
Advanced Excel Techniques

OAIR Conference 2007
Columbus, OH

Ashutosh Nandeshwar

ii

Contents

1 Shortcuts 1

1.1 Take Control of the “Ctrl” Key . 1
1.1.1 Cut-Copy-Paste . 1

1.1.2 Move Around . 1
1.1.3 Misc . 1

1.2 General . 2
1.3 Names . 4

2 Formulae 5

2.1 IF . 5

2.2 VLOOKUP . 7

2.3 COUNTIF and SUMIF . 8

2.4 MATCH, INDEX, and OFFSET . 8

2.5 SUMPRODUCT . 11

3 Magic of Array Formulae 15

3.1 Count Unique Rows . 15

3.2 Count Duplicates . 16

3.3 Average . 16

3.3.1 Average Excluding Zeros . 16

3.3.2 Average of n Large or Small Numbers 17

4 Visual Basic for Applications (VBA) 19

4.1 Where to Put the Code? . 19
4.2 Macro Recorder . 19

4.3 Hello World! . 20
4.4 Autofit Columns . 20

4.5 Manual Calculation . 21
4.6 Footer . 22

4.7 Print Formula . 22
4.8 User-Defined Function (UDF): Reverse String 23

4.9 Concatenate Range . 24
4.10 Flip a Range . 25

4.11 Fill Blank Cells . 27

5 Resources 29

Bibliography 31

iii

iv CONTENTS

A Keyboard Shortcuts from cpearson.com 33

List of Figures

1.1 Fixed Number of Zeros using TEXT and REPT Function 3
1.2 Quick tool . 3
1.3 Creating Names . 4

2.1 Simple IF formula . 5
2.2 IF with AND and nested IF . 6
2.3 IF formula with AND and OR . 6
2.4 Nested IFs . 6
2.5 VLOOKUP Formula with ISNA . 7
2.6 Vlookup Formula with Range . 8
2.7 Examples of COUNTIF Function . 9
2.8 Examples of SUMIF Function . 9
2.9 Example of MATCH Function . 10
2.10 Example of INDEX Function . 10
2.11 Using MAX, MATCH, and INDEX Functions 11
2.12 Example of OFFSET Function . 12
2.13 Example of SUMPRODUCT and SUM as an Array Formula 12
2.14 Colors of Range Names . 13
2.15 Example of SUMPRODUCT and SUM for Multiple Conditions 13
2.16 Array Coercion Example . 14

3.1 Example of AVERAGE Function Excluding Zeros 16
3.2 AVERAGE and SUM of Top Three and Bottom Three 18

4.1 Steps to Create Custom Toolbar Buttons for Macros [1] 21
4.2 Example of Reverse String UDF . 23
4.3 Example of Concatenate Range Function 24
4.4 Example of Flip Procedure . 25
4.5 Example of Fill Blanks Procedure . 27

v

vi LIST OF FIGURES

Listings

4.1 Hello World Procedure . 20
4.2 Autofit Column and Unwrap text . 20
4.3 Manual Calculation Macro . 22
4.4 Procedure to Set Footer . 22
4.5 Print Formula in Adjacent Cells . 22
4.6 Reverse String UDF . 23
4.7 Palindrome Function . 24
4.8 Concatenate Range Function . 24
4.9 Procedure to Flip a Range . 26
4.10 Procedure to Fill the Blanks . 28

vii

viii LISTINGS

Chapter 1

Shortcuts

1.1 Take Control of the “Ctrl” Key

1.1.1 Cut-Copy-Paste

To paste special (values): for 2003 and lower, follow this sequence- Ctrl + C, Ctrl + V,
Alt + E, V, Enter

1.1.2 Move Around

Note: To select data between current position and position you want to go to, hold the
Shift key

� To go to cell A1- Hold Ctrl and Press Home

� To go to the last cell in the data- Hold Ctrl and Press End

� To go to the last non-blank cell in a column from top- Hold Ctrl and Press Down
Arrow

� To go to the last non-blank cell in a column from bottom- Hold Ctrl and Press Up
Arrow

� To go to the last non-blank cell in a row from left- Hold Ctrl and Press Right Arrow

� To go to the last non-blank cell in a row from right- Hold Ctrl and Press Left Arrow

� To go to the next worksheet- Hold Ctrl and Press Page Down

� To go to the next worksheet- Hold Ctrl and Press Page Up

1.1.3 Misc

� To select the current row- Hold Shift and Press Spacebar

� To select the current row- Hold Ctrl and Press Spacebar

� To format the current selection- Hold Ctrl and Press 1

� To zoom in or out in the worksheet- Hold Ctrl and Scroll mouse wheel up or down

1

2 CHAPTER 1. SHORTCUTS

� To view the formulae instead of their values- Hold Ctrl and press tilde (∼)

� To force a new line in the text- Hold Alt and press Enter

� To change the reference (relative to absolute) of a range in a formula- Select the
range in the formula and Hit F4 to cycle to through the references

1.2 General

� To fill the data or formula down from the top cell to all the cells below- Double-click

the thick plus() symbol at the right-bottom corner of the cell
Note: filling-down will stop whenever a blank cell on the left-side is encountered

� To fill the data or formula, when double-clicking does not work, follow these steps:

1. Go to the first cell that you would like to copy or fill in other cells

2. Press F2 to edit the formula in that cell

3. In the name box , type in the address of the last
cell of the range, where you want to fill data or formula, then Hit Enter while
Holding the Shift key

� To convert “textnumbers” to numbers use any of these methods:

1. Type 0 in a blank cell, copy that cell, and Paste Special > Add over the range,
which has “textnumbers”

2. Select the column that has “textnumbers”, and use Text to Columns on this
range (without providing any delimiters)

3. Use SmartTags

� To get fixed number of zeros in front of a number use this formula

1.2. GENERAL 3

=TEXT(value,REPT("0",n))

where value is the number that you want to format and n is the number of zeros
you want in front of the number. See Figure 1.1.

