
Back to Excel Homepage Excel VBA - Reference Guide

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Welcome to Excel VBA Programming
VBA stands for Visual Basic for Applications (the application being of course Excel) and is the
technology and tools used to program and automate Microsoft Excel.

It's not only used just within the framework of Microsoft Excel but other applications too including
Microsoft Access, Microsoft Word, Microsoft Outlook to name but a few.

It has the power to communicate with other applications beyond the Microsoft range and even the
Microsoft Windows operating system across other platforms.

So, learning the principles of VBA using Excel as the tool environment will stand you in good stead for
the other applications should you wish to program and code them in the future.

The only difference between other applications when wanting to use VBA will simply be learning to
load and work with different libraries (which I intend to teach you in due course throughout this free
online reference guide).

This site is used in conjunction with my classroom instructor lead teaching (for my students
attending an Excel VBA course) and is intended as a reference guide only. But if you have
attended or taught Excel VBA yourself, this will help you too.

You will start by learning to record, edit and manage macros in Excel capturing the VBA code
automatically giving you the confidence and basic knowledge to the VBA code language itself.

At some point you will want to get down to learning about the power of VBA using Excel as the
environment tool to test the code. This will introduce you to the programming conventions, concepts
and techniques that simply go beyond the scope of the Excel Macro Recorder tool.

There is a lot more VBA code that can not be recorded which include logic testing, iteration,
interactive macros, creating functions and assigning variables.

I will gently ease you into learning VBA code smoothing out the steep learning curve as much as

Note: Excel Version illustrated
throughout this website is based on
2007 and therefore some of the
commands may vary on previous
versions.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm

possible.

I hope you find this resource helpful, Thank you!

Ben Beitler

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

mailto:ben@excel-database.com?subject=via Excel VBA home page
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Looking at the code
VBA code is stored in a module which is part of the Excel workbook but is viewed via the Visual Basic
Editor (VBE) interface.

1. Click the Macro icon from the Developer tab.

2. Select the macro you wish to view.

3. Click on the Edit button.

Now look at the differences between the absolute and the relative macros.

 Absolute Macro

Range(“A1”).Select

In plain English, this means, “click on the cell A1”.

ActiveCell.FormulaR1C1 = “ABC Ltd”

In plain English, this means “enter the text ABC Ltd into the active cell”.

 Relative Macro

Activecell.Select

In plain English, this means, “click on the active cell”.

ActiveCell.FormulaR1C1 = “ABC Ltd”

In plain English, this means “enter the text ABC Ltd into the active cell”.

Tip: Alt + F11 function keys switches
between Excel and VBE window.

VBA Keywords: ActiveCell, Range,
Selection, OffSet.

Note: For further details and other
members, see Range/Selection
objects.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm

ActiveCell.Offset(1,0).Range(“A1”).Select

In plain English, this means, “select the cell one row down, but stay in the same column”.

 OffSet (Keyword)

Offset is a command used in relative macros, which allows you to select a particular cell in relation to
the active cell.

Offset(-1,0)

Move one row up, but stay in the same column.

Offset(0,1)

Stay in the same row, but move one column to the right.

Offset(1,0)

Move one row down, but stay in the same column.

Offset(0,-1)

Stay in the same row, but move one column to the left.

 Unnecessary Code

As previously mentioned, recording macros does create a lot of unnecessary code.

In this example, the Range("A1") that appears in rows 3, 5, 7, 9 and 11 of the relative macro is
unnecessary and can be removed.

Next Topic: Ways of running a macro

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Ways of running macros
Most users will automatically run a macro from either button on the Quick Access toolbar (known as
Toolbars on previous versions) or via the conventional Macro dialog box.

The following is a list of ways to run a macro:

1. The Macro dialog box.

Version 2003 (or earlier) - Click on the Tools menu, select Macro and choose Macros.

Version 2007 (or later) - From the Developer tab, click the Macro icon.

Or the shortcut key to all versions is Alt + F8.

Select the Macro you wish to run and click on the Run button.

2. Using a shortcut key as assigned, i.e. Ctrl + e.

3. From a Button on the worksheet.

4. From an icon Button on the Quick Access toolbar.

Previous versions uses Toolbars.

5. From the Ribbon Bar (though requires some XML knowledge).

Previous versions uses a menu item from the menu bar.

6. From another type of object, e.g. Chart or Graphic image.

7. From a Control drawn on the worksheet, e.g. Combo Box.

8. A worksheet or workbook event, e.g. when a workbook is opened

This is maintained in the Visual Basic Editor (VBE) interface.

The last item is a great way to get Excel to run your code without any user intervention as it's uses
Excel's own processes to trigger the macro.

Most users will not be aware that Excel constantly listens for events to happen but do not see any
physical results until they learn to manipulate the event handlers provided.

There are many events from a Control (i.e. Button) to opening (Open) and closing (Close) workbooks.

Think about how Data Validation and Conditional Formatting work in Excel worksheets. They
respond to when a user has clicked the Enter key (Worksheet_Change) to trigger the two utilities. -
More on this later...

Next Topic: Where macros are stored

Want to teach yourself Access? Free online guide at About Access Databases

Tip: Alt + F8 function keys displays
the Macro dialog box to run loaded
macros.

VBA Keywords: CommandBars,
Worksheet_Change (event),
Workbook_Open (event),
Workbook_Close (event).

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Where macros are stored
There are three locations to choose from which affect the scope and availability of a macro:

1. This Workbook

2. New Workbook

3. Personal Workbook

1. This workbook will store macros in the current workbook, which recorded the macro and is said to
be a local macro.

That will mean, every time users want to run the macro, they will first have to load the file and then
execute the macro.

2. New Workbook will store the macro to an unsaved new file and is generally used for distributing to
other users which they would need to load and run manually. Treat this as the same scope for that of
This Workbook and is deemed as a local macro too.

3. Personal Workbook is a specially reserved named file which is generated (first time around)
automatically to store the recorded macros.

The name given to this file (which is still treated like any other Excel file) is Personal.xls/xlsm/xlsb.

This file is hidden by default as it is not intended to be used as a normal spreadsheet.

The location of the file is important and must reside in the XLSTART folder of where the user's profile
or Excel application is installed.

This special path responds to the loading event of Excel and loads any file stored in this folder.
Therefore, macros which are stored in the file in the path XLSTART will open too.

Macros that require a global use are stored in this type of file (i.e. User Defined functions).

The full path and file for the default installation of Excel would look something like the following:

Excel 2007 (Windows Vista)

C:\Users\Ben\AppData\Roaming\Microsoft\Excel\XLSTART\PERSONAL.XLSB

Excel 2003 (Windows XP)

C:\Documents & Settings\Ben\Application Data\Microsoft\Excel\XLSTART\PERSONAL.XLS

Next Topic: Reasons to write macros

Want to teach yourself Access? Free online guide at About Access Databases

Note: The full path to locate folders
to the PERSONAL file may be
hidden and will require some
modification in Windows Explorer to
view them.

Also check with your IT
administrator if this has been
restricted.

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Reasons to write macros
Many experienced users (and developers) who have discovered macros and VBA tend to lean
towards using code to automate Excel as much as possible.

However, there should be clear reasons as to why you would use a macro in the first place.

The following points will give poise for thought before utilising any macro within Excel:

1. To automate a repetitive operation.

If there is a pattern to your work which can be considered long and repetitive, using a
macro will speed up how you process your tasks in Excel.

Consistency is key. If your requirement deviates from the standard procedures then don't
expect the macro to run smoothly which is why you need to edit a macro by adding code
that will ask questions of the routines trying to complete.

2. To automate a tricky task.

If your task is quite a lengthy procedure which may lead to user error then this would be
another good reason to employ a macro.

In most cases, interactive macros will be key here (which of course can not be recorded)
helping the user flow through multiple decision processes.

3. Help user access large blocks of data.

The amount of data that can be stored in Excel varies between versions. For instance in
Excel 2003 you have 65,536 rows compared to Excel 2007 which contains 1,048,576.
Remember, this is just one worksheet!

Managing large data sets can be clumsy and time consuming when carried out by the
user manually and a macro can be as short as simply capturing the range should you
wish to format, edit or print information as a simple task.

4. Perform math's not supported by menu commands or functions.

Though Excel provides a wealth of calculating functions for your convenience, it will be
fair to say that not every mathematical process will have been provided for.

General users may not have the required knowledge to write complex formulae
especially if this is used on a regular basis.

Creating your own functions therefore (User Defined Functions) is a macro which can not
be recorded at all but provides a wrapper for general users to treat as a regular Excel
function.

5. Environmental macros

What I call environmental macros are macros which are very short but simulate Excel
commands that I wish to customise normally by attaching a keyboard shortcut to it.

Some Excel commands do not have keyboard shortcuts and each individual user will
have their own working habits which they will typically custom build Excel accordingly.

It can be as simple as clearing all attributes (contents, formats and comments) to a range
of cells not just deleting the contents only (DEL key).

6. Protect data from user errors.

Instead of allowing users to gain direct access to your data, protecting it via a macro will
give you better control in how users can manage your Excel processes.

Viewing the data maybe required in most tasks and allowing users to protect and
unprotect ranges, worksheets and workbooks (with or without passwords) to edit and
format information can be controlled in decision making macros.

User form can also provide a level of protection and require macro VBA code too.

Do not 're-invent the wheel' in other words learn as much as possible about the general features of
Excel to rule out if you really need to have a macro at all.

You may find a feature in Excel can do all your tasks in one simple step and you would have wasted
time creating a macro in the first place.

Next Topic: writing macros

Note: If you intend to write macros
for external organisations, be careful
to check with the recipient that they
can use macros at all as some firms
disable macros altogether.
Additionally, security can be a
problem too - seek you IT
administrator.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Writing macros
Start by writing a task list of the step you wish to capture and use this as your checklist to help cover
all actions required and in the correct order.

 Define your task

1. Define the task you wish to program.

2. The overall task must be broken down into smaller tasks.

3. The program consists of a set of instructions or code, which the computer will follow.

4. The order in which you place these statements is very important.

 Layout of procedures

Declaration Area

Procedure Starts Name()

 1st line of Statements ‘Comments

 2nd line of Statements ‘Comments

End of Procedure

The blue text represents the procedure starting and ending signatures

The green text represents the narrative/comments for documentation purposes which are excluded
from the procedure.

All procedures must have starting signature and ending signature.

 Pseudo code

Write the program out in plain English to explain what is going to happen.

 sub formatting()
 bold
 italic
 underline
 end sub

 Calling a procedure (formatting)
 sub start()
 select cells A2:A10
 formatting
 select cells B1:G1
 formatting
 end sub

 Writing macros from scratch

The following macro will select Sheet 1 and type January into cell A1 and 100 into cell A2.

1. Create a new blank workbook.

2. Click on the Developer tab, click Visual Basic icon.

3. In the VBE window, click on the Insert menu and select Module.

Tip: Alt + F11 function keys switches
between Excel and VBE window.

VBA Keywords: ActiveCell, Range,
Worksheets, Select.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm

Pseudo Code VBA Code
Sub january()
Select Sheet1
Select the cell A1
Type January
Select the cell A2
Type 100
End Sub

Sub january()
Worksheets("Sheet1").Select
Range("A1").Select
ActiveCell.Value = "January"
Range(“A2”).Select
ActiveCell.Value = 100
End Sub

4. Type the VBA code into the module and test.

Note that the text 'January' is entered with speech (double-quote) marks, as it is a piece of text, where
as the number 100 is entered without.

Next Topic: Procedure types

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Different Types of Procedures
There are three types of procedures:

1. Sub - Standard sub routine

2. Function - a routine that returns an answer

3. Property - reserved for Class Modules

The third item is not discussed in this topic as it is deemed advanced VBA.

 Sub Procedure

This is the most commonly used procedure that a recorded and edited macro typically uses.

It executes code line by line in order, carrying out a series of actions and/or calculations.

The signature for this type of procedure is:

Sub NameOfProcedure([Arguments])

 1st line of executed code ‘Comments

 2nd line of executed code ‘Comments

End Sub

The ‘Arguments’ element is optional which can be explicit or implicit. This allows values and /or
references to be passed into the calling procedure and handled as a variable.

When recording a macro, no arguments are used and the parenthesis for the named procedure
remains empty.

If you create a procedure intended as a macro in Excel, users must not specify any arguments.

Sub procedures can be recursive meaning that branching to another procedure is permitted which
then returns back to the main calling procedure.

Calling another procedure can include the Call statement followed by the name of the procedure with
optional arguments. If arguments are used, users must use parenthesis around the argument list.

 Example of the CALL statement

 ‘Procedure to be called with a single
 argument explicitly ‘declared as a string

Sub MyMessage(strText As String)

 MsgBox strText

End Sub

(Click here for an understanding of the MsgBox statement)

Correct

 ‘Test the calling procedure

Sub TestMessage()

 Call MyMessage("It worked!")

End Sub

Incorrect - must use the parenthesis

 ‘Test the calling procedure

Sub TestMessage()

 Call MyMessage "Did it work?"

End Sub

Correct (alternative) - No Call keyword used & no parenthesis therefore required.

 ‘Test the calling procedure

Sub TestMessage()

 MyMessage "It worked!"

VBA Keywords: MsgBox, Call, Exit
Sub, Exit Function.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm

End Sub

A procedure can be prematurely terminated, placed before the ‘End Sub’ statement by using the ‘Exit
Sub’ statement.

 ‘This procedure will terminate after part A and never run part B.

Sub TerminateNow()

 Code part A here...

 Exit Sub

 Code part B here....

End Sub

 Function Procedure

The main difference between a Sub and Function procedure is that a Function procedure carries out
a procedure and will return an answer whereas a Sub procedure carries out the procedure without an
answer.

A simple analogy of a Function procedure compared to that of a Sub procedure could be illustrated
using two example features of Excel:

File, Save is an action and does not return the answer – Sub Procedure.

The Sum function calculates the range(s) and returns the answer – Function Procedure.

The signature for this type of procedure is:

 Function NameOfProdedure([Arguments]) [As Type]

 Code is executed here

 NameOfProcedure = Answer of the above code executed

End Function

The Arguments element is optional which can be explicit or implicit. This allows values and /or
references to be passed into the calling procedure and handled as a variable.

The optional Type attribute can be used to make the function explicit. Without a type declared, the
function is implicit (As Variant).

The last line before the End Function signature uses the name of the procedure to return the
expression (or answer) of the function.

Users cannot define a function inside another function, sub or even property procedures.

This type of procedure can be called in a module by a Sub procedure or executed as a user defined
function on a worksheet in Excel.

A procedure can be prematurely terminated, placed before the End Function statement by using the
Exit Function statement. This acts and responds in the same way as described in the previous
section (Sub Procedures).

An example of a Function procedure:

 ‘This function calculates the distance of miles into kilometres.

Function ConvertToKm(dblMiles As Double) As Double

 ConvertToKm = dblMiles * 1.6

End Function

A Sub procedure that uses of the above function:

 ‘Using the above function that must use parenthesis.

Sub CarDistance

 MsgBox ConvertToKm(25)

End Sub

In Excel, this function can also be used (known as a User Defined Function - UDF)

Click on this link for more information on user defined functions.

Next Topic: Visual Basic editor (VBE)

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Visual Basic Editor
All macros can be edited and created from the Visual Basic Editor (VBE) application as mentioned
earlier.

Standard Toolbar

Contains all the basic buttons to this window like save, switching to Excel and hide/show other
windows. There are other Toolbars available; Edit, Debug, User Form and Toolbox.

Object Box

This displays the name of the selected object chosen from the drop down box.

Procedure Box

This displays the name of the procedure or event of the object (i.e. worksheet).

Code Window (Module)

This is where you maintain the VBA code. One or more sub and function procedures are stored in this
view and users manage macros across one or more modules.

Project Explorer

All the code associated with a workbook is stored in the ‘Project’ window. This is automatically saved
with the Workbook.

Like a workbook, the ‘Project Explorer’ contains all associated objects, which include worksheets,
user forms and modules.

Macros are stored in either the sheet object or module object. Consider using the module object to

Tip: Use F5 function key to run a
macro from the VB Editor.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm

store macros for general use in that workbook rather than a specific macro for a specific sheet.

By double clicking on an object or clicking the view code button at the top left corner of the ‘Project’
window, displays the objects code (macros associated).

Properties Window

Properties are characteristics of the selected object.
This window allows you change these characteristics to a worksheet, workbook and user form.

This above window is task sensitive and therefore changes as you click from one control to another.

 Edit Toolbar

Select View, Toolbars and select the Toolbar required.

Edit Toolbar

1 Lists Properties/Methods box in a code window. This is task sensitive as it shows
properties and methods to active keywords.

2 List Constants.

3 Quick Info displays a label for the active keyword or variable.

4 Parameter Info displays the syntax label of known keywords.

5 Complete word displays a scroll list box of keywords and completes the beginning of
known types keywords.

6 Indent tabs once to the right.

7 Outdent tabs once to the left.

8 Toggle Breakpoint allows marking a line of code at which point a macro will stop.

9 Comment Block ‘rem’ the line (put an apostrophe at the beginning of the line).

10 Uncomment Block removes the ‘rem’ line.

11 Toggle Bookmark marks with a blue marker a piece of code so that scrolling between
code lines is quick and simple.

12 Next Bookmark moves to the next bookmark.

13 Previous Bookmark moves to the previous bookmark.

14 Clear All Bookmarks clears all bookmarks.

There other toolbars that you may need to review and can be found via the View menu.

Next Topic: Rules & conventions

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Rules & Conventions
It is not mandatory to follow Microsoft’s rules and conventions regarding name spaces and prefixes.
Users could always introduce their own standards, rules and conventions, which will help other users
who may need to maintain processes within the organisation.

The following is a guideline to perhaps how authors and users alike could manage the code.

Naming macros, procedures and variables should be meaningful to the process to help clarify the
task in hand.

Do not name a macro or procedure ‘MyProcedure1’ or ‘Macro1’ but keep it user friendly to help
described the process.

Users can use more than one word provided there are no spaces or invalid characters used
(operators). When using more than ‘one-worded’ procedures, consider initially capping each word to
help see the name of the procedure clearly.

For example, Sub openallorders() would be better shown as Sub OpenAllOrders().

Variables such as X = 10 would be more helpful if X was named to be more meaningful to the
intended process i.e. the number of years and could therefore be shown as NumberOfYears = 10 or
NoYears = 10.

Variables and naming conventions are covered elsewhere in this guide – see Variables and
Constants.

Do not use keywords when naming procedures or variables, as this will cause potential conflicts and
errors.

 Indentation

Code should be clearly positioned in a module. Use the tab key to indent logical blocks of code.
Users can use as many indentations to emphasis new blocks of code (as nested) if required to show
where a block starts and ends. This will help when browsing for long portions of code.

 Comments

Commenting your code is important to the author and other users who may need to maintain code
fragments. By default, commented lines are coloured green when text is typed following an
apostrophe (‘) or the keyword ‘Rem’ (remark).

As part of the opening signature (either before or after the signature), a brief description of the
procedure along with a date and name of the author should be documented.

For example:

Sub ProcessInvoice()

'**
' This procedure will validate all entries to the new invoice.
' It will calculate sub total and tax values and post it to the
' data store. ' It will print and close the invoice.
' Author: Ben Beitler
' Date Created: 12/04/2010
' Date Modified: 20/04/2010
'**

 executed code is entered here

End Sub

Comments can appear anyway in the module provided it is remarked correctly as this type of text is

VBA Keywords: If...Then, MsgBox,
vbNewLine.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm

ignored during code execution. Comments should also be added to unusual or difficult lines of code
(known as inline comments) to help explain the nature of the action.

For example:

Sub SomeProcedure()
' Comments here.

 [executed code is entered here...]

 ' This block is to validate if the field had been
 ' completed using my own custom function
 ' ValidateEntry(field).
 If mField = ValidateEntry(txtDate) Then
 [executed code is continued here...]
 intCounter = 1 'Set the flag back to 1 in order to 'restart counter.

 [executed code is entered here...]

End Sub

 Line Breaks

Generally code should not be written beyond the screen/page width as it becomes cumbersome to
work with, as users would have to scroll left and right unnecessarily.

Consider introducing a line break for single line code that extends beyond the page width by using
the characters ‘spacebar’ and a ‘underscore’ (_).

For example:

Sub MessageTestLineBreak()

 MsgBox "This is the first Line." & vbNewLine & _

 "This is the second Line.", _
 vbInformation, "Message Box Test"

End Sub

Microsoft produced various documents on this subject. For a full list, check out

http://msdn.microsoft.com/library and search for 'Code Conventions’'

More information about conventions regarding variables are covered later in this manual – see
Variables & Constants.

Next Topic: Excel objects

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://msdn.microsoft.com/library
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Excel Objects
There are many categories (classes) of Excel objects that can be controlled in VBA. In fact, nearly all
objects can be controlled in VBA that users manipulate in the Excel interface. VBA can also control
more than the Excel interface provides which is one of the key reasons why 'power users' use VBA!

The Object hierarchy provides the levels of various key objects ranging from the cell ranges (the
lowest level) through to the application itself (the highest level).

This section focuses on the Application, WorkBook(s), Worksheet(s) and ActiveSheet/Workbook
objects (see Range & Selection objects for more extended information).

 Application object

The word Application refers to the host (in this case Excel) and is deemed the top level object.

(Note: VBA can communicate beyond Excel and technically this is not the top level as you have the ability to code
to Microsoft Office (Word, PowerPoint etc) and to other applications including the operating system).

Use this object as the entry point (the gateway) to the Excel object model and is implicit which means
that you can omit this keyword in your code as it's the default. The following two VBA commands do
the same thing:

Application.ActiveSheet.Name = "January"

ActiveSheet.Name = "January"

The first example included the Application object keyword (as explicit) and the second one excluded
(as implicit) it but produced the same result.

You only need to use this keyword if you are coding with other applications (that is not Excel) or wish
to communicate to Excel from another application's environment (i.e. Microsoft Word). You will need to
learn about object variables and set application objects to Excel.

The following code snippet creates an Excel object from outside of Excel (which uses VBA too) and
opens a workbook called "Sales.xlsx":

Sub OpenExcelWorkbook()

 Dim xl As Object

 Set xl = CreateObject("Excel.Sheet")

 xl.Application.WorkBooks.Open("Sales.xlsx")

 'executed code continues...

End Sub

 ActiveWorkbook and Workbooks objects

This object appears below the Application object along with other key objects including Chart and
Pivot Table and control the tasks for any workbook from creating, opening, printing to saving and
closing documents.

The singular keyword Workbook refers to the current or a single file you wish to control compared
with the plural keyword Workbooks which is the collection of one or more documents you wish to
control

Use the Workbook object referred in code as ActiveWorkbook to open, save, print, close and
manipulate the documents attributes as required.

Sub WorkBookNameExample()

 MsgBox "Current workbook is " & ActiveWorkbook.Name

End Sub

VBA Keywords: Application,
ActiveSheet, ActiveWorkbook,
ActivePrinter, ActiveCell, ActiveChart,
ActiveWindow, CreateObject,
Workbooks, Worksheets, Name,
MsgBox, SaveAs, Count and Add.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm

Save a copy of the current workbook:

Sub SaveAsWorkBookExample1()

 ActiveWorkbook.SaveAs "VBA Workbook.xlsx"

End Sub

The above can also be expressed as follows:

Sub SaveAsWorkBookExample2()

 Workbooks(1).SaveAs "VBA Workbook.xlsx"

End Sub

Using the Workbooks keyword which is a collection of current workbooks, you can provide an index
number (starting at 1 for the first document and incrementing by 1 for each open document) to execute
code using the same identifiers as ActiveWorkbook object.

How many workbooks are currently open?

Sub WorkBookCount()

 MsgBox "There are currently " & Workbooks.Count & _
 " workbook(s) open"

End Sub

The Workbooks object doesn't have any parenthesis and an index number reference when dealing
with a collection of many documents.

(Note: the above will also count all open and hidden documents).

 ActiveSheet and Worksheets objects

Most of the time, you will work with this object along the range object as the normal practice is
worksheet management in a workbook when working with the Excel interface.

