
Table of Contents

Chapter 1...1
Introduction ..2

The Macro Recorder..2
The Visual Basic Editor ..4

The VBAProject Window ..5
The Properties Window (Sheet1) ...6
The Properties Window (Module1) ..7
The Code Window ..8
Modifying Macros ..9
Creating Macros with VBA for Excel ..12
Testing Macros ...14

Chapter 2...16
Introduction...17
Variable Data Types..17

Why we use variables..19
Declaring Variables...20
Excel VBA Variables Lifetime & Scope...22

Procedure-Level Variables..23
Module-Level Variables..23
Project-Level, Workbook Level, or Public Module-Level..23

Modules and Procedures..23
Modules and Procedures and Their Scope..23
Calling Sub Procedures and Function Procedures...24
Passing Argument by Reference or by Value ...25

Chapter 3...27
Message Box...28
InputBox..28
Application.InputBox..30
Chapter 4...33
Why Loops?...34
Loop Structures...34

For ... Next ..34
For ... Next Loop With Step..35
Do While ... Loop..36
Do Until ... Loop ...36
Do ... Loop While ...36
Do ... Loop Until..37

Conditional Statements..37
If..Then...End If...37
If..Then...End If (multiple tiers)..37
If..Then...And...End If...38
If..Then...Or...End If..38
If..Then...Else...End If...38
If..Then..ElseIf...End If..38

Select Case...39
Chapter 5...40
Introduction...41
Collections ..42

Referencing Items in A Collection..42
Workbook and Worksheet Object...42
Range Object and Cells Property..44

Referencing Ranges in Other Sheets...47
Working with cells ...48

Offset property...48
Using the CurrentRegion Property to Quickly Select a Data Range.......................................49
Using the SpecialCells Method to Select Specific Cells...50

Methods and Properties...51
Chapter 6...53
Introduction ..54
The On Error Statement...54
Debug.Print..56
Break Points...57
Stepping Through Code...57
Locals Window..58
Watch Window..58
Chapter 7...60
Beginning VBA: Events..61
Where To Put Event Code...61
Events..61

Workbook_Open...61
Worksheet_Change..61
Worksheet_SelectionChange...61

Automatically Run Excel Macros Upon Opening Excel Workbook/Files. Auto Run Excel VBA
Macro Code...62

Auto Run Excel Macros Upon Open. ...62
 Workbook_Open Event..62
Auto Run Excel Macros Upon Data Entry. ..64
Worksheet_Change Event...64
Monitor More Than 1 Cell (Target)..65
Example ..66

Chapter 8...67
Creating an UserForm...68

The Course Booking Form..68
Building the Form..70
Adding the Code: 1 Initialising the Form..70
Adding the Code: 2 Making the Buttons Work...72
Adding the Code 3: Manipulating the Form..75
Opening the Form..76

Chapter 1

Macros

Introduction

Macros are a set of actions that u can record. Macros can speed up any common
editing sequence you may execute in an Excel spreadsheet. To create macros you
should know VBA. VBA is "Visual Basic for Application". It is a programming
language that allows users to program macros to accomplish complex tasks within
an application. With VBA for Excel (Visual Basic for Application) you can develop
small procedures (macros) that will make your professional life easier and allow
you to do more in less time. But VBA is also a very powerful programming
language with which you can develop within Excel real programs that will
accomplish in a few minutes very complex tasks. With VBA for Excel you can
develop a program that does EXACTLY what you need and nothing else.

Anybody can develop simple macros (VBA procedures) and with time and interest
you can get to a point where you can develop very complex procedures to
accomplish very sophisticated tasks

The best way to learn macros is to record it and then view the code.

The Macro Recorder

With the Excel macro recorder you cannot develop a macro that will damage Excel
or your computer. The bolder you are in your trials the more you will learn.

To record macro follow the instructions step by step.

First make sure that the macros are nor deactivated in Excel. Go to the menu bar
"Tools/Macro/Security". Check "Medium". Close Excel without saving the active
workbook and re-open it. From now on every time you open a spreadsheet that
contains macros you will be asked to "Enable" or "Disable" the macros. If you
choose "Disable" you can open the spreadsheet but the macros won't work. If you
don't know who is sending the spreadsheet select "Disable".

1- Open Excel.

2- On the menu bar go to "Tools/Macro/Record New macro"

In the following window you see that a macro called "Macro1" will be created. You
can change the name if you want. In "Store macro in:" select "This Workbook".
 When you click on "OK" Excel will record a macro named as you specified and
save it in the workbook that you are working in. The macro can run in any
workbook but only if this workbook is open. The macro will be saved with this
workbook when you save and close it. It also means that Macro1 will die when you
delete the workbook. When you go to the Visual Basic Editor you will also see that
"Macro1" is stored in "Module1".

3- Click on "OK". A small icon might appear in the middle of the screen, forget
about it.

4- Let's now record a macro with the Excel macro recorder:

Select cell A1 and enter 34
Select cell A2 and enter 55
Select cell A3 and enter the formula =A1 + A2
Select cell A2 and change the color of the font to red
Select cell A1 and change the background color to blue
Select cell A3 and change the size of the font to 24

5- Go to the menu bar "Tools/Macro/Stop Recording"

The macro has been recorded by the Excel macro recorder now let's test it

6- Go to Sheet2

7- Go to the menu bar "Tools/Macro/Macros..." select "Macro1" in the list and click
on "Run". The macro is executed.

8- Save your workbook as "VBATest1" .

You have recorded your first macro with the Excel macro recorder and used it,
Now you will be able to look at the macro that you have recorded and then create
your own macros.

The Visual Basic Editor

You develop VBA procedures (macros) in the Visual Basic Editor (VBE). It is a
marvelous user friendly development environment. The VBA procedures developed
in the VBE become part of the workbook in which they are developed and when
the workbook is saved the VBA components (macros, modules, userforms) are
saved at the same time.

The VBE is integrated into Excel and you can open it from the Excel Menu Bar
"Tools/Macro/Visual Basic Editor" or click on the icon on the Visual Basic ToolBar

in Excel. From the VBE you can go to Excel by clicking on the Excel button at

the top/left of your screen . So if the VBA toolbar is visible in Excel

(View/Toolbar/VBA) you can navigate from VBE to Excel using the two buttons

.

Now open the workbook that you have created "VBATest1.xls" and open the VBE.

The Visual Basic Editor

When you work with the VBE, there is always 3 windows that are open. The
VBAProject window (1), the Property window (2) and the Code window (3).

On the menu bar of the VBE choose "View" and select "Project Explorer" then go
back to the menu bar and select "Properties Window". You don't call the Procedure
window from the menu bar, it is there and contains the VBA code for the element
that you have chosen in the "VBAProject" window by double clicking on it (sheet,
module, form).

You can resize the windows by placing the cursor over the borders (*) and drag
them right, left, up or down.

The VBAProject Window

The VBAProject window shows you all the workbooks that are open. You can add
forms and modules to any workbook by right clicking anywhere within one of the
workbook and select "Insert" in the contextual menu.

On your screen you might not see the "PERSONAL.XLS" workbook. IF you click on
the + sign besides "VBAProject(VBATest1,xls) you see that your "VBATest1.xls"
has three sheets and one module plus the "ThisWorkbook" object. If you double
click on any of the elements the code window will show you the code developed
within this element. The properties window will show you the properties of the
element that you have selected in the project window. click on Sheet1.

If you have more than one workbook open you can copy a module from one
workbook to the other by simply left clicking, holding and dragging.

The Properties Window (Sheet1)

The Properties window shows you the properties of the element that is selected in
the VBAProject Window. Double click on "Sheet1" in the project window and the
properties windows on your screen will look as the one on the left.

You can modify any of the properties from there. The list of properties changes
as you select different types of components (thisWorkbook, worksheets, modules,
forms or controls).

Note that there are two "Name" properties with and without parenthesis. The
name property "(Name)" on the first line is the programmatical name of the sheet.
The other name property "Name" on the9th line is the caption the name of the
sheet that the user sees and that you use in your Excel formula. You can either
change it here or in Excel.

Do the following changes and see what happens in the VBAProject window.
Change the name on the 9th line to "Info" and go to Excel to see that the caption
of the sheet has changed. Change it back to "Sheet1". Now change the name on
the first line to "shInfo" and see in Excel that the caption has not changed. Change
it back to Sheet1.

On line one give a significant name to your sheets starting with the prefix "sh" and
a first capital letter for any significant word comprised in the name like shInfo,
shRawData, shWhatever. You will see later how important becomes this prefix and
capital letter habit.

The Properties Window (Module1)

Double click on Module1 in the VBAPRoject window and your property window will
look like this one. There is only one property, the name. Please name your
modules. It is so much friendlier to see modImport, modDatabase, modExportData,
modWhatever. Give a significant name to your module starting with the prefix
"mod "and a first capital letter for any significant word comprised in the name. You
will see later how important becomes this prefix and capital letter habit.

The Code Window

In the VBAProject window double click on Module1 and the Code window above will
appear. In this code window you can see the procedure that you have recorded
called "Macro1".

Below "End Sub" enter "Sub Macro2()" and click enter. VBE will add a line "End
Sub". Now go to the list box (top/right of the Code window) and click on the arrow.
You see that you can navigate from one procedure to the other by selecting them
in this list. Erase what you have just added (Macro2) and see that it has also
disappeared from the list box.

Very rarely you develop procedures that are triggered by an event related to the
worksheet or the workbook. But let's take a quick look at the topic.

In the VBAProject window double click on Sheet1. The code window is now empty
because you have not developed procedures that are triggered by an event
related to the sheet (activate, deactivate, etc...). In the top/left list box (General)
select "Worksheet". Automatically VBE creates a procedure called
"Worksheet_SelectionChange(ByVal Target As Range)". Now if you go to the
top/right list box you can see all the events relating to the sheet. Select "Activate".
VBE creates a procedure called "Sub Worksheet_Activate()". Here you could

develop the procedure so that something happens when you activate the sheet.
Erase everything in the code window.

In the VBAProject window double click on "ThisWorkbook". The code window is now
empty because you have not developed procedures that are triggered by an event
related to the workbook (Open, BeforeClose, etc...). In the top/left list box
(General) select "Workbook". Automatically VBE creates a procedure called
"Workbook_Open()". Now if you go to the top/right list box you can see all the
events relating to the workbook. Within the "Workbook_Open()" you could develop
a procedure so that something happens when you open the workbook. Erase
everything in the code window.

Modifying Macros

Modifying a Macro

Modify the VBA procedure that you have created with the recorder earlier. Open
Excel, open the workbook "VBATest1.xls" and go to the Visual Basic Editor. Double
click on Module1 in the VBA project window and the following code will appear in
the Code window.

Click in the code window and print the module for future refernece
"File/Print/Current Module"

Follow the instructions step by step.

