
VS 2010 Package Development

1

Visual Studio 2010

Package Development

Fundamentals

VS 2010 Package Development

2

Table of Contents

 Chapter 1: Visual Studio 2010 Extensibility Overview
 Chapter 2: Visual Studio Packages
 Chapter 3: Commands, Menus and Toolbars
 Chapter 4: Window Management and Tool Windows
 Chapter 5: Services
 Chapter 6: Working with Automation Objects
 Chapter 7: Options Pages and Settings

Whom This Book Is For

This book is for those .NET developers, who work with Visual Studio 2010 and are interested in

enhancing their development environment with powerful extensions. If you recognize yourself as

you’re in one or more of the roles listed below, this book is intended to be a primary resource for

you.

 You’re a professional software developer. Creating Visual Studio extensions adds measurable
(business) value to your or your company’s everyday activities.

 You’re a developer or an architect with special projects. You feel the project team performance
can be enhanced by custom tools integrated into Visual Studio and tailored to the project’s
special needs.

 You’re a member of a development team with tools that right now run out of Visual Studio.
Integrating these tools into the Visual Studio IDE would improve your team’s performance and
developer experience and make team members happy.

 You are a developer of an ISV company or a developer wanting to become an ISV. You have
concrete business drivers to create products integrated into Visual Studio and find the
extensibility market for them.

 You are a student or a hobbyist, and you are looking for exciting things. Extending Visual Studio
is one of them.

There are many ways to extend Visual Studio such as customization, macros, add-ins, and more,

but without doubt the most powerful is package development. This book intends to treat the

fundamentals of Visual Studio package development in a didactic way to provide you the best

learning curve ever. After reading it you’ll be familiar with the extensibility architecture of

Visual Studio and with the most important concepts of package development. You’ll understand

how packages are connected to the functionality offered by Visual Studio and how you can turn

your ideas into extensibility components.

Even if you have never created any kind of Visual Studio extension, you can immediately start

package development with the help of this book. If you have some experience with writing

Visual Studio add-ins, you will discover that packages offer you more power than add-ins ever

did.

If you have already developed Visual Studio packages, this book provides you a comprehensive

VS 2010 Package Development

3

overview of the fundamental concepts; you can also give it to your fellows or team members as a

self-paced study guide.

What You Need to Use This Book

The books title tells you it’s about Visual Studio 2010. Although the essential package

development concepts have not changed enormously since Visual Studio 2008, the samples you

are going to build run together with Visual Studio 2010. So you need to install either the

Professional or the Ultimate edition of Visual Studio 2010. If you have not bought Visual Studio

2010 yet, you can get information about evaluation copies from Microsoft’s official home page.

Visual Studio 2010 has free Express editions, but these do not support extensibility options, so

you cannot use them with this book.

You cannot develop packages with Visual Studio out of the box. You need to install the Visual

Studio 2010 SDK that can be downloaded from the Visual Studio Extensibility Development

Center (http://msdn.com/vsx). The download and installation process takes about 3-5 minutes.

When you have Visual Studio 2010 and VS 2010 SDK installed on your computer, you’re ready

to start.

Visual Studio 2010 runs on several operating systems. The samples I provide in this book were

written on a computer with Windows 7 x64 Ultimate operating system and Visual Studio 2010

Ultimate.

What This Book Covers

As the title of this book suggests, it is dedicated to Visual Studio 2010 Package development.

The APIs available to develop Visual Studio extensions provide you several hundred of objects

and interfaces with over thousand methods, and almost hundred extensibility points.

Instead of treating all of them, this book intends to give you a very detailed overview of the

package development fundamentals. The book contains seven chapters suggested to read from

the first to the last without skipping any of them:

 Chapter 1 talks about the architecture of Visual Studio from the extensibility point of view and
explains you what options you have to add your own functionality to the Integrated
Development Environment (IDE).

 Chapter 2 explains the basic concepts of Visual Studio Packages. In this chapter you create your
first package and dive into the source code to discover how these concepts are represented. You
will also learn how packages are built, deployed and how you can debug them.

 Chapter 3 provides an overview of the command handling architecture. You’ll learn how
package commands are merged into the IDE and how you can design the menu and toolbar
items for your commands.

 Chapter 4 treats the window management architecture of Visual Studio and gives you a
comprehensive overview of designing and implementing tool windows. You are going to create

VS 2010 Package Development

4

a sample and improve it step-by-step while you discover the concepts, options and
programming patterns of tool windows.