Again, the singular Worksheet object referred as ActiveWorkSheet controls the current or single
worksheet objects including its name. The plural keyword Worksheets refers to one or more
worksheets in a workbook which allows you to manipulate a collection of worksheets in one go.

Name a worksheet:

Sub RenameWorksheetExample1()

 ActiveWorkSheet.Name = "January"

End Sub

or use

Sub RenameWorksheetExample2()

 WorkSheets(1).Name = "January"

End Sub

assuming the first worksheet is to be renamed.

Insert a new worksheet and place it at the end of the current worksheets:

Sub InsertWorksheet1()

 Worksheets.Add After:=Worksheets(Worksheets.Count)

End Sub

or it can shortened using the Sheets keyword instead:

Sub InsertWorksheet2()

 Sheets.Add After:=Sheets(Sheets.Count)

End Sub

(Note: Have you noticed when adding a new worksheet via Excel interface how it always inserts it to the left of the
active sheet!).

 'Active' objects

Within the Application object you have other properties which act as shortcuts (Globals) to the main
objects directly below it. These include ActiveCell, ActiveChart, ActivePrinter, ActiveSheet,
ActiveWindow and ActiveWorkbook.

You use the above keywords as a direct implicit reference to the singular active object in the same
way (as in the above already illustrated).

Remember, you can only have one active object when working in the Excel interface and therefore
the VBA code is emulating the way users are conditioned to work. Even when a range of cells is
selected (Selection object) only on cell is active (the white cell).

http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm

Sub PrinterName()

 MsgBox "Printer currently set is " & ActivePrinter

End Sub

Next Topic: Range & Selection objects

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Range & Selection Objects
Range is one of the most widely used objects in Excel VBA, as it allows the manipulation of a row,
column, cell or a range of cells in a spreadsheet.

When recording absolute macros, a selection of methods and properties use this object:

Range("A1").Select

Range("A1").FormulaR1C1 = 10

A generic global object known as Selection can be used to determine the current selection of a single
or range cells.

When recording relative macros, a selection of methods and properties use this object:

Selection.Clear

Selection.Font.Bold = True

There are many properties and methods that are shared between Range and Selection objects and
below are some illustrations (my choice of commonly used identifiers):

 ADDRESS Property

Returns or sets the reference of a selection.

Sub AddressExample()
 MsgBox Selection.Address 'A1 (default) - absolute
 MsgBox Selection.Address(False, True) '$A1 - column absolute
 MsgBox Selection.Address(True, False) 'A$1 - row absolute
 MsgBox Selection.Address(False, False) 'A1 - relative

End Sub

 AREAS Property

Use this property to detect how many ranges (non-adjacent) are selected.

'Selects three non-adjacent ranges
Sub AreaExample()
 Range("A1:B2", E4, G10:J25").Select
 MsgBox Selection.Area.Count 'Number '3' - ranges returned
End Sub

The Count method returns the number selected as the Areas is a property only.

'Check for multiple range selection
Sub AreaExample2()
 If Selection.Areas.Count > 1 Then
 MsgBox "Cannot continue, only one range must be selected."
 Exit Sub
 End If

 [Code continues here...]
End Sub

Use the Areas property to check the state of a spreadsheet. If the system detects multiple ranges, a
prompt will appear.

 CELLS Property

This property can be used as an alternative to the absolute range property and is generally more
flexible to work with, as variables are easier to pass into it.

There are two optional arguments:

Cells([row] [,column])

Leaving the arguments empty (no brackets), it will detect the current selection as the active range.

Adding an argument to either row or column with a number will refer to the co-ordination of the

Tip: You can refer to Range("A1")
using the convention [A1] which may
be easier to write.

VBA Keywords: Range, Select,
Clear, Font, Bold, Address,
Selection, MsgBox, Area, Count,
Cells, InputBox, CurrentRegion,
OffSet, Resize, Columns, Rows,
Column, Row, Dim, Activate,
ClearFormats, ClearComments,
ClearContents, ClearNotes,
ClearOutline, Cut, Copy,
PasteSpecial, Insert, Delete,
EntireRow, Set, Borders, Interior,
Do...Loop, For...Next and If...Then

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm

number passed.

Adding both arguments will explicitly locate the single cell’s co-ordinate.

'Examples of the Cells property
Sub CellsExample()
 Cells.Clear 'clears active selection
 Cells(1).Value = "This is A1 - row 1"
 Cells(, 1).Value = "This is A1 - col 1"
 Cells(1, 1).Value = "This is A1 - explicit"
 Cells(3, 3).Value = "This is C3"
 Cells(5, 3).Font.Bold = True
End Sub

Variables can be passed into the Cells property and then nested into the Range object as in the
following example:

'Two InputBoxes for rows and columns
Sub CellsExample2()
 On Error GoTo handler
 Dim intRows As Integer
 Dim intCols As Integer
 intRows = CInt(InputBox("How many rows to populate?"))
 intCols = CInt(InputBox("How many columns to populate?"))
 'starts at cell A1 to the number of rows and columns passed
 Range(Cells(1, 1), Cells(intRows, intCols)).Value = "X"
 Exit Sub
handler:
 'Error code is handled here...
End Sub

By wrapping a range property around two cell properties, the flexibility of passing variables becomes
apparent.

Range(Cells(1, 1), Cells(intRows, intCols))

Error handlers and InputBox functions are covered later in this guide.

 Column(s) and Row(s) Properties

Four properties that return the column or row number for the focused range.

The singular (Column or Row) returns the active cell’s co-ordinate and the plural (Columns or Rows)
can be used to count the current selections configuration.

Sub ColRowExample()
 MsgBox "Row " & ActiveCell.Row & _
 " : Column " & ActiveCell.Column

End Sub

Sub ColsRowsCountExample()
 MsgBox Selection.Rows.Count & " rows by " _
 & Selection.Columns.Count & " columns selected"

End Sub

 CURRENTREGION Property

Selects from the active cell’s position all cells that are adjacent (known as a region) until a blank row
and blank column breaks the region.

Use this statement to select a region.

Selection.CurrentRegion.Select

Make sure you have some data to work with.

To select a region of data and exclude the top row for a data list:

Run this piece of code:

Sub RegionSelection()
 ActiveCell.CurrentRegion.Offset(1, 0).Resize(_
 ActiveCell.CurrentRegion.Rows.Count - 1, _
 ActiveCell.CurrentRegion.Columns.Count).Select

End Sub

Make sure the active cell is in the region of data you wish to capture before running the above
procedure.

 RESIZE Property

This property is useful for extending or re-defining a new size range.

To extend this range

by one row and one column to

use the code snippet below:

Sub ResizeRange()
 Dim rows As Integer
 Dim cols As Integer
 cols = Selection.Columns.Count
 rows = Selection.rows.Count
 Selection.Resize(rows + 1, cols + 1).Select

End Sub

Resizing a range can be increased, decreased or change the configuration (shape) by combining
positive and negative values inside the Resize property’s arguments.

 OFFSET Property

This property is used in many procedures as it controls references to other cells and navigation.

Two arguments are passed into this property that is then compounded with either another property or
a method.

Selection.OffSet(1, 2).Select

ActiveCell.OffSet(0, -1).Value = "X"

Consider referring to an offset position rather than physically navigating to it – this will speed up the
execution of code particularly while iterating.

For example:

Sub OffSetExample1()
 Dim intCount As Integer
 Do Until intCount = 10
 ActiveCell.Offset(intCount, 0).Value = "X"
 intCount = intCount + 1
 Loop

End Sub

is quicker to execute than:

Sub OffSetExample2()
 Dim intCount As Integer
 Do Until intCount = 10
 ActiveCell.Value = "X"
 ActiveCell.Offset(1, 0).Select
 intCount = intCount + 1
 Loop

End Sub

Do...Loops (iterations) are covered later in this guide

The above two examples produce the same result but instead of telling Excel to move to the active
cell and then enter a value, it is more efficient to refer (or point) to the resulting cell and remain in the
same position.

A positive value for the row argument refers to a row downwards.

A positive value for the column argument refers to a column to its right.

A negative value for the row argument refers to a row upwards.

A negative value for the column argument refers to a column to its left.

 Be careful to introduce error-handling procedures when working with the ‘Offset’ property as if you
navigate or refer to a position outside the scope of the fixed dimensions of a worksheet, this will
certainly cause a run time error (See Error Handling & Debugging).

 ACTIVATE Method

This method should not be confused with the Select method as commonly used in VBA.

The Select method means go and navigate to it.

Range(“A1”).Select.

Range(“A1:C10”).Select

The Activate method selects a cell within a selection.

By default, in a selection of cells, the first (top left position) is the active cell (white cell in a block).

Example:

Sub ActivateMethodExample()
 'select a fixed range
 Range("A1:C10").Select
 MsgBox ActiveCell.Address(False, False)
 Range("B2").Activate
 MsgBox ActiveCell.Address(False, False)
End Sub

The above procedure selects a fixed range of cells with a message box confirming the address of the
active cell. Then, using the Activate method, move the active cell to address B2.

From

to

 CLEAR Methods

There are six variations of this method:

1. Clear – all attributes are cleared and reset to default
2. ClearComments – clear comments only
3. ClearContents – clear contents only (delete key command)
4. ClearFormats – clear formats only (revert to general format)
5. ClearNotes – clear comments and sound notes only
6. ClearOutline – clear on outlines implemented

Simply locate the object and use of the above methods:

'Different ways to refer to a selection

'Different ways to refer to a selection
Sub ClearMethodsExamples()
 Range("A1:C10").Clear
 Selection.ClearComments
 Selection.CurrentRegion.ClearContents
 ActiveCell.ClearFormats
 Range(Cells(1, 1), Cells(5, 3)).ClearNotes

 Columns("A:E").ClearOutline
End Sub

 CUT, COPY and PASTESPECIAL Methods

These methods simulate the windows clipboard cut, copy and paste commands.

There are a few different types of these methods where most arguments are optional and by changing
the argument settings, will change the behaviour of the method.

Some examples:

'Simple Copy and Paste
Sub CopyPasteData1()
 Range("A1").Copy
 Range("B1").PasteSpecial xlPasteAll
End Sub

'Copy and Paste Values only (no format)
Sub CopyPasteData2()
 Range("A1").Copy
 Range("B1").PasteSpecial xlPasteValues
End Sub

'Simple Cut and Paste
Sub CutPasteData()
 Range("A1").Cut Range("B1")
End Sub

If the copy and cut methods omit the argument Destination, the item is copied to the windows
clipboard.

 INSERT and DELETE Methods

These methods can add or remove cells, rows or columns and is best used with other properties to
help establish which action to execute.

Some examples:

'Inserts an entire row at the active cell
Sub InsertRow()

 ActiveCell.EntireRow.Insert 'or EntireColumn
End Sub

'Deletes an entire row at the active cell
Sub DeleteRow()

 ActiveCell.EntireRow.Delete 'or EntireColumn
End Sub

'Inserts an entire row at row 4
Sub InsertAtRow4()

 ActiveSheet.rows(4).Insert
End Sub

'Insert columns and move data to the right
Sub InsertColumns()

 Range("A1:C5").Insert Shift:=xlShiftToRight
End Sub

 Using the SET Keyword Command

Users can create and set a range object instead and like all other object declarations, use the Set
command (which is used for object variable declarations).

'Alternative way of referring to a range
Sub RangeObject()
 Dim rng As Range
 Set rng = Range("A1:B2")
 With rng
 .Value = "X"
 .Font.Bold = True
 .Borders.LineStyle = xlDouble
 'any other properties.........
 End With
 Set rng = Nothing
End Sub

http://www.excel-spreadsheet.com/vba/objectvariables.htm

This is an alternative way of working with the range object and is sometimes preferred as it exposes
more members (properties and methods).

For example, using a For...Loop (see For...Loop section about this control flow), iterating in a
collection is carried out by declaring and setting a variable as a Range object:

'Loops through the elements of the Range object
Sub IterateRangeObject()
 Dim r1 As Range
 Dim c As Object
 Set r1 = Range("A1:C10")
 For Each c In r1
 If c.Value = Empty Then
 c.Value = "0"
 End If
 Next c
End Sub

The above procedure checks each cell in a fixed range (A1 to C10) and determines its value, placing
a 0 (zero) if the cell is empty.

Next Topic: Object hierarchy

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Object Hierarchy
Most applications consist of many objects arranged in a hierarchy.

 Objects, Methods, Properties and Variables

Each line of code generally has the same structure (which is also known as Syntax). VBA is loosely
based around the concept of Object Orientated Programming (OOP) and the following syntax is
used to define how you write code using any of the libraries that are loaded.

OBJECT.Identifier[.sub_Identifier]

The square brackets wrapped around the sub_Identifier is the convention meaning it is optional and
therefore not always required.

An Identifier and sub_Identifier can be one of three types:

1. Property

2. Method

3. Event

Similar to physical objects such as a car or a chair, the application objects, as listed above, have
Properties and Methods (as well as Events)

Object Property Method

Car Colour Accelerate

ActiveCell Value

Worksheets(“Sheet1”) Select

Identifying the Objects, Methods and Properties from the previous example.

Examples

1. Create a new blank workbook.

VBA Keywords: Application,
WorkBook(s), WorkSheet(s), Range,
Font, Border, Interior, Select,
ActiveCell, Add.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm

2. Click on the Tools menu, select Macro and choose Visual Basic Editor.

3. Click on the Insert menu and select Module.

 Properties

A Property is an attribute of an object, e.g. the colour of a car, the name of a worksheet.

Object.Property = Value

Car.Colour = Red

Worksheets(“Sheet1”).Name = "My Sheet"

The following example will change the name of “Sheet1” to “My Sheet”.

 Methods

A Method is an activity that an object can be told to do, e.g. accelerate the car, select a cell, insert a
worksheet, delete a worksheet.

Object.Method

Car.Accelerate

Range("A2:A10").Select

The following example will select a range of cells (A2 to A10) in the current worksheet.

 Methods that contain arguments

There are methods that contain many arguments, for example inserting a worksheet(s). The
numerous arguments contain information about how many worksheets you would like to insert, the
position of the worksheet(s) and the type of the worksheet(s).

Object.Method Argument1,Argument2,...

Example:

Worksheets.Add Before, After, Count, Type

Add Add a new worksheet.

Before/After Before which worksheet?

After which worksheet?

Count How many worksheets

Type What type of worksheet ie worksheet, chart sheet etc

The following example will place 2 new sheets after Sheet 2.

Worksheets.Add, Sheets(“Sheet2”), 2

§ The comma after Add represents the "Before" argument.

§ If "Type" is omitted, then it will assume the Default Type. The Default Type is xlworksheet.

Sub Insert2Sheets()

 Worksheets.Add Sheets("Sheet2"), 2

End Sub

 Events

http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm

Events are like Methods the only difference being when and who/what calls this action. It is an action
like a method but the system will trigger it for you instead of the user invoking the action.

This is very useful when a system changes state and needs to automate a procedure on behalf of the
user.

In fact, there are many events being triggered all the time; users are simply not aware of this unless
there is a procedure to trigger it. The system constantly listens for the event to take place.

When you use standard Excel features like Data Validation or Conditional Formatting, the system
automatically creates code for an event so when users enter a value in a cell it will automatically
trigger the feature and validate and format the active cell without a user calling the a macro manually.
This type of event is normally known as 'Enter' for a Worksheet.

There are many predefines events which have no code just a starting and ending signature and users
need to add code in between these signatures. Take a look at Event Handling for more information.

Next Topic: Object Browser

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Object Browser
The Object Browser enables you to see a list of all the different objects with their methods, properties,
events and constants.

In the VBE editor:

1. Insert menu and select a Module.

2. Click on the View menu and select Object Browser (shortcut key: F2).

3. Make sure it’s set to '<All Libraries>'.

Notice Add([Before], [After], [Count], [Type]) is one of the examples previously seen.

The main two panes contain on the left Classes (also known as Objects) and on the right Members
(also known as Identifiers).

By selecting a class, you display its members which are of three key types; Properties, Methods and
Events.

 Libraries

Libraries are the application divisions of a collection of classes (objects). Therefore, you will have a
class for Excel, VBA and other applications you wish to have a reference to. The Excel (the host),
VBA and VBAProject are mandatory and can not disabled. All other library files can be switched on
or off as required.

In order to code to another applications (for example, Microsoft Word) you will need to load its library
first.

To switch between libraries or show all libraries, choose the ‘Project/Library’ drop down box:

The default libraries available:

1. Excel – A collection of classes available in Excel i.e. workbook, worksheet, range, chart, etc…

Tip: You can press F2 function key
to load the Object Browser.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm

2. Office – A collection of classes generic to all office applications i.e. command bar, command

icon, help assistance, etc…

3. stdole – A collection of standard OLE classes which allow other OLE applications to share

information (Not covered in this manual).

4. VBA – A collection of classes which allow generic functions to be used i.e. MsgBox, InputBox,

conversion functions, string functions, etc…

5. VBAProject – A collection of classes local to the active workbook project, which includes

sheets, workbook and any user, defined classes.

Other libraries are also available but require to be enabled before they can be used which include
Word, Outlook, DAO, ADODB and many others.

By enabling the additional libraries, developers can start to code and communicate with other
applications and processes, which start to reveal the potential power of Visual Basic (VBA).

To enable a library, from the Visual Basic Editor, choose Tools menu and select References…

Scroll down to find the required library or choose the Browse… button to locate the required library.

Excluding the top two libraries, a library priority order matters that is why users can re-arrange the
order using the Priority buttons. The way the system works is when a procedure is executed, it checks
to see which library is required in order to execute the line-by-line code. In some cases, a method or
class can be duplicated between libraries and it is therefore important to be able to call the correct
method or class first superseding the lower level references.

 Structure of a Library

Each Library will typically have a collection of classes. A class or object class is in essence the
object i.e. Worksheet.

Each object class will have a collection of members, which could be a collection of properties,
methods and events.

When looking at the Object Browser, users will see on the left hand side many classes to the active
library. To the right hand pane, all members of the selected class will reveal properties, methods and
events.

The above illustration shows the Excel library, Worksheet class and the Visible property highlighted
(Excel.Worksheet.Visible).

Right mouse click the selected item to choose the Help command and go straight to the offline help
documentation.

http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm

Browsing the right hand and pane of the Object Browser, users will see three different icons to help
identify the member type:

 Browser Searching

The search tool allows users to locate if a keyword firstly exists and secondly where it could possibly
reside

At the top half of the browser window, type the desired keyword and then click the search button:

The above example looked for the keyword visible across all libraries.

After locating the correct item (selecting the item), users can use the copy button function and then
paste into a code window.

Next Topic: Chart objects

Want to teach yourself Access? Free online guide at About Access Databases

http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.about-access-databases.com

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Charts Objects
When you add a chart when recording a macro, the code generated follows the menu and command
that users manually call when adding a chart which means there is a discipline to run the macro in
exactly the same way or face the potential of landing up with different results or even errors.

Typical code for a recorded macro:

Sub RecordedMacroChart()
'
' RecordedMacroChart Macro
'
 ActiveSheet.Shapes.AddChart.Select
 ActiveChart.SetSourceData Source:=Range("'Sheet2'!A2:D12")
 ActiveChart.ChartType = xlLineMarkers
End Sub

The other issue with the above example code is typically the reference to the source data (which is an
absolute string reference Sheet2'!A2:D12). The user may want more flexibility in
controlling where this reference is by using and passing variables.

Note: Previous versions of Excel records macros using the object and method Charts.Add but it still gives the
inflexibility in terms of control.

The above code generates a standard size chart within a worksheet and there is no room for setting
properties until users edit the properties of an existing chart which just adds more code and becomes
inefficient.

 Create Chart Objects

By creating your own written procedure and introduce ChartObjects keyword with supporting
methods and properties, you have more control and can be flexible in passing arguments thus
reducing extra lines of code.

An example:

Sub WrittenMacroChart()
'
' WrittenMacroChart Macro
'
 With ActiveSheet.ChartObjects.Add _
 (Left:=100, Width:=400, Top:=100, Height:=250)
 .Chart.SetSourceData Source:=Sheets("Sheet2").Range("A2:D12")
 .Chart.ChartType = xlXYScatterLines
 End With
End Sub

The above example allows the chart object to be positioned and sized (measured in pixels)
accordingly using the Add method and its arguments.

Defining object variables for longer based procedures makes the code more clinical and efficient to
write even though we must first declare a new object (as ChartObject).

Sub WrittenMacroChartObject()
 Dim ChrtObj As ChartObject
 Set ChrtObj = ActiveSheet.ChartObjects.Add _
 (Left:=100, Width:=400, Top:=100, Height:=250)
 ChrtObj.Chart.SetSourceData Source:=Sheets("Sheet2").Range("A2:D12")
 ChrtObj.Chart.ChartType = xlXYScatterLines
End Sub

The above example is the same as the previous code snippet but using the object variable ChrtObj

VBA Keyword: ActiveSheet,
AddChart, Select, SetSourceData,
With...End With, ChartType,
ChartObjects, SeriesCollections,
NewSeries & Set.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm

as declared and set.

The other useful method is SetSourceData as you can add as many series as required (one at a
time) enabling what ranges you want to set and not let Excel make as assumption.

 Adding Series

When recording a macro adding a series each line of code is created for a name, y-axis values and x-
axis values if required using SeriesCollection and NewSeries keywords.

An example of recorded macro which adds three series (names and values) and an y-axis to an
existing empty chart on a worksheet:

Sub AddingSeries()
 ActiveChart.SeriesCollection.NewSeries
 ActiveChart.SeriesCollection(1).Name = "='Sheet2'!B2"
 ActiveChart.SeriesCollection(1).Values = "='Sheet2'!B3:B12"
 ActiveChart.SeriesCollection.NewSeries
 ActiveChart.SeriesCollection(2).Name = "='Sheet2'!C2"
 ActiveChart.SeriesCollection(2).Values = "='Sheet2'!C3:C12"
 ActiveChart.SeriesCollection.NewSeries
 ActiveChart.SeriesCollection(3).Name = "='Sheet2'!D2"
 ActiveChart.SeriesCollection(3).Values = "='Sheet2'!D3:D12"
 ActiveChart.SeriesCollection(3).XValues = "='Sheet2'!A3:A12"
End Sub

Using the With...End With statement will refine the code and make it easier to understand. Also,
introducing your own objects for a series just gives you better control should you wish to assign
variables and arrays to it.

The same as the above example but a better practice:

Sub AddingSeriesObjects()

 Dim ChrtSrs1 As Series, ChrtSrs2 As Series, ChrtSrs3 As Series
 Set ChrtSrs1 = ActiveChart.SeriesCollection.NewSeries
 With ChrtSrs1
 .Name = "='Sheet2'!B2"
 .Values = "='Sheet2'!B3:B12"
 .XValues = "='Sheet2'!A3:A12"
 End With
 Set ChrtSrs2 = ActiveChart.SeriesCollection.NewSeries
 With ChrtSrs2
 .Name = "='Sheet2'!C2"
 .Values = "='Sheet2'!C3:C12"
 .XValues = "='Sheet2'!A3:A12"
 End With
 Set ChrtSrs3 = ActiveChart.SeriesCollection.NewSeries
 With ChrtSrs3
 .Name = "='Sheet2'!D2"
 .Values = "='Sheet2'!D3:D12"
 .XValues = "='Sheet2'!A3:A12"
 End With
End Sub

Remember, you can pass variables better into the above example code (not illustrated).

To delete a series use ActiveChart.SeriesCollection(1).Delete where the index
(brackets with a 1) represents the first series for the active chart.

Using arrays and collections, you have better control especially when wanting to handle multiple
charts in one go.

Data used for the above chart:

 Chart object looks something like:

http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/arrays.htm

Next Topic: Pivot Table objects

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Pivot Table Objects
Pivot Tables are a very popular and powerful Excel feature and most users generate this type of
object using the standard wizard (pre 2007) or Insert action (2007 or later) command.

Once again, recording a macro is a good starting point but the code, efficiency and interpretation is
sometimes difficult to manage and can cause errors when running a recorded macro. Instead, users
can always call and Excel Pivot Tables object which is a member of the Pivot Tables Collection.

