Excel VBA Basic Tutorial 1

This page contains the 1% lesson on the Excel VBA Basic Tutorial series. It covers topics in creating
and managing array and understanding the VBA decision and loop structures. Beginners in VBA
programming are encouraged to go through the prior lessons in this series if they had not already
done so. This document contains information about the following topics.
e Creating Your First Macro
e Recording Your First Macro
Recording a Marco
See the Recorded Syntax
Run the Recorded Marco
¢ Modules and Procedures

Modules and Procedures and Their Scope
Calling Sub Procedures and Function Procedures

Passing Argument by Value or by Reference

Creating Your First Macro Microsoft Support

In this sub section, we will show you how to create your first macro (VBA program). We will use
the world classic "Hello World!" example. To create the example, please follow the following
steps:

1. Open Visual Basic Editor by go to Tools...Macro...Visual Basic Editor or just simply press the
[Alt] and [F11] keys at the same time.

Microsoft Excel - Book1
hEeEamn &6V

& = -2 & 45 0o

File Edit View Insert Format | Tools | Data Window Help
. HE! . R — [—
Arial - 10 - B I|v Speling.. F7 B oo, W EE D
Al - e Protection 3
A B [C | F | 6 | H |
Goal Sesk, ..
1
2 Macro Pl op Macros.. Alt+F3
3 Add-Ins... & Record New Macro...
4
c Customize... Security...
G Options... ¥ Visual Basic Editor Alt+F11
7 ZRandom b . i
8 ¥
g
10
11

2. In the Insert menu on top of the Visual Basic Editor, select Module to open the Module
window (code window).

£ Microsoft Visual Basic - Book1

File Edit View

Ma-&

Format Debug Run Tools

» Il o mk

El [i#] Class Module

- ¥4 VBAProject

-5 Microsoft Excel Objects
B Sheetl (Bheetl)
BT Sheet? (Theet?)

http://support.microsoft.com/search/?adv=1
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#Passing_Argument_by_Reference_or_by%23Passing_Argument_by_Reference_or_by
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#Calling_Sub_Procedures_and_Function%23Calling_Sub_Procedures_and_Function
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#Modules_and_Procedures%23Modules_and_Procedures
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#Modules_and_Procedures%23Modules_and_Procedures
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#Run_the_Recorded_Macro%23Run_the_Recorded_Macro
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#See_the_Recorded_Syntax%23See_the_Recorded_Syntax
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#Recording_Your_First_Macro%23Recording_Your_First_Macro
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#Recording_Your_First_Macro%23Recording_Your_First_Macro
http://www.anthony-vba.kefra.com/vba/vbabasic1.htm#Creating_Your_First_Macro%23Creating_Your_First_Macro

3. In the Module window, type the following:

Sub showMessage()
MsgBox "Hello World!"

End Sub
Gl B b By ax EEEE M T 2
x| |{Genera1}
El O - sub showMezszage()

MzgBox "Hello World!l®

-- 8% ¥BAProject (Bookl) lEnd fub

-5 Microsoft Excel Objects
] Sheet] (Thestl)
S| Sheet2 (Sheet?)
S| Sheet? (Sheet?)
% ThisWorkbook
-5 Modules
2 Modulal

4. Click the Run button, * , press [F5], or go to Run..Run Sub/UserForm to run the program

k1 - [Module1 (Code)]

mat Debug | Run | Tools Add-Ins Window Help

g > b Run SubjUserForm F5 @ Ln 4 col 1
g % '@E || Break Cirl+EBreak

-

m Reset

{Generxal }

,@ Design Mode

Sub sh
MsgBox "Hello Worldl®
Fnd Suhb

5. The message box pops up with the "Hello World!" greeting.

-,

Microsoft Excel

Hello Warld!

This is your first VBA programmer.

Recording Your First Macro

Recording a Macro

Macrosoft Excel has a build-in macro recorder that translates your actions into VBA macro
commands. After you recorded the macro, you will be able to see the layout and syntax. Before

you record or write a macro, plan the steps and commands you want the macro to perform. Every
actions that you take during the recording of the macro will be recorded - including the correction

that you made.

In this example, we will record a macro that sets the cell background color to light yellow. To

record the macro, follow the steps below:
1. Select Record New Macro... under
Tools...Macro

2. In the Record Macro dailog box, type
"SetBackgroundColor" in the Macro Name
textbox to set the macro name. Leave all
other option by default then click the Ok
button. This will start the macro
recording.

-]

Record Macro

Macro name:
|5etEackgrDundCDlnr|
Shortcut key: Store macro in:
ctl+] [This workbook |
Description:

Macro recorded 20041219 by Anthony

Ok | Cancel

Tools | Data
",f/o Speling. ..

Protection

Goal Seek...

Macro

Add-Ins...

Customize...

Qptions...

ZRandom

bt
W

Window

F7

Help

0 0 | f= =
B o9r , Wi EE4E

F G H

#7 visual Basic Editor Alt+F11

p Macros... Alt+F3
@ Record Mew Macro..,

Security...