Figure 1.1: Fixed Number of Zeros using TEXT and REPT Function

� To get the unique records from the data follow these steps:

1. Select the column or click a cell in the range or list you want to filter

2. On the Data menu, point to Filter, and then click Advanced Filter

3. Do one of the following:

(a) To filter the range or list in place, similar to using AutoFilter, click Filter
the list, in-place

(b) To copy the results of the filter to another location, click Copy to another
location. Then, in the Copy To box, enter a cell reference

4. Select the Unique records only check box

� Quick Tool provide stats, such as Average, Count, Count Nums, Max, Min, and
Sum of the data from a selected range without entering any formulae. To change
the calculation, right click on the bottom toolbar and choose the desired statistic,
see Figure 1.2

(a) Quick tool in 2007 (b) Quick tool in 2003

Figure 1.2: Quick tool

� To view statistics, such as Sum, Average, Max, and Min on the data with AutoFilter
on, use the SUBTOTAL function. For example, =SUBTOTAL(9,A1:A20) will return
the sum of the cells from the range A1 to A20 that are filtered and visible.

4 CHAPTER 1. SHORTCUTS

1.3 Names

Names are helpful, as they are easy to remember, and rather than providing a reference to
a range, we can directly refer to them by using names. We can assign names to formulae
and range. Names are specially useful when you have big data table, and you would like
to do counts and sums, or use other formulae. One quick way to define names is using
the “Create Name” feature (see Figure 1.3(a)). To use this follow these steps:

1. Select your data (shortcut: Ctrl + A, or go to the first cell (Ctrl + Home) and
press Ctrl + End)

2. Click on the Insert Menu, then click on the Name option, and then click on Create,
or Ctrl+Shift+F3

3. Check the Top row box to give names to the columns of data

(a) Create Names Box

(b) Name in the Name
Box

Figure 1.3: Creating Names

After the names are created, if you select the complete data range, it would show the
name of the range in the name box, see Figure 1.3(b).

Chapter 2

Formulae

2.1 IF

The syntax of an IF formula is:

IF(logical_test,value_if_true,value_if_false)

For example, if we create an indicator for non-residents, and the condition is that if the
permanent state is not equal to OH, then non-resident indicator is equal to Y, else N.
We can write this formula two ways (See Figure 2.1):

=IF(B2<>"OH","Y","N")

=IF(B3="OH","N","Y")

Figure 2.1: Simple IF formula

If we want to add some more conditions to IF formula, we can use AND, OR, or nested
IFs (up to seven for 20031 and lower, and 64 for 20072.) For example, we want scholarship
indicator to be Y if the GPA is greater than equal to 2.5 and need greater than equal to
500. This can be achieved two ways (see Figure 2.2):

1. Using AND

=IF(AND(B12>=2.5,C12>=500),"Y","N")

2. Two nested IFs

=IF(B15>=2.5,IF(C15>=500,"Y","N"),"N")

5

6 CHAPTER 2. FORMULAE

Figure 2.2: IF with AND and nested IF

Figure 2.3: IF formula with AND and OR

We can build any condition for the first argument of the IF formula that results in a TRUE
or FALSE. For example, if we create an “at-risk” indicator, based on two conditions:

1. If the current GPA is less than 2 AND current enrolled hours are less than 10, OR

2. Number of courses with F is greater than 1

We can build a formula using IF, AND, and OR to achieve this (see Figure 2.3):

=IF(OR(AND(B21<2,C21<10),D21>1),"Y","N")

Of course, we can create a lot more complicated IF formulae by nesting multiple IFs.
For example, if we want to convert college codes to college description, we can use nested
IFs to achieve that (see Figure 2.4); however, a better way to do that is using VLOOKUP.

=IF(A29="A","College of Arts",IF(A29="B","College of Business",IF(A29="T",

"College of Technology",IF(A29="E","College of Engineering","NA"))))

Figure 2.4: Nested IFs

1http://office.microsoft.com/en-us/excel/HP051992911033.aspx
2http://office.microsoft.com/en-us/excel/HP100738491033.aspx

http://office.microsoft.com/en-us/excel/HP051992911033.aspx
http://office.microsoft.com/en-us/excel/HP100738491033.aspx

2.2. VLOOKUP 7

2.2 VLOOKUP

VLOOKUP formula searches for a value in the first column of a table array and returns
a value in the same row from another column in the table array. The V in VLOOKUP
stands for vertical. Use VLOOKUP instead of HLOOKUP when your comparison values
are located in a column to the left of the data that you want to find. The syntax of
VLOOKUP formula is:

VLOOKUP(lookup_value,table_array,col_index_num,range_lookup)

In the above example, our lookup value is the college code and table array is a table with
the codes and its descriptions. The column index is the column that we want to return
after matching a code, and the range lookup is an argument to search for exact matches
(1 or TRUE) or approximate matches (0 or FALSE); however, if the search is for an
approximate match, then the values in the first column need to be sorted in an ascending
order. If the exact match argument is set to true, and if no match is found, this formula
would return a #NA error. To overcome this error we can nest an IF formula with ISNA
function to check if the VLOOKUP formula causes an error. See Figure 2.5 and notice
the shaded area for ISNA function.

=IF(ISNA(VLOOKUP(B50,A37:B40,2,0)),"Not found",

VLOOKUP(B50,A37:B40,2,0))

Figure 2.5: VLOOKUP Formula with ISNA

In Excel 2007, we can use function IFERROR to check if a formula is generating an error,
and this function will evaluate the first argument, if it generates an error, the function
will return the value supplied in the second argument.

=IFERROR(VLOOKUP(B49,B37:C40,2,0),"Not found")

We can use the approximate match argument when we want to return ranges. For
example, if we want to return the range on GPA based on the following conditions:

8 CHAPTER 2. FORMULAE

1. if GPA is >= 0 and < 2, the range is poor,

2. if GPA is >= 2 and < 2.5, the range is OK,

3. if GPA is >= 2.5 and < 3, the range is moderate,

4. if GPA is >= 3 and < 3.5, the range is good,

5. if GPA is >= 3.5, the range is very good

We can construct a lookup table as given in Figure 2.6(a), and use it in a VLOOKUP
formula as given in Figure 2.6(b).