Here is an example recorded macro based on some data located in a worksheet called 'Sales List'
which has a range A1:M306:

Sub SummaryPivotReport()

 Sheets.Add
 ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, _
 SourceData:="Sales List!R1C1:R306C13", _
 Version:=xlPivotTableVersion10).CreatePivotTable _
 TableDestination:="Sheet1!R3C1", _
 TableName:="PivotTable1", DefaultVersion:=xlPivotTableVersion10
 Sheets("Sheet1").Select
 Cells(3, 1).Select
 With ActiveSheet.PivotTables("PivotTable1").PivotFields("Product")
 .Orientation = xlRowField
 .Position = 1
 End With
 With ActiveSheet.PivotTables("PivotTable1").PivotFields("Assistant")
 .Orientation = xlColumnField
 .Position = 1
 End With
 ActiveSheet.PivotTables("PivotTable1").AddDataField _
 ActiveSheet.PivotTables("PivotTable1").PivotFields("TOTAL"),
 "Sum of TOTAL", xlSum
 With ActiveSheet.PivotTables("PivotTable1").PivotFields("Method")
 .Orientation = xlPageField
 .Position = 1
 End With

End Sub

Try running it and you will discover one of several errors.

The errors generated is not down to the Pivot Table object, PivotCaches or PivotTables collection
failing but the absolute references to either a worksheet or ranges being called.

Even if you are prepared to keep the recorded macro as above and just simply change the
references, then you have made a start and a reason for editing this macro.

For example, changing the range reference (which is absolute) and handling the absolute worksheet
name to be more dynamic and relative:

When the system adds a new worksheet Sheets.Add it generates a unique name each time (which is
absolute). Later in the procedure it refers to the name of new added worksheet (which is why it fails
when running the macro).

Instead of referring to TableDestination:="Sheet1!R3C1" in the Pivot objects TableDestination
argument, consider using this code TableDestination:=ActiveSheet.Cells(1, 1)instead
which picks the current worksheets cell A1.

Remove the line Sheets("Sheet1").Select and the rest of the code should now work as recorded.

Now lets take a look at the Pivot Table object itself and build the knowledge so that you understand
the elements and arguments correctly.

Use the Create and CreatePivotTable methods of the PivotCaches object:

ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, _
 SourceData:="Sales List!R1C1:R306C13", _
 Version:=xlPivotTableVersion10).CreatePivotTable _
 TableDestination:=ActiveSheet.Cells(1, 1), _
 TableName:="PivotTable1", DefaultVersion:=xlPivotTableVersion10

VBA Keywords: PivotCaches,
CreatePivotTable, Sheets, Cells,
Select, ActiveSheet, Dim, Set &
CurrentRegion.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm

Note: In Excel 2003 (or earlier) users tend to use the Add method instead of the Create method which has its
own set of arguments.

The SourceData argument is a range reference to the data list source. Also note this reference in the
above example is an absolute reference too and should be careful should the data source change
and grow dynamically. Consider using a variable or object variable to hold the current address of a
region of data to pass into the Create method.

For example (before adding the new worksheet - Sheets.Add) include the following:

Selection.CurrentRegion.Select
MyDataRef = Selection.Address

Or, consider an object reference instead:

Set rngSource As ActiveSheet.Range("A1").CurrentRegion

The TableDestination argument pinpoints where the starting cell in a worksheet (normally a new
worksheet) is and should really be dynamic and relative (as previously mentioned).

The remaining arguments are optional but as the macro records distinct settings they have been
included. Refer to the Excel VBA help files for further information.

Pivot Tables are objects and can given a unique name as in the above example shown called
"PivotTable1".

Using the named object, you can then refer to elements in a Pivot Table which include PivotFields
collections and their properties; Orientation, Position and calculated functions.

Here is a revised piece of code for the same above procedure:

Sub SummaryPivotReport()

 Dim rngSource As Range
 Dim wksTrans As Worksheet
 Dim ptTrans As PivotTable

 'Create and set objects
 Set rngSource = ActiveSheet.Range("A1").CurrentRegion
 Set wksTrans = Worksheets.Add(after:=ActiveSheet)

 'Generate a new Pivot Table report using the above objects
 ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, _
 SourceData:=rngSource, _
 Version:=xlPivotTableVersion10).CreatePivotTable _
 TableDestination:=wksTrans.Range("A1"), TableName:="Trans", _
 DefaultVersion:=xlPivotTableVersion10

 'set an instance for the new pivit table
 Set ptTrans = wksTrans.PivotTables("Trans")

 'set and add fields to the new pivot table (Trans)
 ptTrans.AddFields RowFields:="Product", ColumnFields:="Assistant"

 'Adding the sum function to the main data section
 ptTrans.PivotFields("TOTAL").Orientation = xlDataField
 ptTrans.DataFields(1).Function = xlSum
 ptTrans.DataFields(1).Name = "Total Sales"

End Sub

The above example will give you better control and more flexibility in defining a Pivot Table without
have to ensure your have added a new worksheet, placed the cursor in the right position and any
duplicate name references (worksheets).

http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm

Next Topic: Formulas

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Formulas

 Expressions

An Expression is a value or group of values that expresses a single item (variable, object), which
evaluates to a value or result.

For example, an expression of 2+2 will result 4.

Expressions are made up of either of the following:

Constants

Variables

Operators

Arrays

Functions

 Operators

Operators are used to combine expressions that will manipulate the expression and will return a
value (answer). Typical operators:

= + - / * > < , . <> <= => ^ & \

True, False, Or, Not, Null, Empty, Is, Like, Mod,

There are more - refer to on-line Help or Users Guide.

Operators have precedence, which will affect the value (result) if not carefully used. For example, the
following two expressions will result to a different value

1 + 2 * 3 / 2 - 6 = -2

 ((1 + 2) * 3) / 2 - 6 = -1.5

A bracket changes the order in which the expression is calculated.

The following table will give an indication of how expressions are calculated:

Operator Priority Level (in highest order)

() Brackets 1

^ Power sign 2

-ve Negative values 3

*, / Multiply and Divide 4

+, - Addition/Subtraction 5

<, <=, >, >= 6

Like 7

There are more operators that fit in between the above table. Refer to on-line Help or Users Guide.

 Concatenate (&)

Concatenate is the term used to join two or strings (text values) together. You use the & (ampersand)
as the operator (the glue) to connect one string to another.

This is commonly used in VBA to build string messages and narratives which will part static and
dynamic (variables) enhancing the procedure to a more user friendlier environment.

For example, to join my first name with my surname with a space between the two using two variables
and a static string (space) between:

Sub ConcatenateExample()
 Dim FName As String, SName As String

Note: Your knowledge of Excel
formulae and functions will help
derive VBA calculations.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm

 FName = "Ben"
 SName = "Beitler"
 MsgBox "Welcome " & FName & " " & SName
End Sub

 Constants

A Constant is a value in a macro that does not change. By using constants, is similar to variables
where a value is assigned to the variable.

For example:

Variable known as TitleHeading can have a value assigned to it.

TitleHeading = “SALES CASH FLOW for JANUARY”

Every time the value is used, by using the variable it is easier to handle, update changes and
therefore more efficient.

To assign a named constant, proceed with the command Const before the variable.

For example

Variable known as pi can have a value of 3.1415926 assigned to it. Since this is a fixed value for pi,
assign the Const command to it.

 Const PI = 3.1415926

 Functions

Functions, like Excel functions are used to return a value.

For example:

MySName = "Anderson"
Surname = UCase(MySName)

Where Surname variable uses an UCase function to convert the variable, MySName data to upper
case.

Example:

The following example will put a date and time formula in to the active cell and then resize the
column.

Sub formula1()
 ActiveCell.Formula = "=Now()"
 ActiveCell.EntireColumn.AutoFit
End Sub

 Arguments

Some functions and statements will contain required and optional arguments. An argument is an
element of that function or statement which is required to apply that command. Arguments either use a
comma separator or can use its syntax name.

For example:

 Absolute Formula

Similar to the Absolute Macros we looked at earlier, an Absolute Formula will refer to specific cell
references.

Sub formula()
 ActiveCell.Formula = "=Sum(A1:A4)"
End Sub

 Relative Formula

Similar to the Relative Macros we looked at earlier, a Relative Formula will refer to the active cell and
the other cells around it.

Sub formula()
 ActiveCell.FormulaR1C1 = "=Sum(r[-4]c:r[-1]c)"
End Sub

Instead of using cell references in the formula, i.e. A1:A4, the relative formula uses row and column
references, i.e. r[-4]c:r[-1]c.

In the above example, r[-4]c refers to the cell 4 rows above the active cell in the same column and
r[-1]c refers to the cell 1 row above the active cell in the same column.

http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm

Next Topic: Visual Basic Functions

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Visual Basic Functions
Using VBA is a combination of utilising libraries available, mainly Excel and VBA.

The following list of functions is a selection of commonly used functions, which are classes of the VBA
library.

 CONVERSION Class

This class contains various functions to help cast and convert values from one data type to another.

Some functions in this class:

 CBool(expression) – convert to a Boolean (true/false) value
 CByte(expression) – convert to a Byte value
 CCur(expression) – convert to a Currency value
 CDate(expression) – convert to Date value
 CDbl(expression) – convert to a Double value
 CDec(expression) – convert to a Decimal value
 CInt(expression) – convert to an Integer value
 CLng(expression) – convert to a Long value
 CSng(expression) – convert to a Single value
 CStr(expression) – convert to a String value
 CVar(expression) – convert to Variant value

The expression can be either a string or numeric value, which is converted to one of the above data
types.

Sub ConvertValue()
 Dim strInput As String
 Dim intNumber As Integer
 strInput = InputBox("Enter a Number:")
 intNumber = CInt(strInput)

End Sub

The above example takes a string variable, which the InputBox function returns as a string and
converts it to an integer value and stores to the integer, variable.

VBA is intelligent enough to convert values without the need to apply conversion functions or
explicitly declare variables. However, there are occasions when this rule doesn’t work and to
handle unforeseen errors, users need to handle data conversion (as above).

In future releases of VBA, data type declarations will become more stringent in how users can work
with variables and will therefore need to use such functions (as above) to handle cast and
conversion issues correctly.

 DATETIME Class

This class is a collection of date/time conversions and interrogations.

Some functions in this class:

Date – return/sets the system’s date

Now – returns/sets the system’s date and time

Day(Date) – returns the day element of the date

Month(Date) – returns the month element of the date

Year(Date) – returns the year element of the date

DateDiff(interval, date1, date2 [,firstdayofweek] [,firstweekofyear])

 – returns the difference between two dates driven by the interval

DateSerial(Year, Month, Day) – returns a valid date from 3 separate values

DateValue(Date) – converts a string date into a date data type date

Weekday(Date, [firstdayofweek]) – Returns a string day of the week

'Converts a string date to date date type date
Sub DateExample1()
 Dim strDate As String
 strDate = "10 May 2010"
 MsgBox DateValue(strDate)
End Sub

Note: The VBA library is the top most
reference followed by the Excel
library and both can not be moved or
disabled. Therefore, calling a
function which exists in both libraries
will always use the VBA reference
(as implicit).

VBA Keywords: MsgBox, InpuBox,
Application, WorksheetFunction and
VBA Class (all functions).

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm

'Works out the difference between two dates
'returns the number of months (interval)
Sub DateExample2()
 Dim dtmStartDate As Date
 dtmStartDate = #5/2/2010#
 MsgBox DateDiff("m", dtmStartDate, Date) & " Months"
End Sub

 INFORMATION Class

This class is a collection of status functions to help evaluate conditions of variables and objects alike.

Some functions in the class:

IsArray(variant) – returns true or false

IsDate(expression) – returns true or false

IsError(expression) – returns true or false

IsEmpty(expression) – returns true or false

IsMissing(variant) – returns true or false

IsNull(expression) – returns true or false

IsNumeric(expression) – returns true or false

IsObject(expression) – returns true or false

An expression or variant is the variable being tested to see if it is True or False.

 MATH Class

This class is a collection of mathematical functions that can be used to change variables with ease
and without having to create your own functions.

Some functions in the class:

Abs(Number) – returns the absolute number (always a positive value)

Rnd([Number]) – returns a random value

Round(Number, [NumDigitsAfterDecimal]) – returns a rounded value

Sqr(Number) – returns a square value (x2)

'Generates a random value between 1 and 100.
Sub RandomNumber()
 Dim intNumber As Integer
 intNumber = Int((100 * Rnd) + 1)
 MsgBox intNumber
End Sub

 STRING Class

This class is a collection of text (string) based functions that include conversion, extractions and
concatenation.

Some functions in the class:

Asc(String) – returns the numeric ASCII value of the character string

Chr(CharCode) – returns the character string from the code supplied

Format(Expression, [Format], [FirstDayOfWeek], [FirstWeekOfYear])

 - returns the format presentation of the expression

InStr([Start], [String1], [String2], [Compare]) – returns the numeric position of the first character found
from left to right

InStrRev(StringCheck, StringMatch, [Start], [Compare]) – returns the numeric position of the first
character found from right to left

LCase(String) – returns the string in lowercase

UCase(String) – returns the string in uppercase

Left(String, Length) – returns the remaining characters from the left of the length supplied

Right(String, Length) – returns the remaining characters from the right of the length supplied

Len(Expression) – returns a value of the length of characters supplied

Mid(String, Start, [Length]) – returns the portion of characters as determined by the start and end
parameters supplied

Trim(String) – removes unwanted spaces from left and right of the string supplied and extra spaces in
between multiple strings

Sub StringExample1()
 Dim strString As String
 strString = "Microsoft Excel VBA"
 'Returns 17 (17th character starting from first character)
 MsgBox InStr(1, strString, "V", vbTextCompare)
 'Returns 7 (7th character from left starting ‘at the sixth position)
 MsgBox InStr(6, strString, "o", vbTextCompare)
End Sub

Sub StrngExample2()

Sub StrngExample2()
 MsgBox Format(12.5 * 1.175, "£0.00")
End Sub

 Which Library?

Some functions in VBA may appear to be duplicates to functions known in Excel.

Sub WhichLibrary()
 'Excel's Round function
 MsgBox Application.WorksheetFunction.Round(10.2356, 2)
 'VBA's Round function
 MsgBox Round(10.2356, 2)
End Sub

The above example uses two functions that appear in both VBA and Excel.

By default, VBA is the library used when calling such a function.

To use the Round() function from Excel’s library, users need to call the qualification (object hierarchy)
first.

The MsgBox statement and function and InputBox function are members of the Interaction class in
the VBA library.

Next Topic: Creating Add-Ins

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Creating Add-Ins
Add-In’s are wrapped procedures in an independent file for distributing and loading into other Excel
systems.

When creating an Add-In, prepare all the procedures, objects and other elements as you would
normally prepare a spreadsheet and test it out thoroughly.

Therefore, it is not uncommon to have a normal Excel file (xls/xlsx/xlsm/xlsb) and eventually an add-
in file (xla/xlam) of the same information. From the ‘xls’ file, users save as an ‘xla’ file that allows for
easier upgrade and maintenance.

An Add-In file can reside anywhere as the user can control where to point and load the file.

An Add-In file is in essence and invisible loaded file which can not physically be edited.

 Creating the Add-In file

Prepare all the code including any functions, forms and other objects required for distribution.

The saving action is within the Excel interface (as you normally save a file) but you may want to
change a few properties within the module especially applying a password protection to your code.

In the module, right-mouse click the VBAProject node in the Project Explorer view and choose
VBAProject Properties... from the pop-up menu.

In the first tab, set the narratives as required.

(Note: The Project Name property can not contain any spaces).

Click on the Protection tab and set a password which is case sensitive and make sure you enable the
tick Lock project for viewing.

Tip: To switch between Excel
interface and VBE window use ALT
+ F11 shortcut keys.

Use F12 function in Excel to run the
'Save As' command.

VBA Keywords: Application,
CommandBars, Controls, Caption,
Add, OnAction and Delete.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm

Choose the OK button to apply.

The next time a user tries to view the code by expanding the node they will be prompted for a
password.

Back in Excel, save your current file (xls/xlsx/xlsm) as an open copy before choosing save as (F12
function key).

Choose the Add-In file type and choose a location to store you copy file.

A copy is generated and the original remains as your working copy which is required should you want
to re-generate a newer version.

All Add-In files are read-only and therefore can not be edited and saved.

 Loading the Add-In file

To load and install the file you use the Add-In manager tool (and not file, open).

Click on the Office button and choose Excel Options at the bottom of the menu.

Click on the Add-Ins category (on the left pane) followed by the Go... button (at the bottom of the main
screen.

You are now taken to the Add-Ins dialog box.

Select the Add-In file and click OK.

Every time Excel starts, it loads all the Add-In files in the background enabling the functionality from
your file and is seamless to the application (and user).

 Add-In Workbook Events

Special reserved events exist for an Add-In file which is executed as the Add-In is loaded and
unloaded into Excel.

Developers typically use these events to control the initialisation and resetting of command bars and

menus amongst other object changes.

The two events are:

1. Workbook_AddinInstall()
2. Workbook_AddinUninstall()

The events can be found by loading the module to ThisWorkbook (node) and choose Workbook from
the Object drop-down control.

On the right hand drop down box (Procedure), scroll for the above two events and type the code
required.

Example use for the above events:

'Creates a menu item too the Tools menu
Private Sub Workbook_AddinInstall()
 Dim cb As CommandBarControl
 Set cb = Application.CommandBars("Tools") _
 .Controls.Add(Type:=msoControlButton)
 With cb .BeginGroup = True
 .Caption = "My Report..."
 .FaceId = 0
 .OnAction = "MyReport"
 End With
End Sub

The above procedure creates and appends a menu item to the existing Tools menu (Ribbon Bar).

The OnAction property assigns the macro procedure that is called when the item is clicked.

'Removes a menu item from the Tools menu
'If it can be found.
Private Sub Workbook_AddinUninstall()
 Dim cb As CommandBarControl
 Dim cbt As Integer, i As Integer
 i = 1 cbt = Application.CommandBars("Tools").Controls.Count
 Do Until i > cbt
 Set cb = Application.CommandBars("Tools") _
 .Controls.Item(i)
 If cb.Caption = "My Report..." Then
 cb.Delete
 Exit Do
 End If
 Loop
End Sub

The above procedure removes the custom menu item if it can be found, resetting the Tools menu bask
to default.

Both procedures should be completed with error handling procedures to prevent unnecessary errors
occurring.

(Note: The above example code to install and uninstall was based on Excel version 2003).

Next Topic: Variables & constants

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Variables & Constants

 Variables

A variable is a placeholder, which stores data, i.e. a storage area in memory. It can be recalled,
reassigned or fixed throughout a procedure, function or during the lifetime of a module being
executed.

Structure (syntax)

Variable Name = Value
Variable Name = Object.Property

For example:

Result = Activecell.Value

Where Result is the variable name which is assigned the value in the Activecell.

 Declaring a Variable

Declaring a variable allows you to state the names of the variables you are going to use and also
identify what type of data the variable is going to contain.

For example, if Result = 10, then the variable Result could be declared as being an Integer.

 Explicit Declaration

Explicit Declaration is when you declare your variables to be a specific data type.

Variables can be declared as one of the following data types:

1. Boolean

2. Byte

3. Integer

4. Long

5. Currency

6. Single

7. Double

8. Date

9. String (for variable-length strings)

10. String * length (for fixed-length strings)

11. Object

12. Variant

Note that if you do not specify a data type, the Variant data type is assigned by default.

The Declaration Statement is written as follows:

Dim Result As Integer

Dim MyName As String

Dim Sales As Currency

Dim Data

Example:

The following example declares the MySheet variable to be a String.

Sub VariableTest()
 Dim MySheet As String
 MySheet = ActiveSheet.Name
 ActiveCell.Value = MySheet
End Sub

The position of the declaration statement is important as it determines whether the variable is
available for use throughout the module or just within the current procedure (see Understanding
Scope & Visibility later in this section).

Another Example:

Tip: Remember to enable Option
Explicit (it's good practice).

VBA Keywords: ActiveCell,
ActiveSheet, ActiveWorkbook,
MsgBox, Dim, Private, Public, ByVal,
ByRef, Round.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm

The following example declares the MyData variable to be an Integer.

Sub VariableTest()
 Dim MyData As Integer
 MyData = ActiveWorkbook.Name
 ActiveCell.Value = MyData
End Sub

However, when you run this macro, an error will occur because
MyData = ActiveWorkbook.Name is invalid since ActiveWorkbook.Name is not an Integer but a
String.

When you click on the Debug button, it will highlight incorrect code.

But if you declare MyData as String (i.e. text) then MyData = ActiveWorkbook.Name will
become valid.

Dim MyData As String

 Benefits of using Explicit Declaration

If you do not specify a data type, the Variant data type is assigned by default. Variant variables
require more memory resources than most other variables. Therefore, your application will be more
efficient if you declare the variables explicitly and with a specific data type.

Explicitly declaring all variables also reduces the incidence of naming-conflict errors and spelling
mistakes.

Following the conventions set by Microsoft (see Rules and Conventions), variables too have a
standard that in most cases is recommended.

A variable declared explicitly, should have a prefix in lowercase preceding the variable meaningful
name. For example, a variable to store the vat amount of type Double may be shown as
dblVatAmount where ‘dbl’ is the prefix for a Double data type and the two word variable (initial
capped) referring to the purpose of the variable.

The table below shows what prefixes could be used for each common data type:

Data type Prefix Example

Boolean bln blnContinue

Byte byt bytWeekdayValue

Collection object col colWidgets

Currency cur curCost

Date (Time) dtm dtmOrderDate

Double dbl dblRevenue

Error err errInvoiceNo

Integer int intQuantity

Long lng lngDistance

Object obj objWordDoc

Single sng sngVatRate

String str strContact

Variant vnt vntColumnData or varColumnData or
ColumnData (no prefix).

By default, all variables not explicitly defined are Variant (the largest memory allocation reserved).

The exception to the above (developers can decide whether to follow the above or not) is when
defining Sub and Function procedures with arguments. As part of the signature of such a procedure,
it can be clearer to the end user to see meaningful named arguments rather than the conventions

http://www.excel-spreadsheet.com/vba/rulesconventions.htm

stated in the above table.

For example, which is clearer for the end user to understand?

Function GrossTotal(Net As Double, Qty As Long, Optional
 VatRate As Single) As Double

End Function

Function GrossTotal(dblNet As Double, lngQty As Long, Optional
 sngVatRate As Single) As Double

End Function

When calling this function within Excel, users will see the arguments via the Insert Function paste
command:

 Constants

Constants are values that do not change. They prevent you from having to repeatedly type in large
pieces of text.

The following example declares the constant MYFULLNAME to equal "Ben Beitler". Therefore,
wherever MYFULLNAME has been used, the value that will be returned will be "Ben Beitler".

Sub ConstantTest()
 Const MYFULLNAME As String = "Ben Beitler"
 ActiveCell.Value = MYFULLNAME
 ActiveCell.EntireColumn.AutoFit
End Sub

(Note: When using a constant, the convention is normally in uppercase).

 Implicit Declaration

As previously mentioned, if you do not declare your variables and constants, they are assigned the
Variant data type, which takes up more resources and spelling mistakes are not checked.

A Variant Variable/Constant can contain any type of data.

Data = 10

Data = "Fred"

Data = #01/01/2010#

When you run the following macro, the value in the active cell will be 10.

Sub ImplicitTest()
 data = 10
 ActiveCell.Value = data
End Sub

When you run the following macro, the value in the active cell will be Fred.

Sub ImplicitTest()
 data = "Fred"
 ActiveCell.Value = data
End Sub

This can lead to errors and memory abuse though VBA is relaxed in using variables this way - it's just
not good practice!

 Option Explicit (Declaration)

If you type Option Explicit at the top of the module sheet, you must declare all your variables and
constants.

If you don’t declare your variables/constants you will get the following message.

If you wish to ensure that Option Explicit is always entered at the top of the module:

1. Go into the Visual Basic Editor.

2. Click on the Tools menu, select Options...

3. Click on the Editor tab and select "Require Variable Declaration".

You now must always use the Dim keyword to declare any variable.