 Chapter 5 talks about services, one of the most important concepts in extending Visual Studio.
You’ll learn the service architecture of the IDE. Besides consuming the common IDE services you
are going to create your own services to be consumed by other packages.

 Chapter 6 gives you an overview about the Development Tools Extensibility (DTE) object model
that contains several dozen automation objects to access Visual Studio services. The DTE API is a
part of Visual Studio — and not the part of Visual Studio 2010 SDK — from the first version of
Visual Studio .NET (released in April, 2002). This chapter also treats how can you extend the
automation model with your package-specific objects.

 Chapter 7 explains the concept of options pages to allow integrating your own package-specific
configuration information into the Options dialog.

VS 2010 Package Development

5

Chapter 1 : Fundamentals

I have spent a lot of time with preparing a book about Visual Studio Extensibility, focusing on

Visual Studio Package Development. I have made proposals for several book publishers, but I

did not manage to get a contract, most of them found such a book is not profitable. I decided to

share the four chapters of the book that I’ve already written. They are the followings:

 Chapter 1: Visual Studio Packages
 Chapter 2: Commands, Menus and Toolbars
 Chapter 3: Window Management and Tool Windows
 Chapter 4: Services

I hope, you will find these chapters useful.

The majority of Visual Studio’s functions you use in your everyday work (such as programming

languages, editors, designers and debuggers) are provided by Visual Studio Integration Packages,

or shortly by packages. Some call them VSIP packages but the VSIP acronym is overloaded:

while the first two letters means “Visual Studio” the last two may mean either “Integration

Package” or “Industry Partner” and unfortunately both terms are frequently used. To avoid

ambiguity hereinafter you’ll meet the term package or VSPackage.

Developing packages means you can extend Visual Studio on the same way as its developer

team at Microsoft. Adding new functions through packages is actually programming a new part

of Visual Studio just like if you were the member of the team. You can use the full power and

integrate any functionality you miss from the IDE!

In this chapter you will create a very simple package called FirstLook to get a feeling that first

steps are easy. Then you’ll learn the basic concepts behind packages and dive into the FirstLook

project’s structure and source code to have a closer look at the implementation of those concepts.

At the end of this chapter you’ll be familiar with the following:

 Building a package with the VSPackage Wizard
 The idea of a package
 The on-demand package loading mechanism and the idea of package siting
 Registration of packages and information stored in the registry
 The Visual Studio Experimental Hive and using it for debugging packages
 The package build process
 Deploying VSPackages

VS 2010 Package Development

6

This chapter will not teach you how to build a specific functionality into a package and does not

cover the API used to develop packages. The focus is on understanding the concepts,

architectural considerations behind VSPackages to let you take a look behind the scenes and get

acquainted with package mechanisms. These concepts will be very useful when you are about

creating your own packages.

Building a Simple Package

There are a few important concepts to understand if you want to develop a package. In order treat

them in the right context you build a very simple functional package to touch the surface of those

concepts and then jump into the details.

A Visual Studio package is a class library containing the types responsible for the package

infrastructure and functionality. In order Visual Studio recognize the compiled class library as

package, encapsulated types should have specific metadata information and some additional

steps are required after compilation. So, even if you could start building a package from an

empty class library, it is much easier to use the VSPackage Wizard installed with Visual Studio

SDK.

Start a new project with the File|New|Project command. The IDE displays the New File dialog to

select the desired project type. You can find the Visual Studio Integration Package project type

under the Other Project Types category in the Extensibility folder as Figure 1 illustrates.

Figure 1: The New Project dialog with the Extensibility project types

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0301_5F00_68B89CC3.png

VS 2010 Package Development

7

Should you not find this project type or many other project types in the Extensibility folder

means that Visual Studio SDK is not — or not properly — installed on your machine. Install it

according to the setup notes in order to go on with building the package.

Give the FirstLook name to the package in order to be able to follow code details later in this

chapter. Clicking the OK button starts the Visual Studio Integration Package Wizard

(henceforward VSPackage Wizard is used, it is shorter) which welcomes you with the dialog in

Figure 2.