¥

3. In the Background Color Panel, select the Ligth Yellow color
box. This action will set the background of the current cell

(Al) in light yellow color.

4. To stop the macro recording, click the Stop button (the
navy blue rectangle) on the Macro Recorder toolbar.

Light Yellow

Now you have recorded a macro that set cell background to Iight yellow.

See the Recorded Syntax

The recorded macro is ready for use. Before we run the marco, let's look into the syntax.
1. To load the Visual Basic Editor, press [Alt] and [F11] at the same time. (Remember from our
prior lesson?) The Visual Basic Editor comes up.

File Edit Wiew Insert Format Debug Run Tools Add-Ins Window Help
MiE-J s BRa oo, .gl%st%x‘lﬁll
| 4 %

1[s]

E Eu%m%mli?wl@

Project - VBAProject

all==}=] .

=- @ ¥EAFProject (Bookl)
@ Microzoft Excel Objects
1 Sheet]l (Sheetl)
Sheetd (Fheetd)
Sheet? (Fheet?)
. @ ThisWorkboolk
- [Modules

Ix

Sheetl Worksheet
Alphabetic | Categorized |

I ar n 1 1] |I

Properties - Sheetl x|
=

2. Expand the Modules folder in the Project Explorer by clicking on the plus (+) sign.

Project - VBAProject x|
El (]

- %% YBAProject (Bookl)
-5 Microsoft Excel Objects
B iSheet] (Sheetl)
Sheet? (Sheet?)
Bl Sheet? (Sheet?)
& ThisWorkbook
—|-25 Modules
2 Modulel

-

3. Double click the Modulel folder to see the sub routine (marco).

GEp B b B a2 EEEE I T 2
EI I{General}

E &

-- %% YBAProject (Book2)

—|- 25 Microsoft Excel Objects
B Sheetl (Sheetl)
BE] Sheet? (Sheet2)
BE] Sheet? (Sheet3)

- Sub SetBackgroundColord)

" BetBackgroundColor Macro
" Macro recorded 2004412419 by Anthons

] With Selectlon. Interior
%] ThisWorkbook Colorindex = 34
=5 Modules JFattermn = x130lid
via Modulel End With
Erd Zub

As the figure shows, the name of the sub routine is "SetBackgroundColor". The color index for the
light yellow is 36. The background pattern is soild.

Run the Recorded Macro

In our prior example, we created the "Hello World!" marco. We ran the macro within the Visual
Basic Editor. This time we will run the recorded macro in the worksheet.

1. On any worksheet, select from D3 to E6.

2. Run the recorded macro by select
Tools...Macro...Macros... or press [Alt] and [F8] at
the same time.

3. The Macro dialog box displayed. Since there is
only one macro in the module, by default the only
macro, SetBackgroundColor is selected. Click the
E\un button to run the macro.

Format

B I

i

Tools | Data Window

¥ speling... F7
Protection 3
Goal Seek. ..
Macro 3
Add-Ins...
Customize...
Options...

ZRandom 3

¥

Help

S 95 , %W EE -
F | &6 | H
Macros. .. Alt+F8

@ Record New Macro...

Security...

Visual Basic Editor Alt+F11

¥

Macro

Macro name:

SetBackgroundColor
Macros in: I.-?-.II Cpen Workbooks
Description

Macro recorded 2004/12/19 by Anthony

4. Cells D3 to E6 now have light yellow background color.

A | B | ¢ [PWDEm E

F

T e Ll D —

-

Modules and Procedures
Modules and Procedures and Their Scope

A module is a container for procedures as shown in our prior examples. A procedure is a unit of
code enclosed either between the Sub and End Sub statement or between the Function and
End Function statements.

The following sub procedure (or sub routine) print the current date and time on cell C1:

Sub ShowTime()
Range("C1") = Now()
End Sub

The following function sum up two numbers:

Function sumNo(x, y)
sumNo =x + vy
End Function

Procedures in Visual Basic can have either private or public scope. A procedure with private scope
is only accessible to the other procedures in the same module; a procedure with public scope is
accessible to all procedures in in every module in the workbook in which the procedure is
declared, and in all workbooks that contain a reference to that workbook. By default, procedures
has public scope.

Here are examples of defining the scope for procedure.

Public Sub ShowTime()
Range("C1") = Now()
End Sub

Private Sub ShowTime()
Range("C1") = Now()
End Sub

Calling Sub Procedures and Function Procedures

There are two ways to call a sub procedure. The following example shows how a sub procedure
can be called by other sub procedures.

Sub z(a)
MsgBox a
End Sub

Sub x()
Call z("ABC")
End Sub

Sub y()
Z IIABCII
End Sub

Sub z procedure takes an argument (a) and display the argument value ("ABC") in a message
box. Running either Sub x or Sub y will yield the same result.

The following example calls a function procedure from a sub procedure.

Sub ShowSum()
msgbox sumNo(3,5)
End Sub

Function sumNo(x, y)
sumNo =x + vy
End Function

The ShowSum sub procedure calls the sumNo function and returns an "8" in a message box.

If there are procedures with duplicate names in different modules, you must need to include a
module qualifier before the procedure name when calling the procedure.