 Understanding Scope & Visibility

Variables and procedures can be visible or invisible depending on the following keywords used:

1. Private
2. Public
3. Static
4. Friend (Class Modules only – not covered in this guide)

Depending where users use the above keywords, visibility can vary too within a module, class
module or user-form.

In a standard module when using the keyword Dim to declare a variable.If the variable is outside a
procedure and in the main area of the module, this variable is automatically visible to all procedures
in that module. The lifetime of this variable is governed by the calling procedure(s) and can be carried
forward into the next procedure within the same module.

If a variable declared with the Dim keyword is within a procedure, it is visible for that procedure only
and the lifetime of the variable expires when the procedure ends.

The Dim keyword can be used in either the module or procedure level and are both deemed as
private to the module or procedure.

Instead of using the Dim keyword, it is better practice to use the Private keyword when declaring
variables at the module level. Users must continue to use the Dim keyword within a procedure.

Using Public to declare a variable at the module level is potentially unsafe as it is exposed beyond
this module to all other modules and user-forms. It may also provide confusion if the two variables
with the same name exist across two modules. When a variable is declared Public , users should
take caution and try and be explicit in the use of the variable.

For example:

Module A

Option Explicit

Public intMonth As Integer

code continues..........

Module B

Option Explicit

Private intMonth As Integer

Sub ScopeVariables()
 intMonth = 10 'This is ModuleB’s variable

http://www.excel-spreadsheet.com/vba/vbaeditor.htm

 ModuleA.intMonth = 10 'This is ModuleA’s variable (explicit)
End Sub

code continues..........

Two variables with the same name and data type were declared in both module A and B. A procedure
in module B calls the local variable and then explicitly calls the public variable declared in module A.
Users must therefore use the notation of the name of the module followed by the period separator (.)
and its variable.

Public and Private keywords can also be applied to a procedure. By default, in a standard module,
all procedures are Public unless explicitly defined as Private.

It is good practice to apply either Public or Private for each procedure as later releases of Visual
Basic may insist on this convention.

If a procedure is Private, it can only be used within the module it resides. This is particularly
designed for internal procedures being called and then discarded as part of a branching routine
(nested procedures).

If users mark a procedure as Private, it cannot be seen in the macros dialog box in Excel.

 Static Variables

Using the Static keyword allows users to declare variables that retain the value from the previous
calling procedure.

Example using Dim:

'Standard variable (non-static).
Sub TotalValue()
 Dim intValue As Integer
 intValue = 10
 Msgbox intValue
End Sub

Example using Static:

'Standard variable (non-static).
Sub TotalValue()

 Static intValue As Integer
 intValue = 10
 Msgbox intValue
End Sub

Running the first example will simply display the value 10 and the variable’s value will be lost when
the procedure ends.

Running the second example will display the value 10 but it will retain the variable and its value in
memory so that when running it once more, the value displayed now equals 20 and so on until the file
is either closed or the reset command is executed.

Static can only be used in a procedure and is therefore private.

Do not confuse Static with Const (constant).

Use the Const keyword to fix a value for lifecycle of the module or procedure. Users will not be able to
modify the value at run time as with conventional variables.

Example:

Public

'Vat Rate is currently fixed at 17.5%
Public Const VATRATE As Single = 0.175

or Private

'Vat Rate is currently fixed at 17.5%
Const VATRATE As Single = 0.175

Using the constant

Sub GrossTotal()
 Dim dblNet As Double
 dblNet = 100
 MsgBox Round(dblNet * (1 + VATRATE), 2)
End Sub

(Note: Round is a VBA function)

It is acceptable to use uppercase convention for constants.

Const keyword can be public or private (private by default) declared at the module and private only at
the procedure level.

User forms, which allow users to design custom form interfaces, also have scope issues using
Private and Public

By default, any control’s event that is drawn onto a form will be private as the form should be the only
object able to call the procedure.

Other event driven procedures, which can be found in a worksheet or a workbook, will also be private
by default.

 ByVal versus ByRef

Passing arguments is a procedure can be either by value (ByVal) or by reference (ByRef). Both
keywords precede the argument name and data type and if omitted is ByRef by default.

http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm

When passing an argument by value, the value is passed into a calling procedure
and then lost when the procedure ends or reverts back to the original value as it
returns to the original procedure.

ByVal example:

Sub CustomSub(ByVal AddTo As Integer)
 AddTo = AddTo + 5
 MsgBox AddTo
End Sub

Sub TestVariable()
 Dim x As Integer
 x = 5
 Call CustomSub(x)
 MsgBox x
End Sub

The procedure TestVariable starts by seting x = 5. It’s CustomSub procedure is called passing the
variable’s value of x and incremented by 5. The first message box seen is via the CustomSub
procedure (shows the value 10). The second message box is via the TestVariable procedure which
follows as it returns the focus (shows the value 5). Therefore the ByVal AddTo variable stored is lost
as it is passed back into the original call procedure (TestVariable) resulting in x being equal to 5
again.

ByRef example:

Sub CustomSub(ByRef AddTo As Integer)
 AddTo = AddTo + 5
 MsgBox AddTo
End Sub

Sub TestVariable()
 Dim x As Integer
 x = 5
 Call CustomSub(x)
 MsgBox x
End Sub

The procedure TestVariable starts by seting x = 5. It’s CustomSub procedure is called passing the
variable’s value of x and incremented by 5. The first message box seen is via the CustomSub
procedure (shows the value 10). The second message box is via the TestVariable procedure which
follows as it returns the focus (shows the value 10 again). Therefore the ByRef AddTo variable stored
is not lost as it is passed back into the original call procedure (TestVariable) resulting in x now being
equal to 10.

Next Topic: Object variables

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Object Variables
An Object Variable is a variable that represents an entire object, such as a Range or a Worksheet.

Object Variables are important because:

They can simplify the code significantly

They can make the code execute more quickly.

You use this type of variable for creating a new instance of an object which will be necessary should
you wish to communicate with other applications namely Microsoft Word, PowerPoint or any other
external library.

 Declaring Object Variables

Object Variables, similar to normal variables, are declared with the Dim or Public statement, for
example:

Dim mycell As Range.

 Assigning Object Variables

To assign an object expression to an object variable, use the Set keyword.

For example:

Set ObjectVariable = ObjectExpression

Set MyCell = Worksheets("Sheet1").Range("A1")

Example:

The following procedure will select the cell A1 on Sheet1, input the value 100 and format it with Bold,
Italic and Underline.

Sub ObjectVariable()
 Worksheets("Sheet1").Range("A1").Value = 100
 Worksheets("Sheet1").Range("A1").Font.Bold = True
 Worksheets("Sheet1").Range("A1").Font.Italic = True
 Worksheets("Sheet1").Range("A1").Font.Underline = XlSingle
End Sub

The line of code Worksheets("Sheet1").Range("A1") is repeated four times within this
procedure.

If we declare an Object Variable called mycell to be a range, we can then set mycell to be equal to
Worksheets("Sheet1").Range("A1").

The procedure would then become:

Sub ObjectVariable()
 Dim mycell As Range
 Set mycell = Worksheets("Sheet1").Range("A1")
 mycell.Value = 100
 mycell.Font.Bold = True
 mycell.Font.Italic = True
 mycell.Font.Underline = xlSingle
End Sub

It is good practice to set all object variables to Nothing at the end of the lifecycle of the variable even
though Visual Basic will destroy all variables and pointers automatically once the routine has ended.

It is possible to have an object variable allocated to memory after the event of an error occurring. If the
error handler allows the procedure to continue, it may be necessary to re-set the same object
variable. This is when an object should be destroyed and then re-initialised.

At the end of a procedure, destroy all object variables in the following manner:

Set objWSheet = Nothing

Note: You may want to search for
more information on Object Variables
especially to understand the
difference between Late and Early
Binding.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm

Generic objects are useful when you do not know the specific type of object the variable will
contain or when the variable contains objects from several different classes.

For example:

Dim mycell As Object
Set mycell = Application.Worksheets(“Sheet1”).Range(“A1”)

Next Topic: Arrays

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Arrays
Arrays are a set of indexed elements for the same data type variable. Each element is independent
but belongs to the same group variable and is better than have several single variables of the same
type.

These are declared like a standard variable with the option of setting a data type and its scope.

Arrays are either declared in design time with the number of elements defined or at run time making it
dynamic.

Example of Fixed Array:

'Declaring a fixed array
Sub FixedArray()
 Dim strWeek(7) As String
 strWeek(0) = "Sunday"
 strWeek(1) = "Monday"
 strWeek(2) = "Tuesday"
 strWeek(3) = "Wednesday"
 strWeek(4) = "Thursday"
 strWeek(5) = "Friday"
 strWeek(6) = "Saturday"

End Sub

The value entered between the parentheses defines the number of elements for the array variable
starting at point zero. Therefore, for an array variable of seven elements, the starting element number
will be zero and the last will be six.

Example of Dynamic Array:

'Declaring a fixed array
Sub DynamicArray()
 Dim strWeek() As String

 ReDim strWeek(7)

 strWeek(0) = "Sunday"
 strWeek(1) = "Monday"
 strWeek(2) = "Tuesday"
 strWeek(3) = "Wednesday"
 strWeek(4) = "Thursday"
 strWeek(5) = "Friday"
 strWeek(6) = "Saturday"

End Sub

Dynamic arrays allow array variables to grow during the run time of the procedure. This may be
required, as the process may not know the full size of the intended variable.

The keyword ReDim allows array variables to be re-declared to a new size. The above example
declares an array variable of unknown size and then uses the ReDim command to redefine the size.

When using the ReDim command, any previous sizes and values that may be present are lost and set
to nothing.

In the event of preserving the previous size array and wanting to extend the size, users can use
Preserve keyword.

ReDim Preserve strWeek(14)

 Multi-Dimension Array

Arrays can also be multi-dimensioned and can store up to 60 sets of elements.

Sub MulitArray()
 Dim intMulti(1 To 5, 1 To 10) As Integer
 intMulti(1, 1) = 10
 intMulti(2, 1) = 20
 intMulti(3, 1) = 30
 intMulti(4, 1) = 40
 intMulti(5, 1) = 50
 intMulti(1, 2) = 60
 intMulti(2, 2) = 70

 intMulti(5, 10) = 500

Note: When you work with arrays
(variables), users like to use the
distinction between groups and
single variables where a single
variable is also known as a scalar
variable.

VBA Keywords: MsgBox, IsArray,
UBound, LBound, Array, Option
Base 1.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm

End Sub

Each dimension group has been set to start at 1 (instead of the default 0). In fact users can start at any
integer value providing the stop value is greater than the start value.

 Array Function

Another way to set values to an array variable is to use the VBA Array function:

Sub ArrayFunctionExample()
 Dim strWeek As Variant
 Dim strDay As String
 strWeek = Array("Sunday", "Monday", "Tuesday", _
 "Wednesday", "Thursday", "Friday", "Saturday")
 strDay = strWeek(2) ' strDay now contains "Tuesday".

End Sub

The Array function returns a Variant data type and therefore must be declared as a variant. Each
element can be converted into a string type as required. The first item in the Array function equals
element zero and so on.

 Setting Option Base

In some programming languages, it is not uncommon to have the first element of an array to be equal
to one instead of zero. In situations that the procedure needs to simulate this environment, users can
use the following statement:

Option Base 1

This is declared at the top of the module before the first procedure and affects the entire module. The
value 1 changes the base element to one.

 IsArray Function

This function can be used to test if a variable is an array and return either True or False.

Sub ArrayFunctionExample()
 Dim strWeek As Variant
 Dim strDay As String
 strWeek = Array("Sunday", "Monday", "Tuesday", _
 "Wednesday", "Thursday", "Friday", "Saturday")

 MsgBox IsArray(strWeek) 'True.
 MsgBox IsArray(strDay) 'False.

End Sub

 UBound and LBound Functions

Both bound functions return a Long value of the highest (upper) and the lowest (lower) element
number for an array variable.

Two arguments, one optional:

Variable = UBound(ArrayName [, Dimension])

Variable = LBound(ArrayName [, Dimension])

The optional second argument only applies if the array is a multi-dimensioned array variable.

Sub UpperArray()
 Dim intMulti(1 To 5, 1 To 10) As Integer
 Dim intUpper As Integer
 intMulti(1, 1) = 10
 intMulti(2, 1) = 20
 intMulti(3, 1) = 30
 intMulti(4, 1) = 40
 intMulti(5, 1) = 50
 intMulti(1, 2) = 60
 intMulti(2, 2) = 70

 intMulti(5, 10) = 500

 MsgBox UBound(intMulti, 1) 'shows 5
 MsgBox UBound(intMulti, 2) 'shows 10

End Sub

Next Topic: Collections

http://www.excel-spreadsheet.com/vba/collections.htm

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Collections
Using the analogy of arrays that have elements, a collection is also a group of elements referring to
objects in Excel.

Different types of collections exist to define a group of elements for the individual object of the same
type.

Examples of Collections:

A workbook is a member of the collection – Workbooks.

A worksheet is a member of the collection – Worksheets.

A cell is a member of the collection – Cells (Range).

A range of cells is a member of the collection – Ranges.

A command button is a member of the collection – Controls.

A good indicator as to whether a collection exists is to look in the Object Browser (F2 function key)
and scroll down the Classes section to view any class file which is a plural. This will more than likely
be a collection of the singular named class i.e. Workbooks and Workbook.

There are many others types of collections – refer to Excel VBA help for more information.

Example1:

'Working through the active workbook and identifying all worksheets
Sub HowManyWorksheets()
 Dim w As Worksheet
 For Each w In Worksheets
 MsgBox w.Name
 Next w
End Sub

The variable w is explicitly declared as a worksheet object. Using a For...Loop statement, we can
iterate through each element (w) until the collection is completed.

Using the message box, one of the element’s properties (Name) simply displays each worksheet
name.

Even if the variable w is implicit, it would still understand what variable w was because it becomes a
member of the collection Worksheets.

Example2:

'This example saves changes to and closes all workbooks except
'the one that's running the example.
Sub CloseWorkbooks()
 Dim w As Workbook
 For Each w In Workbooks
 If w.Name <> ThisWorkbook.Name Then
 w.Close savechanges:=True
 End If
 Next w
End Sub

The above example will close all workbooks in Excel excluding the active workbook and
automatically save any changes.

Like arrays, elements in a collection can also be referred to directly as an independent item. For
example, to refer to the first worksheet in a workbook:

Sheets(1).Name

Worksheets(1).Name

The array element starts at 1 and increments for each member known to the collection. An error will
happen if the element number is not known (a zero or a number higher than the upper bound
number).

There are many methods and properties to many objects as the Object Browser has shown.
Collections are being used in a lot of situations without the user even being aware.

For example:

Worksheets.Add Count:=2, Before:=Sheets(1)

VBA Keywords: MsgBox,
For...Each, If...Then, Worksheets,
Workbooks, ThisWorkbook, Close,
Sheets and Add.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm

Worksheets.Add Count:=2, Before:=Sheets(1)

The Add method and some of its arguments inserts two new worksheets to the collection worksheets
and places them before the first element of the worksheets collection.

Next Topic: Message Box

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Message Box (MsgBox)
A Message Box (MsgBox) displays a message alert box with optional set of buttons, icon and other
arguments settings

.

There are two types of message boxes:

1. MsgBox Statement - One way communication to the user.

MsgBox prompt,[buttons],[title],[helpfile],[context]

2. MsgBox Function - Two way communication which the system returns a value.

Variable = MsgBox(prompt,[buttons],[title],[helpfile],[context])

Example1 - MsgBox Statement:

Sub MessageBoxTest()
 'brackets are not required for a statement
 MsgBox "The task is now complete"
End Sub

Example2 - MsgBox Function:

Sub MessageBoxTest ()
 Dim answer
 answer = MsgBox("More Input", vbYesNo + vbQuestion, "Data Entry")
End Sub

In the above example, the vbYesNo is the command used to create the Yes and No buttons and the +
vbQuestion is the command to create the Question Mark image.

§ If the user clicks on Yes, the message box will return the constant vbYes.

§ If the user clicks on No, the message box will returns the constant vbNo.

Example2 - MsgBox Function (Multiple Lines):

Sub MultiLineMessageBox()
 Dim intResponse As Integer
 intResponse = MsgBox("You have chosen to save this file." _
 & vbNewLine & "Do you wish to proceed?" & vbNewLine & _
 "Click 'Yes' to save or 'No' to close and not save.", _
 vbQuestion + vbYesNoCancel, "Save File")

End Sub

The above example will display multiple lines in the message box using the constant vbNewLine.

VBA Keyword: MsgBox

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm

 Constants for MsgBox

Buttons and icons are combined for the Buttons argument which have a unique value that drives the
output of how users use and see button combinations:

Constant Value Description

vbOKOnly 0 Display OK button only.

vbOKCancel 1 Display OK and Cancel buttons.

vbAbortRetryIgnore 2 Display Abort, Retry, and Ignore buttons.

vbYesNoCancel 3 Display Yes, No, and Cancel buttons.

vbYesNo 4 Display Yes and No buttons.

vbRetryCancel 5 Display Retry and Cancel buttons.

vbCritical 16 Display Critical Message icon.

vbQuestion 32 Display Warning Query icon.

vbExclamation 48 Display Warning Message icon.

vbInformation 64 Display Information Message icon.

vbDefaultButton1 0 First button is default.

vbDefaultButton2 256 Second button is default.

vbDefaultButton3 512 Third button is default.

vbDefaultButton4 768 Fourth button is default.

vbApplicationModal 0 Application modal; the user must respond to the message box before continuing
work in the current application.

vbSystemModal 4096 System modal; all applications are suspended until the user responds to the
message box.

vbMsgBoxHelpButton 16384 Adds Help button to the message box.

VbMsgBoxSetForeground 65536 Specifies the message box window as the foreground window.

vbMsgBoxRight 524288 Text is right aligned.

vbMsgBoxRtlReading 1048576 Specifies text should appear as right-to-left reading on Hebrew and Arabic
systems.

The following applies to the MsgBox Function when the user clicks a button returning a unique value.

Constant Value Description

vbOK 1 OK

vbCancel 2 Cancel

vbAbort 3 Abort

vbRetry 4 Retry

vbIgnore 5 Ignore

vbYes 6 Yes

vbNo 7 No

While a the MsgBox is being displayed, the macro procedure is paused waiting for the user to click a
button whether it is a statement or a function.

Note the difference between the two types regarding when parenthesis are used and can be ignored.
Also, be aware any function must be placed to the right side of an = (equal sign) because it returns an
answer.

Next Topic: VBA Input Box

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

VBA Input Box
An Input Box (InputBox) is a function that allows the user to enter a value into a dialog box. The
result of an Input Box is stored normally to a variable and remebered for later use in a procedure.
Note that the result of an Input Box is always returns a String value.

Structure (syntax):

Variable = InputBox (Prompt, [Title], [Default], [XPos], [YPos])

The Arguments for an InputBox:

Prompt Text on the Input Box

Title Title bar text (optional)

Default Default value of the Input Box (optional)

XPos/Ypos Position of the Input Box. If you leave them blank, the Input Box will appear
in the centre of the screen (optional)

Example1 - Text Input Box:

Sub Box1()
 Dim strMyName As String
 strMyName = InputBox("Please enter your name", "Data Entry")
 ActiveCell.Value = "My name is " & strMyName
End Sub

If you click on the Cancel button, it will return an empty string " " so the result will be "My name is"

Example2 - Using named arguments:

This allows you to put the arguments in any order.

Sub Box2()
 Dim strResult As String
 strResult = InputBox(prompt:="Please enter amount", _
 Title:="Data Entry")
 ActiveCell.Value = strResult
End Sub

You really need to handle the Cancel button which always returns an empty String. Even if you click
the OK button with no value this too will return an empty String.

In most cases, the following code should be added immediately after the InputBox function call:

If [Variable] = Empty Then Exit Sub

The above piece of code will terminate the procedure if the String variable is empty.

So the the previous example would look like:

Sub Box2()
 Dim strResult As String
 strResult = InputBox(prompt:="Please enter amount", _
 Title:="Data Entry")

 If strResult = Empty Then Exit Sub 'Terminates here if empty
 ActiveCell.Value = strResult
End Sub

While a the InputBox function s being displayed, the macro procedure is paused waiting for the user

VBA Keyword: InuptBox, ActiveCell,
If...Then, Exit Sub

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm

to click a button.

Next Topic: Excel Input Box

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Excel Input Box
An Excel Input Box (InputBox) function is different from a VBA Input Box because you can specify
what you would like the result of the Input Box to be. If the Type argument is omitted, the Input Box
will return at text (String) value.

Structure (syntax):

Variable = Application.InputBox (Prompt, [Title], [Default],
 [XPos],[Ypos], [HelpFile], [HelpContextID], [Type])

Prompt Text on the Input Box

Title Title bar text (optional)

Default Default value of the Input Box (optional)

XPos/Ypos Position of the Input Box. If you leave them blank, the Input Box will appear
in the centre of the screen (optional)

HelpFile Associated help document attachment (optional)

HelpContextID Unique identifier for the help document - bookmark (optional)

Type Defines what data type to return (optional)

The following Types may be used:

Value Meaning

0 A formula

1 A number

2 Text (a string)

4 A logical value (True or False)

8 A cell reference, as a Range object

16 An error value, such as #N/A

64 An array of values

If you wish the Input Box to accept both text and numbers, set the Type argument to 1 + 2.

To call the Excel InputBox and not the standard VBA InputBox, you need to call the Application
object keyword which calls this function from the Excel library where it belongs.

Application.InputBox(...

For the following examples, we will declare the variables as Variant.

Example1 - Text Input Box:

Sub Box1()
 Dim x
 x = Application.InputBox("Please enter a number", , , , , , , 1)
 ActiveCell.Value = x
End Sub

Example2 - Formula Input Box:

Sub box4()
 Dim y

VBA Keyword: InuptBox,
Application and ActiveCell

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm

 y = Application.InputBox("Please enter a formula", , , , , , , 0)
 ActiveCell.Value = y
End Sub

While a the Excel InputBox function s being displayed, the macro procedure is paused waiting for the
user to click a button.

Next Topic: Making Decisions (If...Then...Else...End If)

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Making Decisions
(If...Then...Else...End If)

This is one of the 'control flows' VBA provides which is required to make your VBA code procedures
more flexible, reduce the amount of code required and make the system think for itself!

Without any of these 'control flows', your code is very linear and rigid which never is really suitable
when trying to mimic 'real world' processes.

The four 'control flows' are:

1. If...Then...Else...End If

2. Select Case...End Select

3. Do...Until/While...Loop

4. For...Counter/Each...Next

 If Statement

This is the logical (conditional test) statement that runs code the yields either a True or False value.

There are four flavours of the If I have referred to help understand how this structure is implemented
in VBA:

1. 'One Line' If

2. 'True' If

3. 'Standard' If

4. 'Multiple/Nested' If

A logical test can be a value, expression, function or an object property that returns a True or False
value using the logical operators <, >, <=, >=, =, <>, Not
(see Formulas).

 One Liner If

As its name suggests, it's all on one line and requires no End If block.

Structure (syntax):

If Condition [= True] Then Execute code if true

It is used as a quick way to add an extra single calling command or calling an additional procedure if
the condition is true.

I use it as a test to see if the procedure should continue and if not to terminate here.

Sub OneLinerIfTest()
 Dim strResult As String
 strResult = InputBox(prompt:="Please enter amount", _
 Title:="Data Entry")

 If strResult = Empty Then Exit Sub 'Terminates here if empty

 Continues here if not empty...

End Sub

 True If

This is used in include extra code if true but is used in an If block so that multiple lines of code can
be applied here.

Tip: Revert to the Select Case
statement for multiple If's that
exceed 5 condtiotns.

VBA Keywords: ActiveCell, Font,
Bold, Italic, Underline, Color,
ClearFormats, InputBox IsNumeric
and Exit Sub.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/formulas.htm

Structure (syntax):

If Condition [= True] Then
 Execute multiple lines of code if true

End If

Sub TrueIfTest()

 Code runs here first before it enters the If block...