(a)
Lookup
Ta-
ble

(b) Vlookup Formula

Figure 2.6: Vlookup Formula with Range

2.3 COUNTIF and SUMIF

COUNTIF function is useful when you quickly want to know a count based on a criterion
(for multiple criteria use Pivot tables, use array formulae, or use COUNTIFS in 2007.)
See Figure 2.7 for examples; the syntax of COUNTIF is:

COUNTIF(range,criteria)

SUMIF function is similar to the COUNTIF function; however, it offers two ranges-
one to test the criterion, and the other to sum based on the criterion. IF sum range is
omitted this function will sum the criterion range. See Figure 2.8 for some examples; the
syntax of SUMIF is:

SUMIF(range,criteria,sum_range)

2.4 MATCH, INDEX, and OFFSET

MATCH by itself is nothing special; it returns the position of an item in an array; however,
using some creativity and other functions wonderful formulae can be written. The syntax
of MATCH is:

MATCH(lookup_value,lookup_array,match_type)

2.4. MATCH, INDEX, AND OFFSET 9

Figure 2.7: Examples of COUNTIF Function

Figure 2.8: Examples of SUMIF Function

10 CHAPTER 2. FORMULAE

where lookup value is the value we want to find in the lookup array, and match type
determines the match type between exact and approximate (greater or smaller) match.
See Figure 2.9 for an example.

Figure 2.9: Example of MATCH Function

INDEX function in an array form returns an item from an array when given the row
and the column number. See Figure 2.10 for an example. The syntax of INDEX is:

INDEX(array,row_num,column_num)

Figure 2.10: Example of INDEX Function

As you can see, MATCH and INDEX by themselves are not very useful;however, when
we combine we can produce great results. For example, let’s look at the survey, where
we asked people to rate themselves (categories: Don’t know, Newbie, Savvy, Expert)
on Excel (concepts: Excel program itself,Conditional formatting,Spreadsheet formatting
and working,Simple formulae,Advanced formulae,Filters, Advanced Filters,VBA (macros)
Pivot tables,Data analysis), and I wanted to find the category that maximum people rated
themselves, for each concept (see Figure 2.11). To achieve this I used this formula:

=INDEX(B1:E1,0,MATCH(MAX(B2:E2),B2:E2))

where the range B1:E1 has the categories, and the range B2:E2 had the ratings. For
the concept “Excel program itself”, maximum number (14) of people rated themselves
as “Savvy”, but to find this using a formula is a three step process:

1. Find out the maximum number of ratings for each concept, and this is done using
the MAX function, which returns 14 for the range B2:E2.

=MAX(B2:E2)

2. Find out the position of this maximum value in the range B2:E2, and this is done
using the MATCH function, which returns 3.

2.5. SUMPRODUCT 11

=MATCH(14,B2:E2))

3. Find out the category name for this column position from the range B1:E1, and
this is done using the INDEX function, which returns “Savvy.”

=INDEX(B1:E1,0,3)

Figure 2.11: Using MAX, MATCH, and INDEX Functions

OFFSET returns a reference to a range that is a specified number of rows and columns
from a cell or range of cells. In a sense, this function is similar to the INDEX function;
however, rather than returning a value from an array, OFFSET returns a cell or range
reference. The syntax of OFFSET function is:

OFFSET(reference,rows,cols,height,width)

When I am using the values from a PivotTable to move to a nicer format, I have found
particular use of the OFFSET function. For example, consider the table obtained in
Figure 2.12(a), and we would like to report the yield percentages in a nicer format as
shown in Figure 2.12(b). This is achieved by using this OFFSET formula, and dragging
it across and down:

=OFFSET($B15,0,B$21)

2.5 SUMPRODUCT

SUMPRODUCT function multiplies the input arrays, and then adds them. The syntax
of SUMPRODUCT is:

SUMPRODUCT(arr1,arr2,...,arr30) for Excel 2003

SUMPRODUCT(arr1,arr2,...,arr255) for Excel 2007

12 CHAPTER 2. FORMULAE

(a) Pivot Table Data

(b) Using OFFSET Function

Figure 2.12: Example of OFFSET Function

Figure 2.13 is an example of SUMPRODUCT function, and SUM formula used as an
array formula. Array formulae are entered by pressing SHIFT, CONTROL, and ENTER
at the same time. Results of both formulae are achieved in two-steps:

1. Multiply each item of the arrays:
5× 6 = 30
7× 8 = 56
6× 9 = 54
9× 5 = 45

2. Sum these values:
30 + 56 + 54 + 45 = 185

Figure 2.13: Example of SUMPRODUCT and SUM as an Array Formula

The real magic of array formulae is in counting and summing based on multiple conditions.
For example, if we want to count number of students based on some criteria, we can use
either SUMPRODUCT, or SUM as an array formula. We will use the same data (1.3(a))
and the names created in Section 1.3. Let’s create counts for following conditions:

2.5. SUMPRODUCT 13

1. State is OH AND GPA is greater than 2.4 AND Gender is M. We can use these
formulae to find this count:

=SUMPRODUCT(--(State="OH"),--(GPA>2.4),--(Gender="M"))

{=SUM((State="OH")*(GPA>2.4)*(Gender="M"))}

2. Enrolled hours are greater than 10 AND Gender is F AND Race is W. We can use
these formulae to find this count:

=SUMPRODUCT(--(EnrCrHrs>10),--(Gender="F"),--(Race="W"))

{=SUM((EnrCrHrs>10)*(Gender="F")*(Race="W"))}

You can see in Figure 2.14 that as soon as you type the range name, Excel colors the
range, which is stored in a name. See Figure 2.15 for above two formulae. When Excel

