Derivatives Analytics with Python & Numpy

Dr. Yves J. Hilpisch

24 June 2011

EuroPython 2011

CV Yves Hilpisch

- 1993–1996 Dipl.-Kfm. ("MBA") at Saarland University (Banks and Financial Markets)
- **2** 1996–2000 Dr.rer.pol. ("Ph.D.") at Saarland University (Mathematical Finance)
- **1997–2004** Management Consultant Financial Services & Insurance Industry
- 2005-present Founder and MD of Visixion GmbH
 - management and technical consulting work
 - DEXISION—Derivatives Analytics on Demand (www.dexision.com)
- O 2010-present Lecturer Saarland University
 - Course: "Numerical Methods for the Market-Based Valuation of Options"
 - Book Project: "Market-Based Valuation of Equity Derivatives—From Theory to Implementation in Python"

Derivatives Analytics and Python

2 Data Analysis

- Time Series
- Cross-Sectional Data

3 Monte Carlo Simulation

- Model Economy
- European Options
- American Options
- Speed-up of 480+ Times

DEXISION—Our Analytics Suite

- Capabilities
- Technology

What is Derivatives Anlytics about?

- Derivatives Analytics is concerned with the valuation, hedging and risk management of derivative financial instruments
- In contrast to ordinary financial instruments which may have an intrinsic value (like the stock of a company), derivative instruments derive their values from other instruments
- Tyical tasks in this context are
 - simulation
 - data analysis (historical, current, simulated data)
 - discounting
 - arithmetic operations (summing, averaging, etc.)
 - linear algebra (vector and matrix operations, regression)
 - solving optimization problems
 - visualization
 - ▶ ...
- Python can do all this quite well—but C, C++, C#, Matlab, VBA, JAVA and other languages still dominate the financial services industry

Why Python for Derivatives Analytics?

- Open Source: Python and the majority of available libraries are completely open source
- Syntax: Python programming is easy to learn, the code is quite compact and in general highly readable (= fast development + easy maintenance)
- O Multi-Paradigm: Python is as good at functional programming as well as at object oriented programming
- Interpreted: Python is an interpreted language which makes rapid prototyping and development in general a bit more convenient
- Libraries: nowadays, there is a wealth of powerful libraries available and the supply grows steadily; there is hardly a problem which cannot be easily attacked with an existing library
- Speed: a common prejudice with regard to interpreted languages—compared to compiled ones like C++ or C—is the slow speed of code execution; however, financial applications are more or less all about matrix/array manipulations and other operations which can be done at the speed of C code with the essential library Numpy

What does the financial market say about Python?

- in the London area (mainly financial services) the number of Python developer contract offerings evolved as follows (respectively for the three months period ending on 22 April)
 - 142 in year 2009
 - 245 in year 2010
 - 644 in year 2011
- these figures imply a more than fourfold demand for the Python skill in 2011 as compared to 2009
- $\bullet\,$ over the same period, the average daily rate for contract work increased from 400 GBP to 475 GBP^1
- obviously, Python is catching up at a rapid pace in the financial services industry ...

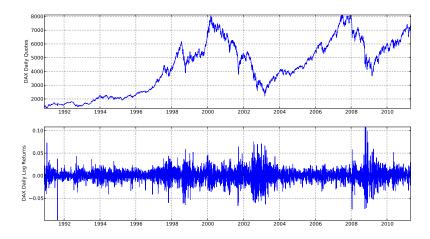
¹Source: all figures from www.itjobswatch.co.uk/contracts/london/python.do on 24 April 2011.

In Derivatives Analytics you have to analyze different types of data

- Fundamental types of data to be analyzed
 - time series
 - cross sections
- Python libraries suited to analyze and visualize such data
 - xlrd (www.python-excel.org): reading data from Excel files
 - Numpy (numpy.scipy.org): array manipulations of any kind
 - Pandas (code.google.com/p/pandas): time series analysis, cross-sectional data analysis²
 - matplotlib (matplotlib.sourceforge.net): 2d and 3d plotting

²Notably, this library was developed by a hedge fund.