 If ActiveCell.Value < 0 Then

 ActiveCell.Font.Bold = True

 ActiveCell.Font.Color = vbRed

 Additional code continues here only if true...

 End If

 Code continues here whether true or not!...

End Sub

 Standard If

This is more common type of If block as it provides a True and False option and will therefore
(logically) choose one procedure to call/run.

This can be compared to the more familiar If function in Excel where users specify a True and False
returning value.

Structure (syntax):

If Condition [= True] Then
 Execute multiple lines of code if true

Else
 Execute multiple lines of code if false

End IF

Sub StandardIfTest()

 Code runs here first before it enters the If block...

 ActiveCell.ClearFormats

 If ActiveCell.Value < 0 Then

 ActiveCell.Font.Bold = True

 ActiveCell.Font.Color = vbRed

 Additional code continues here only if true...

 Else 'FALSE

 ActiveCell.Font.Italic = True

 ActiveCell.Font.Color = vbRed

 Additional code continues here only if false...

 End If

 Code continues here whether true or false...

End Sub

The Else keyword is the new addition and acts as the False (the catch) should the true fail.

 Multiple/Nested If

What about have more than one set of true conditions with a false (as a catch)?

Nested or multiple If's can be as many as required and run in order of their logical conditions.

Structure (syntax):

If Condition 1 [= True] Then
 Execute multiple lines of code if true (1)

ElseIf Condition 2 [= True] Then
 Execute multiple lines of code if true (2)

ElseIf Condition N [= True] Then

 Execute multiple lines of code if true (N)

Else
 Execute multiple lines of code if false

End If

Sub MultipleIfTest()

 Code runs here first before it enters the If block...

 ActiveCell.ClearFormats

 If ActiveCell.Value < 0 Then

 ActiveCell.Font.Bold = True

 ActiveCell.Font.Color = vbRed

 Additional code continues here only if true 1...

 ElseIf ActiveCell.Value = 0 And ActiveCell.Value <= 100 Then

 ActiveCell.Font.Underline = xlSingle

 ActiveCell.Font.Color = vbBlue

 Additional code continues here only if true 2...

 Else 'FALSE - catch for non true values

 ActiveCell.Font.Italic = True

 ActiveCell.Font.Color = vbRed

 Additional code continues here only if false...

 End If

 Code continues here whether true or false...

End Sub

The first condition is tested and if True stops and runs code in that block. If the first condition is False
then the second If test condition is tested. Therefore, the second condition is only executed if the first
condition failed.

You can use the ElseIf keyword as many times for each separate new condition but if you intend to
have more than five different conditions then switching to the Select Case statement is the better
practice as it's quicker and cleaner to write.

A nested If is one which starts a new block inside another If block:

Sub NestedIfTest()

 Code runs here first before it enters the If block...

 ActiveCell.ClearFormats

 If IsNumeric(ActiveCell.Value) Then 'Is it a number?

 'Nested If Block inside the first If Block

 If ActiveCell.Value < 0 Then

 ActiveCell.Font.Bold = True

 ActiveCell.Font.Color = vbRed

 Else

http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm

 ActiveCell.Font.Bold = False

 ActiveCell.Font.Color = vbBlack
 End If

 Additional code continues here only if true...

 Else 'FALSE

 ActiveCell.Font.Italic = True

 ActiveCell.Font.Color = vbRed

 Additional code continues here only if false...

 End If

 Code continues here whether true or false...

End Sub

Next Topic: Making Decisions (Select Case...End Select)

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Making Decisions
(Select Case...End Select)

This is one of the 'control flows' VBA provides which is required to make your VBA code procedures
more flexible, reduce the amount of code required and make the system think for itself!

Without any of these 'control flows', your code is very linear and rigid which never is really suitable
when trying to mimic 'real world' processes.

The four 'control flows' are:

1. If...Then...Else...End If

2. Select Case...End Select

3. Do...Until/While...Loop

4. For...Counter/Each...Next

 Select Case statement

This is an alternative way to write logical statements and designed for multiple and similar conditions
tested in a look up table together.

It is deemed faster than a conventional If statement and more clinical to write and understand.

Structure (syntax):

Select Case Grade/Expression

 Case Value 1
 Execute multiple lines of code if true 1

 Case Value 2
 Execute multiple lines of code if true 2

 Case Value 3
 Execute multiple lines of code if true 3

 Case Value N

 Execute multiple lines of code if true N

 Case Else

 Execute multiple lines of code if false

End Select

Case Value is the value being test logically against the Grade or Expression for a true match. It
continues down the list in order until it finds a true match with a catch using Case Else as the false
option.

Sub SelectCaseExample()

 'Code runs here first before it enters the Select Case block...

VBA Keywords: ActiveCell, Font,
Bold, Italic, Underline, Color,
ClearFormats, IsNumeric and Exit
Sub.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm

 Select Case ActiveCell.Value

 Case Is < 0 'Value tested to see if grade < 0
 ActiveCell.Font.Bold = True

 Case Is < 10 'Value tested to see if grade < 10
 ActiveCell.Font.Italic = True

 Case Is < 100 'Value tested to see if grade < 100
 ActiveCell.Font.Color = vbRed

 Case 100 To 200 'Value tested to see grade is in range 100 - 200
 ActiveCell.Font.Color = vbRed

 Case 201, 203, 205 'Value tested to see grade is 201 Or 203 Or 205
 ActiveCell.Font.Color = vbRed

 Case IsNumeric(ActiveCell.Value) 'Is it a number?

 ActiveCell.ClearFormats

 Case Else 'FASLE (if all the above is not true!)
 ActiveCell.Font.Underline = xlSingle

 End Select

 'Code continues here after the Select Case block...

End Sub

It sits all within the Select Case block using the End Select to terminate the logical test
environment.

Note the keyword To meaning a range (the And operator) which is much easier to write as a
condition. Also, using the , (comma) which acts as the Or operator only enhances the way you can
use this statement quickly.

Next Topic: Looping (Do...Until/While...Loop)

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Looping
(Do...Until/While...Loop)

This is one of the 'control flows' VBA provides which is required to make your VBA code procedures
more flexible, reduce the amount of code required and make the system think for itself!

Without any of these 'control flows', your code is very linear and rigid which never is really suitable
when trying to mimic 'real world' processes.

The four 'control flows' are:

1. If...Then...Else...End If

2. Select Case...End Select

3. Do...Until/While...Loop

4. For...Counter/Each...Next

 Do...Until/While...Loop

A Do...Loop is used when you wish to repeat a piece of code a number of times.

This type of loop works by using a logical test to determine if the loop should repeat or terminate and
move onto the next calling procedure.

There four variations that can be used and they all have slight differences:

Structure (syntax):

UNTIL Keyword

Do

 Code executed here...

 [Exit Do]

Loop Until Condition [= True]

Do Until Condition [= True]

 Code executed here...

 [Exit Do]

Loop

WHILE Keyword

Do

 Code executed here...

 [Exit Do]

Loop While Condition [= True]

Do While Condition [= True]

 Code executed here...

 [Exit Do]

Loop

Whichever keyword structure (UNTIL or WHILE) you use is a personal choice as there is no difference

Tip: Use an Exit Do to terminate a
block early and speed up your
procedures.

To break a loop during running your
code use CTRL + PAUSE/BREAK.

Save your work before running a
looping piece of code!

VBA Keywords: ActiveCell, Offset,
MsgBox and Exit Do..

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm

in performance or structure; one is the logical inverse of the other.

You can loop While a condition is True/False or Until a condition is True/False - it's a simple
choice and hopefully the following two examples can make it very clear:

Sub WhileConditionLoop()

 Code runs here first before it enters the Loop block...

 Do

 MyResponse = MsgBox("Do you wish to continue?", _
 vbQuestion + vbYesNo, "While Loop Test")

 Loop While MyResponse = vbYes

 Code continues here whether once the Loop has ended...

End Sub

The above will run and repeat a message box function while the user has chosen 'Yes' to keep the
loop going.

Or putting it another way, until the user chooses the 'No' option.

Sub UntilConditionLoop()

 Code runs here first before it enters the Loop block...

 Do

 MyResponse = MsgBox("Do you wish to continue?", _
 vbQuestion + vbYesNo, "Until Loop Test")

 Loop Until MyResponse = vbNo

 Code continues here whether once the Loop has ended...

End Sub

Both the above examples displays a message box and will respond in the same way.

Notice the other two variations being very similar other than where the condition is. It's tested first and
not at the end of the loop block. In practical terms, a structure which tests a condition may never run
the code in the block if the condition is not satisfied.

Therefore, the question is "Do you want the procedure to run at least once or potentially not at all?"
This answer is where you place the condition at the beginning or the end of the loop structure.

The next example, will test a condition before running the code in the block based on if the
ActiveCell is empty or not before moving down to the next row.

Sub PositionCursor()

 Code runs here first before it enters the Loop block...

 'Place the cursor in the next available blank (cell) row
 Do Until ActiveCell.Value = Empty

 ActiveCell.Offset(1, 0).Select 'move down one row

http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm

 Loop

 Code continues here whether once the Loop has ended...

End Sub

If the ActiveCell was blank before entering the loop, why would you need to move the cursor down
a row? Which is why it is tested first and not at the end of the loop block.

 Exit Do

Exit Do keywords are included in a block should you wish to terminate a loop block early without
having wait to the end of iteration period.

It can speed up your procedure if there are various tests in a loop that may unexpectedly change state
and act as a catch (error handler of some kind).

It is commonly found with If blocks nested in a loop of this kind.

 Do...Loop - no condition!!

Make sure you have a condition set in any loop block otherwise it will loop infinitely until it runs out of
memory or an object fails.

Do not write this:

Sub LoopForever()

 Code runs here first before it enters the Loop block...

 Do

 'Code here...

 Loop

 'Code will not reach this point - it will have failed!

End Sub

Where's the condition in the above block?

Next Topic: Looping (For...Counter/Each...Loop)

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Looping
(For...Counter/Each...Loop)

This is one of the 'control flows' VBA provides which is required to make your VBA code procedures
more flexible, reduce the amount of code required and make the system think for itself!

Without any of these 'control flows', your code is very linear and rigid which never is really suitable
when trying to mimic 'real world' processes.

The four 'control flows' are:

1. If...Then...Else...End If

2. Select Case...End Select

3. Do...Until/While...Loop

4. For...Counter/Each...Next

There two variations of this type of loop both which are controlled counting loops which is neither
driven by the user or the system.

There are:

1. For...Counter...Loop

2. For...Each...Loop

Before any of the above loops are called, we know how many times the system will repeat the code
inside the block as opposed to a conditional type loop (Do...Until/While...Loop).

 For...Counter...Loop

This type of loop is defined by the user telling the system how many times to repeat or the system
using an object method or function to identify the number of iterations.

Structure (syntax):

For Counter = Start To End [Step N]

 Code executed here...

 [Exit For]

Next [Counter]

The Counter is a variable keeping count of the current number using the Start and End as its range.
As soon as the Counter = End then the loop is finished and the code jumps out of the block.

Example:

The following example will display an input box requesting the sales figure for Month 1, Month 2 etc
and input the results into the relevant cell on the spreadsheet. The procedure will therefore loop 12

Tip: Use an Exit For to terminate a
block early and speed up your
procedures.

To break a loop during running your
code use CTRL + PAUSE/BREAK.

Save your work before running a
looping piece of code!

VBA Keywords: ActiveCell, Offset,
MsgBox, ActiveWorkbook,
Worksheets, WorkBooks, InputBox,
Close and Exit For.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm

times.

Sub MonthsForLoop()
 Dim MonthlySales As String
 Dim num As Integer

 For num = 1 To 12
 MonthlySales = InputBox("Enter sales for Month " & num)
 ActiveCell.Value = MonthlySales
 ActiveCell.Offset(1, 0).Select
 Next num

End Sub

The InputBox Function is not a practical solution for the above example but it displays how the
For...Loop works.

The Counter variable at the end of the loop (after the Next keyword) is optional and can be left out
but personally it makes it very clear to what is incremented (in the example by 1).

The Step argument is optional too and by default means the variable (Counter) will increment by 1. If
your want to change the increment or use the decrement action (downward count) then you need to
add the Step keyword with the value you wish to increment or decrement.

For example:

'Positive increment of 10
Sub ForLoopStepPositive()
 Dim counter As Integer
 For counter = 10 To 100 Step 10
 MsgBox counter
 Next counter
End Sub

'Negative decrement of 10
Sub ForLoopStepPositive()
 Dim counter As Integer
 For counter = 100 To 10 Step -10
 MsgBox counter
 Next counter
End Sub

You will also need to make sure the range Start To End is synchronised with the direction of the
Step value otherwise it will cause an error.

 For...Each...Loop

This type of loop is a self-counting loop based on a array variable (which use an index), Collections
(which is Excel array to their objects) or by an object member method (like the Count method).

This is commonly used with Collections and therefore the number of times a loop occurs is driven by
the current collection array.

Structure (syntax):

For Each Element In Group

 Code executed here...

 [Exit For]

Next [Element]

A typical example could be to loop through the current number of Worksheets in the ActiveWorkbook:

'Loops through each worksheet in the ActiveWorkbook
Sub HowManySheets()
 Dim item As Worksheet

http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm

 For Each item In ActiveWorkbook.Worksheets
 MsgBox item.Name
 Next item
End Sub

If there are 5 worksheets in the ActiveWorkbook, the procedure would loop 5 times.

It uses the ActiveWorkbook.Worksheets Collection to determine the number if elements (note the
word is plural) in the group. The Item variable is its element which needs to be the singular matching
object which is in this case Worksheet (singular keyword).

Another example could be to close all workbooks in Excel:

'Loops through each workbook in open in Excel and closes it except the
'current workbook (which contains this piece of code!
Sub closebooks()
 Dim wb As Workbook
 For Each wb In Application.Workbooks
 If wb.Name <> ThisWorkbook.Name Then
 wb.Close
 End If
 Next wb
End Sub

The If statement is used to test if the workbook collections current element is the current workbook
(containing the above code) as we do not want to close it.

 Exit For

Exit For keywords are included in a block should you wish to terminate a loop block early without
having wait to the end of iteration period.

It can speed up your procedure if there are various tests in a loop that may unexpectedly change state
and act as a catch (error handler of some kind).

It is commonly found with If blocks nested in a loop of this kind.

Next Topic: With...End With blocks

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

With...End With Blocks
The With…End With block instruction enables you to perform multiple operations on a single object.
This is another way to make the code execute more quickly and code styles more efficient.

The following procedure will format the selected cells with the font ‘Times New Roman’, font size 12,
Bold, Italic and the colour Blue.

Sub ChangeFont()
 Selection.Font.Name = "Times New Roman"
 Selection.Font.Size = 12
 Selection.Font.Bold = True
 Selection.Font.Italic = True
 Selection.Font.ColorIndex = 5
End Sub

The above procedure can be rewritten using a With…End With block as follows:

Sub ChangeFont()
 With Selection.Font
 .Name = "Times New Roman"
 .Size = 12
 .Bold = True
 .Italic = True
 .ColorIndex = 5
 End With
End Sub

Using the this type of block, your code is cleaner and easier to maintain. The With...End With block
encapsulates the object and member without the need to repeat unnecessary (duplicate) code.

If fact, when you record a macro and you navigate through the dialog boxes making various changes
before choosing the OK button you in fact capture the code using the above structure. Try the Font
Dialog box whilst recording the macro.

Next Topic: User Defined Functions (UDF's)

Want to teach yourself Access? Free online guide at About Access Databases

VBA Keywords: Selection, Name,
Font, Bold, Italic, ColorIndex and
Size..

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

User Defined Functions (UDF's)
A user defined function can be used when the built in Excel VBA functions do not meet the user’s
requirements. The user defined function can then be used in formulas in the same way as a built in
Excel function is utilised. User defined functions are limited to doing just calculations that result in a
single return of a value.

The syntax of a user-defined function is as follows:

Function NameofFunction([Optional] Argument1 [As Type], _
 [Optional] Argument2 [As Type], _
 ... [Optional] ArgumentN [As Type]) [As Type]
 Statements here ...

 NameofFunction = Value being returned

End Function

NameofFunction The name of the function.

Arguments The arguments of the function.
 If an argument is to be optional,

 enter the word Optional before the name of
 the argument.

The As Type option allows you to specify the data type for the return
value.

Statements The various lines of code.

NameofFunction=Value Name is the name used in the first line of the function.

Expression is the return value of the function.

Note: The square brackets wrapped around a keyword in the above syntax denotes as optional and can be left
out altogether.

 Creating a User Defined Function

The following is a simple function example to convert Kilometers recorded into Miles.

1. From the Developer tab on the Ribbon Bar, click the Visual Basic icon.

2. Click on the Insert menu and select Module.

3. Enter the following code:

Function ConvertToMiles(KM)

ConvertToMiles=KM / 1.6

End Function

4. Back in the Excel spreadsheet, click on the Formula tab on the Ribbon Bar
 and click the Insert Function icon.

5. From the list of Categories, select User Defined.

6. Select ConvertToMiles and click on OK.

7. Enter the cell reference of the Kilometer value you wish to convert into miles,
 into the KM field and click on OK.

VBA Keyword: Function...End
Function, Application, Round,
IsNumeric, If...Then.End If.

Tip: When creating user defined
functions, you may want to wrap
them into a separate Excel file and
create an Add-In so they can be
easily distributed to other users.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm

 Using built-in functions

It is possible to use built in Excel functions within a user defined function.

The syntax used for built in Excel Functions is as follows:

Application.NameofFunction(Arguments Required)

An example which incorporates the Excel Round function to the above user defined function
(ConvertToMiles).

Function ConverToMiles(KM)
 ConvertToMiles = Applications.Round(KM / 1.6, 0)
End Function

The above amended code rounds the resulting returning value to zero decimal places using the
standard Excel built-in Round function.

 Using The Optional Argument

The Optional keyword preceding the argument name flags the argument as an optional
parameter to the function call.

A lot of built-in Excel functions have optional arguments which always follow on from the mandatory
arguments listed in a function and can therefore be omitted defaulting to a value the function
procedure knows how to handle if left out.

This makes function more flexible and can give different returning values (answers) and/or change
the behaviour of how the function will run. Think of the VLOOKUP function in Excel, see it's syntax
below:

= VLookUp (Value , Range , Offset Column [, Type])

The last argument (wrapped in square brackets) is optional and always appears after all mandatory
arguments (3 in this example) which can be omitted and still work. The optional argument is a value of
either True or False which defaults to True if omitted and simply changes the way how this
function will calculate.

An example - following on from the above code snippet above, I want a second argument (as
optional) which allows the user to choose a positive whole number (Byte data type) as its value to
represent the number of decimal places to pass into the calculation. If omitted, it defaults to 0 decimal
places round to the nearest whole number:

Function ConvertToMiles(KM, Optional DecPlaces As Byte)
 If DecPlaces < 0 Then
 ConvertToMiles = KM / 1.6
 Else
 ConvertToMiles = Application.Round(KM / 1.6, DecPlaces)
 End If
End Function

The user can now either omit the second argument (cell B2), add a value of 0 to represent no decimal
places (cell B3) or add a positive number to pass into the Excel Round function (cell B4).

 Using the As Type option

Optionally, the As Type keywords can be included to define a certain data type the argument and/or
the function is controlled.

If omitted it will default to Variant (any data type it inherits) and can be open to abuse and more
importantly errors.

You define a data type (see Variables & constants for more information) for each argument in the
function and for the function's returning value too. If left out, you will need to add more code to handle
different data input scenarios.

http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm

Let's take a look at what happens if the last above example function is abused.

In cell B3, setting the optional second argument to a String value "ABC" causes the #VALUE! error
(a non numeric data input).

In cell B4, setting the optional second argument to a negative number causes another error #NUM!
even though it's a number but the argument data type Byte only accepts positive numbers between 0
and 255 as its range.

The whole function is also expected to return a number which can be a larger than 255 and we
therefore could apply the Integer as it's returning data type.

Function ConvertToMiles(KM, Optional DecPlaces As Byte) As Integer
 If DecPlaces < 0 Then
 ConvertToMiles = KM / 1.6
 Else
 ConvertToMiles = Application.Round(KM / 1.6, DecPlaces)
 End If
End Function

Notice I have left out the argument KM data type which defaults to Variant. Personally, I prefer to
test for a data type in the code itself when the user or system passes a value to calculate.

An example:

Function ConvertToMiles(KM, Optional DecPlaces As Byte) As Integer
 If IsNumeric(KM) Then
 If DecPlaces < 0 Then
 ConvertToMiles = KM / 1.6
 Else
 ConvertToMiles = Application.Round(KM / 1.6, DecPlaces)
 End If
 Else
 ConvertToMiles = 0 'If it fails return a 0
 End If
End Function

I have tested to see if KM argument is a number by using the IsNumeric VB function.

All user defined functions can be called in Excel (as explained above) or into a calling Sub procedure
like a VB or Excel function.

Next Topic: Event handling

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Event Handling
An Event is something that happens in a program such as:

Opening or closing a workbook

Saving a workbook

Activating or deactivating a worksheet or window

Pressing a key or key combinations

Entering/Editing data in the worksheet

Clicking the mouse on a control/object

Double clicking on a cell

Data in a chart is updated

Recalculating the worksheet

A particular time of day occurs

You can therefore run a procedure automatically when a certain Event in Excel occurs.

There are different objects (and therefore different levels) when Excel automatically triggers a
procedure as the system is constantly listening for the event to occur.

 Workbook Events

Open Event

The most common type of Open Event is Workbook_Open. This procedure is executed when the
workbook is opened and is often used for the tasks such as:

Displaying a welcome message

Opening other workbooks

Setting up custom menus and toolbars

Activating a particular sheet or cell

Example:

Every time the user opens the workbook, they are greeted with a message box displaying the day of
the week. If it is a Friday, a message box will remind the user to submit their timesheet.

1. Open the required workbook.

2. Switch to the Visual Basic Editor.

3. Double click on ThisWorkbook from within the Project Explorer.

VBA Keyword: InuptBox, MsgBox,
Range, WeekdayName, Weekday,
Now, Date, ActiveWindow,
WindowState, EntireColumn, AutoFit,
Font & Bold.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm

4. Click on the Object drop down list and select Workbook

5. Enter the following between the signature Private Sub Workbook_Open()
 and End Sub keywords:

Private Sub Workbook_Open()
 MsgBox "Today is " & WeekdayName(Weekday(Now), False, vbSunday)
 If Weekday(Now) = vbFriday Then
 MsgBox "Don't forget to submit your timesheet"
 End If
End Sub

Note: Private means that the procedure won’t appear in the Run Procedure dialog box (i.e. Macros dialog). See
Scope & Visibility in Variables & Constants for information.

Workbook Activate Event

The procedure is executed whenever the workbook is activated (gets the focus).

Example:

Call the signature Private Sub Workbook_Activate() using the same methods as
previously explained above.

Enter the following code:

Private Sub Workbook_Activate()
 ActiveWindow.WindowState = xlMaximized
End Sub

Now the window will always maximise when the workbook gets the focus.

Note: Deleting an event (the signature) will not harm the system as it is re-generated each time you call one of
the pre-defined signatures.

Example:

Using the Private Sub Workbook_SheetActivate(ByVal Sh As Object)signature is
triggered across any worksheet in the active workbook.

Enter the following code:

Private Sub Workbook_SheetActivate(ByVal Sh As Object)
 Range("A1").Value = Date 'Enters the current date in A1
 Range("A2").Select 'Position the cursor in A2
End Sub

The 'Sh' argument can also be used to refer to which worksheet is being called should you wish to
control the index or name of a particular worksheet or group of worksheets.

By including a code line: If Sh.Name = “Sheet3” Then... it will handle the logic and
control flow for 'Sheet3'.

 Worksheet Events

Worksheet Activate Event

Within a workbook you also have separate nodes for each added worksheet chart sheet which
contain a private (local) module over an above standard modules in a VBA project.

Example:

Every time the user clicks on 'Sheet1' if the first cell (A1) is empty then prompt the user with an
InputBox function to enter a title.