Figure 2.14: Colors of Range Names

Figure 2.15: Example of SUMPRODUCT and SUM for Multiple Conditions

sees an array argument, such as State=“OH”, it evaluates each cell in that range with
that condition, and returns an array with TRUE or FALSE values. The double dashes
or minus signs (−−) are used for coercion to convert the logical values to numbers. For
example, if put one minus sign in front of a logical value TRUE, then Excel returns
-1, and if put one more minus sign in front of -1, then Excel will return positive 1 (see
Figure 2.16.) In our criterion of State=”OH”, Excel returns this array with logical values:

14 CHAPTER 2. FORMULAE

{FALSE; FALSE; TRUE; TRUE; FALSE; TRUE}

When we coerce it with one minus sign, Excel returns this array:

{0; 0; -1; -1; 0; -1}

After coercing it with two minus signs, Excel returns this array:

{0; 0; 1; 1; 0; 1}

In our example of State=“OH”, GPA > 2.4, and Gender=“M”, Excel creates three arrays:

{FALSE; FALSE; TRUE; TRUE; FALSE; TRUE}

{TRUE; FALSE; TRUE; TRUE; FALSE; TRUE}

{TRUE; TRUE; FALSE; TRUE; FALSE; FALSE}

When using double minus sign in SUMPRODUCT function, Excel first multiplies the ar-
rays with numbers, and then adds them, resulting in a count. In this case, the calculation
was like this:

1. Multiply each item in the arrays 0× 1× 1 = 0
0× 0× 1 = 0
1× 1× 0 = 0
1× 1× 1 = 1
0× 0× 0 = 0
1× 1× 0 = 0

2. Add the result of multiplication 0 + 0 + 0 + 1 + 0 + 0 = 1

Figure 2.16: Array Coercion Example

The array formula using SUM will do exactly the same thing, but there is no need of
coercing the arrays, as it automatically converts logical values to numbers. If we wish we
can enter a formula like this:

=SUMPRODUCT((State="OH")*(GPA>2.4)*(Gender="M"))

This formula will also return the exact same results; however, it is not proper form
providing arguments to this function, and results in slower performance.

Chapter 3

Magic of Array Formulae

Let’s see some magical things an array formula can do. As mentioned earlier, while
writing formulae for counting, range names are very useful. Following examples are with
range names. In addition, array formulae should be entered using Ctrl + Shift + Enter.
The curly braces surrounding the formula will automatically appear; do not enter formula
with the braces. Some of the array formulae are taken from Andrew’s Tips web-site with
permission. I would encourage readers to go to his web-site to find more interesting and
useful ways of array formulae. http://www.andrewsexceltips.com

3.1 Count Unique Rows

In our range of states, if we want to find out the number of unique values, we can write
a formula like this:

{=SUM(1/COUNTIF(State,State))}

The way this formula works is very intriguing; it works in three parts:

1. COUNTIF function counts the number of states matching the criterion. In this
case, we are supplying full range as criteria, as a result of that Excel returns an
array with the count of the appearance of each row of the range, therefore, we can
get this array:

{1;1;3;3;1;3}

For the states: WV, PA, and KY, COUNTIF returns 1, as they appear only once;
however, for OH, COUNTIF returns 3.

2. Calculate the division of 1 by the counts. This results in this array:

{1;1;0.3333;0.3333;1;0.3333}

3. Sum this array, which results in 4.

If we had 2 rows of KY, the division would be 1/2 + 1/2, again resulting in one. By
dividing 1 by the counts, it creates equal fractions and by summing these fractions we
get one for each duplicated row.

15

http://www.andrewsexceltips.com

16 CHAPTER 3. MAGIC OF ARRAY FORMULAE

3.2 Count Duplicates

To count duplicates we can use a formula like this:

{=SUM(IF(COUNTIF(State,State)>1,1,0))}

In this case, the COUNTIF function will return how many times a state has appeared, but
the IF function will return one for counts more than one, else will return zero, therefore,
if there are unique rows, the IF function will return zero, else the duplicate rows are
counted and summed.

3.3 Average

3.3.1 Average Excluding Zeros

If you would like to find out average of a range excluding zeros, such a formula can be
written:

{=AVERAGE(IF(B63:B67>0,B63:B67,""))}

This formula works in three parts:

1. The IF function tests the condition, and creates an array of logical values TRUE
or FALSE.

2. If it (the IF function) finds cells with values greater than zero, it returns that
cell, else it returns a blank string “”, which the AVERAGE function ignores while
calculating.

3. Find an average of the values in that array

For example, consider that data given in Figure 3.1. Let’s assume that these are the
number of applicants for each college by year, and we would like to find out the average
of applicants for each year, excluding zero applicants for a college.

Figure 3.1: Example of AVERAGE Function Excluding Zeros

Note: This logic can be used to construct formulae for finding average (or sum,
max) based on different criteria(for Excel 2003 and below, as Excel 2007 has SUMIFS,
AVERAGEIF, and AVERAGEIFS.) For example, to find average of GPA of the students,
who are not from OH, we can construct a formula like this:

3.3. AVERAGE 17

{=AVERAGE(IF(State<>"OH",GPA,""))}

To find maximum GPA of students, who are not from OH, we can construct a formula
like this:

{=MAX(IF(State<>"OH",GPA,0))}

We can add multiple criteria to this formula. For example, if we want to find maximum
GPA of students, who are from OH, and are males, we can construct a formula like this:

{=MAX((State="OH")*(Gender="M")*GPA)}

If we want to find minimum GPA of students, who are from OH, and are males, we can
construct a formula like this:

{=MIN(IF(State="OH",IF(Gender="F",GPA,""),""))}

If we would like to ignore the errors from a range and find average of that range, we can
construct a formula like this:

{=AVERAGE(IF(ISERROR(GPA),"",GPA))}

3.3.2 Average of n Large or Small Numbers

Suppose we have a list of application sources and number of applicants from each source
(see Figure 3.2) and we want to find out average number of applicants from top three
sources. To achieve this we can use following formula, where the range of applicants is
named as “Applicants”:

{=AVERAGE(LARGE(Applicants,{1,2,3}))}

This formula works in two parts:

1. The LARGE function finds out the nth largest number from a given range. In this
case, we have provided an array {1, 2, 3} to find out the largest, the second largest,
and the third largest number from the range. The LARGE function will return an
array with top three large numbers. In this example, these numbers are 49,47, and
33.