DAX time series—index level and daily log returns³



³Source: http://finance.yahoo.com, 29 Apr 2011

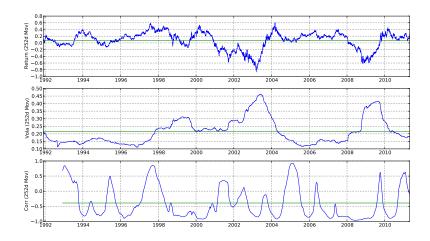
Reading data from Excel file ...

```
from xlrd import open_workbook
from pandas import *
from datetime import *
from matplotlib.pyplot import *
from numpy import *
# DAX Open Workbook, Read
xls = open_workbook('DAX_Daily_1990_2011.xls')
for s in xls.sheets():
    datesDAX = []; quoteDAX = []
    for row in range(s.nrows-1,0,-1):
        year = int(s.cell(row,0).value)
        month = int(s.cell(row.1).value)
        day
              = int(s.cell(row,2).value)
        datesDAX.append(date(year,month,day))
        quoteDAX.append(float(s.cell(row,8).value))
   print
```

... and plotting it with Pandas and matplotlib

```
DAXq = Series(quoteDAX, index=datesDAX)
DAXr = Series(log(DAXq/DAXq.shift(1)), index=datesDAX)
DAXr = where(isnull(DAXr),0.0,DAXr)
# Data Frames for Quotes and Returns
data = {'QUO':DAXg,'RET':DAXr,'RVO':rv}
DAX = DataFrame(data, index=DAXq.index)
# Graphical Output
figure()
subplot(211)
plot(DAX.index.DAX['QU0'])
ylabel('DAX Daily Quotes')
grid(True);axis('tight')
subplot(212)
plot(DAX.index,DAX['RET'])
vlabel('DAX Daily Log Returns')
grid(True);axis('tight')
```

DAX time series—252 moving mean return, volatility and correlation between both⁴

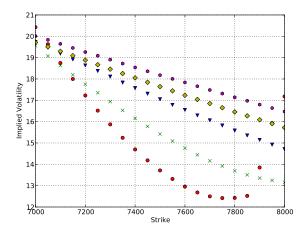


⁴Source: http://finance.yahoo.com, 29 Apr 2011

Pandas provides a number of really convenient functions

```
# mean return, volatility and correlation (252 days moving = 1 year)
figure()
subplot(311)
mr252 = Series(rolling_mean(DAX['RET'],252)*252,index=DAX.index)
mr252.plot();grid(True);vlabel('Return (252d Mov)')
x, y = REG(mr252, 0); plot(x, y)
subplot(312)
vo252 = Series(rolling_std(DAX['RET'],252)*sqrt(252),index=DAX.index)
vo252.plot():grid(True):vlabel('Vola (252d Mov)')
x, y=REG(vo252, 0); plot(x, y); vx=axis()
subplot(313)
co252 = Series(rolling_corr(mr252,vo252,252),index=DAX.index)
co252.plot();grid(True);ylabel('Corr (252d Mov)')
x, y=REG(co252, 0); plot(x, y); cx=axis()
axis([vx[0],vx[1],cx[2],cx[3]])
```

DAX cross-sectional data—implied volatility surface⁵



maturities: 21 (red dots), 49 (green crosses), 140 (blue triangles), 231 (yellow stones) and 322 days (purple hectagons)

⁵Source: http://www.eurexchange.com, 29 Apr 2011

Model economy—Black-Scholes-Merton continuous time

- $\bullet\,$ economy with final date $T, 0 < T < \infty\,$
- \bullet uncertainty is represented by a filtered probability space $\{\Omega, \mathcal{F}, \mathbb{F}, P\}$
- for $0 \le t \le T$ the risk-neutral index dynamics are given by the SDE

$$\frac{dS_t}{S_t} = rdt + \sigma dZ_t \tag{1}$$

- S_t index level at date t, r constant risk-less short rate, σ constant volatility of the index and Z_t standard Brownian motion
- the process S generates the filtration \mathbb{F} , i.e. $\mathcal{F}_t \equiv \mathcal{F}(S_{0 \leq s \leq t})$
- a risk-less zero-coupon bond satisfies the DE

$$\frac{dB_t}{B_t} = rdt \tag{2}$$

 \bullet the time t value of a zero-coupon bond paying one unit of currency at T with $0 \leq t < T$ is $B_t(T) = e^{-r(T-t)}$