Private Sub Worksheet_Activate()
 If Trim(Range("A1").value) = Empty Then
 Range("A1").Value = Trim(InputBox("Enter title:"))
 Range("A1").EntireColumn.AutoFit
 End If
End Sub

Note: If there are events at both the worksheet and workbook level which point to the same object
(worksheet), then it's the worksheet level will run first followed by the workbook event.

 Other Events

There are other ways to get Excel to trigger a macro using other events from other objects or controls.

It is possible to attach procedures to the ActiveX Controls so that whenever the user clicks onto a
control, the procedure will run.

Example:

When the user clicks on the Command Button, a message box will appear.

1. From Excel, click on the Developer tab (Ribbon Bar), select Insert icon
 and choose Button icon from the Form Control section.

http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm

2. Draw the Command Button onto the spreadsheet.

3. The Assign Macro dialog box appears, Click the New... button.

4. Enter the following code:

Sub Button37_Click()
 MsgBox "Button click event!"
End Sub

Any control drawn on a worksheet or user form will have pre-defined events that can be coded to
respond by the system.

How do you think features like conditional formatting and data validation work in a worksheet when
set in Excel? When the user enters a value in a cell, the Change event is triggered:

Private Sub Worksheet_Change(ByVal Target As Range)
 If Target = Range("A2") Then Range("A2").Font.Bold = True
End Sub

Target is the argument to test which cell address is being changed.

Next Topic: Error Handling

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Error Handling
No matter how thorough you are when writing code, errors can and will happen.

There are steps that developers can take to help reduce unwanted errors and this is considered just
as important as the actual process of the procedure.

Before understanding and applying error-handling routines, planning to avoid errors should be
undertaken.

Design the procedure’s process electronically or on paper – flow chart and paper test.

Creating smaller portions of code – snippets to be called and re-used

Using the Option Explicit statement – declaring your variables officially.

Syntax checking – user defined commands and functions.

Comments – remarking your code at various points.

Testing application – functional and usability.

Note: Some of the above points are methodologies which are outside the scope of this reference guide.

There are three different types of errors:

1. Design Time Errors

2. Run Time Errors

3. Logical Errors

The order of the above progressively is harder to find leaving the last item the most challenging!

 Design Time Errors

The simplest form of error and often caused by typing (typo's) mistakes.

When typing a known keyword or statement, VBA will turn the text to red (default colour) and if the
option is enabled, provide a prompt:

To switch off the above prompt, go to Tools select Options… and deselect Auto Syntax Check
option.

The routine will instantly cause a run time error if not corrected at the design time and must but
resolved before macros can run.

 Run Time Errors

When executing code, no matter how thorough the debugging process has been, code may
encounter errors while running.

There is only one way of doing this - On Error GoTo instruction. It is not a very sophisticated function,
but it allows the flow of the code to continue and also where applicable, prevent infinite loops (when
the computer keeps on calculating never coming to an end).

Three variations are available:

1. On Error GoTo LabelName
2. On Error Resume Next
3. On Error GoTo 0

Tip: Save you work before running
error examples that contain loops
(which try again).

VBA Keywords: On Error GoTo,
MsgBox, InputBox, CInt, Dim,
Resume, Resume Next, Round,
If...Then...Else.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm

On Error GoTo LabelName branches to the portion of the code with the label LabelName
(‘LabelName’ must be a text string and not a value).

These commands are usually placed at the beginning of the procedure and when the error occurs,
the macro will branch to another part of the procedure and continue executing code or end,
depending on the instruction given.

'Simple Error handler with Err Object
Sub ErrorTestOne()
 On Error GoTo myHandler

 Dim intDay As Integer
 intDay = "Monday"
 MsgBox intDay
 Exit Sub

myHandler:
 MsgBox "Error Number: " & Err.Number & vbNewLine _
 & "Description: " & Err.Description
End Sub

The above procedure will cause an error when executed and users will see:

myHandler is a user defined label (must not use known keywords) which listens for any errors that
may occur. When an error is detected, the procedure jumps to a bookmark of the same label with a
colon (:) (myHandler:) and executes from that point forward.

Using the Err object, developers can return two common properties ‘Number’ and
‘Description’. The example message box concatenates these two properties into a user-friendly
message (see above).

It is important to include the Exit Sub statement prior to the bookmark label otherwise the
procedure will execute to the very end of the sub routine and should only be executed when an error
has genuinely occurred.

The error above was due to a type mismatch. In other words I declared a variable intDay as an
integer and assigned a string value to it.

Another example:

'Error to handle incorrect InpuBox value.
Sub ErrorTestTwo()
 On Error GoTo myHandler

 Dim intInput As Integer
 Dim strResponse As String
 Dim blnErr As Boolean
 intInput = CInt(InputBox("Enter your age:"))
 blnErr = False
 If Not blnErr Then
 If intInput > 64 Then
 strResponse = "You are at the retirement age!"
 Else
 strResponse = "You have " & (65 - intInput) & _
 " year(s) remaining until retirement."
 End If
 Else
 strResponse = "Unknown error entered!"
 End If
 MsgBox strResponse
 Exit Sub

myHandler:
 intInput = 0
 blnErr = True
 Resume Next
End Sub

The above example illustrates how to gracefully handle incorrect (type mismatched) values and then
resume the next line of execution using Resume Next statement.

The variable blnErr is flagged as true if an error occurs which is then tested with an If statement.

If the Resume Next is replaced with just the Resume statement, you will find the input box will loop
itself until the correct data is entered. Be careful before testing this out due to infinite loops that may
occur (if you edit the wrong part of the procedure).

The statement On Error GoTo 0 (zero) simply disables the error command during the procedure.

Should users wish to switch off this feature? To switch it back on, just introduce a new statement line
of either:

1. On Error Goto myLabel

2. On Error Resume
3. On Error Resume Next

Any code can be written to handle errors gracefully which can include If and Case statements. It is
common to have a Case statement to test which error was fired and deal with it in a separate calling
procedure (branch out another procedure).

 Logical Errors

This type of error is the most difficult to trace as its syntax is correct and it runs without any run time
errors.

A logical error is one that does not give users any indication that an error has occurred due to the fact
that a logical error is the process of logic and not the code itself.

Performing a calculation in a spreadsheet using a function will return an answer but is it the correct
answer?

Example:

'Logical Error Test Example
Sub LogicalErrorTest()
 Dim lngQty As Long
 Dim dblNet As Double
 Dim sngDiscount As Single

 lngQty = 10
 dblUPrice = 250
 sngDiscount = 0.15

 'Calculate gross (inc VAT @ 17.5%)
 'Logically INCORRECT!
 MsgBox Round(lngQty * dblUPrice * 1 - sngDiscount * 1.175, 2)

 'Logically CORRECT!
 MsgBox Round(((lngQty * dblUPrice) * (1 - sngDiscount)))
End Sub

The above procedure showed a quantity (intQty) of goods, with a unit price (dblUPrice), a
discount (sngDiscount) at a fixed vat rate of 17.5%.

To calculate the correct gross value, there is an order of which operands are calculated (see
Formulas) first and without the care of using brackets, the system follows the rules of mathematics and
looks at the operator’s precedence automatically.

The first message box shows:

WRONG!

Followed by the second message box:

CORRECT!

Both calculations worked but the first was illogical to the objective of the process (workflow).

How we find such errors? Debugging tools!

Next Topic: Debugging

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Debugging
Debugging is the process of stepping through the code line by line and checking the reaction of each
line to help trace errors that may be difficult to find at run time especially logical errors.

The Debug toolbar allows users to step in, out, over or watch certain variables change state in a
controlled manner and can be switched on or off in the Visual Basic Editor window.

1 Design Mode.

2 Run Sub/User Form starts the macros where the insertion point is or displays a Macro
Dialog Box.

3 Break pauses the macro while it’s running and switches to break mode.

4 Reset current macro clearing all breaks, step into/over procedures and variables.

5 Toggle Breakpoint allows marking a line of code at which point a macro will stop.

6 Step Into a macro one line at a time.

7 Step Over a macro one line at a time ignoring any other sub routines.

8 Step Out over a macro and continue running the rest of that macro.

9 Locals Window is displayed showing all variables and expressions with values for the
procedure currently running.

10 Immediate Window is displayed allowing pasting of code to the window and testing the
code by using the ENTER key (cannot save contents).

11 Watch Window is displayed allowing drag ‘n’ drop of expressions into it to monitor their
values.

12 Quick Watch displays a Dialog Box showing the current line of codes value.

13 Call Stack displays a Dialog Box listing all active calls statement to the current
procedure. This option is used when using a step procedure.

The most effective way to debug a procedure is to learn some keystrokes and mark breakpoints in the
code.

To add breakpoints, place the mouse pointer to the left grey margin at the point where you wish to
pause the procedure and click once with the left mouse button, click button 5 (as above) or press F9
function key (toggles on/off).

When you run the procedure or press the F5 key, the procedure will pause at the first highlighted
break:

At this point, users can either continue to run the remaining procedure (press F5 key) or step through
line by line by pressing the F8 key.

Tip: Keyboard shortcuts are quick
and simple. Learn F5, F8 and F9.

VBA Keywords: On Error GoTo,
MsgBox, InputBox, Debup.Print &
CCur.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm

By placing the mouse pointer over any variable or object property, the user will, after a few seconds,
see the current value assigned.

Alternatively, by revealing the Locals Window (button 9 above), users can see all variables and
property’s values:

After a few steps (F8 key):

Debugging between calling procedures can be controlled as the F8 key steps in order line by line
across more than one procedure.

To step out of a sub procedure and carry on with the main procedure, press the SHIFT + F8 keys.

 Debug.Print Command

A return value will be printed to the Immediate Window (button 10 above or CTRL + G).

Two ways to print an output value in the immediate window:

1. Debug.Print Expression
2. ? Expression (within the Immediate Window)

Sub CalcPay()
 On Error GoTo HandleError

 Dim hours
 Dim hourlyPay
 Dim payPerWeek

 hours = InputBox("Please enter number of hours worked", _
 "Hours Worked")

 Debug.Print "hours entered " & hours

 hourlyPay = InputBox("Please enter hourly pay", "Pay Rate")
 payPerWeek = CCur(hours * hourlyPay)
 MsgBox "Pay is: " & Format(payPerWeek, "£##,##0.00"), _
 , "Total Pay"
HandleError: 'any error - gracefully end

End Sub

The above will print the ‘hours’ variable to the immediate window:

If you set a breakpoint and have the Immediate Window visible, you can use a different method to
reveal the current values of any known variable or property:

Type a question mark (?) followed by a space and then the variable or property and press the enter
key to reveal the output value.

Next Topic: Creating User Forms

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Creating User Forms
Pre-defined Dialog Boxes like InputBox and MsgBox functions are useful and quick to use. However,
designing your own Dialog Boxes (or User Form), allows you to add other controls and personalise
your application.

 Creating a new User Form

Make sure you are in the Visual Basic Editor and not Excel.

Select Insert, UserForm:

Note: To load the Properties Window, press the F4 function key.

In addition to the Properties window, when active on the new form, the Toolbox Toolbar automatically
appears. (If this is missing, use the View, Toolbox command to show it.)

Also, you may want to display the ‘UserForm’ toolbar to align and rearrange the controls on the form.
Select View, Toolbars and choose UserForm.

 Userform Toolbar

This toolbar is only available for designing and arranging objects when creating or modifying forms
(user forms).

1 Bring to Front moves the selected object to the front of all other objects.

2 Send to Back moves the selected object to the back of all other objects.

3 Group two or more selected objects together as one.

4 Ungroup where a single object was made up of two or more objects.

5 Alignments of selected objects to various alignments - see below.

6 Vert/Horiz Alignments of selected objects - see below.

7 Sizes a number of selected objects to the same dimensions - see below.

Tip: Press the F5 function key to run
and preview a form during the
design time environment.

VBA Keywords: Show,
If...Then...Else, MsgBox, RGB &
Unload.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm

8 Zoom the User Form by magnifying/diminishing by percentage.

Alignments (Button 5)

Choose from one of the alignments as to how a number of selected
objects will be placed together.

This keeps controls on a form or Dialog Box symmetrically aligned and
therefore professional looking.

Objects can also be numerically set using the Properties Window.

Vertical/Horizontal Alignments (Button 6)

These are two repeated types of alignments as mentioned above
allowing objects to be centred.

Sizes (Button 7)

Changes the size of selected objects to the same dimension as each
other. This can also be set from the Properties Window.

 Toolbox Toolbar

A1 Select Objects: When there is no control to draw, this mode allows you to select
other controls.

A2 Label: Allows you to create text (caption) that a user does not change.

A3 TextBox: Allows you to create an edit box which a user types into.

A4 ComboBox: Allows the user to select from a drop down box items predefined.

A5 ListBox: As above but shows many item in one view with a vertical scroll bar.

A6 CheckBox: Allows the user to create a CheckBox where an item can only have a
yes or no (true or false) answer.

B1 OptionButton: Allows you to display multiple options with a frame where only one
can be selected at a time.

B2 ToggleButton: Like a CheckBox, but a button version.

B3 Frame: Allows you to create a frame to store controls in one group (usually option
buttons).

B4 CommandButton: Creates a button like the OK, Cancel and Other... Buttons.

B5 TabStrip: Allows you to create multiple pages of the same Dialog Box controls.

B6 MultiPage: Allows you to create multiple pages of different controls (multi- tab
Dialog Boxes).

C1 ScrollBar: Provides a graphical scroll bar to allow scrolling through a list of
values.

C2 SpinButton: This button allows you to set values by scrolling up or down through
ranges.

C3 Image: Allows the user to store graphics in a Dialog Box.

C4 RefEdit: Allows a range to be plotted into this control from a spreadsheet.
(Not available in Excel 97).

Adding Controls to a Custom Dialog Box

By using the Toolbox, standard controls (command buttons, text boxes and others) can be added to a

user form.

Make sure the form is the active window.

Click on the required control and then click on the user form roughly where the control is to be
positioned or drag and drop the control from the Toolbox to the area on the form.

Handlebars appear around the selected control. This allows control(s) to be resized and positioned.

Common Controls

There are many more controls than the standard set which is installed with Microsoft Excel and can be
added. Select Tools, Additional Controls....

Tick the required item and choose the OK Button. This updates the Toolbox toolbar.

 Creating Tabs for Userforms

If a single user form needs to handle a large number of controls that can be sorted into categories,
use a Tab Control.

Tab pages can be added and deleted using the properties of the tab (itself) of the control itself by
right-mouse clicking the item.

 Setting Controls with Properties (Design Time)

Some controls are better set during the design side of a user form by using the Properties window.

Typical examples of setting these controls:

Sorting out the Tab Order of controls.

Setting the default values to edit boxes, checkboxes and many more.

Creating control tool tips and captions.

Setting the Accelerator key (underscored letter) of a control.

Other colours and graphics that really do not need code handling.

 Initialising Controls with Code (Run Time)

Some controls (some included as above) can be set as the userform is running or before the form is
displayed by setting properties with code.

Typical examples of setting controls with code:

Setting initial values of controls like an Edit Box or a Combo Box.

Setting the focus of a control.

Validating values in a Dialog Box.

Changing values in a Dialog Box while it is running.

Showing and hiding other controls.

Enabling and disabling controls.

These controls are set to different events of a control. These include:

Click (and double click) of a control - command buttons, checkboxes.

Change of a control - edit boxes.

Initialising of a control - as the form starts up.

Exiting a control.

Example:

Sub MyDialogBox_Initialize()
 TextBox1.Text = "Sales"
 Checkbox1.Enabled = True
 Me.Command1.SetFocus
 OptionCommand1.Visible = False
 Checkbox2.Value = False
End Sub

Five controls are set when the form (MyDialogBox) is shown (Initialised).

1. TextBox1 displays “Sales” in it.
2. Chexkbox1 control is active.
3. Command1 button has the focus.
4. OptionCommand1 is not visible (hidden).
5. Checkbox2 is not ticked (False value).

 Displaying a Userform

Once the userform has been created, the next stage is to test to see how the user form will look. You
can use the Run (F5 function key in design time mode) command when the active form is displayed.
But, writing code is ultimately how a user form will be used.

Decide where the code is to be stored (in a Module, Worksheet or Workbook).

Use the name of the form with the Show method command.

Example:

Sub DisplayMyUserform()
 MyUserForm.Show
End Sub

The user form is known, as ‘MyUserForm’ and the Show method will display the user form.

There is one optional argument called Modal which can be explicitly defined and has a value of 0 or
1 .

1 = a modal state which means that users have to complete the form and can not click anywhere else
(in the background).

0 = a modeless state which allows users to click outside the form area.

The default is 1 if omitted.

MyUserForm.Show 0

MyUserForm.Show 1 or MyUserForm.Show

 Adding Code to respond with User Forms

Each control will have its own set of events. These events store the code and are executed when that
event is triggered.

For example, a Button recognises the Click_Event, a Form recognises an Intitialize_Event and a
Combo Box recognises a Change_Event.

To assign code to a control, display the form and double click on that control. This opens the module
and the main event allowing code to be written:

Example:

When the OK Button is clicked...

Private Sub cmdOK_Click()
 Range("NameResult").Select
 EnterText.Hide
 If txtName.Text = "" Then
 MsgBox "Must enter a name. Try again."
 EnterText.Show
 End If
 ActiveCell.Value = txtName
 Unload Me
End Sub

When the userform is displayed, if the OK Button is clicked, the above code is executed and checks to
see if this Textbox (txtName) is empty or not using the If statement. If false, it displays a message
prompt and shows the user form again. If true, it enters the data into a spreadsheet (range -
NameResult).

Unload Me is the way to close a form (itself)

 The Me Property

The Me property returns a reference of the form itself that the code is currently running. This is used
as shorthand for the full reference of a form.

Example:

Suppose you have the following procedure in a module:

Sub ChangeFormColour(FormName As Form)
 FormName.BackColor = RGB(Rnd * 256, Rnd * 256, Rnd * 256)
End Sub

You can call this procedure and pass the current instance of the Form as an argument using the
following statement:

Sub cmdColour_Click()
 ChangeFormColour Me
End Sub

The ChangeFormColour procedure is passed to the Me property in the current form running which
therefore changes the colour of a specified control(s) to the colour defined.

RGB(Rnd * 256, Rnd * 256, Rnd * 256) is a Red, Green and Blue colour function.

To see an example, click on userform example

Next Topic: DAO/ADO Objects

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

DAO/ADO Objects
There are several ways to connect to a database in VBA whether it is a relational database (RDBMS)
or a flat-file database (like Excel).

Also, where and what type of database application/server it is will pretty much determine which is
considered best for the job.

The two I'm going to mention in the article (DAO and ADO) is considered the more popular
techniques deployed but for your reference you may want to investigate the older RDO (Remote Data
Object) which has been really replaced with DAO, OLE-DB and ODBC to help establish which would
be best for your solution.

 DAO

DAO stands for Data Access Objects and is one of the technologies to allow communications to
external applications (mainly databases).

In order to use this feature, users will need to add the DAO library to the project.

Choose from the Tools menu and select Reference…

This library will than allow objects to be created to interrogate a database, tables, fields and return
information to populate a spreadsheet. This will also allow users to add, edit, update and delete data
to an external file without the need to open the associated application.

An advanced feature of this library will even allow users to create, modify and delete structures of a
database whether a table, query, stored procedure or fields.

Using the control flow techniques as discussed in this manual, the user can fully control how data
should be handled - opening the potential power of VBA.

Note: In order to test this section, users will need an Access database and will need to familiarise themselves with
the database. It is not essential to have Microsoft Access loaded as this reference uses the backdoor but it will be
difficult to check the database without it!

Example - Connecting to a database:

Sub ConnectDB()
 Dim db As Database
 Dim rst As Recordset

 Set db = OpenDatabase("C:\db1.mdb")
 Set rst = db.OpenRecordset("Customers")

 'displays the first record and first field
 MsgBox rst.Fields(0)

 'close the objects
 rst.Close
 db.Close

 'destroy the variables

Tip: Decide on which library to use
and stock with it. Don't mix the two
together (ADO and DAO) though it
can still work but the order of
referencing will matter.

VBA Keywords: DAO, ADODB,
Connection, Recordset, Open,
Update, EditMode, AddNew, Fields,
Set, New & With...End With

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm

 Set rst = Nothing
 Set db = Nothing
End Sub

The above example opens an Access database (db1.mdb) in memory and sets a reference to one of
its known tables using the ‘OpenRecordset’ method. It then displays the first row and first field of the
table:

The property Fields of the RecordSet object is a collection (or array) that is held in memory and
by changing the element number, users can return a different field (column of the table).

rst.Fields(1)

The above illustration would show the customer’s name instead of the ID number.

A good discipline is to close and set an object to Nothing that releases memory, hence the last four
lines of code.

Example - Working with records:

'Opens a connection to the Customers table
'and populates a blank worksheet.
Sub PopulateCustomers()
 Dim db As Database
 Dim rst As Recordset
 Dim i As Long

 Set db = OpenDatabase("C:\db1.mdb")
 Set rst = db.OpenRecordset("Customers")

 'look through each record and populate
 'ID, Name and Country into a worksheet.
 Do Until rst.EOF
 ActiveCell.Offset(i, 0).Value = rst.Fields(0)
 ActiveCell.Offset(i, 1).Value = rst.Fields(1)
 ActiveCell.Offset(i, 2).Value = rst.Fields(8)
 i = i + 1
 rst.MoveNext
 Loop

 'close the objects
 rst.Close
 db.Close

 'destroy the variables
 Set rst = Nothing
 Set db = Nothing
End Sub

The above example once again opens the table ‘Customers’. Using a conditional loop at which point
the property EOF (End Of File) returns True or False every time the record changes using the
MoveNext method, three columns in the worksheet from the starting active cell are populated by
three different field indexes.

Even though the above example used rst.Fields(8) to determine the ninth column, it may be
fair to say that users may not know the position number of the field but instead know its fieldname. In
this case, users can refer to the name of the field as a string argument.

rst.Fields(“Post Code”).

Note: Be careful to include a command to increment the collection (MoveNext method) otherwise
this would cause the procedure to loop infinitely or run out of worksheet rows firing an error. Save
your work first before testing the above.

When interrogating a table in a database, it may be required to test to see if the table actually has
records in it before iterating through each record.

Wrap an If statement around the loop to test this out:

If Not rst.EOF And Not rst.BOF Then

[code here]...

End If

http://www.excel-spreadsheet.com/vba/looping_doloop.htm

If this returns True then at least one record is present. If both EOF and BOF are True, it means the
cursor is positioned at the beginning and at the end of the record set (which means it’s empty).

The Not keyword inverses the returning value which means that in the above example, both must be
False if this is to run any code in between the statement.

Example - Editing records in a database:

Not only can users populate data from an external database, but also it is possible to change data in
an external database.

'Opens a connection to the table Customers
'and adds a new record and then updates and closes
Sub AddNewRecord()
 Dim db As Database
 Dim rst As Recordset

 Set db = OpenDatabase("C:\db1.mdb")
 Set rst = db.OpenRecordset("Customers")

 rst.AddNew
 rst.Fields("Customer ID") = "XYZ"
 rst.Fields("Company Name") = "XYZ Foods Ltd"
 rst.Fields("Post Code") = "NW1 8PY"
 rst.Update

 'close the objects
 rst.Close
 db.Close

 'destroy the variables
 Set rst = Nothing
 Set db = Nothing
End Sub

The above example once again opens a connection to the ‘Customer’ table and then uses two
methods to add and update the new record.

The Add method triggers the mode to add the record but does not save it to the table until you call the
Update method.

Note: Be careful to consider the table’s structure and database rules that are often implemented
such as primary keys and foreign indexes. The above example would fail if the customer id field
was a unique primary key and the table already had such a reference.

Further coding would be required to test to see if the record number existed, before adding and
updating the record.