2. Average function finds out the average of this array, which is 43 in this example.

Let’s say that you want to find average for top eight sources, it would not be preferable
to write an array like this {1, 2, 3, 4, 5, 6, 7, 8}, therefore, we can use the ROW function to
generate an array of continuous numbers. For example, to generate an array of numbers
from one to eight this formula can be used:

=ROW(1:8)

However, this formula would not work if you add or delete rows between row number one
and eight, therefore, to make it nonvolatile use the INDIRECT function, such as:

=ROW(INDIRECT("1:8"))

18 CHAPTER 3. MAGIC OF ARRAY FORMULAE

Figure 3.2: AVERAGE and SUM of Top Three and Bottom Three

The INDIRECT function translates the text argument to Excel ranges. For example, if
cell A1 has the text “Sheet2”, then the formula =INDIRECT(A1 & ‘‘!A1’’) will return
the value of the cell A1 from Sheet2. The modified formula for finding average of eight
largest sources:

{=AVERAGE(LARGE(Applicants,ROW(INDIRECT("1:8"))))}

Using the same logic, formulae for finding average of n small numbers, or sum of n small
or large numbers can be constructed.

� Average applicants from bottom three sources:

{=AVERAGE(SMALL(Applicants,ROW(INDIRECT("1:3"))))}

� Sum of applicants from top three sources:

{=SUM(LARGE(Applicants,ROW(INDIRECT("1:3"))))}

� Sum of applicants from bottom three sources:

{=SUM(SMALL(Applicants,ROW(INDIRECT("1:3"))))}

Chapter 4

Visual Basic for Applications (VBA)

Once a person asked me, “why to use VBA?” I stumbled to give a reply, as VBA is such
a neat solution for me to customize Excel, it was ingrained in me, and I never developed
a justification for it; however, in retrospect, these are some of the reasons why one should
use VBA:

� When you have repetitive tasks, such as formatting, file creation, data manipulation

� Formulae are too complex to remain explainable. If you write some formulae that
you cannot explain to yourself after some time, then it is better that you code them

� Customizing Excel for your work environment to increase productivity, such as
creating add-ins, creating user-defined functions (UDFs), creating utilities

� When it is simply not possible to achieve what you want using Excel’s built-in
functions and utilities

A few pages on VBA from the book Excel 2007 Power Programming with VBA by
John Walkenbach, pp 135-138 [2].

4.1 Where to Put the Code?

There are numerous places to put the code, such as modules, worksheets, Thisworkbook,
and personal workbook. When you record a macro, Excel asks the location of the macro,
whether it is a new workbook, current workbook, or personal workbook. By default,
Excel inserts a module in the active workbook and puts the code in that module.

Personal workbook is a common and a hidden workbook for all other workbooks. It
is created when you record a macro for the first time. If there are numerous macros
that you use regularly, then it is a good idea to store them in the personal workbook. If
you store different macros in different workbooks, then accessing them can be an issue;
however, if you store them in personal workbook, then the macros can be accessed from
any workbook.

4.2 Macro Recorder

Macro recorder is a very good way to learn the objects and its properties, methods, and
actions. Although Excel’s macro recorder creates a lot of junk in the code, it is a very

19

20 CHAPTER 4. VISUAL BASIC FOR APPLICATIONS (VBA)

good start to learn about VBA. When you start recording, it records each of your action
to VBA equivalent; however, it can only record the actions that are doable using Excel’s
interface. For example, if you would like to create a table of contents of your sheets in a
workbook, you cannot record such a macro, and you would need to write code for it.

4.3 Hello World!

A simple “hello world!” procedure to produce a message box is given in Listing 4.1. Write
or copy this program in a worksheet’s VBE. To open the Visual Basic Editor (VBE) press
Alt + F11. You can run this procedure three ways:

1. From macro list (press Alt + F8 to bring up the list)

2. From VBE by selecting the procedure and clicking on the play button (or Press
F5)

3. Hitting the shortcut key, if one was assigned

Listing 4.1: Hello World Procedure

Sub HelloWorld ()
MsgBox ” He l lo world” , vbOKOnly, ”My F i r s t Program”
End Sub

The keyword Sub tells VBA that a procedure is starting, and the keyword End
Sub tells VBA that procedure has ended. A function is a procedure, but unlike regular
procedures it returns a value, and to start a function, Function keyword is used. The
word that follows after Sub or Function keywords is that name of that procedure or
function. You can insert a new procedure or a function by using the insert menu from
VBE.

MsgBox is VBA’s in-built function, which returns a message box with the input
values of prompt, button type, and title. There are few more input arguments of the
MsgBox function; however, often these arguments are sufficient. The syntax of MsgBox
function is:

MsgBox(prompt[, buttons] [, title] [, helpfile, context])

4.4 Autofit Columns

Often when I receive an Excel file, the columns width is too small to see everything from
a cell or the text is wrapped, that’s why I created a small macro or procedure to autofit
columns and remove wrapping of text. Listing 4.2 is the code for it.

Listing 4.2: Autofit Column and Unwrap text

Sub AutofitColumn ()
’Run a u t o f i t method f o r a l l columns
’Columns A to IV fo r Exce l 2003 and below
’Columns A to XFD For 2007

Columns (”A: IV”) . EntireColumn . AutoFit
’ Set the proper ty o f wrapping t e x t to f a l s e f o r a l l columns

4.5. MANUAL CALCULATION 21

Columns (”A: IV”) . WrapText = False
End Sub

In this example, the procedure name is AutofitColumn. Comments are included in
the code to improve readability and explanation; in VBA, comments start with a single
quote. EntireColumn is a property of the range, in this case columns, and Autofit
is a method of a range, which is specified by row(s) or column(s). Wraptext is also a
property of the range object. A range can contain cell(s), row(s), and column(s).