The Macro Recorder (MR) has a very special way to write code. The procedure
above works so we could leave it alone but just to make it clearer let's make it
simpler. You can replace each line of code yourself or copy/paste the entire new
procedure .When we started the Macro Recorder cell A1 was selected and you
entered 34 in it. The MR writes
ActiveCell.FormulaR1C1="34"

You will never use the FormulaR1C1 property. Secondly we will add a line of code
to tell Excel to start this procedure in cell A1 otherwise, 34 will be entered in the
cell that is selected when we start the procedureCell A1 is the ActiveCell and you
can replace this line simply by:
Range("A1").Select
ActiveCell.Value=34

Line 2 and 3 of the procedure read like this:
Range("A2").Select
ActiveCell.FormulaR1C1 = "55"
Again we will avoid the FormulaR1C1 thing and we wont select the cell we will just

give it a value so replace lines 2 and 3 by this:
Range("A2").Value=55

Line 4 and 5 of the procedure read like this:
Range("A3").Select
ActiveCell.FormulaR1C1 = "=R[-2]C+R[-1]C"
Again we will avoid the FormulaR1C1 but we will not use Value because we want
to enter a formula in this cell. Again we wont select the cell we will just enter a
formula so replace lines 4 and 5 by this:
Range("A3").Formula="=A1+A2"

Line 6 and 7 of the procedure read like this:
Range("A2").Select
Selection.Font.ColorIndex = 3
Here we wont select the cell we will just specify that we want to change the color
of the font so replace lines 6 and 7 by this:
Range("A2").Font.ColorIndex = 3
Three is red. Use the MR in these situation because you don't have to remember
all the color codes.

Line 8 to 12 of the procedure read like this:
Range("A1").Select
With Selection.Interior
 .ColorIndex = 41
 .Pattern = xlSolid
End With

The MR uses a lot of "With..End With". The code developed by the MR would read
in plain English: Select cell A1 (cell A1 becoming the Selection) then for the
Selection.Interior make the ColorIndex be 41 and the Pattern be xlSolid. Here is a
simpler version so replace lines 8 to 12 by this:

Range("A1").Interior.ColorIndex = 41
Range("A1").Interior.Pattern = xlSolid

Line 13 to 25 of the procedure read like this:
Range("A3").Select
With Selection.Font
 .Name = "Arial"
 .Size = 24
 .Strikethrough = False
 .Superscript = False
 .Subscript = False
 .OutlineFont = False
 .Shadow = False
 .Underline = xlUnderlineStyleNone

 .ColorIndex = xlAutomatic
End With

Again MR uses "With...End With" and also modifies ALL the properties of the font
each time. We just want the font's size to be changed to 24 so replace lines 13 to
25 by this:

Range("A3").Font.Size= 24

The VBA procedure or macro called "Macro1" now looks like this:

Sub Macro1()

' Macro1 Macro
' Macro recorded 5/27/2005 by Peter'

 ActiveCell.Value = 34
 Range("A2").Value = 55
 Range("A3").Formula = "=A1+A2"
 Range("A2").Font.ColorIndex = 3
 Range("A1").Interior.ColorIndex = 41
 Range("A1").Interior.Pattern = xlSolid
 Range("A3").Font.Size = 24

End Sub

Excel Color Constants:

Selection.Font.ColorIndex = 1' Black
Selection.Font.ColorIndex = 2' White
Selection.Font.ColorIndex = 3' Red
Selection.Font.ColorIndex = 4' Bright Green
Selection.Font.ColorIndex = 5' Blue
Selection.Font.ColorIndex = 6' Yellow
Selection.Font.ColorIndex = 7' Pink
Selection.Font.ColorIndex = 8' Bright Blue
Selection.Font.ColorIndex = 9' Brown
Selection.Font.ColorIndex = 11' Dark Blue
Selection.Font.ColorIndex = 13' Teal

Creating Macros with VBA for Excel

Let's now create a brand new macro. Open Excel, open the workbook
"VBATest1.xls" that you have created previously. Add a sheet to your workbook
and rename it "Test2" (right click on the tab, chose "Rename" and type the name

in). In cell A1 to A10 enter 10 first names and in cells B1 to B10 enter 10 last
names.

Now let's create a new module. Go to the VBE and right click in the VBA project
Window within the project "VBATest1" and select "Insert/Module". You now have a
new module. In the properties window double click on the "(Name)" property box
and enter "modTest". We now have a new module with a name.

In the VBAProject window double click on the sheet named "Test2". In the
properties window double click on the "(Name)" property box and enter "shTest2".
You now have a sheet with a caption reading "Test2" and with the name "shTest2".

In the VBAProject window double click on "modTest2"" and let's go to the code
window to develop a macro.

Write "Sub proTest2 ()" and click "Enter". VBE adds a line "End Sub". We will write
our code between these two lines so make some room for it by setting the
cursor at the end of "End Sub" and clicking "Enter" a few times.

Just below "Sub proTest2()" write your name preceded by an apostrophe (') ' Peter
Clark and click "Enter". Notice that the font in the line you have just written is
green. Because of the apostrophe VBA will consider the text as a remark (REM)
and will not bother with it. You can add any number of REM lines anywhere to
make your code understandable. Click "Enter" again to insert an empty line. Do
not hesitate to insert empty lines anywhere to make your code more
easily readable.

Here are the 6 lines of code that you will be writing (or copy/paste them from this
webpage):

 shTest2.Select
 Range("C1").Select

 Do Until Selection.Offset(0, -2).Value = ""
 Selection.Value = Selection.Offset(0, -2).Value & " " &
Selection.Offset(0, -1)
 Selection.Offset(1, 0).Select
 Loop

Range("A1").Select

The fist 2 lines tell VBA where to start the procedure. If you don't mention it VBA
will start the procedure from whatever cell is selected in your workbook.

Line 5 to 7 is the actual task that you want VBA to perform. You are saying: do
something until the value of the cells 2 columns left of the selected cell in empty
(double double quotes). When a cell is selected after the line where is the last first
name the task will end. If there is a first name you do else you loop (last line of the
statement).

What is the task: make the value of the selected cell equal to the value of the cell
2 columns left and (&) a space (space between two double quotes) (" ") and the
value of the cell 1 column left of the selected cell.

Then move down one cell.

When the task has been accomplished go to cell A1.

Now go back to Excel go to "Tools/Macro/Macros" select the macro "proTest2" and
click "Run". Erase column C and do it again. Add first names and last names to
your list and do it again.

You have created your first VBA procedure.

Testing Macros

Here is a very interesting way to test a macro step by step while seeing it at work
in the Excel workbook.

Close every program on your computer. Open Excel and the workbook
"VBATest1.xls" in which we have created a new macro called "proTest2". Open the
VBE. On the Window status bar at the bottom of your screen you can see that
Excel is open and the VBE also. Right click on the status bar in the empty space
where have added the orange stars:

The following menu appears:

Click on "Tile Windows Vertically"

The Excel workbook occupies half of the screen and the VBE occupies the other
half. Make the Code window wider in the VBE so that you can see all the code.
Make sure to remove values and formats in cell C1 to C10 of the workbook.

In the Excel workbook select cell D3 of the sheet "Test2", and then select any
sheet other than "Test2". In VBE, click anywhere within the procedure "proTest2".
Click on the F8 key at the top of your keyboard and see that the first line of code
become yellow. Click again on F8 and the sheet "Test2" is selected, click again and
cell C1 is selected click a few more times until no line in the code is yellow. You
have tested your code step by step.

Chapter 2

Variables and Data Types

Introduction

A Variable is used to store temporary information that is used for execution within
the Procedure, Module or Workbook. Before we go into some detail of Variables,
there are a few important rules that you must know about.

1) A Variable name must start with a letter and not a number. Numbers can be
included within the name, but not as the first character.

2) A Variable name can be no longer than 250 characters.

3) A Variable name cannot be the same as any one of Excel's key words. You
cannot name a Variable with such names as Sheet, Worksheet etc.

4) All Variables must consist of one continuous string of characters only. You can
separate words by either capitalising the first letter of each word, or by using the
underscore characters if you prefer.

You can name variables with any valid name you wish. For Example you could
name a variable "David" and then declare it as any one of the data types shown
below. However, it is good practice to formalize some sort of naming
convention. This way when reading back your code you can tell at a glance what
data type the variable is. An example of this could be! If you were to declare a
variable as a Boolean you may use: bIsOpen. You might then use this Boolean
variable to check if a Workbook is open or not. The "b" stands for Boolean and the
"IsOpen" will remind you that you are checking if something is open.

You may see code that uses letters only as variables, this is bad programming
and should be avoided. Trying to read code that has loads of single letters only
can (and usually does) cause grief.

Variable Data Types

Byte data type
A data type used to hold positive integer numbers ranging from 0 to 255. Byte
variables are stored as single, unsigned 8-bit (1-byte) numbers.

Boolean data type

A data type with only two possible values, True (-1) or False (0). Boolean variables
are stored as 16-bit (2-byte) numbers.

Integer data type

A data type that holds integer variables stored as 2-byte whole numbers in the
range -32,768 to 32,767. The Integer data type is also used to represent
enumerated values. The percent sign (%) type-declaration character represents an
Integer in Visual Basic.

Long data type

A 4-byte integer ranging in value from -2,147,483,648 to 2,147,483,647. The
ampersand (&) type-declaration character represents a Long in Visual Basic.

Currency data type

A data type with a range of -922,337,203,685,477.5808 to
922,337,203,685,477.5807. Use this data type for calculations involving money
and for fixed-point calculations where accuracy is particularly important. The at
sign (@) type-declaration character represents Currency in Visual Basic.

Single data type

A data type that stores single-precision floating-point variables as 32-bit (2-byte)
floating-point numbers, ranging in value from -3.402823E38 to -1.401298E-45 for
negative values, and 1.401298E-45 to 3.402823E38 for positive values. The
exclamation point (!) type-declaration character represents a Single in Visual
Basic.

Double data type

A data type that holds double-precision floating-point numbers as 64-bit numbers
in the range -1.79769313486232E308 to -4.94065645841247E-324 for negative
values; 4.94065645841247E-324 to 1.79769313486232E308 for positive values.
The number sign (#) type-declaration character represents the Double in Visual
Basic.

Date data type

A data type used to store dates and times as a real number. Date variables are
stored as 64-bit (8-byte) numbers. The value to the left of the decimal represents a
date, and the value to the right of the decimal represents a time.

String data type

A data type consisting of a sequence of contiguous characters that represent the
characters themselves rather than their numeric values. A String can include
letters, numbers, spaces, and punctuation. The String data type can store fixed-
length strings ranging in length from 0 to approximately 63K characters and
dynamic strings ranging

in length from 0 to approximately 2 billion characters. The dollar sign ($) type-
declaration character represents a String in Visual Basic.

Object data type

A data type that represents any Object reference. Object variables are stored as
32-bit (4-byte) addresses that refer to objects. Variant data type A special data
type that can contain numeric, string, or date data as well as the special values
Empty and Null. The Variant data type has a numeric storage size of 16 bytes and
can contain data up to the range of a Decimal, or a character storage size of 22
bytes (plus string length), and can store any character text. The VarType function
defines how the data in a Variant is treated. All variables become Variant data
types if not explicitly declared as some other data type.

Why we use variables

Excel will still allow us to run our code without using variables, it is not a must! But
having said this it is very bad programming to not use variables. You could quite
easily just assign a value, string or whatever each time you need it, but it would
mean:

1) Your code would become hard to follow (even for yourself)
2) Excel would constantly need to look for the value elsewhere.
3) Editing your code would become awkward.

Let's use an example to highlight the above

Sub NoVariable()
Range("A1").Value = Range("B2").Value
Range("A2").Value = Range("B2").Value * 2
Range("A3").Value = Range("B2").Value * 4
Range("B2").Value = Range("B2").Value * 5

End Sub

In the above code, Excel would need to retrieve the value from cell B2 five times.
It would also mean if we had many other procedures using the same value i.e B2,
it would need to retrieve it's value even more times.

There is a lot of editing to be done if we were to change from wanting B2 value to
say, B5 value. It is messy code.