To edit a record, users must first locate the record (if it can be found) and then use the Edit method.

 rst.Edit

 rst.Fields("Customer ID") = "XYZ"

 rst.Fields("Company Name") = "XYZ Foods Ltd"

 rst.Fields("Post Code") = "W12 6RF"

 rst.Update

Example - Creating a table:

'Opens a connection to the table Customers
'and adds a new record and then updates and closes
Sub CreateTable()
 Dim db As Database
 Dim rst As Recordset
 Dim tbl As TableDef

 Set db = OpenDatabase("C:\db1.mdb")
 Set tbl = db.CreateTableDef("Contact Log")

 With tbl
 .Fields.Append .CreateField("Log ID", dbInteger)
 .Fields.Append .CreateField("Date", dbDate)
 .Fields.Append .CreateField("Caller", dbText)
 .Fields.Append .CreateField("Comment", dbText)
 .Fields.Append .CreateField("Completed", dbBoolean)
 db.TableDefs.Append tbl
 End With

 Set rst = db.OpenRecordset("Contact Log")
 rst.AddNew
 rst.Fields("Log ID") = 1
 rst.Fields("Date") = Date
 rst.Fields("Caller") = "Ben Beitler"
 rst.Fields("Comment") = "Arranged VBA training next week."
 rst.Fields("Completed") = True
 rst.Update

 'close the objects
 rst.Close
 db.Close

 'destroy the variables
 Set rst = Nothing
 Set tbl = Nothing
 Set db = Nothing

 Set db = Nothing
End Sub

The above example will create a new table ‘Contact Log’, create new fields and then bind it to the
new table using db.TableDefs.Append tbl. Next it will add a single record using the correct
data to match the data types as defined in the table.

This procedure will only run once and then cause an error if executed again. This is due to the fact
this database cannot contain duplicate named tables.

Therefore, users need to add error-handling procedures as well as testing to see if the table exists.

To delete a table along with its records, use db.TableDefs.Delete "Contact Log".

Again an error will be fired if the system cannot locate the table (misspelling or already deleted).

There are many properties and methods of DAO which are not covered in this guide. This library
allows many ways to produce the same effect which include writing SQL (structured query language).

 ADO

ADO stands for ActiveX Data Objects is an alternative method of connecting to a database.

In order to use this feature, users will need to add the ADO library to the project.

Choose from the Tools menu and select Reference…

Note: You may have noticed that there several versions of ActiveX Data Objects in the illustration above.
Generally, you should choose the latest version but depending on which version of Excel (or more accurately
Windows operating system) try and pick the best fit version. For example 2.8 is for those running on Windows XP
where as users would choose 6.0 for Windows Vista.

This library will than allow objects to be created to interrogate a database, tables, fields and return
information to populate a spreadsheet. This will also allow users to add, edit, update and delete data
to an external file without the need to open the associated application.

An advanced feature of this library (ADOX) will even allow users to create, modify and delete
structures of a database whether a table, query, stored procedure or fields.

Using the control flow techniques as discussed in this manual, the user can fully control how data
should be handled - opening the potential power of VBA.

Note: In order to test this section, users will need an Access database and will need to familiarise themselves with
the database. It is not essential to have Microsoft Access loaded as this reference uses the backdoor but it will be
difficult to check the database without it!

Example - Connecting to a database:

Sub ConnectExcelDB()
 Dim cn as ADODB.Connection

 Set cn = New ADODB.Connection

http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm

 With cn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.ConnectionString = "Data Source=C:\pivot data.xls;" & _
 "Extended Properties=Excel 8.0;"
.Open
 End With
End Sub

The above example creates a connection and open the workbook 'pivot data'. It requires the
Extended Properties=Excel 8.0 argument (which users need to adjust for their own version of Excel).

Sub ConnectAccessDB()
 Dim cn As ADODB.Connection

 Set cn = New ADODB.Connection

 With cn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.ConnectionString = "Data Source=C:\db2.mdb;"
.Open
 End With
End Sub

The above example connects to an Access database (db2).

There other ways to connect as well as setting optional arguments which control the method of
connection (using ODBC or DSN-Less etc) which is beyond this article.

Example - Reading from a database:

Using an Access database, users can connect to table, query or write SQL (structured query
language) into the calling object.

Sub ReadingData()
 Dim cn As ADODB.Connection
 Dim rs As ADODB.Recordset

 Set cn = New ADODB.Connection

 With cn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.ConnectionString = "Data Source=C:\db2.mdb;"
.Open
 End With

 Set rs = New ADODB.Recordset
 'opens a connection to a table called customers.
 rs.Open "Customers", cn, adOpenKeyset, adLockOptimistic, adCmdTable
 'show the second fields value, first record (column 2, row 1).
 Debug.Print rs.Fields(1).Value 'second columns - starts at 0

 rs.Close
 cn.Close

 Set rs = Nothing
 Set cn = Nothing
End Sub

The above example creates a connection. It then creates another new object (rs) which the recordset
of a table, query or SQL source and opens it too.

Now you have a collection of data (all records in that file). Using a property (Fields), you can pass
either an index or string name into it to refer to any field in that source file and return one of several
values (in this case the data value).

Make sure you close and dispose of the objects when finished (and in the correct order) though it will
clear and dispose of all objects when the procedure comes to an end - just good habits of
programming!

To refer to an actual field instead of an index, use Fields("Customer Name").

It is good practice to narrow down the recordset to the smallest amount of data in memory which the
above example fails to do (all records). Instead, consider passing a query or SQL statement instead:

rs.Open "Select * From Customers Where Country='UK';", cn

There are optional arguments which also help performance and restrictions to an open connection
which I've used in my example above adOpenKeyset, adLockOptimistic, adCmdTable
and will require further investigation to help establish the rule (refer to VBA help for more information).

Example - Writing to a database:

Create a connection and open a recordset (table) to add, edit and delete records.

Sub EditingData()
 Dim cn As ADODB.Connection
 Dim rs As ADODB.Recordset

 Set cn = New ADODB.Connection

 With cn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.ConnectionString = "Data Source=C:\db2.mdb;"
.Open
 End With

 Set rs = New ADODB.Recordset
 rs.Open "Customers", cn, adOpenDynamic, adLockOptimistic
 'edit the second field, first record's value.
 rs.Fields(1).Value = "Always Open QM"
 rs.Update 'save the changes.

 rs.Close
 cn.Close

 Set rs = Nothing
 Set cn = Nothing
End Sub

Using the rs.Update property enforces any changes to be saved and written to the database.

If you wish add a new record, you can use rs.AddNew method but it will still need to use
rs.Update to save the changes.

Example:

Sub NewRecord()
 Dim cn As ADODB.Connection
 Dim rs As ADODB.Recordset

 Set cn = New ADODB.Connection

 With cn
.Provider = "Microsoft.Jet.OLEDB.4.0"
.ConnectionString = "Data Source=C:\db2.mdb;"
.Open
 End With

 Set rs = New ADODB.Recordset

 rs.Open "Customers", cn, adOpenDynamic, adLockOptimistic
 'adding a new record.
 rs.AddNew
 rs.Fields(0).Value = "XYZ" 'customer ID field
 rs.Fields(1).Value = "XYZ Limited" 'customer name field
 rs.Fields(5).Value = "London" 'city field
 rs.Fields(8).Value = "UK" 'country field
 rs.Update 'save the changes.

 rs.Close
 cn.Close

 Set rs = Nothing
 Set cn = Nothing
End Sub

The above example populates new values to four fields and then saves the changes. Make sure any
record being added satisfies the rules of the data source which is being used to store the data which
will include indexing (which is generally a mandatory field).

Other useful methods include EOF (end of file) and BOF (beginning of file) which allows you to iterate
through records using loops. - look at the help for more information.

There is much, much more on this subject (I've not done this justice) and users should now be
confident to go off and investigate further using various other resources (books and the web!).

Finally, which one to use DAO or ADO?

There are many arguments which one should use but as a general rule if you are going to
communicate with Microsoft 'Jet' engine (Access, SQL etc) then using DAO is quicker and easier to
master.

Consider using ADO for across platform applications typically over the web (server) and non-
Microsoft Window environments which have the capability to create DSN-less connections. It also
handles multiple databases at the same time and is considered the standard with other programming
languages.

Both have similar members (methods and properties) and can conflict if both are being referenced in
the same module.

Next Topic: Input/Output Files

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Input/Output Files
VBA already includes commands to allow data to read or write to external text files. This is more
commonly known as I/O (Input / Output) and is used to store files in the formats such as ‘txt’, ‘csv’ and
‘ini’ files.

Example of Output Data:

Sub BuildTextFile()
 Dim fnum

 fnum = FreeFile()
 Open "C:\vba.txt" For Output As #fnum

 Write #fnum, "Excel VBA", "Day 1"
 Write #fnum, "Excel VBA", "Day 2"
 Write #fnum, "Excel VBA Workshop Q&A", "Day 3"

 Close #fnum
End Sub

The above example creates an instance of a file using the FreeFile function, which returns a
unique number (as its handler). The Open method is used to locate and open the file.

The Output property tells the system that data is to be written to the named file using the pointer
#fnum.

The Write method adds line-by-line data to the pointer and then is lost with the Close method.

Even if the file name does not exist, it will create this file in the specified path but the path must exist.

If the filename already exists, this routine will overwrite (no prompt) and the previous file will be lost.

The file generated is a 'txt' file:

Example of Input Data:

Sub ReadTextFile()
 Dim fnum
 Dim strField1 As String, strField2 As String

 fnum = FreeFile()
 Open "C:\vba.txt" For Input As #fnum

 Do Until EOF(fnum)
 Input #fnum, strField1, strField2
 Debug.Print strField1 & " : " & strField2
 Loop

 Close #fnum
End Sub

The above example uses the Input property instead to change the direction of the flow of data (read
from).

Using the EOF method, the procedure loops through the delimiter line break until it reaches the end of
the file.

To view the results, open the Immediate Window (Ctrl + G) before running the above procedure:

VBA Keywords: FreeFile, Do...Loop,
Write, Input, Output, EOF,
Dubug.Print & Close.

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm

The above two examples demonstrates how to read and write data to and from external files and will
require a little more coding to deal with interaction and variables to make this more flexible (and
practical).

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

Example Code - Snippets
Now that you have (hopefully) reviewed the previous articles on this website VBA reference guide,
you may want to browse some example snippets of code which can be used to build up your
knowledge and personal library of Excel VBA.

The following links will take you to a particular section to help you find some reference that maybe of
interest to you (which can be as simple as a one line piece of code):

Used range of cells - worksheet protection by value type

Basic calculation (Sum) in a range of cells

Nested For...Next with an If statement

Loop through worksheets in a workbook for set ranges

Worksheet - hidden and visible properties

Inserting worksheets avoiding duplicate names, naming & validations

InputBox and Message Box examples

Printing examples

General application commands

Ranges - various examples

Navigation in a worksheet using Offset

Read Window documents

General function examples

Creates a new word document

Creates an Outlook message

Used range of cells - worksheet protection by value type

This sub procedure looks at every cell on the active worksheet and if the cell does not have a formula,
a date or text and the cell is numeric; it unlocks the cell and makes the font blue.

For everything else, it locks the cell and makes the font black. It then protects the worksheet.

This has the effect of allowing someone to edit the numbers but they cannot change the text, dates or
formulas.

Sub SetProtection()
 On Error GoTo errorHandler

 Dim myDoc As Worksheet
 Dim cel As Range
 Set myDoc = ActiveSheet
 myDoc.Unprotect
 For Each cel In myDoc.UsedRange
 If Not cel.HasFormula And _
 Not TypeName(cel.Value) = "Date" And _
 Application.IsNumber(cel) Then
 cel.Locked = False
 cel.Font.ColorIndex = 5
 Else
 cel.Locked = True
 cel.Font.ColorIndex = xlColorIndexAutomatic
 End If
 Next
 myDoc.Protect
 Exit Sub

errorHandler:
 MsgBox "Error"
End Sub

Back to top

Basic calculation (Sum) in a range of cells

Enters a value into 10 cells in a column and then sums the values (range) using the sum function.

Sub SumRange()
 Dim i As Integer
 Dim cel As Range
 Set cel = ActiveCell
 For i = 1 To 10

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/userforminputexample.htm

 For i = 1 To 10
 cel(i).Value = 100
 Next i
 cel(i).Value = "=SUM(R[-10]C:R[-1]C)"
End Sub

Other functions can be used as well as changing the range and values to suit.

Another way to write a formula:

Sub CalculateFormula()
 Dim s As String

 ActiveCell.Formula = "=" & _
 ActiveCell.Offset(0, -3).Address(False, False) & "/6"
 s = ActiveCell.Offset(0, -16).Address(False, False) _
 & ":" & ActiveCell.Offset(0, -5).Address(False, False) _
 ActiveCell.Formula = "=SUM(" & s & ")/12"
 ActiveCell.Formula = s
End Sub

Back to top

Nested For...Next with an If statement

This sub checks values in a range of 10 rows by 5 columns moving left to right, top to bottom,
switching the values ‘X’ and ‘O’.

Set a range of 10 x 5 cells with a mixture of ‘X’s and ‘O’s.

Sub ToggleValues()
 Dim rowIndex As Integer
 Dim colIndex As Integer

 For rowIndex = 1 To 10
 For colIndex = 1 To 5
 If Cells(rowIndex, colIndex).Value = "X" Then
 Cells(rowIndex, colIndex).Value = "O"
 Else
 Cells(rowIndex, colIndex).Value = "X"
 End If
 Next colIndex
 Next rowIndex
End Sub

Back to top

Loop through worksheets in a workbook for set ranges

Loops through all worksheets in a workbook and reset values in a specific range(s) on each
worksheet to zero where it is not a formula and the cell value is not equal to zero.

Sub SetValuesAllSheets()
 Dim wSht As Worksheet
 Dim myRng As Range
 Dim allwShts As Sheets
 Dim cel As Range

 Set allwShts = Worksheets
 For Each wSht In allwShts
 Set myRng = wSht.Range("A1:A5, B6:B10, C1:C5, D4:D10")
 For Each cel In myRng
 If Not cel.HasFormula And cel.Value <> 0 Then
 cel.Value = 0
 End If
 Next cel
 Next wSht
End Sub

Change the ranges using a comma separator for each union range.

Modify the condition and its returning value to suit.

Back to top

Worksheet - hidden and visible properties

The distinction between Hide(False) and the xlVeryHidden constant.

Visible = xlVeryHidden - Sheet/Unhide is greyed out. To unhide sheet, you must set the Visible
property to True.

Visible = Hide(or False) - Sheet/Unhide is not greyed out

To hide specific (second) worksheet

Sub HideSheet()
 Worksheets(2).Visible = Hide 'you can use Hide or False
End Sub

To make a specific (second) worksheet very hidden

Sub VeryHiddenSheet()

 Worksheets(2).Visible = xlVeryHidden 'menu item is not available
End Sub

To unhide a specific worksheet

Sub UnHideSheet()
 Worksheets(2).Visible = True
End Sub

To toggle between hidden and visible

Sub ToggleHiddenVisible()
 Worksheets(2).Visible = Not Worksheets(2).Visible
End Sub

Toggle opposite visibility (error will happen as all worksheets cannot be hidden, at least one must be
visible in a workbook).

Sub ToggleAllSheets()
 On Error Goto errorHandler
 Dim wSh As Worksheet

 For Each wSh In Worksheets
 wSh.Visible = Not wSh.Visible
 Next
 Exit Sub
errorHandler:

End Sub

To set the visible property to True on all sheets in a workbook.

Sub UnHideAll()
 Dim wSh As Worksheet

 For Each sh In Worksheets
 wSh.Visible = True
 Next
End Sub

Back to top

Inserting worksheets avoiding duplicate names, naming & validations

Checks to see if sheet already exists with the name ‘MySheet’ and does not add it again as Excel
cannot store duplicate worksheet names in a workbook.

Validation if name already exists or no name stored or if it is a number as its name.

Sub AddUniqueSheet()
 Dim ws As Worksheet
 Dim newSheetName As String

 newSheetName = "MySheet" 'Substitute your name here
 For Each ws In Worksheets
 If ws.Name = newSheetName Or newSheetName = "" Or _
 IsNumeric(newSheetName) Then
 MsgBox "Sheet '" & newSheetName & "' already exists _
 or name is invalid", vbInformation
 Exit Sub
 End If
 Next
 Sheets.Add Type:="Worksheet"
 With ActiveSheet 'Move to last position
 .Move After:=Worksheets(Worksheets.Count)
 .Name = newSheetName
 End With
End Sub

Adds new worksheet with the month and year as its name and sets the range("A1:A5") from Sheet1 to
new worksheet.

This can only be executed once for the same period due to excel not allowing duplicate worksheets
names.

Make sure you have a worksheet called ‘Sheet1’ and that its range ‘A1:A5’ has some content which to
copy across.

Sub AddSheet()
 Dim wSht As Worksheet
 Dim shtName As String

 shtName = Format(Now, "mmmm_yyyy") 'current month & year
 For Each wSht In Worksheets
 If wSht.Name = shtName Then
 MsgBox "Sheet already exists...Make necessary corrections _
 and try again."
 Exit Sub
 End If
 Next wSht
 Sheets.Add.Name = shtName
 Sheets(shtName).Move After:=Sheets(Sheets.Count)
 Sheets("Sheet1").Range("A1:A5").Copy _
 Sheets(shtName).Range("C1") 'range("C1") = starting point
End Sub

Copies the contents of the first positioned worksheet to a new worksheet (‘NewSheet’) validating if
sheet exists first.

Sub CopySheet()
 Dim wSht As Worksheet
 Dim shtName As String

 Dim shtName As String

 shtName = "NewSheet" 'change the name if required
 For Each wSht In Worksheets
 If wSht.Name = shtName Then
 MsgBox "Sheet already exists...Make necessary " & _
 "corrections and try again."
 Exit Sub
 End If

 Next wSht
 Sheets(1).Copy Before:=Sheets(1)
 Sheets(1).Name = shtName
 Sheets(shtName).Move After:=Sheets(Sheets.Count)
End Sub

Index number for a sheet can be used instead of the actual string name. This is useful if name is not
known or you want to control the order position of the sheet in question.

Back to top

InputBox and Message Box examples

Sub CalcPay()
 On Error GoTo HandleError

 Dim hours
 Dim hourlyPay
 Dim payPerWeek

 hours = InputBox("Please enter number of hours worked", "Hours Worked")
 hourlyPay = InputBox("Please enter hourly pay", "Pay Rate")
 payPerWeek = CCur(hours * hourlyPay)
 MsgBox "Pay is: " & Format(payPerWeek, "£##,##0.00"), , "Total Pay"
HandleError: 'any error - gracefully end
End Sub

No communication with Excel is required for this example and can be started from within the VB
Editor.

To split a single line of execution into multiple lines, use the underscore character (_).

What impact will this have if you use the integer function (Int()) instead of the currency functions
(CCur)?

Other functions: CDbl (double) and CSng (single).

Date Entry & Formula with InputBox which prompts the user for the number of times to iterate, creates
heading and calculates gross values with final totals at the end of the columns.

Sub ProcessTransactions()
 ActiveCell.Value = "NET"
 ActiveCell.Offset(0, 1).Value =
 "GROSS" ActiveCell.Offset(1, 0).Select

 y = InputBox("How Many transactions?", , 5)
 For counter = 1 To y
 x = InputBox("Enter Net")
 ActiveCell.Value = x
 ActiveCell.NumberFormat = "#,##0.00"
 ActiveCell.Offset(0, 1).FormulaR1C1 = "=RC[-1]*1.175"
 ActiveCell.Offset(0, 1).NumberFormat = "£ 0.00"
 ActiveCell.Offset(1, 0).Select
 Next counter

 ActiveCell.FormulaR1C1 = "=SUM(R[-" & y & "]C:R[-1]C)"
 'Variable y concatenated to formula (Sum)
 ActiveCell.Offset(0, 1).FormulaR1C1 = "=SUM(R[-" & y & "]C:R[-1]C)"
 ActiveCell.Range("A1:B1").Select
 Selection.Font.Bold = True

 With Selection.Borders(xlEdgeTop)
 .LineStyle = xlContinuous
 .Weight = xlThin
 .ColorIndex = xlAutomatic
 End With

 With Selection.Borders(xlEdgeBottom)
 .LineStyle = xlDouble
 .Weight = xlThick
 .ColorIndex = xlAutomatic
 End With
End Sub

The above is A For Next Example with InputBox Function, With Block and Offset method

Back to top

Printing examples

To control orientation and defined name range - 1 copy.

Sub PrintReport1()
 Sheets(1).PageSetup.Orientation = xlLandscape

 Sheets(1).PageSetup.Orientation = xlLandscape
 Range("Report").PrintOut Copies:=1
End Sub

To print several ranges on the same sheet -1 copy

Sub PrintReport2()
 Range("HVIII_3A2").PrintOut
 Range("BVIII_3").PrintOut
 Range("BVIII_4A").PrintOut
 Range("HVIII_4A2").PrintOut
 Range("BVIII_5A").PrintOut
 Range("BVIII_5B2").PrintOut
 Range("HVIII_5A2").PrintOut
 Range("HVIII_5B2").PrintOut
End Sub

To print a defined area, centre horizontally, with 2 rows as titles, in portrait orientation and fitted to
page wide and tall - 1 copy.

Sub PrintReport3()
 With Worksheets("Sheet1")
 .PageSetup
 .CenterHorizontally = True
 .PrintArea = "A3:F15"
 .PrintTitleRows = ("A1:A2")
 .Orientation = xlPortrait
 .FitToPagesWide = 1
 .FitToPagesTall = 1
 End With
 Worksheets("Sheet1").PrintOut
End Sub

To print preview, control the font and to pull second line of header (“A1”) from first worksheet.

Sub PrintHeaderPreview()
 ActiveSheet.PageSetup.CenterHeader = "&""Arial,Bold Italic""&14 _
 My Report" & Chr(13) & Sheets(1).Range("A1")
 ActiveWindow.SelectedSheets.PrintPreview
End Sub

"&""Arial,Bold Italic""&14 = fields used in page set-up of header/footer

Back to top

General application commands

Using the shortcut approach to assign a cell with an Excel function.

Sub GetSum()
 [A1].Value = Application.Sum([E1:E15])
End Sub

Can use an absolute reference: Range("A1") = Application.Sum([E1:E15])

Other functions - AVERAGE, MIN, MAX, COUNT, COUNTBLANK, COUNTA, VLOOUKP etc…

Enables the use of events if disabled (worksheet/workbook).

Sub EnableEventReset()
 Application.EnableEvents = True
End Sub

To display the full path and filename of the current workbook (Function)

Sub FormatHeader()
 With ThisWorkbook
 .Worksheets("MySheet").PageSetup.LeftHeader = .FullName
 End With
End Sub

 Capture object (chart) into as separate file
Sub ExportToJPG()
 ActiveChart.Export FileName:="c:\Mychart.jpeg", FilterName:="JPG"
End Sub

 Make sure chart is selected first
 Add a custom button to the ‘Chart’ quick access toolbar.

Assign and un-assign a function key to a procedure

Sub Set_FKeys()
 Application.OnKey "{F3}", "MySub"
End Sub

Sub Restore_FKeys()
 Application.OnKey "{F3}"
End Sub

Can be assigned to the event of when a workbook opens a closes.

Cursors

Sub ShowHourGlass()
 Application.Cursor = xlWait
End Sub

Sub ResetCursor()
 Application.Cursor = xlNormal
End Sub

Can also be xlNorthwestArrow and xlIBeam.

Some more to finish off with...

With ActiveWindow
 .DisplayGridlines = Not .DisplayGridlines
 .DisplayHeadings = Not .DisplayHeadings
 .DisplayHorizontalScrollBar = Not .DisplayHorizontalScrollBar
 .DisplayVerticalScrollBar = Not .DisplayVerticalScrollBar
 .DisplayWorkbookTabs = Not .DisplayWorkbookTabs
End With

With ActiveWindow
 .DisplayFormulaBar = Not .DisplayFormulaBar
 .DisplayStatusBar = Not .DisplayStatusBar
End With

Selection.Clear 'clears all attributes
Selection.ClearFormats 'clears only formats
Selection.ClearContents 'clears only content (DEL)

Active cell moves I row, 1 column in for selection

Sub ActiveCellInRange()
 Range("A11:D15").Select
 Selection.Offset(1, 1).Activate
End Sub

Back to top

Ranges - various examples

To add a range name for known range

Sub AddName1()
 ActiveSheet.Names.Add Name:="MyRange1", RefersTo:="=A1:B10"
End Sub

To add a range name based on a selection.