I even created a macro button for this by following the steps listed in Figure 4.1, given
in Excel 2002 Power Programming with VBA by John Walkenback, pp. 231 [1].

Figure 4.1: Steps to Create Custom Toolbar Buttons for Macros [1]

4.5 Manual Calculation

If you have many formulae and the calculation is set to automatic, you are bound to
face performance issues. With every change in the workbook, Excel will calculate all
the formulae. One simple solution would be to set the calculation to manual (Tools →
Options→ Calculation→ Check the manual radio button), and then perform calculations
only on the selected range using the code given in Listing 4.3. In Listing 4.3, Calculate
is a method for the selected range. This is particularly useful when you are developing
big spreadsheet models, and want to test your models. To be really effective you should
assign a shortcut key to this macro, to do assign a shortcut key follow these steps:

1. Press Alt + F8 to bring the list of macros

2. Select the macro and Hit Options

22 CHAPTER 4. VISUAL BASIC FOR APPLICATIONS (VBA)

3. Assign the shortcut key

Listing 4.3: Manual Calculation Macro

Sub ManCalc ()
S e l e c t i o n . Ca l cu la t e

End Sub

4.6 Footer

I like to have footers on every worksheet that I send out with my initials, date, and page
number. I have the procedure given in Listing 4.4 to achieve that.

Listing 4.4: Procedure to Set Footer

Sub Footer ()
With Act iveSheet

. PageSetup . Le f tFooter = ”From the O f f i c e o f RPIE , ” &
Chr(13) & ”&D”

. PageSetup . RightFooter = ”ARN” & Chr(13) & ”Page &P of &N”
End With
End Sub

With and End With keywords are used to work with an object, so that we do not
have to explicitly write that object’s full reference inside the With block.

Chr function is VBA’s in-built function, which returns the character for a given ASCII
code. In this example, I have used ASCII character 13 to insert a line.

Activesheet is a property of the active workbook, which represents the active sheet
in the active workbook.

PageSetup object holds all the information on page setup attributes of a worksheet.
LeftFooter and RightFooter are properties of PageSetup object, which can either

return or set text on the left side or the right side of the worksheet.

4.7 Print Formula

For this handout I have used the procedure given in Listing 4.5 to print formulae of the
selection to adjacent cells as text, so that we can see values on the left hand side and the
formula on the right hand side.

Listing 4.5: Print Formula in Adjacent Cells

1 Sub Conv2Text ()
2 Dim c As Range
3 For Each c In S e l e c t i o n
4 c . O f f s e t (0 , 1) = Chr(39) & c . Formula
5 Next c
6 End Sub

In Listing 4.5, line number 2 defines a variable c as a range. To define a variable
we use the keyword Dim. Line number 3 starts a For Each loop to iterate through all
the cells from the selected range. For Each loop is a special type of loop, which loops
through the Collections. The common for loop looks like this:

4.8. USER-DEFINED FUNCTION (UDF): REVERSE STRING 23

For i = 1 to 10

lines of code

....

....

Next i

The left hand side part on line number 4 is the location adjacent to a cell, which is
found using the OFFSET function (remember Section 2.4 on page number 11). Here we
are telling Excel to set a value of a cell that is one column to the right off the current
cell.

The right hand side part of line number 4 is setting the value of the offset cell with
the formula of the current cell and adding an apostrophe (Chr(39)=‘) to make it a text
value.

4.8 User-Defined Function (UDF): Reverse String

This example will show you how to create a user-defined function (UDF). Let’s say that
we want to reverse a given string, so if the input is “abcd”, the output would be “dcba.”
This function is given in Listing 4.6.

Listing 4.6: Reverse String UDF

Function ReverseStr ing (s InputSt r ing As String) As String
ReverseStr ing = StrReverse (s InputSt r ing)

End Function

As mentioned in Section 4.3 on page number 20, a function is a procedure that returns
a value. In this example, it is taking an input and returning the output as a string. A
function’s input argument are specified in the parenthesis after the function name. In
this example, we have used VBA’s in-built function StrReverse, which reverses the input
string. Functions that are completely based, such as this one, on other functions are
known as “wrappers.”

User-defined functions are used exactly the same as Excel’s in-built functions; however,
you need to specify the path, where these functions are created. For example, if your
UDFs are stored in the personal workbook, to use them in other workbooks, you would
refer them with “personal.xls!” or “personal.xlsb!”, depending on Excel’s version, as a
prefix. An example is shown in Figure 4.2.

Figure 4.2: Example of Reverse String UDF

By the way, Saippuakivikauppias is a Finish word for “soap-stone vendor”, and it is
claimed to be the world’s longest palindrome. That reminds me that I have a function
given in Listing 4.7, which checks if a word is a palindrome or not.

24 CHAPTER 4. VISUAL BASIC FOR APPLICATIONS (VBA)

Listing 4.7: Palindrome Function

Function IsPal indrome (sInput As String) As Boolean
I f LCase(s Input) = StrReverse (LCase(s Input)) Then

IsPal indrome = True
End I f
End Function

4.9 Concatenate Range

I use this function almost everyday, as it lets me concatenate a range without inserting
& signs or putting a comma in the CONCATENATE function. One repetitive use that
I have found is to create OR/AND conditions for Access queries. I copy-paste the field
values of a column from Access, do some filtering and my conditions are ready. Then I
use this CONCATFUNC to create a string to use in my Access query. Let’s say I want
to limit the data from semesters summer 2005, fall 2005, and spring 2006 in Access. To
do that I will have to write this ‘‘2005M’’ OR ‘‘2005F’’ OR ‘‘2006S’’ in the criteria
part under the semester field in Access. If I have a long list of restrictions, then typing
this manually will be very time consuming, and that’s where this function, given in
Listing 4.8, is useful. An example is given in Figure 4.3.

