17 Aver Val Error -0.0059
18 Aver Abs Val Error 0.0154
19 Time in Seconds 135.7890
20 Time in Minutes 2.2631
21 Time per Option 1.2573
22 --
23 End Calculations 2011-06-22 13:45:17.952000
24 --

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 29 / 34

DEXISION—Our Analytics Suite Capabilities

DEXISION can handle a number of financial derivatives ranging from plain
vanilla to complex and exotic

Example products:
I plain vanilla options
I American options
I Asian options
I options on baskets
I certificates (bonus, express, etc.)
I swaps, swaptions
I real options
I portfolios of options
I life insurance contracts

Example underlyings:
I indices
I stocks
I bonds
I interest rates
I currencies
I commodities

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 30 / 34

DEXISION—Our Analytics Suite Capabilities

DEXISION can be beneficially applied in a number of areas

financial research: researchers, lecturers and students in (mathematical) finance find
in DEXISION an easy-to-learn tool to model, value and analyze financial derivatives

financial engineering: financial engineers and risk managers in investment banks,
hedge funds, etc. can use DEXISION to quickly model and value diverse financial
products, to cross-check valuations and to assess risks of complex derivatives
portfolios

actuarial calculations: those responsible for the design, valuation and risk
management of market-oriented insurance products can engineer, value and test new
and existing products easily

financial reporting: IFRS and other reporting standards require the use of formal
(option) pricing models when there are no market prices; DEXISION considerably
simplifies the modelling, valuation and risk assessment for illiquid, complex,
non-traded financial instruments and embedded options

real options valuation: DEXISION offers unique capabilities to account for the
specifics of real options (as compared to financial options)

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 31 / 34

DEXISION—Our Analytics Suite Technology

DEXISION is based on a Python-LAMP environment and makes heavy use of
Numpy

Suse Linux 11.1 as 64 bit operating system

Apache 2 as Web server

MySQL 5.0.67 as relational database

Python 2.6 as core language (integrated via mod_python in Apache)

Numpy 1.3.0 as fast linear algebra library

Dojo 1.0 as JavaScript framework for the GUI

SVG for all custom graphics

MoinMoin Wiki (Python powered) for Web documentation

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 32 / 34

DEXISION—Our Analytics Suite Technology

Our aim is to make DEXISION the Google of Derivatives Analytics

recently, Visixion added Web services to DEXISION’s functionalities which allow to
integrate it into any environment

once a structure is modeled in DEXISION, updates of valuations can be received in
real-time via these Web services (with data delivered e.g. in XML format)

during the Web service call, data/variables can also be provided

a call to value an American put option on the DAX index could look like:

https://company.dexision.com/DEXISIONeval.py?company=X&user=Y&pwd=
Z&paths=50000&steps=150&portfolio=DAX/DAX_Am_Put_Dec_2011&DAX_
current=7200&DAX_vola=0.175&rate=0.03&strike=6800

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 33 / 34

https://company.dexision.com/DEXISIONeval.py?company=X&user=Y&pwd=Z&paths=50000& steps=150&portfolio=DAX/DAX_Am_Put_Dec_2011&DAX_current=7200&DAX_vola=0.175& rate=0.03&strike=6800
https://company.dexision.com/DEXISIONeval.py?company=X&user=Y&pwd=Z&paths=50000& steps=150&portfolio=DAX/DAX_Am_Put_Dec_2011&DAX_current=7200&DAX_vola=0.175& rate=0.03&strike=6800
https://company.dexision.com/DEXISIONeval.py?company=X&user=Y&pwd=Z&paths=50000& steps=150&portfolio=DAX/DAX_Am_Put_Dec_2011&DAX_current=7200&DAX_vola=0.175& rate=0.03&strike=6800

DEXISION—Our Analytics Suite Technology

Contact

Dr. Yves J. Hilpisch
Visixion GmbH
Rathausstrasse 75-79
66333 Voelklingen
Germany

www.visixion.com — Derivatives Analytics and Python Programming
www.dexision.com — Derivatives Analytics On Demand

E contact@visixion.com
T/F +49 3212 1129194

Y. Hilpisch (Visixion GmbH) Derivatives Analytics EuroPython 2011 34 / 34

www.visixion.com
www.dexision.com
mailto:contact@visixion.com

	Derivatives Analytics and Python
	Data Analysis
	Time Series
	Cross-Sectional Data

	Monte Carlo Simulation
	Model Economy
	European Options
	American Options
	Speed-up of 480+ Times

	DEXISION---Our Analytics Suite
	Capabilities
	Technology