Let's now use a variable to store the value of cell B2!

Sub WithVariable()
Dim iMyValue as Integer

iMyValue = Range("B2").Value
Range("A1").Value = iMyValue
Range("A2").Value = iMyValue * 2
Range("A3").Value = iMyValue * 4
Range("B2").Value = iMyValue * 5

End Sub

In the above code Excel only needs to retrieve the value of cell B2 once.

To edit our code we only need to change it in one place.

It is easier to read.

You might be thinking that there is no big difference in the above 2 examples, and
to a point you would be correct. But what you must realize is, most VBA projects
will consist of hundreds (if not thousands) of lines of code. They would also contain
a lot more than one procedure. If you had 2 average size VBA projects, one using
variables and one without, the one using variables would run far more efficiently!

Declaring Variables

To declare a variable we use the word "Dim" (short for Dimension) followed by our
chosen variable name then the word "As" followed by the variable type. So a
variable dimmed as a String could look like:

Dim sMyWord As String
You will notice that as soon as we type the word As, Excel will display a drop-down
list of all variables.

The default value for any Numeric type Variable is zero.
The default value for any String type variable is "" (empty text).
The default value for an Object type Variable is Nothing. While the default value
for an Object type Variable is Nothing, Excel will still reserve space in memory for
it.

To assign a value to a Numeric or String type Variable, you simply use your
Variable name, followed by the equals sign (=) and then the String or Numeric
type. eg:

Sub ParseValue()
Dim sMyWord as String
Dim iMyNumber as Integer
 sMyWord = Range("A1").Text
 iMyNumber = Range("A1").Value
End Sub

To assign an Object to an Object type variable you must use the key word "Set".
eg:

Sub SetObJect()
Dim rMyCell as Range
 Set rMyCell = Range("A1")
End Sub

In the example immediately above, we have set the Object variable to the range
A1. So when we have finished using the Object Variable "rMyCell" it is a good idea
to Set it back to it's default value of Nothing. eg:

Sub SetObjectBack()
Dim rMyCell as Range
 Set rMyCell = Range("A1")

 Set rMyCell = Nothing
End Sub

This will mean Excel will not be reserving unnecessary memory.

In the first example above (Sub ParseValue()) we used 2 lines to declare our 2
variables ie
Dim sMyWord as String
Dim iMyNumber as Integer
We can, if we wish just use:
Dim sMyWord as String, iMyNumber as Integer
There is no big advantage to this, but you may find it easier.

Not Declaring Variables

There is a difference between using variables and correctly declaring them. You
can if you wish not declare a variable and still use it to store a Value or Object.
Unfortunately this comes at a price though! If you are using variables which have
not been dimensioned Excel (by default) will store them as the Variant data type.
This means that Excel will need to decide each time it (the variable) is assigned a
value what data type is should be. The price for this is slower running of code! My
advise is do it right and form the good habit early!

There is also another advantage to correctly declaring variables and that is Excel
will constantly check to ensure you have spelt the variable name correctly. It does
this by capitalizing the all lower case letters that are capitalized at the point it was
dimensioned. Let's assume you you use:

Dim iMyNumber As Integer

At the top of your procedure. You then intend to use this variable in other parts of
the procedure. Each time you type imynumber and then push the Space bar or
Enter Excel will capitalize it for you i.e imynumber will become iMyNumber. This
is a very simple and easy way to ensure you have used the correct spelling.

While we are on this subject, it is very good practice to type all code in lower case,
because not only will Excel do this for variables but also for all Keywords!

There may be times when you will actually need to use a Variant data type as you
cannot be certain what will be parsed to it, say from a cell. It might be text, it
maybe a very low or high number etc. In these circumstances you can use:

Dim vUnKnown As Variant

Or, simply:

Dim vUnKnown

Both are quite valid! The reason we do not have to explicitly declare a Variant is
because the default for a variable is a Variant.

Excel VBA Variables Lifetime & Scope

In Excel, when coding in VBA, we can use what are know as variables to store
information. These variables (as the name suggests) can be varied and changed to
store different data information. As soon as a variable loses scope it loses its
stored value.

Excel VBA Variables Levels

There are 3 levels at which we can dimension (Dim) variables. These are;

1) Procedure-Level
2) Module-Level
3) Project-Level, Workbook Level, or Public Module-Level

Each of these levels differ in scope and lifetime. This is discussed below

Procedure-Level Variables

These are probably the best known and widely used variables. They are
dimensioned (Dim) inside the Procedure itself. See Example below;

Sub MyMacro ()
Dim lRows as Long

'Code Here
End Sub

All variables dimensioned at this level are only available to the Procedure that they
are within. As soon as the Procedure finishes, the variable is destroyed.

Module-Level Variables

These are variables that are dimensioned (Dim) outside the Procedure itself at the
very top of any Private or Public Module. See Example below;

Dim lRows as Long

Sub MyMacro ()
 'Code Here
End Sub

All variables dimensioned at this level are available to all Procedures that they are
within the Module it is dimensioned in. It's value is retained unless the variable is
referenced outside its scope, the Workbook closes or the End Statement is used.

Project-Level, Workbook Level, or Public Module-Level
These variables are dimensioned at the top of any standard public module, like
shown below;
Public lRows as Long

All variables dimensioned at this level are available to all Procedures in all
Modules. It's value is retained unless the Workbook closes or the End Statement
is used.

Modules and Procedures

Modules and Procedures and Their Scope
A module is a container for procedures as shown in our prior examples. A
procedure is a unit of code enclosed either between the Sub and End Sub
statement or between the Function and End Function statements.

The following sub procedure (or sub routine) print the current date and time on
cell C1:

Sub ShowTime()
 Range("C1") = Now()
End Sub

The following function sum up two numbers:

Function sumNo(x, y)
 sumNo = x + y
End Function

Procedures in Visual Basic can have either private or public scope. A procedure
with private scope is only accessible to the other procedures in the same module;
a procedure with public scope is accessible to all procedures in in every module in
the workbook in which the procedure is declared, and in all workbooks that contain
a reference to that workbook. By default, procedures has public scope.

Here are examples of defining the scope for procedure.

Public Sub ShowTime()
 Range("C1") = Now()
End Sub

Private Sub ShowTime()
 Range("C1") = Now()
End Sub

Calling Sub Procedures and Function Procedures
There are two ways to call a sub procedure. The following example shows how a
sub procedure can be called by other sub procedures.

Sub z(a)
 MsgBox a
End Sub

Sub x()
 Call z("ABC")
End Sub

Sub y()
 z "ABC"
End Sub

Sub z procedure takes an argument (a) and display the argument value ("ABC") in
a message box. Running either Sub x or Sub y will yield the same result.

The following example calls a function procedure from a sub procedure.

Sub ShowSum()
 msgbox sumNo(3,5)
End Sub

Function sumNo(x, y)
 sumNo = x + y
End Function

The ShowSum sub procedure calls the sumNo function and returns an "8" in a
message box.

If there are procedures with duplicate names in different modules, you must need
to include a module qualifier before the procedure name when calling the
procedure.

For example:

Module1.ShowSum

Passing Argument by Reference or by Value
If you pass an argument by reference when calling a procedure, the procedure
access to the actual variable in memory. As a result, the variable's value can be
changed by the procedure. Passing by reference is the default in VBA. If you do
not explicitly specify to pass an argurment by value, VBA will pass it by
reference. The following two statements yield the same outcome.

Sub AddNo(ByRef x as integer)
Sub AddNo(x as integer)

Here is an example to show the by reference behavior. The sub procedure,
TestPassing 1 calls AddNo1 by reference and display "60" (50 + 10) on the
message box.

Sub TestPassing1()
 Dim y As Integer
 y = 50
 AddNo1 y
 MsgBox y
End Sub

Sub AddNo1(ByRef x As Integer)
 x = x + 10
End Sub

The following example shows the by value behavior. The sub procedure,
TestPassing 2 calls AddNo2 by value and display "50" on the message box.

Sub TestPassing2()
 Dim y As Integer
 y = 50
 AddNo2 y
 MsgBox y
End Sub

Sub AddNo2(ByVal x As Integer)
 x = x + 10
End Sub

Chapter 3

Message Box and Input Box

Message Box

The message box is the primary tool to interact with the user. You can use it to
inform or alert him. Few types of message boxes are: the basic MsgBox
(vbOKOnly), the 3 button one (vbYesNoCancel) and the specialized one
(vbDefaultButton..).

To generate the message box above, the code is:
MsgBox "Your message here"

When VBA procedures take time to run, offer a message box to user at the end of
the execution.
MsgBox "The procedure has been executed."

You want to send the following message to your user Go to cell "A1". with double
quotes around the A1. Double the quotes within the main quotes.
MsgBox "Go to cell ""A1""."

You can insert MsgBox within your code and run it up to the MsgBox to test it. The
syntax is then:
MsgBox "TestOK"

InputBox

Collect User Data/Input

There are many times in Excel VBA that we are required to gather
information from a user. To actually allow the user to enter some text,
number or even a formula we can use the InputBox Function. The syntax for
the InputBox Function is;

InputBox(prompt[, title] [, default] [, xpos] [, ypos] [, helpfile,
context])

It is rare that you will need to use [, xpos] [, ypos] or [, helpfile, context].
See Excel help for details on these. It should also be noted that, the

InputBox Function returns a String only when used in this way. (more on
another way soon).

You will use the input box when you want to require a SINGLE value from the user.

The input box above is the basic input box and is generated by the following code:
Sub proInput()
Dim varInput As Integer

 varInput = InputBox("For what year do you need this report?")
 Sheets("Intro").Range("A1").value = varInput

End Sub

A variable is created "varInput" to receive the value submitted by the user. Here
the value is entered in a cell but it could be use in the rest of a more complex VBA
procedure. Note here that the variable is declared as "Integer" so if the user
submits a text "string" an error is generated. Shown below is how to handle such
errors so that the user is not confronted with the VBA error dialog box.

You can also use your own title for the input box ("Year" in the example above). To
do so, you must use the extended code that follows:
InputBox("For what year do you need this report?","Year")

Here is the code to handle errors (cancel or invalid response form the user):

Sub proInput()
Dim varInput As Integer

 On Error GoTo addError
 varInput = InputBox("For what year do you need this report?", "Year")

addError:

 MsgBox "No value submitted or value not an integer, procedure aborted."
 Exit Sub

End Sub

Another example

Ok, lets assume we need to gather the name of the user and do some stuff
depending on that name. The macro below will achieve this.

Sub GetUserName()
Dim strName As String

 strName = InputBox(Prompt:="You name please.", _
 Title:="ENTER YOUR NAME", Default:="Your Name here")

 If strName = "Your Name here" Or _
 strName = vbNullString Then
 Exit Sub
 Else
 Select Case strName
 Case "Bob"
 'Do Bobs stuff
 Case "Bill"
 'Do Bills stuff
 Case "Mary"
 'Do Marys stuff
 Case Else
 'Do other stuff
 End Select
 End If

End Sub

Note the use of the Select Case Statement to dertimine the name the user

supplies.