For example:

Modulel.ShowSum

Passing Argument by Reference or by Value

If you pass an argument by reference when calling a procedure, the procedure access to the
actual variable in memory. As a result, the variable's value can be changed by the procedure.
Passing by reference is the default in VBA. If you do not explicitly specify to pass an argurment by
value, VBA will pass it by reference. The following two statements yield the same outcome.

Sub AddNo(ByRef x as integer)

Sub AddNo(x as integer)

Here is an example to show the by reference behavior. The sub procedure, TestPassing 1 calls
AddNol by reference and display "60" (50 + 10) on the message box.

Sub TestPassingl()
Dim y As Integer
y =50
AddNol y
MsgBox y

End Sub

Sub AddNol(ByRef x As Integer)
X=X+ 10
End Sub

The following example shows the by value behavior. The sub procedure, TestPassing 2 calls
AddNo2 by value and display "50" on the message box.

Sub TestPassing2()
Dim y As Integer
y =50
AddNo2 y
MsgBox y

End Sub

Sub AddNo2(ByVal x As Integer)
Xx=x+10
End Sub

Excel VBA Basic Tutorial 2

This page contains the 2" lesson on the Excel VBA Basic Tutorial series. It covers topics in the

most used Excel objects and collections. Beginners in VBA programming are encouraged to go
through the 1%t lessons in this series if they had not already done so. This document contains
information about the following topics.

Objects and Collections

Workbook and Worksheet Object

Range Object and Cells Property

Methods and Property

Assigning Object Variables and Using Named Argument

Microsoft Support site or the Excel VBA Help section on your computer contains comprehensive
examples on most the issues covered on this page. For more information, please refer to them.

Objects and Collections Microsoft Support

Objects are the fundamental building blocks of Visual Basic. An object is a special type of
variable that contains both data and codes. A collection is a group of objects of the same class.
The most used Excel objects in VBA programming are Workbook, Worksheet, Sheet, and Range.

Workbooks is a collection of all Workbook objects. Worksheets is a collection of Worksheet
objects.

The Workbook object represents a workbook, the Worksheet object represents a worksheet, the
Sheet object represents a worksheet or chartsheet, and the Range object represents a range of
cells.

The following figure shows all the objects mentioned. The workbook (Excel file) is currently
Book3.xls. The current worksheet is Sheetl as the Sheet Tab indicated. Two ranges are selected,
range B2 and B7:B11.

Microsoft Excel - Book3 M=)

DeEsS®" SAY B < o @ E -2 % s -2 7

Ele Edit Wew Insert Format Tools Data Window Help - F X

n . B EEEH, B8 EE0--A- Tie?
D16 - F

B = D E F G H =

l:l a range with one cell

0|00 | =d| o | e | R

a range with 5 cells

13
14 -

M " Sheetl / Sheet? / Sheat3 / [«] | miim

Ready NUM

Workbook and Worksheet Object

A workbook is the same as an Excel file. The Workbook collection contains all the workbooks that
are currently opened. Inside of a workbook contains at least one worksheet. In VBA, a
worksheet can be referenced as followed:

Worksheets("Sheetl")

Worksheets("Sheetl") is the worksheet that named "Sheet1."
Another way to refer to a worksheet is to use number index like the following:

http://support.microsoft.com/search/?adv=1
http://www.anthony-vba.kefra.com/vba/vbabasic2.htm#Assigning_Object_Variables_and_Using%23Assigning_Object_Variables_and_Using
http://www.anthony-vba.kefra.com/vba/vbabasic2.htm#Methods_and_Properties%23Methods_and_Properties
http://www.anthony-vba.kefra.com/vba/vbabasic2.htm#Range_Object_and_Cells_Property%23Range_Object_and_Cells_Property
http://www.anthony-vba.kefra.com/vba/vbabasic2.htm#Workbook_and_Worksheet_Object%23Workbook_and_Worksheet_Object
http://www.anthony-vba.kefra.com/vba/vbabasic2.htm#Objects_and_Collections%23Objects_and_Collections

Worksheets(1)
The above refers to the first worksheet in the collection.
* Note that Worksheets(1) is not necessary the same sheet as Worksheets("Sheetl").

Sheets is a collection of worksheets and chart sheets (if present). A sheet can be indexed just like
a worksheet. Sheets(1) is the first sheet in the workbook.

To refer sheets (or other objects) with the same name, you have to qualify the object. For
example:

Workbooks("Book1").Worksheets("Sheetl")
Workbooks("Book2").Worksheets("Sheetl")

If the object is not qualified, the active or the current object (for example workbook or worksheet)
is used.

The sheet tab on the buttom the spreadsheet (worksheet) shows which sheet is active. As the
figure below shows, the active sheet is "Sheetl" (show in bold font and white background).

12

13

14

AC
4 4 » nlSheetl JETS#F Sheet3 /
Draw = [3 | AutoShapes~ ™. & []

Ready

* You can change the color of the sheet tabs by right click the tab, choose Tab Color, then select
the color for the tab.