Figure 2: The Welcome page of the VSPackage Wizard

Click the Next button to go on specifying the package parameters and you get to the Select a

Programming Language page of the wizard as Figure 3 shows.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0302_5F00_0BFEB9E8.png

VS 2010 Package Development

8

Figure 3: VSPackage Wizard lets you select the programming language

As it was mentioned earlier you create the code in C#. Packages are strongly named assemblies,

so you need to sign the class library assembly with a key. For this project the wizard creates the

signing key. Click Next and you get to the Basic VSPackage Information page as Figure 4

shows.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0303_5F00_7DC040F7.png

VS 2010 Package Development

9

Figure 4: The wizard asks for the basic package information

The information you provide here will be used in the source code generated for the package and

will be displayed in the Visual Studio About dialog. The Company name will be used in the

namespace of generated types as well as VSPackage name which also names the class

representing the package in code. VSPackage version is additional information to give a way for

distinguishing separate package releases.

Text typed in the Detailed information field will be displayed in the About dialog and can supply

the user with more information about what the package does.

When you click the Next button the wizard moves you to the VSPackage Options page — as can

be seen in Figure 5 — to set a few more code generation options.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0304_5F00_5685F7C2.png

VS 2010 Package Development

10

Figure 5: You can select a few code generation options

In this sample you are going to create only a menu command that pops up a message on the

screen, so set the Menu Command option. Should you select the other two options the

VSPackage Wizard would create some more code for a simple tool window or a rich text editor.

Please, let those options remain unchecked. With the Next button the wizard goes to the page

where we can specify a few details about the menu command to create. This page is shown in

Figure 6.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0305_5F00_0B2653FE.png

VS 2010 Package Development

11

Figure 6: Command options are specified here

The command will be added to the Tools menu of Visual Studio, in Command name you can

specify the text to be displayed for the menu item. According to the internal command handling

architecture each command has an identifier. The Command ID field supplies a name for this

identifier and VSPackage Wizard will generate an ID value behind this name. With clicking

Next the wizard moves to the Test Project Options page as shown in Figure 7.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0306_5F00_0D432898.png

VS 2010 Package Development

12

Figure 7: VSPackage Wizard asks for test project options

The wizard can create unit test for the package which check if its functional units work properly.

The wizard also can create an integration test project for you, in which packages are tested

within the context of a Visual Studio instance.

For the sake of simplicity here you do not create any tests, so clear the options — by default both

are checked. Now you have set all parameters the wizard uses to generate the package project,

click on the Finish button.

In a few seconds the wizard generates the package project ready to build and run. Taste the

pudding you have just cooked! With the Build ð Rebuild Solution function you can compile the

package and carry out all other steps required to run the package with Visual Studio. So rebuild

the project and start with Ctrl + F5 (Debug|Start Without Debugging).

You might be surprised as a new instance of Visual Studio is started with “Experimental

Instance” in its window caption.

Note: If this is the first time you have started the Experimental Instance, the Choose Default

Environment Settings dialog appears just like when you first time launch Visual Studio after

installation.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0307_5F00_6A2EB371.png

VS 2010 Package Development

13

This is an instance of Visual Studio that hosts the FirstLook package — later you’re going to

learn the concept behind. The menu command implemented by this freshly generated package

can be seen in the Tools menu as Figure 8 shows it.

Figure 8: The menu command item appears in the Tools menu

When you click the Simple Message command, it pops up a message box telling you it was

displayed from the FirstLook package.

The package also registered some branding information that can be seen in the Help|About

dialog as Figure 9 shows.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0308_5F00_5BF03A81.png

VS 2010 Package Development

14

Figure 9: Branding information of the FirstLook package

Nothing call tell more about your VSPackage than its source code. But before deep-diving into

it, let’s treat important concepts about packages.

Concepts behind Visual Studio Packages

A VSPackage is the principal architectural unit of Visual Studio. As you already know, Visual

Studio IDE itself is the Shell hosting a set of VSPackages working together with each other and

with the Shell. The basic responsibility of a package is to provide a common container for

extensibility objects. So, a VSPackage is a software module that is a unit not only from

architectural point of view but also from deployment, security and licensing aspects.

Developers — including the developers of Visual Studio — create VSPackages to provide some

extension to the VS IDE and group them into modules according to their functionality. These

extensions can be:

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0309_5F00_1BBA2107.png

VS 2010 Package Development

15

 Services. These are software objects that offer functionality for other objects in the same
package or even for other packages. For example, the C# Language Service (as its name also
tells) is a service.