Application.InputBox

When we precede the InputBox Function with "Application" we get an
InputBox Method that will allow us to specify the type of info that we can
collect. Its Syntax is;

http://www.ozgrid.com/VBA/select-case.htm

InputBox(Prompt, Title, Default, Left, Top, HelpFile, HelpContextId,
Type)

As you can see, the Prompt, Title and Default are the same as in the
InputBox Function. However, it is the last argument "Type" that allows us
to specify the type of data we are going to collect. These are as shown
below;

Type:=0 A formula
Type:=1 A number
Type:=2 Text (a string)
Type:=4 A logical value (True or False)
Type:=8 A cell reference, as a Range object

We have already covered a String being returned so lets look, what most
believe, to be the most useful. That is, Type 8 & 1. The code below shows
how we can allow the user to specify a Range Object.

Sub RangeDataType()
Dim rRange As Range

 On Error Resume Next
 Application.DisplayAlerts = False
 Set rRange = Application.InputBox(Prompt:= _
 "Please select a range with your Mouse to be bolded.", _
 Title:="SPECIFY RANGE", Type:=8)
 On Error GoTo 0
 Application.DisplayAlerts = True

 If rRange Is Nothing Then
 Exit Sub
 Else
 rRange.Font.Bold = True
 End If
 End Sub

Note the use of both, On Error Resume Next and Application.DisplayAlerts =
False. These stop Excel from trying to handle any bad input from the user, or if
they Cancel. Take the lines out, run the code and click Cancel, or specify a non
valid range and Excel will bug out in the case of Cancel.

Let's now look at how we can collect a numeric value from a user.

Sub NumericDataType()
Dim lNum As Long

 On Error Resume Next
 Application.DisplayAlerts = False
 lNum = Application.InputBox _
 (Prompt:="Please enter you age.", _
 Title:="HOW OLD ARE YOU", Type:=1)
 On Error GoTo 0
 Application.DisplayAlerts = True

 If lNum = 0 Then
 Exit Sub
 Else
 MsgBox "You are " & lNum & " years old."
 End If
End Sub

Again, we take over the possibility of the user electing to Cancel, or
entering a non-numeric value. If they enter anything that is not numeric
and click OK, they are taken back to the InputBox Method with their entry
highlighted.

Unlike the InputBox Function, we can combine different Types for the
InputBox Method and take action based on their data type. See example.

Sub Numeric_RangeDataType()
Dim vData

 On Error Resume Next
 Application.DisplayAlerts = False

 vData = Application.InputBox _
 (Prompt:="Please select a single cell housing the number, " _
 & "or enter the number directly.", _
 Title:="HOW OLD ARE YOU", Type:=1 + 8)

 On Error GoTo 0

 Application.DisplayAlerts = True

 If IsNumeric(vData) And vData <> 0 Then
 MsgBox "You are " & vData & " years old."
 Else
 Exit Sub
 End If
End Sub

Chapter 4

Loops and Conditional Statements

Why Loops?
The purpose of a loop is to get Excel to repeat a piece of code a certain
number of times. How many times the code gets repeated can be specified
as a fixed number (e.g. do this 10 times), or as a variable (e.g. do this for as
many times as there are rows of data).

Loops can be constructed many different ways to suit different
circumstances. Often the same result can be obtained in different ways to
suit your personal preferences.

Loop Structures

For ... Next

Use For ... Next loop if the number of loops is already defined and known. A
For ... Next loop uses a counter variable that increases or decreases in value
during each iteration of the loop. This loop structure is being used the most for
our examples on this site.

Here is an example of the For ... Next loop:

 For i = 1 to 10
 Cells(i, 1) = i
 Next i

In this example, i is the counter variable from 1 to 10. The looping process will
send value to the first column of the active sheet and print i (which is 1 to 10) to
row 1 to 10 of that column.

Note that the counter variable, by default, increases by an increment of 1.

For ... Next Loop With Step
You can use the Step Keyword to sepcify a different increment for the counter
variable.

For example:

 For i = 1 to 10 Step 2
 Cells(i, 1) = i
 Next i

This looping process will print values with an increment of 2 on row 1, 3, 5, 7 and 9
on column one.

You can also have decrement in the loop by assign a negative value afte the Step
keyword.

For example:

 For i = 10 to 1 Step -2
 Cells(i, 1) = i
 Next i

This looping process will print values with an increment of -2 starts from 10 on
row 10, 8, 6, 4 and 2 on column one.

Do While ... Loop
You can use the Do While ... Loop to test a condition at the start of the loop. It
will run the loop as long as the condition is ture and stops when the condition
becomes false. For Example:

 i = 1
 Do While i =< 10
 Cells(i, 1) = i
 i = i + 1
 Loop

This looping process yields the same result as in the For ... Next structures
example.

One thing to be caution is that sometimes the loop might be a infinite loop. And it
happens when the condition never beomes false. In such case, you can stop the
loop by press [ESC] or [CTRL] + [BREAK].

Do Until ... Loop
You can test the condition at the beginning of the loop and then run the loop until
the test condition becomes true.

Example:

 i = 1
 Do Until i = 11
 Cells(i, 1) = i
 i = i + 1
 Loop

This looping process yields the same result as in the For ... Next structures
example.

Do ... Loop While

When you want to make sure that the loop will run at least once, you can put the
test at the end of loop. The loop will stop when the condition becomes false.
(compare this loop structure to the Do ... While Loop.)

For Example:

 i = 1
 Do
 Cells(i, 1) = i
 i = i + 1
 Loop While i < 11

This looping process yields the same result as in the For ... Next structures
example.

Do ... Loop Until

This loop structure, like the Do ... Loop While, makes sure that the loop will run
at least once, you can put the test at the end of loop. The loop will stop when the
condition becomes true. (compare this loop structure to the Do ... Until Loop.)

For Example:

 i = 1
 Do
 Cells(i, 1) = i
 i = i + 1
 Loop Until i = 11

This looping process yields the same result as in the For ... Next structures
example.

Conditional Statements

The statements that I use in my VBA Excel Macros more often are: If..Then..End If,
Do...Loop, For...Next and Select Case

If..Then...End If

When there is only one condition and one action, you will use the simple
statement:
If Selection.Value > 10 Then
 Selection.Offset(1,0).Value = 100
End If

In plain English: if the value of the selected cell is greater than 10 then the value
of the cell below is 100 if not do nothing.

Note: Tests on strings are case sensitive so when you test a string of characters
and you don't know if the user will use upper case or lower case letters, use the
function LCase function within your test and write the strings in your code in lower
case letters:
If LCase(Selection.Value).Value= "yes" then...
With this approach, your test will be valid whatever case your client uses (Yes,
YES or any other combination of cases).

If..Then...End If (multiple tiers)

When there are only two conditions that you want to check sequentially, you will
use the statement:
If Selection.Value > 10 Then
 If Selection.Value = 12 Then

 Selection.Offset(1,0).Value = 100
 End If
End If

In plain English: first check if the value of the selected cell is greater that 10. If it is
not do nothing. If it is check if the value of the selected cell is equal to 12. if so set
the value of the cell below at 100 else do nothing.

If..Then...And...End If

When there are two inclusive conditions, you will use the statement:
If Selection.Value >= 10 And Selection.Offset(0,1).Value < 20 Then
 Selection.Offset(1,0).Value = 100
End If

In plain English: if the value of the selected cell is greater or equal to 10 and
smaller than 20 the value of the cell below is 100 otherwise do nothing.

If..Then...Or...End If

When there are two exclusive conditions and one action, you will use the
statement:
If Selection.Value = 10 Or Selection.Offset(0,1).Value = 20 Then
 Selection.Offset(1,0).Value = 100
End If

In plain English: if the value of the selected cell is equal to 10 or equal to 20 then
the value of the cell below is 100 otherwise do nothing.

If..Then...Else...End If

When there is only one condition but two actions, you will use the statement:
If Selection.Value > 10 Then
 Selection.Offset(1,0).Value = 100
Else
 Selection.Offset(1,0).Value = 50
End If

In plain English: if the value of the selected cell is greater than 10 then the value
of the cell below is 100 else the value of the cell below is 50.

If..Then..ElseIf...End If

When there are more than one condition linking each to a different action you will
use the statement:
If Selection.Value = 1 Then
 Selection.Offset(1, 0).Value = 10

ElseIf Selection.Value = 2 Then
 Selection.Offset(1, 0).Value = 20
ElseIf Selection.Value = 3 Then
 Selection.Offset(1, 0).Value = 30
ElseIf Selection.Value = 4 Then
 Selection.Offset(1, 0).Value = 40
ElseIf Selection.Value = 5 Then
 Selection.Offset(1, 0).Value = 50
End If

In plain English: If the value of the selected cell is 1 then the value of the cell
below is 10 but if the value of the selected cell is 2 then the value of the cell below
is 20 but if the value of the selected cell is 3 then the value of the cell below is
30 but if the value of the selected cell is 4 then the value of the cell below is
40 but if the value of the selected cell is 5 then the value of the cell below is
50 but then if the value of the selected cell is not 1, 2, 3, 4 or 5 do nothing.

You can use IF..ElseIf when you have 2 or 3 conditions but if you have more you
might want to use the much more interesting Select..Case statement.

Select Case
Select Case statement is an alternative to the ElseIf statement. This method is
more efficient and readable in coding the the If ... Then ... ElseIf statment.

Example:

 Select Case Grade
 Case Is >= 90
 LetterGrade = "A"
 Case Is >= 80
 LetterGrade = "B"
 Case Is >= 70
 LetterGrade = "C"
 Case Is >= 60
 LetterGrade = "D"
 Case Else
 LetterGrade = "Sorry"
 End Select

Chapter 5

Objects and Collections

Introduction

Objects are the fundamental building blocks of Visual Basic. An object is a special
type of variable that contains both data and codes. A collection is a group of
objects of the same class. The most used Excel objects in VBA programming are
Workbook, Worksheet, Sheet, and Range.

Workbooks is a collection of all Workbook objects. Worksheets is a collection of
Worksheet objects.The Workbook object represents a workbook, the Worksheet
object represents a worksheet, the Sheet object represents a worksheet or
chartsheet, and the Range object represents a range of cells.

The following figure shows all the objects mentioned. The workbook (Excel file) is
currently Book3.xls. The current worksheet is Sheet1 as the Sheet Tab indicated.
Two ranges are selected, range B2 and B7:B11.

Collections

Many types of objects in Excel come in groups. There may be multiple workbooks
open in Excel at a given time. Each workbook may have multiple worksheets. A
worksheet can have multiple graphs. These multiple objects are gathered together
in what’s called a collection. The collection itself is an object, with its own set of
properties and methods.

For example, the Application object has a property called Workbooks, which
represents a Workbook Collection object. It includes a single Workbook object for
each workbook currently open in Excel. Similarly, the Workbook object has a
property called Worksheets which is a Worksheet Collection object, including one
Worksheet object for each worksheet in the workbook.

Referencing Items in A Collection

The simplest way to reference an item in a collection is by number. All objects in a
collection have a numeric index, starting with 1. To reference an element in a
collection by number, simply put the number in parentheses after the collection
object. Read below.

Workbook and Worksheet Object
A workbook is the same as an Excel file. The Workbook collection contains all the
workbooks that are currently opened. Inside of a workbook contains at least one
worksheet. In VBA, a worksheet can be referenced as followed:

worksheet in the collection Worksheets("Sheet1")

Worksheets("Sheet1") is the worksheet that named "Sheet1."
Another way to refer to a worksheet is to use n
The above refers to the first.
Number index like the following:

Worksheets(1)

* Note that Worksheets(1) is not necessary the same sheet as
Worksheets("Sheet1").

Sheets is a collection of worksheets and chart sheets (if present). A sheet can be
indexed just like a worksheet. Sheets(1) is the first sheet in the workbook.