The sub routine below shows the name of each sheet in the current opened workbook. You can
use For Each...Next loop to loop throgh the Worksheets collection.

Sub ShowWorkSheets()
Dim mySheet As Worksheet

For Each mySheet In Worksheets

MsgBox mySheet.Name
Next mySheet

End Sub

Range Object and Cells Property

Range represents a cell, a row, a column, a selection of cells containing one or more contiguous
blocks of cells, or a 3-D range. We will show you some examples on how Range object can be
used.

The following example places text "AB" in range Al:B5, on Sheet2.

Worksheets("Sheet2").Range("Al:B5") = "AB"

A B
1 |AB AB
2 |AB AB
3 AB AB
4 |AB AB
5 |AB AB
A B

Note that, Worksheets.Range("Al", "B5") = "AB" will yield the same result as the above example.
The following place "AAA" on cell A1, A3, and A5 on Sheet?2.

Worksheets("Sheet2").Range("Al, A3, A5") = "AAA"

AAL

AAL

o e L D —

AAL

Range object has a Cells property. This property is used in every VBA projects on this website
(very important). The Cells property takes one or two indexes as its parameters.

For example,
Cells(index) or Cells(row, column)

where row is the row index and column is the column index.
The following three statements are interchangable:

ActiveSheet.Range.Cells(1,1)

Range.Cells(1,1)

Cells(1,1)

The following returns the same outcome:

Range("Al") =123 and Cells(1,1) =123

The following puts "XYZ" on Cells(1,12) or Range("L1") assume cell Al is the current cell:
Cells(12) = "XYZ"

The following puts "XYZ" on cell C3:

Range("B1:F5").cells(12) = "ZYZ"

A

Loy R o NS LR N

* The small gray number on each of the cells is just for reference purpose only. They are used to
show how the cells are indexed within the range.

Here is a sub routine that prints the corresponding row and column index from Al to E5.

Sub CellsExample()

Fori=1To5
Forj=1To5
Cells(i, j) = "Row " & i & " Col " &
Next j
Next i
End Sub
A B C D E
1| Row1 Col1 | Row1 ColZ | Row1 Col3 | Row1 Cold | Row1 ColS
2 | Row?2 Col1 | Row2 ColZ | Row2 Col3 | Row2 Col4 | RowZ ColS
3| Row3 Col1 | Row3 Col2Z | Row3 Col3 | Row3 Cold4 | Row3 ColS
4 | Row4 Col1 | Row4 ColZ | Row4 Col3 | Rowd Cold4 | Row4 ColS
5 | RowS Col1 | RowS Col2Z | RowS Col3 | Row?S Cold4 | RowS ColS
B

Range object has an Offset property that can be very handy when one wants to move the active
cell around. The following examples demostrate how the Offset property can be implemented
(assume the current cell before the move is E5):

ActiveCell.Offset(1,0) = 1 Place a "1" one row under E5 (on E6)

E F &

|m|:|~;ing directinn|

................

ActiveCell.Offset(0,1) = 1 Place a "1" one column to the right of E5 (on F5)

maoving directinnl—b

............... =+

1

ActiveCell.Offset(0,-3) = 1 Place a "1" three columns to the left of E5 (on B5)

B . D E

d—|mm‘ing direction

Methods and Properties

Each object contains its own methods and properties.

A Property represents a built-in or user-defined characteristic of the object. A method is an
action that you perform with an object. Below are examples of a method and a property for the
Workbook Object:

Workbooks.Close
Close method close the active workbook

Workbooks.Count
Count property returns the number of workbooks that are currently opened

Some objects have default properties. For example, Range's default property is Value.
The following yields the same outcome.

Range("Al") =1 and Range("Al").Value =1

Here are examples on how to set and to get a Range property value:
The following sets the value of range Al or Cells(1,1) as "2005". It actually prints "2005" on Al.

Range("Al").Value = 2005
The following gets the value from range Al or Cells(1,1).
X = Range("Al").Value

Method can be used with or without argument(s). The following two examples demostrate this
behavior.

Methods That Take No Arguments:

Worksheets("Sheet").Column("A:B").AutoFit

Methods That Take Arguments:

Worksheets("Sheetl").Range("A1:A10").Sort _
Worksheets("Sheetl").Range("Al")

Worksheets("Sheetl").Range("Al") is the Key (or column) to sort by.

Assigning Object Variables and Using Named Argument

Sometime a method takes more than one argument. For example, the Open method for the
Workbook

object, takes 12 arguments. To open a workbook with password protection, you would need to
write the following code:

Workbooks.Open "Book1.xls", ,, ,"pswd"

Since this method takes so many arguments, it is easy to misplace the password argument. To
overcome this potential problem, one can use named arguments like the following example:

Workbook.Open fileName:="Bookl.xlIs", password:="pswd"
You can also assign an object to an object variable using the Set Statement.
For example:

Dim myRange as Range
Set myRange = Range("A1:A10")

Excel VBA Basic Tutorial 3

This page contains the 3™ lesson on the Excel VBA Basic Tutorial series. It covers topics in
creating and managing array and understanding the VBA decision and loop structures. Beginners
in VBA programming are encouraged to go through the prior lessons in this series if they had not
already done so. This document contains information about the following topics.