Model economy—Black-Scholes-Merton discrete time

- to simulate the financial model, i.e. to generate numerical values for S_t , the SDE (1) has to be discretized
- to this end, divide the given time interval [0,T] in equidistant sub-intervals Δt such that now $t \in \{0, \Delta t, 2\Delta t, ..., T\}$, i.e. there are M + 1 points in time with $M \equiv T/\Delta t$
- a discrete version of the continuous time market model (1)-(2) is

$$\frac{S_t}{S_{t-\Delta t}} = e^{\left(r - \frac{\sigma^2}{2}\right)\Delta t + \sigma\sqrt{\Delta t}z_t}$$
(3)

$$\frac{B_t}{B_{t-\Delta t}} = e^{r\Delta t} \tag{4}$$

for $t \in \{\Delta t,...,T\}$ and standard normally distributed z_t

• this scheme is an Euler discretization which is known to be exact for the geometric Brownian motion (1)

Option valuation by simulation—European options

 $\bullet\,$ a European put option on the index S pays at maturity T

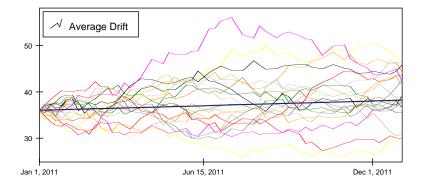
$$h(S_T) \equiv \max[K - S_T, 0]$$

for a fixed strike price \boldsymbol{K}

- to value such an option, simulate I paths of S_t such that you get I values $S_{T,i}, i \in \{1,...,I\}$
- the Monte Carlo estimator for the put option value then is

$$V_0 = e^{-rT} \frac{1}{I} \sum_{i=1}^{I} h(S_{T,i})$$

Simulating the index level for European option valuation⁶



20 simulated index level paths; thick blue line = average drift

⁶Source: analytics.dexision.com

Numpy offers all you need for an efficient implementation (I)

```
#
# Valuation of European Put Option
# by Monte Carlo Simulation
#
from numpy import *
from numpy.random import standard_normal, seed
from time import time
t_0=t_ime()
## Parameters -- American Put Option
S0 = 36.
                # initial stock level
K = 40.# strike priceT = 1.0# time-to-maturity
vol= 0.2 # volatility
r = 0.06 # short rate
## Simulation Parameters
seed(150000) # seed for Python RNG
       # time steps
M = 50
Ι
  = 50000 # simulation paths
dt = T/M  # length of time interval
df = exp(-r*dt) # discount factor per time interval
```

Numpy offers all you need for an efficient implementation (II)

```
## Index Level Path Generation
S=zeros((M+1,I),'d')
                        # index value matrix
S[0.:]=S0
                     # initial values
for t in range(1,M+1,1): # stock price paths
   ran=standard_normal(I)  # pseudo-random numbers
   S[t.:]=S[t-1.:]*exp((r-vol**2/2)*dt+vol*ran*sqrt(dt))
## Valuation
h=maximum(K-S[-1],0)  # inner values at maturity
V0=exp(-r*T)*sum(h)/I
                        # MCS estimator
## Output
print"Time elapsed in Seconds %8.3f" %(time()-t0)
print"------
print"European Put Option Value %8.3f" %VO
print"-----"
```

American options—solving optimal stopping problems (I)

• to value American options by Monte Carlo simulation, a discrete optimal stopping problem has to be solved:

$$V_0 = \sup_{\tau \in \{0, \Delta t, 2\Delta t, ..., T\}} \mathbf{E}_0^Q(B_0(\tau) h_\tau(S_\tau))$$
(5)

• it is well-known that the value of the American option at date t is then given by

$$V_t(s) = \max[h_t(s), C_t(s)]$$
(6)

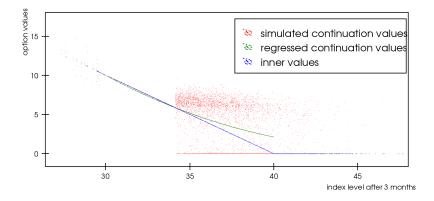
i.e. the maximum of the payoff $h_t(s)$ of immediate exercise and the expected payoff $C_t(s)$ of not exercising; this quantity is given as

$$C_t(s) = \mathbf{E}_t^Q(e^{-r\Delta t}V_{t+\Delta t}(S_{t+\Delta t})|S_t = s)$$
(7)