To refer sheets (or other objects) with the same name, you have to qualify the
object. For example:

Workbooks("Book1").Worksheets("Sheet1")
Workbooks("Book2").Worksheets("Sheet1")
The sheet tab on the buttom the spreadsheet (worksheet) shows which sheet is
active. As the figure below shows, the active sheet is "Sheet1" (show in bold font

and white background).
If the object is not qualified, the active or the current object (for example
workbook or worksheet) is used.

* You can change the color of the sheet tabs by right click the tab, choose Tab
Color, then select the color for the tab.

The sub routine below shows the name of each sheet in the current opened
workbook. You can use For Each...Next loop to loop throgh the Worksheets
collection.

Sub ShowWorkSheets()
 Dim mySheet As Worksheet

 For Each mySheet In Worksheets
 MsgBox mySheet.Name
 Next mySheet

End Sub

Sub SeeSheetNames()
Dim iSheetCount As Integer
Dim iSheet As Integer
iSheetCount = ActiveWorkbook.Worksheets.Count
For iSheet = 1 To iSheetCount
Worksheets(iSheet).Activate
MsgBox Worksheets(iSheet).Name
Next iSheet

End Sub

Range Object and Cells Property

Range represents a cell, a row, a column, a selection of cells containing one or
more contiguous blocks of cells, or a 3-D range. We will show you some examples
on how Range object can be used.

The following example places text "AB" in range A1:B5, on Sheet2.

Worksheets("Sheet2").Range("A1:B5") = "AB"

:

Note that, Worksheets.Range("A1", "B5") = "AB" will yield the same result as the
above example.

The following place "AAA" on cell A1, A3, and A5 on Sheet2.

Worksheets("Sheet2").Range("A1, A3, A5") = "AAA"

Range object has a Cells property. This property is used in every VBA projects on
this website (very important). The Cells property takes one or two indexes as its
parameters.

For example,

Cells(index) or Cells(row, column)

where row is the row index and column is the column index.

The following three statements are interchangable:

ActiveSheet.Range.Cells(1,1)
Range.Cells(1,1)
Cells(1,1)

The following returns the same outcome:

Range("A1") = 123 and Cells(1,1) = 123

The following puts "XYZ" on Cells(1,12) or Range("L1") assume cell A1 is the
current cell:

Cells(12) = "XYZ"

The following puts "XYZ" on cell C3:

Range("B1:F5").cells(12) = "ZYZ"

The small gray number on each of the cells is just for reference purpose only. They
are used to show how the cells are indexed within the range.

Here is a sub routine that prints the corresponding row and column index from A1
to E5.

Sub CellsExample()
 For i = 1 To 5
 For j = 1 To 5
 Cells(i, j) = "Row " & i & " Col " & j
 Next j
 Next i
End Sub

Range object has an Offset property that can be very handy when one wants to
move the active cell around. The following examples demostrate how the Offset
property can be implemented (assume the current cell before the move is E5):

ActiveCell.Offset(1,0) = 1 Place a "1" one row under E5 (on E6)

ActiveCell.Offset(0,1) = 1 Place a "1" one column to the right of E5
(on F5)

ActiveCell.Offset(0,-3) = 1 Place a "1" three columns to the left of E5
(on B5)

Referencing Ranges in Other Sheets

Switching between sheets by activating the needed sheet can drastically slow
down your code. Instead, you can refer to a sheet that is not active by referencing
the Worksheet object first:

Worksheets("Sheet1").Range("A1")

This line of code references Sheet1 of the active workbook even if Sheet2 is the
active sheet.

If you need to reference a range in another workbook, then include the Workbook
object, the Worksheet object, and then the Range object:

Workbooks("InvoiceData.xls").Worksheets("Sheet1").Range("A1")

Be careful if you use the Range property as an argument within another Range
property. You must identify the range fully each time. Let's say that Sheet1 is your
active sheet and you need to total data on Sheet2:

WorksheetFunction.Sum(Worksheets("Sheet2").Range(Range("A1"),
Range("A7")))

This line does not work. Why? Because Range(Range("A1"), Range("A7")) refers to
an extra range at the beginning of the code line. Excel does not assume that you
want to carry the Worksheet object reference over to the other Range objects. So
what do you do? Well, you could write this:

WorksheetFunction.Sum(Worksheets("Sheet2").Range(Worksheets("Sheet2").
_

 Range("A1"), Worksheets("Sheet2").Range("A7")))

But this is not only a long line of code, it is difficult to read! Thankfully, there is a
simpler way, With...End With:

With Worksheets("Sheet2")

 WorksheetFunction.Sum(.Range(.Range("A1"), .Range("A7")))

End With

Notice now that there is a .Range in your code, but without the preceding object
reference. That's because With Worksheets("Sheet2") implies that the object of
the Range is the Worksheet

Working with cells

Use the "Range" object when you work with cells

To select all the cells
Cells.Select

Selecting a single cell
Range("A1").Select

Selecting contiguous cells
Range("A1:G8").Select

Selecting non-contiguous cells
Range("A1,B6,D9").Select
Range("A1,B6:B10,D9").Select

To select rows or columns
Rows("1").Select
Columns("A").Select
or
ActiveCell.EntireRow.Select
ActiveCell.EntireColumn.Select

To select many contiguous rows or columns
Columns("A:C").Select
Rows("1:5").Select

To select many non-contiguous rows and columns
NOTE: Use the "Range" object and not Columns or Rows
Range("A:A, C:C, E:F").Select
Range("1:1,5:6,9:9").Select

Offset property

To move to the first cell in a row:
ActiveCell.Offset(0, -ActiveCell.Column + 1).Select
To move to the first cell in the column:
ActiveCell.Offset(-ActiveCell.Row + 1,0).Select
And to move to the top/left cell of the sheet......
Range("A1").Select

To move 13 rows down and 14 column to the right of a cell you can use either:
ActiveCell.Offset(13, 14).Select
Selection.Offset(13, 14).Select
Range("G8").Offset(13, 14).Select

To move 13 rows up and 14 column to the left of a cell you can use either:
ActiveCell.Offset(-13, -14).Select

Selection.Offset(-13, -14).Select
Range("G8").Offset(-13, -14).Select

But most of the time you don't know the number of rows and columns that you
have in a dataset so the most important property of the Range object, the
ActiveCell and the Selection is the CurrentRegion. It includes all the cells until
there is an empty column and an empty row. For example if there are data from
cell A1 to cell K5600 the line Range("A1").CurrentRegion.Select will select all the
cells from cell A1 to cell K5600. You can then count the rows and the columns of
the current region and easily move from the first to the last column or row. To
move to the end of the dataset use:
Range("A1").Offset(varNbRows, varNbColumns).Select
and to position to add a new record
Range("A1").Offset(varNbRows, 0).Select

Most book on VBA for Excel will suggest the following lines of code to go to the last
row or the last column:
Range("A1", Range("A1").End(xlDown)).Select
Range(ActiveCell, ActiveCell.End(xlDown)).Select
Range("A1", Range("A1").End(xltoRight)).Select
Range(ActiveCell, ActiveCell.End(xltoLeft)).Select
but if you use these lines of code and there data only in cell A1 you end up in cell
A65000 or IV1 and you have a problem. That is why its best to always select the
current region of a dataset and use the offset property as in the example above.

We have use the Offset property to move up and down or left and right a certain
number of cells and select the cell that we then reach. To select all the cells from a
cell or the activecell to 10 cells to the right
Range("A1", Range("A1").Offset(0, 10)).Select
Range(ActiveCell, ActiveCell.Offset(0, 10)).Select

To select a range from a cell or the activecell to 10 cells to the left
Range("A1", Range("A1").Offset(0, -10)).Select
Range(ActiveCell, ActiveCell.Offset(0, -10)).Select

To select a range from a cell or the activecell to 10 cells below
Range("a1", Range("a1").Offset(10, 0)).Select
Range(ActiveCell, ActiveCell.Offset(10, 0)).Select

Using the CurrentRegion Property to Quickly Select a Data Range

CurrentRegion returns a range object representing a set of contiguous data. As
long as the data is surrounded by one empty row and one empty column, you can
select the table with CurrentRegion:

RangeObject.CurrentRegion

The following line would select contiguous range of cells around cell A1:

Range("A1").CurrentRegion.Select

Using the SpecialCells Method to Select Specific Cells
Even Excel power users may never have encountered the Go To Special dialog box. If you
press the F5 key in an Excel worksheet, you get the normal Go To dialog box. In
the lower-left corner of this dialog is a button called Special. Click that button to
get to the super-powerful Go To Special dialog

In the Excel interface, the Go To Special dialog enables you to select only cells
with formulas, or only blank cells, or only the visible cells. Selecting visible cells
only is excellent for grabbing the visible results of AutoFiltered data.

To simulate the Go To Special dialog in VBA, use the SpecialCells method. This
enables you to act on cells that meet a certain criteria:

RangeObject.SpecialCells(Type, Value)

This method has two parameters: Type and Value. Type is one of the
xlCellType constants:

xlCellTypeAllFormatConditions
xlCellTypeAllValidation
xlCellTypeBlanks
xlCellTypeComments
xlCellTypeConstants
xlCellTypeFormulas
xlCellTypeLastCell
xlCellTypeSameFormatConditions
xlCellTypeSameValidation
xlCellTypeVisible

Value is optional and can be one of the following:

xlErrors
xlLogical
xlNumbers
xlTextValues.

The following returns all the ranges that have conditional formatting set up. It puts
a border around each contiguous section it finds:

Set rngCond = ActiveSheet.Cells.SpecialCells(xlCellTypeAllFormatConditions)
If Not rngCond Is Nothing Then
 rngCond.BorderAround xlContinuous
End If

Methods and Properties
Each object contains its own methods and properties.

A Property represents a built-in or user-defined characteristic of the object. A
method is an action that you perform with an object. Below are examples of a
method and a property for the Workbook Object:

Workbooks.Close
Close method close the active workbook

Workbooks.Count
Count property returns the number of workbooks that are currently opened

Some objects have default properties. For example, Range's default property is
Value.
The following yields the same outcome.

Range("A1") = 1 and Range("A1").Value = 1

Here are examples on how to set and to get a Range property value:
The following sets the value of range A1 or Cells(1,1) as "2005". It actually prints
"2005" on A1.

Range("A1").Value = 2005

The following gets the value from range A1 or Cells(1,1).

X = Range("A1").Value

Method can be used with or without argument(s). The following two examples
demostrate this behavior.

Methods That Take No Arguments:

Worksheets("Sheet").Column("A:B").AutoFit

Methods That Take Arguments:

Worksheets("Sheet1").Range("A1:A10").Sort _
Worksheets("Sheet1").Range("A1")

Worksheets("Sheet1").Range("A1") is the Key (or column) to sort by.

Assigning Object Variables and Using Named Argument

Sometime a method takes more than one argument. For example, the Open
method for the Workbook
object, takes 12 arguments. To open a workbook with password protection, you
would need to write the following code:

Workbooks.Open "Book1.xls", , , ,"pswd"

Since this method takes so many arguments, it is easy to misplace the password
argument. To
overcome this potential problem, one can use named arguments like the following
example:

Workbook.Open fileName:="Book1.xls", password:="pswd"

You can also assign an object to an object variable using the Set Statement.