« Creating and Managing Array

Declare an Array With Dim Statement
Resize an Array With Redim Statement

Manage Dynamic Array
Create Multi-Dimensional Array
Find The Size of an Array

« Decision Structures - IF and Select Case

IF ... Then

IF ... Then ... Else
IF ... Then ... Elself
Select Case

e Loop Structures

For ... Next

For ... Next Loop With Step
Do While ... Loop

Do Until ... Loop

Do ... Loop While

http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Do_..._Loop_While_Structure%23Do_..._Loop_While_Structure
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Do_Until_..._Loop%23Do_Until_..._Loop
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Do_While_..._Loop_Structures%23Do_While_..._Loop_Structures
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#For_..._Next_Loop_With_Step%23For_..._Next_Loop_With_Step
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#For_..._Next_%23For_..._Next_
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Loop_Structures%23Loop_Structures
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Select_Case%23Select_Case
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#IF_..._Then_..._ElseIf%23IF_..._Then_..._ElseIf
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#IF_..._Then_..._Else%23IF_..._Then_..._Else
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#IF_..._Then_Statement%23IF_..._Then_Statement
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Decision_Structures_-_IF_and_Select_Case%23Decision_Structures_-_IF_and_Select_Case
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Find_The_Size_of_an_Array%23Find_The_Size_of_an_Array
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Create_Multi-Dimensional_Array%23Create_Multi-Dimensional_Array
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Manage_Dynamic_Array%23Manage_Dynamic_Array
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Resize_an_Array_With_Redim_Statement%23Resize_an_Array_With_Redim_Statement
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Declaring_Array_With_Dim_Statement%23Declaring_Array_With_Dim_Statement
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Creating_and_Managing_Array%23Creating_and_Managing_Array

Do ... Loop Until

Microsoft Support site or the Excel VBA Help section on your computer contains comprehensive
examples on most the issues covered on this page. For more information, please refer to them.

Creating and Managing Array Microsoft Support

Declaring an Array With Dim Statement

An array is a set of sequentially indexed elements having the same intrinsic data type. Each
element of an array has a unique identifying index number. Changes made to one element of an
array don't affect the other elements.

Before signing values to an array, the array needs to be created. You can declare the array by
using the Dim statement.

For example, to declare a one-dimensional array with 5 elements, type the following:

Dim Arr(4)

The element’s index of the array starts from 0 unless Option Base 1 is specified in the public
area (area outside of the sub procedure). If Option Base 1 is specified, the index will start from 1.

The following example assigns values to the array and displays all values in a message box :

Option Base 1
Sub assignArray()
Dim Arr(5)

Arr(1) = “Jan”

Arr(2) = “Feb”
Arr(3) = “Mar”
Arr(4) = “Apr”

Arr(5) = “May”

Msgbox Arr(1l) & "-" & Arr(2) & "-" & Arr(3) & "-" & Arr(4) & "-" & Arr(5)
Microsoft Excel

Jan-Feb-Mar-Apr-May

End Sub

* The number inside the array, i.e. Arr(1), is the index. One (1) is the index of the first element in
the
array.

Resize an Array With Redim Statement

The ReDim statement is used to size or resize a dynamic array that has already been formally
declared.

For example, if you have already declared an array with an element value of 5 and decided to
change the number of the element to 6, you can do the following to resize the array:

http://support.microsoft.com/default.aspx?scid=%2Fsupport%2Fexcel%2Fcontent%2Fvba101%2Fvbc5-3.asp&FR=0
http://www.anthony-vba.kefra.com/vba/vbabasic3.htm#Do_..._Loop_Until%23Do_..._Loop_Until

Redim Arr(6)
We incorporate it into our last example:

Option Base 1

Sub assignArray()
'Dim Arr(5)
Redim Arr(6)

Arr(1) = “Jan”
Arr(2) = “Feb”
Arr(3) = “Mar”
Arr(4) = “Apr”
Arr(5) = “May”
Arr(6) = “Jun”

Msgbox Arr(1l) & "-" & Arr(2) & "-" & Arr(3) & "-" & Arr(4) & "-" & Arr(5)
End Sub

Note that the Dim Arr(5) statement is commoned out, because leaving this original statement in
the sub will causing a compile error.

Manage Dynamic Array

A word of caution in using the Redim Statement to resize an array - resize the array can erase the
elements in it. In the following example, all the values assigned prior to resize the array are
erased. Only the value assigned to the array after resize remains.