 User interface elements. Menus, toolbars, and windows can be used by developers to initiate
some actions in the user interface, interact with, display messages, information and figures, and
so on.

 Editors. During development you write and modify program text to create applications. This task
is the responsibility of an editor. Visual Studio 2010 has its own core text editor and you can
extend it or even create your own editors.

 Designers. Application creation is not just simply a text-typing activity. There are many visual
tools known as designers that allow an alternative representation and design of modules,
components, parts or even full applications. Well-known examples are the Windows Forms
designer, The WPF Forms designer, the ASP.NET page designer or the Data Table designer.

 Projects. When developing applications you generally work with a large number of files. A
project is an organization of source files and resources. A project not just simply stores these
files but also defines operations with them, allows building, debugging and deploying the
products created from source files.

It is natural in .NET that you can divide your functional units into separate assemblies where

consumer assemblies will reference other service assemblies. The same principle works for

VSPackages: an assembly containing a package can reference other assemblies that may contain

not just helper types but even extensibility object types.

An assembly — as the smallest physical deployment unit in .NET — may contain more than one

VSPackage. Although generally only one package is encapsulated in an assembly, you may have

many reasons to group more packages in one assembly — including deployment considerations.

The Package Load Key

The previous versions of Visual Studio checked the package before loading them into the process

space of the Shell. Any VSPackage should have been “sealed” with a so-called Package Load

Key (PLK) and this key was verified during package load time. PLK was not a digital signature

or a full hash, because it was calculated from a few information fields in the package. PLK could

have been requested from Microsoft through a webpage: the developer specified a few well-

defined attributes of the package and some logic calculated the PLK value. This value was

embedded as a resource into the assembly representing the package.

Every time the package was loaded, the Shell checked the PLK against the package attributes it

had been created from. Should have been this check fail, the Shell would have refused loading

the package. This PLK mechanism did not mean that a developer had to request a new PLK for

each package modification. While no basic information the PLK had been generated from was

changed, the package continued to load.

VS 2010 Package Development

16

Although this concept had been seemed useful, in the real life in had no real advantage. To be

honest, in most of the cases it was the root cause of deployment issues, in many scenarios it

raised more problems than it solved.

In the new Visual Studio 2010 the Shell does not use the Package Load Key to check packages

before loading them into the memory.

On-demand Loading of Packages

You can imagine that complex packages like the C#, VB, F# or C++ languages with all of their

“accessories” could consume many system resources by terms of memory and CPU. If you do

not use them they do not press the CPU, but they might use the memory if they sit within the

Visual Studio process space. If you create a project using F# you actually do not need services

belonging to other languages, so why to load them into the memory at all?

The architects of Visual Studio implemented the package load mechanism so that packages are

loaded into the memory at the first time when an event requiring the presence of the package is

raised. These events can be one of the followings:

 Command activation. The user (or some running code) activates a menu or toolbar command
(or even a command that cannot be accessed from UI) served by a package which has not been
loaded yet. It does not matter if the user has clicked on a menu item or the running code has
activated it with a “virtual click” the result is the same.

 Object or service request. The Shell is about to use an object or a service in a package not
loaded yet. For example a tool window should be displayed or a service function is about to be
executed.

 Context change. The Shell can enter into certain user interface contexts. For example, when you
start debugging a project, the Shell enters into the Debugging context. When a solution with a
single project is loaded, the Shell enters into the SolutionHasSingleProject context. You can
declare that a package should be loaded as the Shell enters in a certain context. Visual Studio
has a few predefined contexts, but you can also define your own ones.

So, if you do not need a package during the whole IDE session, it does not consume the memory

at all. Should you click on a menu item activating a command sitting in a package which has not

been loaded yet the IDE will immediately load and initialize it. Should you ask for a tool window

in a package not in the memory yet, the IDE will start loading it.

Binding package loading with a context change is generally required where your package want to

subscribe for events raised in Visual Studio. You cannot bind the event either to command

activation or object or service requests, because in order your package could work you have to

subscribe to events. The code to create subscriptions is generally put into the initialization code.

But you cannot run any code belonging to a package while it is not loaded into the memory! In

this case you declare that the best context (the latest possible) to load the package. If your

package logic requires, you can specify the NoSolutionExists context. Visual Studio enters into

VS 2010 Package Development

17

this context immediately when the Shell is loaded and ready to function, so packages bound to

this context load at Visual Studio startup time.