For example:

Dim myRange as Range
Set myRange = Range("A1:A10")

Chapter 6

Error Handling

Introduction

Error handling refers to the programming practice of anticipating and coding for
error conditions that may arise when your program runs. Errors in general come in
three flavors: compiler errors such as undeclared variables that prevent your code
from compiling; user data entry error such as a user entering a negative value
where only a positive number is acceptable; and run time errors, that occur when
VBA cannot correctly execute a program statement. We will concern ourselves
here only with run time errors. Typical run time errors include attempting to
access a non-existent worksheet or workbook, or attempting to divide by zero. The
example code in this article will use the division by zero error (Error 11) when we
want to deliberately raise an error.

Your application should make as many checks as possible during initialization to
ensure that run time errors do not occur later. In Excel, this includes ensuring that
required workbooks and worksheets are present and that required names are
defined. The more checking you do before the real work of your application
begins, the more stable your application will be. It is far better to detect potential
error situations when your application starts up before data is change than to wait
until later to encounter an error situation.

If you have no error handling code and a run time error occurs, VBA will display its
standard run time error dialog box. While this may be acceptable, even desirable,
in a development environment, it is not acceptable to the end user in a production
environment. The goal of well designed error handling code is to anticipate
potential errors, and correct them at run time or to terminate code execution in a
controlled, graceful method. Your goal should be to prevent unhandled errors
from arising.

A note on terminology: Throughout this article, the term procedure should be
taken to mean a Sub, Function, or Property procedure, and the term exit
statement should be taken to mean Exit Sub, Exit Function, or Exit Property. The
term end statement should be taken to mean End Sub , End Function, End
Property, or just End.

The On Error Statement

The heart of error handling in VBA is the On Error statement. This statement
instructs VBA what to do when an run time error is encountered. The On Error
statement takes three forms.

On Error Goto 0
On Error Resume Next
On Error Goto <label>:

The first form, On Error Goto 0, is the default mode in VBA. This indicates that
when a run time error occurs VBA should display its standard run time error
message box, allowing you to enter the code in debug mode or to terminate the
VBA program. When On Error Goto 0 is in effect, it is the same as having no
enabled error handler. Any error will cause VBA to display its standard error
message box.

The second form, On Error Resume Next , is the most commonly used and misused
form. It instructs to VBA to essentially ignore the error and resume execution on
the next line of code. It is very important to remember that On Error Resume Next
does not in any way "fix" the error. It simply instructs VBA to continue as if no
error occured. However, the error may have side effects, such as uninitialized
variables or objects set to Nothing. It is the responsibility of your code to test for
an error condition and take appropriate action. You do this by testing the value of
Err.Number and if it is not zero execute appropriate code. For example,

 On Error Resume Next
 N = 1 / 0 ' cause an error
 If Err.Number <> 0 Then
 N = 1
 End If

This code attempts to assign the value 1 / 0 to the variable N. This is an illegal
operations, so VBA will raise an error 11 -- Division By Zero -- and because we
have On Error Resume Next in effect, code continues to the If statement. This
statement tests the value of Err.Number and assigns some other number to N.

The third form On Error of is On Error Goto <label>:which tells VBA to transfer
execution to the line following the specified line label. Whenever an error occurs,
code execution immediately goes to the line following the line label. None of the
code between the error and the label is executed, including any loop control
statements.

 On Error Goto ErrHandler:
 N = 1 / 0 ' cause an error
 '
 ' more code
 '
 Exit Sub
 ErrHandler:
 ' error handling code
 Resume Next
 End Sub

Enabled And Active Error Handlers

An error handler is said to be enabled when an On Error statement is executed.
Only one error handler is enabled at any given time, and VBA will behave
according to the enabled error handler. An active error handler is the code that
executes when an error occurs and execution is transferred to another location via
a On Error Goto <label>: statement.

Error Handling Blocks And On Error Goto

An error handling block, also called an error handler, is a section of code to which
execution is tranferred via a On Error Goto <label>: statement. This code should
be designed either to fix the problem and resume execution in the main code
block or to terminate execution of the procedure. You can't use to the On Error
Goto <label>: statement merely skip over lines. For example, the following code
will not work properly:

 On Error GoTo Err1:
 Debug.Print 1 / 0
 ' more code
Err1:
 On Error GoTo Err2:
 Debug.Print 1 / 0
 ' more code
Immediate Window

The Immediate Window is a window in the VBE in which you can enter commands
and view and change the contents of variables while you code is in Break mode or
when no macro code is executing. (Break mode is the state of VBA when code
execution is paused at a break point (see Breakpoints, below). To display the
Immediate Window, press CTRL+G or choose it from the View menu.

In the Immediate Window, you can display the value of a variable by using the ?
command. Simply type ? followed by the variable name and press Enter. VBA will
display the contents of the variable in the Immediate Window. For example,

?ActiveCell.Address
A10

You can also execute VBA commands in the Immediate Window by omitting the
question mark and entering the command followed by the Enter key:

Debug.Print

You can use the Debug.Print statement anywhere in your code to display
messages or variable values in the Immediate Window. These statements don't
require any confirmation or acknowledgement from the user so they won't affect
the operation of your code. For example, you can send a message to the
Immediate Window when a particular section of code is executed.

'
' some code
'
Debug.Print "Starting Code Section 1"

The liberal use of Debug.Print statements makes it easy to track the execution of
your code. Debug.Print statements have no effect on the execution of your code
and so it is safe to leave them in code projects that are distributed to end users.
Debug.Print statements send messages to the Immediate Window, so you should
have this window open in order to see the messages.

Unfortunately, there is no way to programmatically clear the Immediate Window.
This is a shortcoming that has frustrated many programmers.

Range("A1").Value = 1234

Break Points

A break point is a setting on a line of code that tells VBA to pause execution
immediately before that line of code is executed. Code execution is placed in what
is called break mode. When VBA is in break mode, you can enter commands in to
the Immediate Window to display or change the values of variables.

To put a break point on a line of code, place the cursor on that line and press F9 or
choose "Toggle Breakpoint" from the Debug menu. To remove a break point, place
the cursor on the line with the break point and press F9 or choose "Toggle
Breakpoint" from the Debug menu. When a line contains a break point, it is
displayed with a brick colored background. Immediately before this line of code is
executed, it will appear with a yellow background. Remember, when a break point
is encountered, code execution is paused but that line of code has not yet
executed. You cannot place break points on blank lines, comment lines, or variable
declaration lines (lines with Dim statements).

After a break point is encountered, you can resume normal code execution by
pressing F5 or choosing "Continue" from the Run menu, or stepping through the
code line by line (see below). Note that break points are not saved in the
workbook file. If you close the file, all break points are removed. Breakpoints are
preserved as long as the file is open.

Stepping Through Code

Normally, your code runs unattended. It executes until its logical end. However,
when you are testing code, it is often useful to step through the code line by line,
watching each line of code take effect. This makes it easy to determine exactly
what line is causing incorrect behavior. You can step through code line by line by
pressing the F8 key to start the procedure in which the cursor is, or when VBA is
paused at a break point. Pressing F8 causes VBA to execute each line one at a
time, highlighting the next line of code in yellow. Note, the highlighted line is the
line of code that will execute when you press F8. It has not yet been executed.

If your procedure calls another procedure, pressing F8 will cause VBA to step
inside that procedure and execute it line by line. You can use SHIFT+F8 to "Step
Over" the procedure call. This means that the entire called procedure is executed
as one line of code. This can make debugging simpler if you are confident that the
problem does not lie within a called procedure.

When you are in a called procedure, you can use CTRL+SHIFT+F8 to "Step Out" of
the current procedure. This causes VBA to execute until the end of the procedure
is reached (an End Sub or Exit Sub statement) and then stop at the line of code
immediately following the line which called the procedure.

Locals Window

The Locals Window displays all the variables in a procedure (as well as global
variables declared at the project or module level) and their values. This makes it
easy to see exactly what the value of each variable is, and where it changes, as
you step through the code. You can display the Locals Window by choosing it from
the View menu. The Locals Window does not allow you to change the values of
variables. It simply displays their names and values. The Locals Window is shown
below. Note that the variables X and Y in procedure Test are displayed in the
window. The line highlighted in yellow is the current line of execution -- it is the
next line of code that VBA will execute.

Watch Window

The Watch Window allows you to "watch" a specific variable or expression and
cause code execution to pause and enter break mode when the value of that
variable or expression is True (non-zero) or whenever that variable is changed.

(Note, this is not to be confused with the Watch object and the Watches
collection).

To display the Watch Window, choose it from the View menu. To create a new
watch, choose Add Watch from the Debug menu. This will display the Add Watch
window, as shown below.

There are three types of watches, shown in the Watch Type group box. "Watch
Expression" causes that watch to work much like the Locals Window display. It
simply displays the value of a variable or expression as the code is executed.
"Break When Value Is True" causes VBA to enter break mode when the watch
variable or expression is True (not equal to zero). "Break When Value Changes"
causes VBA to enter break mode when the value of the variable or expression
changes value.

You can have many watches active in your project, and all watches are displayed
in the Watch Window. This makes is simple to determine when a variable changes
value.

Chapter 7

Events

Beginning VBA: Events

Every time you do something in Excel, an event happens. Selecting cells, changing
cells, clicking a commandbar button: all these are events. Excel exposes some, but
not all, events in VBA and you, as a programmer, can write code to react to these
events.

Where To Put Event Code

Event code goes in class modules. For purposes of this post, we’ll be dealing with
those special class modules named ThisWorkbook, Sheet1, etc. When you open
the ThisWorkbook code window in the VBE, there are two dropdown boxes at the
top of the window. The left contains a list of objects associated with that code
window and the right contains a list of the events that are available to you.

Let’s look at some commonly used events:

Events

Workbook_Open

This event fires whenever the workbook containing the event is opened. It’s often
used to do set up work for your application, such as hiding sheets or creating
custom commandbars. There are no arguments to Workbook_Open.

Worksheet_Change

This event fires whenever a cell’s value changes on the worksheet. You can write
code to test the value entered in a cell, for example, replacing the built-in Data
Validation feature. It’s also commonly used to apply conditional formatting to cells
where you need more than three conditions. The Target argument is a reference to
the cell(s) that were changed. Remember that this event doesn’t fire as a result of
a formula recalculating, it requires input into a cell.

Worksheet_SelectionChange

This event fires when the user selects a cell. It’s argument is the same as the
Change event, that is, a reference to the cell(s) that was(were) selected. For both
the Change and SelectionChange events, you can limit the events to a particular
range. These examples limit the event so that the code runs when one cell was
selected, cell J10 was selected, and any cell in column A was selected:

Recursive Event Calls

http://www.dailydoseofexcel.com/archives/2004/05/03/beginning-vba-events/

Ooh, that sounds complicated. What this means is that your code calls events too.
If you change a cell via code, the Worksheet_Change event will fire and that code
will run. It’s not a bad thing, unless you don’t want it to happen.

The Application object has a property called EnableEvents which you can use to
prevent events from firing while your code is running. If, for instance, you used the
Worksheet_Change event to test a cell and, if the cell’s value is invalid, to change
the cell to something else, the event would fire again from within itself. When a
procedure (sub or function) calls itself, it’s called recursion. You could potentially
call the Change event over and over until you run out of memory. Not good. You
can wrap your code like this to make sure it doesn’t happen.

Private Sub Worksheet_Change(ByVal Target As Range)
 Application.EnableEvents = False
 If Target.Value <> 5 Then
 Target.Value = “Invalid”
 End If

 Application.EnableEvents = True

End Sub

Changing Enableevents to False (then back to True at the end) prevents the
Change event from being called from itself (when Target.Value is set to Invalid).