Figure 4.3: Example of Concatenate Range Function

Listing 4.8: Concatenate Range Function

1 Function ConCatFunc (rngRng2bCated As Range ,
2 Optional sChar2bAdded As String = ” , ”) As String
3 Dim sOutput As String , c As Range
4 On Error GoTo ConCatFunc Error
5

6 For Each c In rngRng2bCated
7 sOutput = sOutput & c . Value & sChar2bAdded
8 Next c
9

10 sOutput = Left (sOutput , Len(sOutput) − Len(sChar2bAdded))
11 ConCatFunc = sOutput
12

13 On Error GoTo 0
14 Exit Function
15

16 ConCatFunc Error :
17 ConCatFunc = ”#Error#”
18

4.10. FLIP A RANGE 25

19 End Function

This function takes two inputs: the range to be concatenated and the character to be
inserted in between each string. Notice on line number 1 of the Listing 4.8 the keyword
Optional, which means the user doesn’t need to supply this argument, and by default
it will insert a comma between each string.

This function features some minimal error handling. Whenever VBA comes across
an error, it raises a flag and generates an error message. A good programming prac-
tice is to provide “error handlers”, so that the user is not left clueless. The statement
On Error GoTo ConCatFunc Error tells VBA to go to the label ConCatFunc Error if an
error is raised. A label in VBA can be specified by typing the label name and putting a
colon immediately after it.

Line number 7 removes the extra character at the end of the output string by using
the VBA functions Left and Len. The function Left takes out user-specified number
of characters from the input string starting from the left side. Len function counts the
number of characters in the input string.

4.10 Flip a Range

Often, I need to flip a range, as shown in the Figure 4.4, and for that I have a procedure,
which is given in Listing 4.9.

(a) Before Flipping (b) After Flipping

Figure 4.4: Example of Flip Procedure

26 CHAPTER 4. VISUAL BASIC FOR APPLICATIONS (VBA)

Listing 4.9: Procedure to Flip a Range

1 Sub f l i p ()
2

3 Dim Arr As Variant
4 Dim myrange As Range
5 Dim arRetArr () As Variant , lArrBnd As Long , i As Long
6

7 On Error GoTo f l i p E r r o r
8

9 Set myrange = Range (S e l e c t i o n . Address)
10 Arr = myrange ’ s t o r e the s e l e c t e d va l u e s in an array
11

12 ’ check i f t h e r e i s on ly one column or not
13 I f myrange . Columns . Count = 1 Then
14 lArrBnd = UBound(Arr , 1)
15 ReDim arRetArr (lArrBnd , 0)
16 For i = 0 To lArrBnd − 1
17 ’ f l i p the array
18 arRetArr (i , 0) = Arr (lArrBnd − i , 1)
19 Next i
20 Range (S e l e c t i o n . Address) = arRetArr
21 ’ check i f t h e r e i s on ly one row or not
22 E l s e I f myrange . Rows . Count = 1 Then
23 lArrBnd = UBound(Arr , 2)
24 ReDim arRetArr (0 , lArrBnd)
25 For i = 0 To lArrBnd − 1
26 ’ f l i p the array
27 arRetArr (0 , i) = Arr (1 , lArrBnd − i)
28 Next i
29 Range (S e l e c t i o n . Address) = arRetArr
30 Else
31 MsgBox ”Your s e l e c t i o n conta in s mu l t ip l e rows or columns . ”
32 & vbCrLf &
33 ”This macro w i l l only work on e i t h e r one column or one row” ,
34 vbCritical , ” F l ip Error ”
35 End I f
36

37 On Error GoTo 0
38 SmoothEx i t f l ip :
39 Exit Sub
40

41 f l i p E r r o r :
42 MsgBox ”Error ” & Err . Number & ” (” & Err . De s c r ip t i on & ”)
43 in procedure f l i p ”
44 Resume SmoothEx i t f l ip
45 End Sub

4.11. FILL BLANK CELLS 27

4.11 Fill Blank Cells

This procedure is very helpful when we have blank cells in a range and we would like
to fill the blank cells with the values from the non-blank cells above it. I use it when
I copy and paste data from Pivot Tables. The procedure listed in Listing 4.10 is from
http://www.ozgrid.com, another good place for Excel and VBA tips and tricks. An
example of this procedure is shown in Figure 4.5.

(a) Before Filling the Blanks (b) After Filling the Blanks

Figure 4.5: Example of Fill Blanks Procedure

http://www.ozgrid.com

28 CHAPTER 4. VISUAL BASIC FOR APPLICATIONS (VBA)

Listing 4.10: Procedure to Fill the Blanks

1 ’ taken from h t t p ://www. o z g r i d . com/Exce l / exce l− f i l l −blank−c e l l s . htm
2 Sub F i l lB l ank s ()
3 Dim rRange1 As Range , rRange2 As Range
4 Dim iReply As In t eg e r
5 I f S e l e c t i o n . Ce l l s . Count = 1 Then
6 MsgBox ”You must s e l e c t your l i s t and inc lude the blank
7 c e l l s ” , vbInformation , ”OzGrid . com”
8 Exit Sub
9 E l s e I f S e l e c t i o n . Columns . Count > 1 Then

10 MsgBox ”You must s e l e c t only one column” ,
11 vbInformation , ”OzGrid . com”
12 Exit Sub
13 End I f
14

15 Set rRange1 = Range (S e l e c t i o n . Ce l l s (1 , 1) ,
16 Ce l l s (65536 , S e l e c t i o n . Column) .End(xlUp))
17