Option Base 1
Sub assignArray()
Redim Arr(5)

Arr(1) = “Jan”

Arr(2) = “Feb”
Arr(3) = “Mar”
Arr(4) = “Apr”
Arr(5) = “May”

Redim Arr(6)
Arr(6) = “Jun”

Msgbox Arr(1) & "-" & Arr(2) & "-" & Arr(3) & "-" & Arr(4) & "-" & Arr(5) & "-" & Arr(6)
End Sub

Microsoft Excel

By replace the Redim Arr(6) with Redim Preserve Arr(6), all values will remain. For example:

Option Base 1
Sub assignArray()
Redim Arr(5)

Arr(1) = “Jan”

Arr(2) = “Feb”
Arr(3) = “Mar”
Arr(4) = “Apr”
Arr(5) = “May”

Redim Preserve Arr(6)
Arr(6) = “Jun”

Msgbox Arr(l) & "-" & Arr(2) & "-" & Arr(3) & "-" & Arr(4) & "-" & Arr(5) & "-" & Arr(6)
End Sub

-

Microsoft Excel

Jan-Feb-Mar-Apr-May-Jun

Create Multi-Dimensional Array

An array can also store multiple dimensional data. To simplify our tutorial, example on a two-
dimensional array is used. Assume you have data of a local store's yearly sale in the following
table and you want to store the data in a two-dimensional array:

Year 2003 Year 2004
CD Sale 1,000 1,500
DVD Sale 1,200 2,000

First we create the array as follow:

Dim Arr(2,2)

Then we assign the values into the array. We treat the first dimension as the year and the second
dimension as the product sale:

arr(1,1) = 1000
arr(1,2) = 1200
arr(2,1) = 1500
arr(2,2) = 2000

We now display the values of the array with a message box:

Msgbox "Sale of CD in 2003 is " & arr(1,1) & vbCrLf & "Sale of CD in 2004 is " _
&arr(2,1) & vbCrLf & "Sale of DVD in 2003 is " & arr(1,2) & vbCrLf
& "Sale of DVD in 2004 is " & arr(2,2)

The complete procedure is as followed:
Option Base 1
Sub multDimArray()
Dim Arr(2,2)

arr(1,1) = 1000
arr(1,2) = 1200
arr(2,1) = 1500
arr(2,2) = 2000

Msgbox "Sale of CD in 2003 is " & arr(1,1) & vbCrLf & "Sale of CD in 2004 is " _
& arr(2,1) & vbCrLf & "Sale of DVD in 2003 is " & arr(1,2) & vbCrLf _
& "Sale of DVD in 2004 is " & arr(2,2)
End Sub

-,

Microsoft Excel

Sale of CD in 2003 is 1000
Sale of CD in 2004 s 1500
Sale of DVD in 2003 is 1200
Sale of DVD in 2004 s 2000

* vbCrLf stands for VB Carriage Return Line Feed. It puts a return and a new line as shown in the
message box above. The underscore " " on the back of the first line of the message box means
"continue to the next line"

Find The Size of an Array

The largest available subscript for the indicated dimension of an array can be obtained by using
the Ubound function. In our one-dimensional array example, Ubound(arr) is 5.

In our two-dimensional array example above, there are two upper bound figures - both are 2.
UBound returns the following values for an array with these dimensions*:

Dim A(1 To 100, 0 To 3, -3 To 4)

Statement Return Value
UBound(A, 1) 100
UBound(A, 2) 3
UBound(A, 3) 4

* Example taken from Excel VBA Help section.

The UBound function is used with the LBound function to determine the size of an array. Use the
LBound function to find the lower limit of an array dimension.

Statement Return Value
LBound(A, 1) 1
LBound(A, 2) 0
LBound(A, 3) -3

To get the size of an array, use the following formula:
UBound(Arr) - LBound(Arr) + 1

For example:

Ubound(A,1) - LBound(A,1) + 1
=100-1+1
= 100

Ubound(A,2) - LBound(A,2) + 1
=3-0+1
=4

Ubound(A,3) - LBound(A,3) + 1
)

3
=4-(-3)+1
=8

For more information on arrays check Microsoft Support

Decision Structures - IF and Select Case
IF ... Then Statement

The IF ... Then is a single condition and run a single statement or a block of statement.

Example, the following statement set variable Status to "Adult" if the statement is true:
If Age >= 18 Then Status = "Adult"
You can also use multiple-line block in the If statement as followed:
If Ago >= 18 Then
Status = "Adult"
Vote = "Yes"
End If

Note that in the multiple-line block case, End If statement is needed, where the single-line case
does not.

IF ... Then ... Else
The If ... Then ... Else statement is used to define two blocks of conditions - true and false.
Example:

If Age >=22 Then

Drink = "Yes"
Else

Drink = "No"
End If

Again, note that End If statement is needed in this case as well since there is more than one block
of statements.

IF ... Then ... Elself

The IF ... Then ... Elself is used to test additional conditions without using new If ... Then

http://support.microsoft.com/default.aspx?scid=%2Fsupport%2Fexcel%2Fcontent%2Fvba101%2Fvbc5-3.asp&FR=0

statements.
For Example:

If Age >= 18 and Age < 22 Then
Msgbox "You can vote"
Elself Age >=22 and Age < 62 Then
Msgbox "You can drink and vote"
Elself Age >=62 Then
Msgbox "You are eligible to apply for Social Security Benefit"
Else
Msgbox "You cannot drink or vote"
End If

Note that the last condition under Else is, implicitly, Age < 18.

Select Case

Select Case statement is an alternative to the Elself statement. This method is more efficient
and readable in coding the the If ... Then ... Elself statment.