Automatically Run Excel Macros Upon Opening Excel
Workbook/Files. Auto Run Excel VBA Macro Code

Auto Run Excel Macros Upon Open.

Excel has the ability to automatically run/execute any Excel macro code of our
choosing when opening an Excel Workbook. This of course is providing that the
user has chosen to enable macros! In the past (pre Excel 97) one would name a
macro Auto_Open and Excel would automatically run/execute any code within
this procedure. This method, by the way, is still workable in Excel versions since
97 for backward compatibility.

 Workbook_Open Event

In Excel 97 Microsoft introduced what are called Events, one of these is the
Workbook_Open Event. However, unlike the old Auto_Open macro, the
Workbook_Open event is a procedure of the Workbook Object and as such, the
Workbook_Open procedure MUST reside in the private module of the Workbook
Object (ThisWorkbook). The Auto_Open macro on the other hand, must reside in
a standard public module.

Accessing the Private Module of the Workbook Object

http://www.ozgrid.com/VBA/ExcelWorkbookEvents.htm

(ThisWorkbook)

There are at least 2 ways to gain access to the private module of the Workbook
Object (ThisWorkbook)

1) While in Excel proper, right click on the Excel icon, top left next to File and
choose View Code.

2) While in the VBE double click the Module called ThisWorkbook, seen in the
Project Explorer (View>Project Explorer (Ctrl+R))

Once here, you can select "Workbook" from the Object drop down list, located in
the top left of the module pane. After you have selected "Workbook" Excel will
default to;

Private Sub Workbook_Open()

Note, in Excel 97 accessing ThisWorkbook would automatically add the
Workbook_Open event.

How to use the Workbook_Open Event

There are basically 2 ways we can have Excel VBA macro code run/execute via this
Workbook_Open event. See the 2 simple examples below;

Private Sub Workbook_Open()
 MsgBox "Hi, thanks for opening me", vbInformation
End Sub

Private Sub Workbook_Open()
 Run "MyMacro"
End Sub

In the second case, "MyMacro" must be the name of the procedure in any
standard public module (Insert>Module).

If you wish to run/execute code that also resides in the same private module
you cannot use the Run statement, only the procedure name. E.g.

Private Sub Workbook_Open()
 MyMacro
End Sub

Private Sub MyMacro()
 MsgBox "Hi, thanks for opening me", vbInformation
End Sub

Automatically Run Excel Macros When a Cell Changes/Enter Data.
Worksheet Change Event

Auto Run Excel Macros Upon Data Entry.
Excel has the ability to automatically run/execute any Excel macro code of our
choosing when data in any cell on a Worksheet changes. We can do this via the
Worksheet_Change event. We can even specify which cell/cells must be changed
before running our code.

Worksheet_Change Event

In Excel 97 Microsoft introduced what are called Events, one of these is the
Worksheet_Change Event. The Worksheet_Change event is a procedure of the
Worksheet Object and as such, the Worksheet_Change procedure MUST reside in
the private module of the Worksheet Object.

Accessing the Private Module of the Worksheet Object

There are at least 2 ways to gain access to the private module of the Worksheet
Object.

1) While in Excel proper, right click on the Worksheet name tab and choose View
Code.

2) While in the VBE double click the Module called Sheet* (Sheet*), seen in the
Project Explorer (View>Project Explorer (Ctrl+R)) under Microsoft Excel
Objects.

Once here, you can select "Worksheet" from the Object drop down list, located in
the top left of the module pane. After you have selected "Worksheet" Excel will
default to;

Private Sub Worksheet_Change(ByVal Target As Range)

Note, in Excel 97 accessing any the Module called Sheet* (Sheet*) would
automatically add the Workbook_Change event.

 How to use the Worksheet_Change Event

You will note in the: Private Sub Worksheet_Change(ByVal Target As Range)
there is a predefined variable called Target. This represents the Range Object of
the cell that was changed after pushing Enter. It is not the cell you land in after
pushing Enter! It is the variable called Target that we can use to determine
exactly which cell has changed. See the simple example below

Private Sub Worksheet_Change(ByVal Target As Range)
 MsgBox "You just changed " & Target.Address

http://www.ozgrid.com/VBA/ExcelWorkbookEvents.htm

End Sub

Note how we use the Address Property of the Range Object (Target) to identify

the cell.

Let's now see an example of how we can use the Address Property of the Range
Object (Target) to only run code when a specific cell is changed. In the case below,
we are going to multiply the new entry in A1 by 2, but only if a number has been
entered. We have also told Excel to do nothing (exit sub) if more than one cell has
been changed, or the data in A1 has been deleted.

Private Sub Worksheet_Change(ByVal Target As Range)
 'Do nothing if more than one cell is changed or content deleted
 If Target.Cells.Count > 1 Or IsEmpty(Target) Then Exit Sub

 If Target.Address = "A1" Then
 'Ensure target is a number before multiplying by 2
 If IsNumeric(Target) Then
 'Stop any possible runtime errors and halting code
 On Error Resume Next
 'Turn off ALL events so the Target * 2 does not _
 put the code into a loop.
 Application.EnableEvents = False
 Target = Target * 2
 'Turn events back on
 Application.EnableEvents = True
 'Allow run time errors again
 On Error GoTo 0
 End If
 End If

End Sub

In the above code we have made use of Application.EnableEvents to ensure the
multiplying of A1 by 2 does NOT cause the change event to run again and get
itself in a loop.

If want the change event to run when/if more than one cell is changed, we would
remove the Target.Cells.Count > 1 and replace all occurrences of Target (but
not ByVal Target as Range) to Target(1,1). This then forces Excel to only
consider the active cell should more than one cell be changed. If you are not
aware, there can only ever be 1 active cell in any selection and that is always the
cell you start your selection from.

Monitor More Than 1 Cell (Target)

It is often needed that we run code when any cell in a range of cells changes. For
example, lets say each time any cell in the range A1:A10 changes we need to

multiple by 2. In this case we would use an If Not Statement, with the Intersect
Method to determine if the Target is within the range A1:A10. That is;

If Not Intersect(Target, Range("A1:A10")) Is Nothing Then

Example

Mask Excel Time Entries

Unlike Access, Excel does not allow for us to mask time and/or date entries.
However, we can use the Worksheet_Change Event to achieve masked time
entries. For the code to work times should be entered as 4 digits, e.g. 2244, 0130,
1325 will change to 22:44, 01:30 and 13:25 respectively. Note how the time mask
is only applicable to the range A1:A100, but can be any range. You can change the
display format (.NumberFormat = "[h]:mm") of the code to suit your needs.

To insert the code, right click on the Sheet name tab, select View Code
and type the code below;

Private Sub Worksheet_Change(ByVal Target As Range)
Dim vVal
 If Target.Cells.Count > 1 Then Exit Sub
 If Intersect(Target, Range("A1:A100")) Is Nothing Then Exit Sub

 With Target

 vVal = Format(.Value, "0000")
 If IsNumeric(vVal) And Len(vVal) = 4 Then
 Application.EnableEvents = False
 .Value = Left(vVal, 2) & ":" & Right(vVal, 2)
 .NumberFormat = "[h]:mm"
 End If
 End With

 Application.EnableEvents = True

End Sub

http://www.ozgrid.com/VBA/run-macros-change.htm
http://www.ozgrid.com/VBA/vba-intersect.htm
http://www.ozgrid.com/VBA/vba-intersect.htm

Chapter 8

UserForms

A UserForm object is a window or dialog box that makes up part of an application's
user interface.

Creating an UserForm

The Course Booking Form

The Course Booking Form is a simple
form illustrating the principles of
UserForm design and the associated VBA
coding.
It uses a selection of controls including
text boxes, combo boxes, option buttons
grouped in a frame, check boxes and
command buttons.
When the user clicks the OK button their
input is entered into the next available
row on the worksheet.

Description of the Form:
There are two simple text boxes (Name:
and Phone:) into which the user can type
free text, and two combo boxes
(Department and Course) that let the
user to pick an item from the list.
There are three option buttons
(Introduction, Intermediate and
Advanced) grouped in a frame (Level) so
that the user can choose only one of the
options.

There are two check boxes (Lunch Required and Vegetarian) that, because they
are not grouped in a frame, can both be chosen if required. However, if the person
making the booking does not want lunch we do not need to know whether or not
they are vegetarian. So, the Vegetarian check box is greyed-out until required.
There are three command buttons (OK, Cancel and Clear Form) each of which
performs a pre-defined function when clicked.

javascript:hhobj_7.Click()

The Control Properties Settings:
Control Type Property Setting

UserForm UserForm Name frmCourseBooking

Caption Course Booking Form

Name Text Box Name txtName

Phone Text Box Name txtPhone

Department Combo Box Name cboDepartment

Course Combo Box Name cboCourse

Level Frame Name fraLevel

Caption Level

Introduction Option Button Name optIntroduction

Intermediate Option Button Name optIntermediate

Advanced Option Button Name optAdvanced

Lunch
Required

Check Box Name chkLunch

Vegetarian Check Box Name chkVegetarian

Enabled False

OK Command
Button

Name cmdOk

Caption OK

Default True

Cancel Command
Button

Name cmdCancel

Caption Cancel

Cancel True

Clear Form Command
Button

Name cmdClearForm

Building the Form
If you want to build the form yourself, simply copy the layout shown in the
illustration above. Follow the steps below:

1. Open the workbook that you want the form to belong in (UserForms like macros
have to be attached to a workbook) and switch to the Visual Basic Editor.

2. In the Visual Basic Editor click the Insert UserForm button (or go to Insert >
UserForm).

3. If the toolbox does not appear by itself (first click the form to make sure it isn’t
hiding) click the Toolbox button (or go to View > Toolbox).

4. To place a control on the form click the appropriate button on the toolbox then
click the form. Controls can be moved by dragging them by their edges, or
resized by dragging the buttons around their perimeter.

5. To edit the properties of a control, make sure the chosen control is selected
then make the appropriate changes in the Properties window. If you can’t see
the properties window go to View > Properties Window.

6. To remove a control from the form, select it and click the Delete key on your
keyboard.

A UserForm will not actually do anything until the code that drives the form and its
various controls is created. The next step is to write the code that drives the form
itself.

Adding the Code: 1 Initialising the Form

Most forms need some kind of setting up when they open. This may be setting
default values, making sure field are empty, or building the lists of combo boxes.
This process is called Initialising the Form and it is taken care of by a macro called
UserForm_Initialize. Here's how to build the code to initialise the Course Booking
Form:

1. To view the form’s code window go to View > Code or click F7.

2. When the code window first opens it contains an empty UserForm_Click()
procedure. Use the drop-down lists at the top of the code window to choose
UserForm and Initialize. This will create the procedure you need. You can
now delete the UserForm_Click() procedure.

3. Enter the following code into the procedure:

Private Sub UserForm_Initialize()
 txtName.Value = ""
 txtPhone.Value = ""
 With cboDepartment
 .AddItem "Sales"

 .AddItem "Marketing"
 .AddItem "Administration"
 .AddItem "Design"
 .AddItem "Advertising"
 .AddItem "Dispatch"
 .AddItem "Transportation"
 End With
 cboDepartment.Value = ""
 With cboCourse
 .AddItem "Access"
 .AddItem "Excel"
 .AddItem "PowerPoint"
 .AddItem "Word"
 .AddItem "FrontPage"
 End With
 cboCourse.Value = ""
 optIntroduction = True
 chkLunch = False
 chkVegetarian = False
 txtName.SetFocus
End Sub

How the Initialise Code Works:

The purpose of the UserForm_Initialize() procedure is to prepare the form for use,
setting the default values for the various controls and creating the lists that the
combo boxes will show.