18 On Error Resume Next
19 Set rRange2 = rRange1 . S p e c i a lC e l l s (xlCel lTypeBlanks)
20 On Error GoTo 0
21

22 I f rRange2 Is Nothing Then
23 MsgBox ”No blank c e l l s Found” ,
24 vbInformation , ”OzGrid . com”
25 Exit Sub
26 End I f
27

28 rRange2 . FormulaR1C1 = ”=R[−1]C”
29

30 iReply = MsgBox(”Convert to Values ” , vbYesNo + vbQuestion ,
31 ”OzGrid . com”)
32 I f iReply = vbYes Then rRange1 = rRange1 . Value
33 End Sub

Chapter 5

Resources

1. My blog: http://www.nandeshwar.info/projects/xlblog/

2. ASAP Utilities (A must have!): http://www.asap-utilities.com

3. Discussion board at Mr. Excel.com: http://www.mrexcel.com/board2/index.

php

4. Ozgrid.com: http://www.ozgrid.com/Excel

5. Chip Pearson’s Excel page: http://www.cpearson.com/excel/mainpage.aspx

6. Daily dose of Excel: http://www.dailydoseofexcel.com/

7. John Walkenbach’s spreadsheet page: http://j-walk.com/ss/

8. Tushar Mehta’s Excel page: http://www.tushar-mehta.com/excel/

9. Books list: http://www.nandeshwar.info/projects/xlblog/labels/Books.html

29

http://www.nandeshwar.info/projects/xlblog/
http://www.asap-utilities.com
http://www.mrexcel.com/board2/index.php
http://www.mrexcel.com/board2/index.php
http://www.ozgrid.com/Excel
http://www.cpearson.com/excel/mainpage.aspx
http://www.dailydoseofexcel.com/
http://j-walk.com/ss/
http://www.tushar-mehta.com/excel/
http://www.nandeshwar.info/projects/xlblog/labels/Books.html

30 CHAPTER 5. RESOURCES

Bibliography

[1] J. Walkenbach. Excel 2002 power programming with VBA. M&T Books, 2001.

[2] J. Walkenbach. Excel 2007 Power Programming with VBA. Wiley; John Wiley dis-
tributor, 2007.

31

32 BIBLIOGRAPHY

Appendix A

Keyboard Shortcuts from
cpearson.com

33

Excel Keyboard Shortcuts from: http://www.cpearson.com/excel/KeyboardShortcuts.htm
Key Alone Shift Ctrl Alt Shift Ctrl

F1 Help What's This Help Insert Chart Sheet

F2 Edit Mode Edit Comment Save As

F3 Paste Name Formula Paste Function Define Name Names From Labels

F4 Repeat Action Find Again Close Window Quit Excel

F5 Goto Find Restore Window Size

F6 Next Pane Prev Pane Next Workbook Switch To VBA Prev Workbook

F7 Spell Check Move Window

F8 Extend Selection Add To Selection Resize Window Macro List

F9 Calculate All Calculate Worksheet Minimize Workbook

F10 Activate Menu Context Menu Restore Workbook

F11 New Chart New Worksheet New Macro Sheet VB Editor

F12 Save As Save Open Print

A Select All Formula Arguments

B Bold

C Copy

D Fill Down Data Menu

E Edit Menu

F Find File Menu Font Name

G Goto

H Replace Help Menu

I Italics Insert Menu

J

K Insert Hyperlink

L

M

N New Workbook

O Open Workbook Format Menu Select Comments

P Print Font Size

Q

R Fill Right

S Save

T Tools Menu

U Underline

V Paste

W Close Workbook Window Menu

Excel Keyboard Shortcuts from: http://www.cpearson.com/excel/KeyboardShortcuts.htm
Key Alone Shift Ctrl Alt Shift Ctrl

X Cut

Y Repeat Active

Z Undo

` (~) Toggle Formula View General Format

1 (!) Cell Format Number Format

2 (@) Toggle Bold Time Format

3 (#) Toggle Italics Date Format

4 ($) Toggle Underline Currency Format

5 (%) Toggle Strikethru Percent Format

6 (^) a Exponent Format

7 (&) a Apply Border

8 (*) Outline Select Region

9 (() Hide Rows Unhide Rows

0 ()) Hide Columns Unhide Columns

- Delete Selection Control Menu No Border

= (+) Formula Auto Sum Insert dialog

[Direct Dependents Direct Precedents

] All Dependents All Precedents

; (semicolon) Insert Date Select Visible Cells Insert Time

' (apostrophe) Style Copy Cell Value Above

: (colon) Insert Time

/ Select Array Select Array

\ Select Differences Select Unequal Cells

Insert Insert Mode Copy

Delete Clear Delete To End Of Line

Home Begin Row Start Of Worksheet

End End Row End Of Worksheet

Page Up Page Up Previous Worksheet Left 1 screen

Page Down Page Down Next Worksheet Right 1 screen

Left Arrow Move Left Select Left Move Left Area

Right Arrow Move Right Select Right Move Right Area

Up Arrow Move Up Select Up Move Up Area

Down Arrow Move Down Select Down Move Down Area Drop down list

Space Bar Space Select Row Select Column Control Box Select All

Tab Move Right Move Left Next Window Next Application Previous Window

BackSpace Goto Active Cell

	Shortcuts
	Take Control of the ``Ctrl'' Key
	Cut-Copy-Paste
	Move Around
	Misc

	General
	Names

	Formulae
	IF
	VLOOKUP
	COUNTIF and SUMIF
	MATCH, INDEX, and OFFSET
	SUMPRODUCT

	Magic of Array Formulae
	Count Unique Rows
	Count Duplicates
	Average
	Average Excluding Zeros
	Average of n Large or Small Numbers

	Visual Basic for Applications (VBA)
	Where to Put the Code?
	Macro Recorder
	Hello World!
	Autofit Columns
	Manual Calculation
	Footer
	Print Formula
	User-Defined Function (UDF): Reverse String
	Concatenate Range
	Flip a Range
	Fill Blank Cells

	Resources
	Bibliography
	Keyboard Shortcuts from cpearson.com