Example:

Select Case Grade
Case Is >= 90
LetterGrade = "A"
Case Is >= 80
LetterGrade = "B"
Case ls >= 170
LetterGrade = "C"
Case Is >= 60
LetterGrade = "D"
Case Else
LetterGrade = "Sorry"
End Select

Loop Structures
For ... Next

Use For ... Next loop if the number of loops is already defined and known. A For ... Next loop
uses a counter variable that increases or decreases in value during each iteration of the loop. This
loop structure is being used the most for our examples on this site.

Here is an example of the For ... Next loop:
Fori=1to 10

Cells(i, 1) =i
Next i

1=

D0 20 -3 M e LD R —

—

| =
| | o [OO0 | O b D D

In this example, i is the counter variable from 1 to 10. The looping process will send value to the
first column of the active sheet and print i (which is 1 to 10) to row 1 to 10 of that column.

Note that the counter variable, by default, increases by an increment of 1.

For ... Next Loop With Step
You can use the Step Keyword to sepcify a different increment for the counter variable.
For example:
Fori=1to 10 Step 2
Cells(i, 1) =i
Next i

This looping process will print values with an increment of 2 onrow 1, 3, 5, 7 and 9 on column one.

A,

000 | M b | LD R —
[y]

—
(o

You can also have decrement in the loop by assign a negative value afte the Step keyword.
For example:
Fori=10to 1 Step -2
Cells(i, 1) =i
Next i

This looping process will print values with an increment of -2 starts from 10 on row 10, 8, 6, 4 and
2 on column one.

g

10 10

44

Do While ... Loop

000 | 3 M e | LD R —

You can use the Do While ... Loop to test a condition at the start of the loop. It will run the loop
as long as the condition is ture and stops when the condition becomes false. For Example:

i=1

Do Whilei =< 10
Cells(i, 1) =i
i=i+1

Loop

This looping process yields the same result as in the For ... Next structures example.
One thing to be caution is that sometimes the loop might be a infinite loop. And it happens when

the condition never becomes false. In such case, you can stop the loop by press [ESC] or [CTRL]
+ [BREAK].

Do Until ... Loop

You can test the condition at the beginning of the loop and then run the loop until the test
condition becomes true.

Example:

i=1

Do Until i = 11
Cells(i, 1) =i
i=i+1

Loop

This looping process yields the same result as in the For ... Next structures example.

Do ... Loop While

When you want to make sure that the loop will run at least once, you can put the test at the end of
loop. The loop will stop when the condition becomes false. (compare this loop structure to the Do
... While Loop.)

For Example:

i=1
Do

Cells(i, 1) =i
i =i+1
Loop Whilei < 11

This looping process yields the same result as in the For ... Next structures example.

Do ... Loop Until

This loop structure, like the Do ... Loop While, makes sure that the loop will run at least once,
you can put the test at the end of loop. The loop will stop when the condition becomes true.
(compare this loop structure to the Do ... Until Loop.)

For Example:

i=1
Do

Cells(i, 1) =i

i =i+1
Loop Until i = 11

This looping process yields the same result as in the For ... Next structures example.

Excel VBA Simulation Basic Tutorial 101

This page contains basic Excel VBA skills needed for creating simulations. Beginners who wish to
learn simulation programming using Excel VBA are encouraged to go through the entire document
if he or she had not already done so. This tutorial is the prerequisite of Excel VBA Simulation-
Based Tutorial 201. This document contains information about the following topics.

« Creating and Managing Array

Declare an Array With Dim Statement
Resize an Array With Redim Statement
Manage Dynamic Array

Create Multi-Dimensional Array

Find The Size of an Array

« Decision Structures - IF and Select Case

IF ... Then

IF ... Then ... Else
IF ... Then ... Elself
Select Case

« Loop Structures

For ... Next

For ... Next Loop With Step
Do While ... Loop
Do Until ... Loop
Do ... Loop While

Do ... Loop Until

« Sorting Numbers in an Array

http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Sorting_Numbers_In_an_Array%23Sorting_Numbers_In_an_Array
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Do_..._Loop_Until%23Do_..._Loop_Until
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Do_..._Loop_While_Structure%23Do_..._Loop_While_Structure
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Do_Until_..._Loop%23Do_Until_..._Loop
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Do_While_..._Loop_Structures%23Do_While_..._Loop_Structures
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#For_..._Next_Loop_With_Step%23For_..._Next_Loop_With_Step
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#For_..._Next_%23For_..._Next_
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Loop_Structures%23Loop_Structures
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Select_Case%23Select_Case
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#IF_..._Then_..._ElseIf%23IF_..._Then_..._ElseIf
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#IF_..._Then_..._Else%23IF_..._Then_..._Else
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#IF_..._Then_Statement%23IF_..._Then_Statement
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Decision_Structures_-_IF_and_Select_Case%23Decision_Structures_-_IF_and_Select_Case
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Find_The_Size_of_an_Array%23Find_The_Size_of_an_Array
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Create_Multi-Dimensional_Array%23Create_Multi-Dimensional_Array
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Manage_Dynamic_Array%23Manage_Dynamic_Array
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Resize_an_Array_With_Redim_Statement%23Resize_an_Array_With_Redim_Statement
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Declaring_Array_With_Dim_Statement%23Declaring_Array_With_Dim_Statement
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Creating_and_Managing_Array%23Creating_and_Managing_Array

« Find Maximum and Minimum Values in an Array
« Double Sorting - The Secret of Resampling Without Replacement

Microsoft Support site or the Excel VBA Help section on your computer contains comprehensive
examples on most the issues covered on this page. For more information, please refer to them.