Sub AddName2()
 ActiveSheet.Names.Add Name:="MyRange2", RefersTo:="=" & _
 Selection.Address()
End Sub

To add a range name based on a selection using a variable.

Sub AddName3()
 Dim rng As String

 rng = Selection.Address
 ActiveSheet.Names.Add Name:="MyRange3", RefersTo:="=" & rng
End Sub

To add a range name based on current selection.

Sub AddName4()
 Selection.Name = "MyRange4"
End Sub

Deletes all named ranges

Sub DeleteAllRanges()
 Dim rName As Name

 For Each rName In ActiveWorkbook.Names
 rName.Delete
 Next rName
End Sub

Scrolls the spreadsheet to where the active cell is.

Sub ScreeTopLeft()
 ActiveCell.Select
 With ActiveWindow
 .ScrollColumn = ActiveCell.Column
 .ScrollRow = ActiveCell.Row
 End With
End Sub

Function to return a range object.

Function LastCell(ws As Worksheet) As Range
 Dim LastRow As Long, LastCol As Long
 'Error-handling is here in case there is not any
 'data in the worksheet
 On Error Resume Next

 With ws
 'Find the last row
 LastRow = .Cells.Find(What:="*", _
 SearchDirection:=xlPrevious, _
 SearchOrder:=xlByRows).Row
 'Find the last column
 LastCol = .Cells.Find(What:="*", _
 SearchDirection:=xlPrevious, _
 SearchOrder:=xlByColumns).Column
 End With
 'Finally, initialize a Range object variable for
 'the last populated row.

 Set LastCell = ws.Cells(LastRow, LastCol)
End Function

Call procedure for above (not for a worksheet function call)

Sub ShowLastCell()
 MsgBox LastCell(Sheet1).Address(False, False)
End Sub

Try MsgBox LastCell(Sheet1).Row

Try MsgBox LastCell(Sheet1).Column

Check to see if active cell is in range A1:A10.

Sub CheckRange()
 Dim rng As Range

 Set rng = Application.Intersect(ActiveCell, Range("A1:A10"))
 If rng Is Nothing Then
 MsgBox "It is not in the range.", vbInformation
 Else
 MsgBox "It's in the range called 'A1:A10'!", vbCritical
 End If
End Sub

Current selected rows or cells in a column.

Sub MyCount()
 Dim myCount As Long
 myCount = Selection.Rows.Count
 MsgBox myCount
End Sub

Number of worksheets in a workbook.

Sub MySheetCount()
 Dim myCount As Long
 myCount = Application.Sheets.Count
 MsgBox myCount
End Sub

Copy and paste a range (A1:A3) to active cell in same worksheet.

Sub CopyRange1()
 Range("A1:A3").Copy Destination:=ActiveCell
End Sub

Copy and paste a range (A1:A3) to active cell from ‘Sheet3’.

Sub CopyRange2()
 Sheets("sheet3").Range("A1:A3").Copy Destination:=ActiveCell
End Sub

Show current active cell position (address) – co-ordinate

Sub MyPosition()
 Dim myRpw, myCol
 myRow = ActiveCell.Row
 myCol = ActiveCell.Column
 MsgBox myRow & "," & myCol
End Sub

Specific Range references

Range(“A1”) Cell A1

Range(“A1:E10”) Range A1 to E10

[A1] Cell A1

[A1:E10] Range A1 to E10

ActiveCell.Range(“A2”) The cell below the active cell

Cell(1) Cell A1

Range(Cells(1,1),Cell(10,5)) Range A1 to E10

Range(“A:A”) Column A

[A:A] Column A

Range(“5:5”) Row 5

[5:5] Row 5

Sheets(“Sheet1”) Sheet called Sheet1

Worksheets(“Sheet1”) Worksheets called Sheet1

Sheets(2) Second worksheet in workbook

Worksheets(3) Third worksheet in workbook

Worksheets(“Sheet1”).Range(“A1”) Cell A1 in Sheet1

[Sheet1].[A1] Cell A1 in Sheet1

ActiveSheet.Next The sheet after the active sheet

Workbook(“Test”) Workbook file called Test.xls

Back to top

Navigation in a worksheet using Offset

Sub MoveDown()
 ActiveCell.Offset(1, 0).Select
End Sub

Sub MoveUp()
 ActiveCell.Offset(-1, 0).Select
End Sub

Sub MoveRight()
 ActiveCell.Offset(0, 1).Select
End Sub

Sub DownLeft()
 ActiveCell.Offset(0, -1).Select
End Sub

Sub LastCellInRange()
 Range(ActiveCell.Address).End(xlDown).Select
 Range(ActiveCell.Address).End(xlToRight).Select
End Sub

Back to top

Read Window documents

Calling sub procedure passing a string argument.

Use the Private keyword, which is local and invisible via Excel application.

Private Sub ReadFiles(Path As String)
 Dim FileName As String

 'Initialize a string variable for the first file
 'in a specified directory. This sets the Dir()
 'function to that directory.

 Select Case Right(Path, 1)
 Case "\": FileName = Dir(Path)
 Case Else: FileName = Dir(Path & "\")
 End Select

 'Loop through the specified directory until the
 'Dir() function returns an empty string, indicating
 'there are not any more contents to be evaluated.

 Do While Len(FileName) > 0
 'Print each file name to the immediate (debug) window
 Debug.Print FileName
 'Re-initialize the string variable to the next
 'file in the directory
 FileName = Dir()
 Loop
End Sub

Call the above in a separate procedure

Sub ListFiles()
 ReadFiles "c:\winnt"
End Sub

Back to top

General function examples

Displays the period quarter.

Function Qtr(dtOrig As Date) As String
 Dim qtrNo As Integer
 Dim sQtr As String

 Select Case Format(dtOrig, "q")
 Case Is = 1
 sQtr = "1st Qtr"
 Case Is = 2
 sQtr = "2nd Qtr"
 Case Is = 3
 sQtr = "3rd Qtr"
 Case Is = 4
 sQtr = "4th Qtr"
 Case Else 'assume 1
 sQtr = "1st Qtr"
 End Select
 Qtr = sQtr
End Function

 In a worksheet, enter the formula: =Qtr(“01/01/2010”)

 Show full path and file name in a worksheet.
Function FileName()
 FileName = Application.Caller.Parent.Parent.FullName
End Function

 In a worksheet, enter the formula: =FileName()

Return the difference in percentage terms of two values (increase/decrease).

Function PChange(OrigVal As Double, NewVal As Double) As Single
 If OrigVal = 0 Then
 PChange = ""
 Else
 PChange = ((NewVal - OrigVal) / Abs(OrigVal))
 End If
End Function

In a worksheet, enter the formula: =PChange(100,150) = 50%
(0.5 for unformatted)

Gross Price (inc)

Function TotalValue(Qty As Double, UPrice As Double) As Double
 TotalValue = Format((Qty * UPrice * 1.175), "£#,##0.00")
End Function

 Age (simple)
Function Age2(DOB)
 Age2 = Int((Now() - DOB) / 365.25) & " Years old"
End Function

 Age (alternative)
Function Age(DOB)
 If Month(DOB) > Month(Now) Then
 Age = Year(Now) - Year(DOB) - 1
 ElseIf Month(DOB) < Month(Now) Then
 Age = Year(Now) - Year(DOB)
 ElseIf Day(DOB) <= Day(Now) Then
 Age = Year(Now) - Year(DOB)
 Else
 Age = Year(Now) - Year(DOB) - 1
 End If
End Function

Returns the cell in range which is underline (single style) or the word “unknown”

Public Function GetUnderlinedCell(CellRef As Range) As String
 Dim c As Integer
 Dim sResult As String

 'Force Running when Recalculating Since Formatting Only
 Application.Volatile True

 'Assume Unknown
 sResult = "Unknown"

 'Loop Thru Each Column and Test for Underline
 For c = 1 To CellRef.Columns.Count
 If CellRef.Columns(c).Font.Underline = xlUnderlineStyleSingle Then
 sResult = CellRef.Columns(c).Value
 End If
 Next c

 'Return Results
 GetUnderlinedCell = sResult
End Function

Visual Basic Functions - Choose (Lookup).

Sub LookupExample()
 Dim strMonth As String
 Dim bytCurMonth As Byte

 bytCurMonth = Month(Date)
 strMonth = Choose(bytCurMonth, "Jan", "Feb", "Mar", "Apr", _
 "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec")
 MsgBox "Current month is " & strMonth
End Sub

Also, take a look at the Switch() function using VBA Help.

Back to top

Creates a new word document

Creates a new word document and populates the contents of cell “B1” along with some basic
formatting.

You need create a reference to the Word Object Library (8.0/9.0/10.0/11.0) in the VB Editor

Sub CreateMSWordDoc()
 On Error GoTo errorHandler

 Dim wdApp As Word.Application
 Dim myDoc As Word.Document
 Dim mywdRange As Word.Range

 Set wdApp = New Word.Application

 With wdApp
 .Visible = True
 .WindowState = wdWindowStateMaximize
 End With

 Set myDoc = wdApp.Documents.Add
 Set mywdRange = myDoc.Words(1) 'index range?

 With mywdRange
 .Text = Range("B1") & vbNewLine & "This above text is _
 stored in cell 'B1'."
 .Font.Name = "Comic Sans MS"
 .Font.Size = 12
 .Font.ColorIndex = wdGreen
 .Bold = True
 End With

errorHandler:
 Set wdApp = Nothing
 Set myDoc = Nothing
 Set mywdRange = Nothing
End Sub

Back to top

Creates an Outlook message

Creates an Outlook message (new) populating the ‘To’, ‘subject’ and ‘Body’ properties with the
content stored in cell “A1”.

You need create a reference to the Outlook Object Library
(8.0/9.0/10.0/11.0) in the VB Editor

Sub SendMessage()
 Dim objOL As New Outlook.Application
 Dim objMail As MailItem

 Set objOL = New Outlook.Application
 Set objMail = objOL.CreateItem(olMailItem)

 With objMail
 .To = "name@domain.com"
 .Subject = "Excel VBA to Outlook Message Example"
 .Body = "This is an automated message from Excel. " & _
 vbNewLine & "The content of cell reference 'A1' is: " & _
 Range("A1").Value
 .Display
 End With

 Set objMail = Nothing
 Set objOL = Nothing
End Sub

Back to top

Want to teach yourself Access? Free online guide at About Access Databases

http://www.about-access-databases.com

Home | Terms of Use | Privacy Policy | Contact

© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

Back to Excel Homepage Excel VBA - Reference Guide

VBA HOME PAGE

Menu

Recording macros

Looking at the code

Ways of running macros

Where macros are stored

Reasons to write macros

Writing macros

Procedure types

Visual Basic editor (VBE)

Rules & conventions

Excel objects

Range/Selection objects

Object hierarchy

Object browser

Chart objects

Pivot Table objects

Formulas

Visual Basic Functions

Creating Add-Ins

Variables & constants

Object variables

Arrays

Collections

Message Box

VBA Input Box

Excel Input Box

Making decisions (If)

Making decisions (Case)

Looping (Do...Loop)

Looping (For...Loop)

With...End With blocks

User defined functions

Event handling

Error handling

Debugging

Creating User Forms

DAO/ADO Objects

Input/Output Files

Other links

Example code snippets

Userform input example

User Form - Input Example
This article steps you through a simple user form input which adds record information into a
worksheet.

The form is a basic design with the emphasis on how to build the form and code it to respond to the
functionality we are after.

Here's what we are are going to achieve:

1. A user form will load from a button on a worksheet.

2. Users must complete Firstname, Surname and choose a Department (which will
 be coded as mandatory fields).

3. When choosing the Add button it will append to the worksheet (called Data) and
 always find the next available blank row to populate.

4. The form will remain open clearing the values ready for the next record input until
 the Close button is clicked.

5. A private macro (from the standard module) calls the user form (via its worksheet
 button).

There are properties and code for the form, two and buttons and drop-down combo box which we will
need to add the form's private module.

The order in creating such a feature should loosely follow these steps:

1. Create the user form canvas.

2. Add the controls to the form and set various basic properties (including names).

3. Add code to the form's controls

4. Code the interaction to the worksheet (& prepare the worksheet layout too).

5. Add a macro to call the form and attach to a button on the worksheet.

6. Test the process!

Create the user form canvas

Add a new blank user form the VBA Project.

In the VBE Editor, select Insert, UserForm.

Add the controls to the form

You need to add the following controls:

1. Two Command Buttons

2. Three Labels

3. Two TextBoxes

4. One ComboBox

5. One CheckBox

Place the controls roughly where you would like to use these control and resize the form.

Don't worry about the exact position for now:

http://www.excel-spreadsheet.com
http://www.excel-spreadsheet.com/vba/vba.htm
http://www.excel-spreadsheet.com/vba/recordingmacros.htm
http://www.excel-spreadsheet.com/vba/vbacode.htm
http://www.excel-spreadsheet.com/vba/runningmacros.htm
http://www.excel-spreadsheet.com/vba/storingmacros.htm
http://www.excel-spreadsheet.com/vba/macroreasons.htm
http://www.excel-spreadsheet.com/vba/writingmacros.htm
http://www.excel-spreadsheet.com/vba/proceduretypes.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm
http://www.excel-spreadsheet.com/vba/rulesconventions.htm
http://www.excel-spreadsheet.com/vba/excelobjects.htm
http://www.excel-spreadsheet.com/vba/rangeselectionobjects.htm
http://www.excel-spreadsheet.com/vba/objecthierarchy.htm
http://www.excel-spreadsheet.com/vba/objectbrowser.htm
http://www.excel-spreadsheet.com/vba/chartobjects.htm
http://www.excel-spreadsheet.com/vba/pivottableobjects.htm
http://www.excel-spreadsheet.com/vba/formulas.htm
http://www.excel-spreadsheet.com/vba/visualbasicfunctions.htm
http://www.excel-spreadsheet.com/vba/creatingaddins.htm
http://www.excel-spreadsheet.com/vba/variablesconstants.htm
http://www.excel-spreadsheet.com/vba/objectvariables.htm
http://www.excel-spreadsheet.com/vba/arrays.htm
http://www.excel-spreadsheet.com/vba/collections.htm
http://www.excel-spreadsheet.com/vba/msgbox.htm
http://www.excel-spreadsheet.com/vba/vbainputbox.htm
http://www.excel-spreadsheet.com/vba/excelinputbox.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_if.htm
http://www.excel-spreadsheet.com/vba/makingdecisions_case.htm
http://www.excel-spreadsheet.com/vba/looping_doloop.htm
http://www.excel-spreadsheet.com/vba/looping_forloop.htm
http://www.excel-spreadsheet.com/vba/withendwith.htm
http://www.excel-spreadsheet.com/vba/userdefinedfunctions.htm
http://www.excel-spreadsheet.com/vba/eventhandling.htm
http://www.excel-spreadsheet.com/vba/errorhandling.htm
http://www.excel-spreadsheet.com/vba/debugging.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/dao_ado.htm
http://www.excel-spreadsheet.com/vba/inputoutput.htm
http://www.excel-spreadsheet.com/vba/example_code.htm
http://www.excel-spreadsheet.com/vba/userforms.htm
http://www.excel-spreadsheet.com/vba/vbaeditor.htm

Setting the properties to each control

The following controls can be set using the Properties Window (F4 function key).

First single click to select the control (so it has the focus) and then from the properties changes their
settings.

Here's the table for the above controls (and user form itself):

Control Property Value
CommandButton1 Name cmdAdd

 Caption Add

 Default True

 Height 20

 Width 60

 Left 132

 Top 114

 TabIndex 4

CommandButton2 Name cmdClose

 Caption Close

 Cancel True

 Height 20

 Width 60

 Left 198

 Top 114

 TabIndex 5

Label1 Caption Firstname:

 Height 18

 Left 12

 Top 12

 Width 72

Label2 Caption Surname:

 Height 18

 Left 12

 Top 36

 Width 72

Label3 Caption Department:

 Height 18

 Left 12

 Top 60

 Width 72

TextBox1 Name txtFName

 Height 18

 Left 84

 Top 12

 Width 108

 TabIndex 0

TextBox2 Name txtSName

 Height 18

 Left 84

 Top 36

 Width 108

 TabIndex 1

ComboBox1 Name cboDept

 Height 18

 Left 84

 Top 60

 Width 108

 TabIndex 2

CheckBox1 Name chkManager

 Caption Manager

 Height 18

 Left 84

 Top 84

 Width 108

 TabIndex 3

UserForm1 Name frmDataInput

 Caption Data Input Example

 Height 162.75

 Width 267

You can change some of these properties to taste - this is what I'm using in this example.

Adding code to controls

The next step is start coding the form and it's important that you have at least named the controls you
wish code as it will generate its own event signature.

Starting with the Close button which will simply close and end the user form.

Private Sub cmdClose_Click()
 'close the form (itself)
 Unload Me
End Sub

Unload Me refers to itself which is quick and easy. To explicitly close a user form, you refer to actual
name of the form. Therefore, using Unload frmDataInput will be the same outcome.

Next, lets add code (run time) to populate the ComboBox control (cboDept) which will dynamically
create four fixed options to choose from.

Private Sub UserForm_Initialize()
 Me.cboDept.AddItem "Finance"
 Me.cboDept.AddItem "Sales"
 Me.cboDept.AddItem "Markerting"
 Me.cboDept.AddItem "Human Resources"

 Me.txtFName.SetFocus 'position the cursor in this control

End Sub

As the form loads (initialises), it adds four items to the cboDept control and then positions the cursor
in txtFName ready for the user to start keying in data.

You could of course set this in the properties (RowSource) for cboDept instead which refers to range
of cells in a worksheet.

The final piece of code is attached the cmdAdd button control so when users click this event, it will
add the details to the worksheet (Data).

Private Sub cmdAdd_Click()
 Dim i As Integer

 'position cursor in the correct cell A2.
 Range("A2").Select
 i = 1 'set as the first ID

 'validate first three controls have been entered...
 If Me.txtFName.Text = Empty Then 'Firstname
 MsgBox "Please enter firstname.", vbExclamation
 Me.txtFName.SetFocus 'position cursor to try again
 Exit Sub 'terminate here - why continue?
 End If

 If Me.txtSName.Text = Empty Then 'Surname
 MsgBox "Please enter surname.", vbExclamation
 Me.txtSName.SetFocus 'position cursor to try again
 Exit Sub 'terminate here - why continue?
 End If

http://www.excel-spreadsheet.com/vba/eventhandling.htm

 If Me.cboDept.Text = Empty Then 'Department
 MsgBox "Please choose a department.", vbExclamation
 Me.cboDept.SetFocus 'position cursor to try again
 Exit Sub 'terminate here - why continue?
 End If

 'if all the above are false (OK) then carry on.
 'check to see the next available blank row start at cell A2...
 Do Until ActiveCell.Value = Empty
 ActiveCell.Offset(1, 0).Select 'move down 1 row
 i = i + 1 'keep a count of the ID for later use
 Loop

 'Populate the new data values into the 'Data' worksheet.
 ActiveCell.Value = i 'Next ID number
 ActiveCell.Offset(0, 1).Value = Me.txtFName.Text 'set col B
 ActiveCell.Offset(0, 2).Value = Me.txtSName.Text 'set col C
 ActiveCell.Offset(0, 3).Value = Me.cboDept.Text 'set col D

 'Is this person the manager?
 If Me.chkManager.Value = True Then 'yes
 ActiveCell.Offset(0, 4).Value = "Yes" 'Col E
 Else
 ActiveCell.Offset(0, 4).Value = "No" 'Col E
 End If

 'Clear down the values ready for the next record entry...
 Me.txtFName.Text = Empty
 Me.txtSName.Text = Empty
 Me.cboDept.Text = Empty
 Me.chkManager.Value = False

 Me.txtFName.SetFocus 'positions the cursor for next record entry

End Sub

The above should be easy to follow (look at the comments).

We don't have to tell the system which worksheet to be in as it is going to be called from a control
(worksheet button) where the data is held in the same worksheet and then hide this procedure from
the Macros dialog box stopping any other way for this form to be called.

Create a worksheet button

In the worksheet in Excel, click the Developer tab from the Ribbon Bar and the Insert icon to drop-
down a list of controls.

Choose the Button control icon from the Forms (section) and draw a button where you wish to place it
(top row, frozen pane area).

In the assigning macro pop-up dialog box, click the New... button to create a module and signature
and add the following code:

Sub Button1_Click()
 'load the form
 frmDataInput.Show
End Sub

Add the keyword Private before the Sub keyword to hide this from the macro dialog box.

TEST IT OUT!

This is how the form looks as it is called from the worksheet button control from the Data worksheet.

Want to teach yourself Access? Free online guide at About Access Databases

Home | Terms of Use | Privacy Policy | Contact
© copyright 2010 TP Development & Consultancy Ltd, All Rights Reserved.

All trademarks are copyrighted by their respective owners. Please read our terms of use and privacy policy.

http://www.about-access-databases.com
http://www.excel-spreadsheet.com/
http://www.excel-spreadsheet.com/vba/termsofuse.html
http://www.excel-spreadsheet.com/vba/privacypolicy.html
http://www.excel-spreadsheet.com/vba/contact.html
http://www.trainingpartnership.biz

	Welcome to Excel VBA Programming
	www_excel-spreadsheet_com_vba_vbacode.pdf
	OffSet

	www_excel-spreadsheet_com_vba_runningmacros.pdf
	www_excel-spreadsheet_com_vba_storingmacros.pdf
	www_excel-spreadsheet_com_vba_macroreasons.pdf
	www_excel-spreadsheet_com_vba_writingmacros.pdf
	www_excel-spreadsheet_com_vba_proceduretypes.pdf
	www_excel-spreadsheet_com_vba_vbaeditor.pdf
	www_excel-spreadsheet_com_vba_rulesconventions.pdf
	www_excel-spreadsheet_com_vba_excelobjects.pdf
	www_excel-spreadsheet_com_vba_objecthierarchy.pdf

	www_excel-spreadsheet_com_vba_rangeselectionobjects.pdf
	www_excel-spreadsheet_com_vba_objectbrowser.pdf
	www_excel-spreadsheet_com_vba_chartobjects.pdf
	www_excel-spreadsheet_com_vba_pivottableobjects.pdf
	www_excel-spreadsheet_com_vba_formulas.pdf
	www_excel-spreadsheet_com_vba_visualbasicfunctions.pdf
	www_excel-spreadsheet_com_vba_creatingaddins.pdf
	www_excel-spreadsheet_com_vba_variablesconstants.pdf
	www_excel-spreadsheet_com_vba_objectvariables.pdf
	www_excel-spreadsheet_com_vba_arrays.pdf
	www_excel-spreadsheet_com_vba_collections.pdf
	www_excel-spreadsheet_com_vba_msgbox.pdf
	www_excel-spreadsheet_com_vba_vbainputbox.pdf
	www_excel-spreadsheet_com_vba_excelinputbox.pdf
	www_excel-spreadsheet_com_vba_makingdecisions_if.pdf
	www_excel-spreadsheet_com_vba_makingdecisions_case.pdf
	www_excel-spreadsheet_com_vba_looping_doloop.pdf
	www_excel-spreadsheet_com_vba_looping_forloop.pdf
	www_excel-spreadsheet_com_vba_withendwith.pdf
	www_excel-spreadsheet_com_vba_userdefinedfunctions.pdf
	www_excel-spreadsheet_com_vba_eventhandling.pdf
	www_excel-spreadsheet_com_vba_errorhandling.pdf
	www_excel-spreadsheet_com_vba_debugging.pdf
	www_excel-spreadsheet_com_vba_userforms.pdf
	www_excel-spreadsheet_com_vba_dao_ado.pdf
	www_excel-spreadsheet_com_vba_inputoutput.pdf
	www_excel-spreadsheet_com_vba_example_code.pdf
	www_excel-spreadsheet_com_vba_userforminputexample.pdf