American options—solving optimal stopping problems (II)

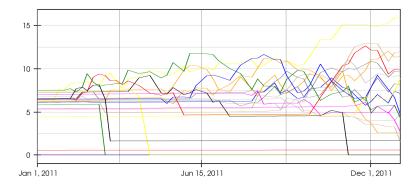
- problem: given a date t and a path i, you do not know the expected value in (7)—you only know the single simulated continuation value $Y_{t,i}$
- solution of Longstaff and Schwartz (2001): estimate the continuation values $C_{t,i}$ by ordinary least-squares regression—given the I simulated index levels $S_{t,i}$ and continuation values $Y_{t,i}$ (use cross section of simulated data at date t)
- their algorithm is called Least Squares Monte Carlo (LSM)

The LSM algorithm—regression for American put option⁷



⁷Source: analytics.dexision.com

The LSM algorithm—backwards exercise/valuation⁸



⁸Source: analytics.dexision.com

Again, the Python/Numpy implementation is straightforward (I)

```
#
# Valuation of American Put Option
# with Least-Squares Monte Carlo
#
from numpy import *
from numpy.random import standard_normal, seed
from matplotlib.pyplot import *
from time import time
t0=time()
## Simulation Parameters
seed(150000)
                # seed for Python RNG
M = 50
        # time steps
I = 4*4096  # paths for valuation
reg= 9  # no of basis functions
AP = True # antithetic paths
MM = True # moment matching of RN
## Parameters -- American Put Option
r = 0.06
            # short rate
vol= 0.2 # volatility
S0 = 36. # initial stock level
T = 1.0 # time-to-maturity
V0_right=4.48637 # American Put Option (500 steps bin. model)
dt = T/M
           # length of time interval
df = exp(-r*dt) # discount factor per time interval
```

Again, the Python/Numpy implementation is straightforward (II)

```
## Function Definitions
def RNG(I):
    if AP == True:
            ran=standard_normal(I/2)
            ran=concatenate((ran.-ran))
    else
            ran=standard_normal(I)
    if MM == True:
        ran=ran-mean(ran)
        ran=ran/std(ran)
    return ran
def GenS(I):
    S=zeros((M+1,I), 'd')
                                  # index level matrix
    S[0.:]=S0
                                  # initial values
    for t in range(1,M+1,1):
                                  # index level paths
        ran = RNG(T)
        S[t,:]=S[t-1,:]*exp((r-vol**2/2)*dt+vol*ran*sqrt(dt))
    return S
def IV(S):
    return maximum(40.-S,0)
```

Again, the Python/Numpy implementation is straightforward (III)

```
## Valuation by LSM
S=GenS(I)
                     # generate stock price paths
h = IV(S)
                     # inner value matrix
V = IV(S)
                     # value matrix
for t in range(M-1,-1,-1):
   rg=polyfit(S[t,:],V[t+1,:]*df,reg) # regression at time t
   C=polyval(rg,S[t,:])
                                   # continuation values
   V[t,:]=where(h[t,:]>C,h[t,:],V[t+1,:]*df) # exercise decision
V0=sum(V[0.:])/I # LSM estimator
## Output
print"Time elapsed in Seconds %8.3f" %(time()-t0)
print"-----"
print"Right Value %8.3f" %V0_right
print"-----"
print"LSM Value for Am. Option %8.3f" %VO
print"Absolute Error %8.3f" %(VO-VO_right)
print"Relative Error in Percent %8.3f" %((VO-VO_right)/VO_right*100)
print"-----"
```

The Challenge—"dozens of minutes" in Matlab

- realistic market models generally include **multiple sources of randomness** which are possibly correlated
- the simulation of such complex models in combination with Least Squares Monte Carlo is **computationally demanding and time consuming**
- in their research paper, Medvedev and Scaillet (2009) analyze the valuation of American put options in the presence of stochastic volatility and stochastic short rates
- Medvedev and Scaillet (2009) write on page 16:

"To give an idea of the computational advantage of our method, a Matlab code implementing the algorithm of Longstaff and Schwartz (2001) takes dozens of minutes to compute a single option price while our approximation takes roughly a tenth of a second."