Creating and Managing Array Microsoft Support

Declaring an Array With Dim Statement

An array is a set of sequentially indexed elements having the same intrinsic data type. Each
element of an array has a unique identifying index number. Changes made to one element of an
array don't affect the other elements.

Before signing values to an array, the array needs to be created. You can declare the array by
using the Dim statement.

For example, to declare a one-dimensional array with 5 elements, type the following:
Dim Arr(4)

The element’s index of the array starts from 0 unless Option Base 1 is specified in the public
area (area outside of the sub procedure). If Option Base 1 is specified, the index will start from 1.

The following example assigns values to the array and displays all values in a message box :

Option Base 1
Sub assignArray()
Dim Arr(5)

Arr(5) = “Jan”

Arr(2) = “Feb”
Arr(3) = “Mar”
Arr(4) = “Apr”

Arr(5) = “May”

Msgbox Arr(l) & "-" & Arr(2) & "-" & Arr(3) & "-" & Arr(4) & "-" & Arr(5)
End Sub

-,

Microsoft Excel

Jan-Feb-Mar-Apr-May

* The number inside the array, i.e. Arr(1), is the index. One (1) is the index of the first element in
the
array.

Resize an Array With Redim Statement

The ReDim statement is used to size or resize a dynamic array that has already been formally

http://support.microsoft.com/default.aspx?scid=%2Fsupport%2Fexcel%2Fcontent%2Fvba101%2Fvbc5-3.asp&FR=0
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Double_Sorting_-_The_secret_of%23Double_Sorting_-_The_secret_of
http://www.anthony-vba.kefra.com/vba/excelvba-simulation.htm#Find_Maximum_and_Minimum_Values_in_an%23Find_Maximum_and_Minimum_Values_in_an

declared.

For example, if you have already declared an array with an element value of 5 and decided to
change the number of the element to 6, you can do the following to resize the array:
Redim Arr(6)

We incorporate it into our last example:

Option Base 1

Sub assignArray()
'Dim Arr(5)
Redim Arr(6)

Arr(1) = “Jan”
Arr(2) = “Feb”
Arr(3) = “Mar”
Arr(4) = “Apr”
Arr(5) = “May”
Arr(6) = “Jun”

Msgbox Arr(l) & "-" & Arr(2) & "-" & Arr(3) & "-" & Arr(4) & "-" & Arr(5)
End Sub

Note that the Dim Arr(5) statement is commoned out, because leaving this original statement in
the sub will causing a compile error.

Manage Dynamic Array

A word of caution in using the Redim Statement to resize an array - resize the array can erase the
elements in it. In the following example, all the values assigned prior to resize the array are
erased. Only the value assigned to the array after resize remains.

Option Base 1
Sub assignArray()
Redim Arr(5)

Arr(1) = “Jan”

Arr(2) = “Feb”
Arr(3) = “Mar”
Arr(4) = “Apr”
Arr(5) = “May”

Redim Arr(6)
Arr(6) = “Jun”

Msgbox Arr(1l) & "-" & Arr(2) & "-" & Arr(3) & "-" & Arr(4) & "-" & Arr(5) & "-" & Arr(6)
End Sub

-,

Microsoft Excel

By replace the Redim Arr(6) with Redim Preserve Arr(6), all values will remain. For example:

Option Base 1

Sub assignArray()
Redim Arr(5)

Arr(1) = “Jan”

Arr(2) = “Feb”
Arr(3) = “Mar”
Arr(4) = “Apr”
Arr(5) = “May”

Redim Preserve Arr(6)
Arr(6) = “Jun”

Msgbox Arr(1l) & "-" & Arr(2) & "-" & Arr(3) & "-" & Arr(4) & "-" & Arr(5) & "-" & Arr(6)
End Sub

Microsoft Excel

Jan-Feb-Mar-Apr-May-Jun

Create Multi-Dimensional Array

An array can also store multiple dimensional data. To simplify our tutorial, example on a two-
dimensional array is used. Assume you have data of a local store's yearly sale in the following
table and you want to store the data in a two-dimensional array:

Year 2003 Year 2004
CD Sale 1,000 1,500
DVD Sale 1,200 2,000

First we create the array as follow:

Dim Arr(2,2)

Then we assign the values into the array. We treat the first dimension as the year and the second
dimension as the product sale:

arr(1,1) = 1000
arr(1,2) = 1200
arr(2,1) = 1500
arr(2,2) = 2000

We now display the values of the array with a message box:
Msgbox "Sa