These lines set the contents of the two text boxes to empty:

txtName.Value = ""
txtPhone.Value = ""

Next come the instructions for the combo boxes. First of all the contents of the list
are specified, then the initial value of the combo box is set to empty.

With cboDepartment
 .AddItem "Sales"
 .AddItem "Marketing"
 (as many as necessary…)
End With
 cboDepartment.Value = ""

If required an initial choice can be made from the option group, in this case:

optIntroduction = True

Both check boxes are set to False (i.e. no tick). Set to True if you want the check
box to appear already ticked:

chkLunch = False

chkVegetarian = False

Finally, The focus is taken to the first text box. This places the users cursor in the
text box so that they do not need to click the box before they start to type:

txtName.SetFocus

Adding the Code: 2 Making the Buttons Work
There are three command buttons on the form and each must be powered by its
own procedure. Starting with the simple ones…

Coding the Cancel Button:

Earlier, we used the Properties Window to set the Cancel property of the Cancel
button to True. When you set the Cancel property of a command button to True,
this has the effect of "clicking" that button when the user presses the Esc key on
their keyboard. But this alone will not cause anything to happen to the form. You
need to create the code for the click event of the button that will, in this case,
close the form. Here's how:
1. With the UserForm open for editing in the Visual Basic Editor, double-click the

Cancel button. The form's code window opens with the cmdCancel_Click()
procedure ready for editing.

2. The code for closing a form is very simple. Add a line of code to the procedure
so it looks like this:

Private Sub cmdCancel_Click()
 Unload Me
End Sub

Coding the Clear Form Button:

Add a button to clear the form in case the user wanted to change their mind and
reset everything, and to make it easier if they had several bookings to make at
one time. All it has to do is run the Initialise procedure again. A macro can be told
to run another macro (or series of macros if necessary) by using the Call keyword:

1. Double-click the Clear Form button. The form's code window opens with the
cmdClearForm_Click() procedure ready for editing.

2. Add a line of code to the procedure so it looks like this:

Private Sub cmdClearForm_Click()
 Call UserForm_Initialize
End Sub

Coding the OK Button:

This is the piece of code that has to do the job of transferring the user's choices
and text input on to the worksheet. When we set the Cancel button's Cancel
property to True we also set the OK button's Default property to True. This has of
clicking the OK button when the user presses the Enter (or Return) key on their
keyboard (providing they have not used their Tab key to tab to another button).
Here's the code to make the button work:
1. Double-click the OK button. The form's code window opens with the

cmdOK_Click() procedure ready for editing.

2. Edit the procedure to add the following code:

Private Sub cmdOK_Click()
 ActiveWorkbook.Sheets("Course Bookings").Activate
 Range("A1").Select
 Do
 If IsEmpty(ActiveCell) = False Then
 ActiveCell.Offset(1, 0).Select
 End If
 Loop Until IsEmpty(ActiveCell) = True
 ActiveCell.Value = txtName.Value
 ActiveCell.Offset(0, 1) = txtPhone.Value
 ActiveCell.Offset(0, 2) = cboDepartment.Value
 ActiveCell.Offset(0, 3) = cboCourse.Value
 If optIntroduction = True Then
 ActiveCell.Offset(0, 4).Value = "Intro"
 ElseIf optIntermediate = True Then
 ActiveCell.Offset(0, 4).Value = "Intermed"
 Else
 ActiveCell.Offset(0, 4).Value = "Adv"
 End If
 If chkLunch = True Then
 ActiveCell.Offset(0, 5).Value = "Yes"
 Else
 ActiveCell.Offset(0, 5).Value = "No"
 End If
 If chkVegetarian = True Then
 ActiveCell.Offset(0, 6).Value = "Yes"
 Else
 If chkLunch = False Then
 ActiveCell.Offset(0, 6).Value = ""
 Else
 ActiveCell.Offset(0, 6).Value = "No"
 End If
 End If
 Range("A1").Select
End Sub

How the CmdOK_Click code works:

The first two lines make sure that the correct workbook is active and moves the
selection to cell A1:

ActiveWorkbook.Sheets("Course Bookings").Activate
Range("A1").Select

The next few lines moves the selection down the worksheet until it finds an empty
cell:

Do
If IsEmpty(ActiveCell) = False Then
 ActiveCell.Offset(1, 0).Select
End If
Loop Until IsEmpty(ActiveCell) = True

The next four lines start to write the contents of the form on to the worksheet,
using the active cell (which is in column A) as a reference and moving along the
row a cell at a time:

ActiveCell.Value = txtName.Value
ActiveCell.Offset(0, 1) = txtPhone.Value
ActiveCell.Offset(0, 2) = cboDepartment.Value
ActiveCell.Offset(0, 3) = cboCourse.Value

Now we come to the option buttons. These have been placed in a frame on the
form so the user can choose only one. An IF statement is used to instruct Excel
what to for each option:

If optIntroduction = True Then
 ActiveCell.Offset(0, 4).Value = "Intro"
ElseIf optIntermediate = True Then
 ActiveCell.Offset(0, 4).Value = "Intermed"
Else
 ActiveCell.Offset(0, 4).Value = "Adv"
End If

VBA IF statements are much easier to manage than Excel's IF function. You can
have as many options as you want, just insert an additional ElseIf for each one. If
there were only two options, you wouldn't need the ElseIf, just the If and Else
would suffice (don't forget - they all need an End If).

There is another IF statement for each check box. For the Lunch Required check
box, a tick in the box means "Yes" the person requires lunch, and no tick means
"No" they don't.

If chkLunch = True Then
 ActiveCell.Offset(0, 5).Value = "Yes"
Else
 ActiveCell.Offset(0, 5).Value = "No"
End If

We could use a similar IF statement for the Vegetarian check box, but if the person
does not require lunch it is irrelevant whether or not they are vegetarian. In any
case, it would be wrong to assume that they were not vegetarian simply because

they did not require lunch. The IF statement therefore contains a second, nested if
statement:

If chkVegetarian = True Then
 ActiveCell.Offset(0, 6).Value = "Yes"
Else
 If chkLunch = False Then
 ActiveCell.Offset(0, 6).Value = ""
 Else
 ActiveCell.Offset(0, 6).Value = "No"
 End If
End If

A tick in the box means "Yes" the person is vegetarian. If there is no tick in the
box, the nested IF statement looks at the Lunch Required check box. If the Lunch
Required check box has a tick in it then no tick in the Vegetarian check box means
that the person is not vegetarian so it inserts "No" into the cell. However, if the
Lunch Required check box does not have a tick in it, then we do not know whether
or not the person is vegetarian (it doesn't matter anyway) so the cell is left blank
("").

Finally the selection is taken back to the beginning of the worksheet, ready for the
next entry:

Range("A1").Select

Adding the Code 3: Manipulating the Form
Finally, an example of how the controls on a form can be manipulated whilst it is in
use. When the control properties were set, the Enabled property of the
Vegetarian check box was set to False. When a control is not enabled the user
cannot enter a value into it, although it can hold a value that was there already,
and VBA can add, remove or change the value.

We don't need to know whether or not the person is vegetarian (even if they are!)
if they aren't ordering lunch. So, the Vegetarian check box remains disabled unless
a tick is placed in the Lunch Required check box. Then the user is free to tick the
Vegetarian check box if they want to. If they tick it we will know that they have
answered "Yes" and if they don't we know they have answered "No".

We can toggle the Enabled property from False to True by having a procedure
that runs automatically whenever the value of the Lunch Required check box
changes. Fortunately, more controls have a Change procedure and the one we
use here is chkLunch_Change(). We'll use this to enable the Vegetarian check
box when the Lunch Required check box is ticked, and disable it when the Lunch
Required check box is not ticked.

There's just one more thing we need to do. Supposing someone ticked the Lunch
Required check box, and also ticked the Vegetarian check box. Then they changed
their mind and removed the tick from the Lunch Required check box. The
Vegetarian check box would be disabled but the tick that was put in earlier would
remain.

An extra line of code can make sure the tick is removed when the box is disabled.
Here's the whole thing:

Private Sub chkLunch_Change()
 If chkLunch = True Then
 chkVegetarian.Enabled = True
 Else
 chkVegetarian.Enabled = False
 chkVegetarian = False
 End If
End Sub

Opening the Form

The form is now ready for use so it needs to be opened with a simple macro. That
can be attached to a custom toolbar button, a command button drawn on the
worksheet, or any graphic (right click the graphic and choose Assign Macro). If
necessary, create a new module for the workbook and add this procedure:

Sub OpenCourseBookingForm()
 frmCourseBooking.Show
End Sub

	Chapter 1
	Macros

	Introduction
	The Macro Recorder

	The Visual Basic Editor
	The VBAProject Window
	The Properties Window (Sheet1)
	The Properties Window (Module1)
	The Code Window
	Modifying Macros
	Creating Macros with VBA for Excel
	Testing Macros

	Chapter 2
	Variables and Data Types

	Introduction
	Variable Data Types
	Why we use variables

	Declaring Variables
	Excel VBA Variables Lifetime & Scope
	Procedure-Level Variables
	Module-Level Variables
	Project-Level, Workbook Level, or Public Module-Level

	Modules and Procedures
	Modules and Procedures and Their Scope
	Calling Sub Procedures and Function Procedures
	Passing Argument by Reference or by Value

	Chapter 3
	Message Box and Input Box

	Message Box
	InputBox
	Application.InputBox
	Chapter 4
	Loops and Conditional Statements

	Why Loops?
	Loop Structures
	For ... Next
	For ... Next Loop With Step
	Do While ... Loop
	Do Until ... Loop
	Do ... Loop While
	Do ... Loop Until

	Conditional Statements
	If..Then...End If
	If..Then...End If (multiple tiers)
	If..Then...And...End If
	If..Then...Or...End If
	If..Then...Else...End If
	If..Then..ElseIf...End If
	Select Case

	Chapter 5
	Objects and Collections

	Introduction
	Collections
	Referencing Items in A Collection

	Workbook and Worksheet Object
	Range Object and Cells Property
	Referencing Ranges in Other Sheets

	Working with cells
	Offset property
	Using the CurrentRegion Property to Quickly Select a Data Range
	Using the SpecialCells Method to Select Specific Cells

	Methods and Properties
	Chapter 6
	Error Handling

	Introduction
	The On Error Statement
	Debug.Print
	Break Points
	Stepping Through Code
	Locals Window
	Watch Window
	Chapter 7
	Events

	Beginning VBA: Events
	Where To Put Event Code
	Events
	Workbook_Open
	Worksheet_Change
	Worksheet_SelectionChange

	Automatically Run Excel Macros Upon Opening Excel Workbook/Files. Auto Run Excel VBA Macro Code
	Auto Run Excel Macros Upon Open.
	 Workbook_Open Event
	Auto Run Excel Macros Upon Data Entry.
	Worksheet_Change Event
	Monitor More Than 1 Cell (Target)
	Example

	Chapter 8
	UserForms

	Creating an UserForm
	The Course Booking Form
	Property

	Building the Form
	Adding the Code: 1 Initialising the Form
	Adding the Code: 2 Making the Buttons Work
	Adding the Code 3: Manipulating the Form
	Opening the Form