The Results—"only seconds" in Python

- Python is well-suited to implement efficent, i.e. fast and accurate, numerical valuation algorithms
 - MCS/LSM with 25 steps/35,000 paths:

180 megabytes of data crunched in 1.5 seconds

MCS/LSM with 50 steps/100,000 paths:

980 megabytes of data crunched in 8.5 seconds

- reported times are from my 3 years old notebook ...
- the speed-up compared to the times reported in Medvedev and Scaillet (2009) is 480+ times (1.5 seconds vs. 720+ seconds)
- to reach this speed-up, our algorithm mainly uses variance reductions techniques (like moment matching and control variates) which allows to reduce the number of time steps and paths significantly

Results from 3 simulation runs for the 36 American put options of Medvedev and Scaillet (2009)

Start Calculations	2011-06-22 13:43:02.163000
Name of Simulation	Base_3_25_35_TTF_2.5_1.5
Seed Value for RNG	150000
Number of Runs	3
Time Steps	25
Paths	35000
Control Variates	True
Moment Matching	True
Antithetic Paths	False
Option Prices	108
Absolute Tolerance	0.0250
Relative Tolerance	0.0150
Errors	0
Error Ratio	0.0000
Aver Val Error	-0.0059
Aver Abs Val Error	0.0154
Time in Seconds	135.7890
Time in Minutes	2.2631
Time per Option	1.2573
End Calculations	2011-06-22 13:45:17.952000

DEXISION can handle a number of financial derivatives ranging from plain vanilla to complex and exotic

- Example products:
 - plain vanilla options
 - American options
 - Asian options
 - options on baskets
 - certificates (bonus, express, etc.)
 - swaps, swaptions
 - real options
 - portfolios of options
 - life insurance contracts
- Example underlyings:
 - indices
 - stocks
 - bonds
 - interest rates
 - currencies
 - commodities

DEXISION can be beneficially applied in a number of areas

- financial research: researchers, lecturers and students in (mathematical) finance find in DEXISION an easy-to-learn tool to model, value and analyze financial derivatives
- **financial engineering**: financial engineers and risk managers in investment banks, hedge funds, etc. can use DEXISION to quickly model and value diverse financial products, to cross-check valuations and to assess risks of complex derivatives portfolios
- actuarial calculations: those responsible for the design, valuation and risk management of market-oriented insurance products can engineer, value and test new and existing products easily
- financial reporting: IFRS and other reporting standards require the use of formal (option) pricing models when there are no market prices; DEXISION considerably simplifies the modelling, valuation and risk assessment for illiquid, complex, non-traded financial instruments and embedded options
- real options valuation: DEXISION offers unique capabilities to account for the specifics of real options (as compared to financial options)

DEXISION is based on a Python-LAMP environment and makes heavy use of Numpy

- Suse Linux 11.1 as 64 bit operating system
- Apache 2 as Web server
- MySQL 5.0.67 as relational database
- Python 2.6 as core language (integrated via mod_python in Apache)
- Numpy 1.3.0 as fast linear algebra library
- Dojo 1.0 as JavaScript framework for the GUI
- SVG for all custom graphics
- MoinMoin Wiki (Python powered) for Web documentation

Our aim is to make DEXISION the Google of Derivatives Analytics

- recently, Visixion added Web services to DEXISION's functionalities which allow to integrate it into any environment
- once a structure is modeled in DEXISION, updates of valuations can be received in real-time via these Web services (with data delivered e.g. in XML format)
- during the Web service call, data/variables can also be provided
- a call to value an American put option on the DAX index could look like:

https://company.dexision.com/DEXISIONeval.py?company=X&user=Y&pwd= Z&paths=50000&steps=150&portfolio=DAX/DAX_Am_Put_Dec_2011&DAX_ current=7200&DAX vola=0.175&rate=0.03&strike=6800

Contact

Dr. Yves J. Hilpisch Visixion GmbH Rathausstrasse 75-79 66333 Voelklingen Germany

www.visixion.com — Derivatives Analytics and Python Programming www.dexision.com — Derivatives Analytics On Demand

E contact@visixion.com T/F +49 3212 1129194