Note: Be frugal with system resources if you have to load a package at Visual Studio startup

time. Allocate only resources that are indispensable to carry out the required initialization at

startup time.

Package Siting

When you develop a package it is an independent piece of code. When it is loaded into Visual

Studio it becomes an organic part of the IDE:

 Your package can access services and objects provided by the Shell and other packages.
 The Shell and other packages can access the objects and services you proffer them.

The process of making a package physically integrated into the Shell is called siting. While the

package is not sited, its functions cannot be used from outside. From the same reason the

package can be only partially initialized, because it cannot touch any objects or services through

the Shell. As soon as the package gets sited, it is ready to finish its initialization and be fully

functional. Siting happens when Visual Studio loads the package.

The object type representing your package must implement an interface called IVsPackage (you

are going to learn details later in this chapter) and must have a default constructor.

Loading a package contains the following steps:

 The Shell creates an instance of the object type representing your package by invoking its
default constructor.

 The Shell calls the SetSite method of the object instance — IVsPackage defines this method —
and passes a so-called service provider instance which can be used by the package to query
objects in order to access services implemented by the Shell or other packages.

 The Shell allows your package to finish its initialization. In the first step during the construction
call the service object did not have any contact with the Shell. After siting all initialization steps
invoking Shell services can be carried out.

Although siting physically integrates your package functionally with Visual Studio, functional

integration may require some additional — and sometimes complex — steps depending on what

your package is intended to do.

Package Registration

Visual Studio must keep track of packages in order to load and use them. Of course, the most

flexible would be some kind of discovery where the Shell can look around only in the file system

to guess out which entities represent packages. The .NET framework supports and intensively

uses metadata (attributes) that can represent the information you can use for this purpose. You

VS 2010 Package Development

18

can even load an assembly so that only the metadata part is read from the file system and put into

the memory. Although you can imagine this mechanism could work, it is not used by the Shell in

this way.

The reason is that the roots of Visual Studio go back to the COM era. Packages are COM objects

and can be created not only in managed code but also in native code using the Win32 API with

any language including C++, Delphi and others. So, not surprisingly Visual Studio uses the

registry to keep information about packages.

Although the registry is used to store configuration information about Visual Studio settings,

developers and package users are not bothered with registration issues. The new deployment

mechanism (through VSIX files) implemented in Visual Studio 2010 takes away this task. When

Visual Studio is started, its discovery mechanism collects the information to be entered into the

registry and does all the registration process on the fly. Developers perceive they do installation

only by copying files and this resembles to the great mechanism we are using with the .NET

Framework.

Package Information in the Registry

Packages are loaded into the memory on-demand. To effectively use this approach, Visual

Studio stores the registration information about packages in a way so that this information could

be accessed from the direction of objects to be used. For example, one kind of object that could

trigger package loading is a tool window. A tool window has its own identity. When it is about to

be created in order to be displayed, Visual Studio turns into the registry and addresses the

corresponding key with the tool window identity. Under that key there is information stored

about the identity of the package owning and implementing the tool window. Using this identity

Visual Studio finds the registry key containing the package information and loads the package

into the memory accordingly. The identity of packages and objects is represented by a GUID.

Figure 10 shows a few registry keys that store package-related information for Visual Studio.

VS 2010 Package Development

19

Figure 10: Package and object information in the registry

Assume that Visual Studio is about to create a service instance. It uses the Services registry key

and according to the service identity it finds the package. Figure 11 illustrates the service key of

the Class Designer Service. At the left side you can see the subkey named by the GUID

identifying the service. At the right side you see the corresponding package ID in the default

value under the service key.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0310_5F00_52102F05.png
http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0311_5F00_6EE0DBE0.png

VS 2010 Package Development

20

Figure 11: Service information in the registry

Visual Studio uses the same approach to find owner packages for any other objects.

There is one important thing to treat about package information in the registry. Packages can add

their own user interface items to the Visual Studio IDE in form of menus and toolbars. If this UI

information were created during the package initialization time, Visual Studio would need to

load the package at startup time in order to present the package-dependent UI to the users. This

approach would demolish the whole concept of on-demand loading.

Instead, the package uses a declarative way to define the user interface that should be displayed

in the IDE at startup time. This information is encapsulated into the package assembly as an

embedded resource. During the registration process Visual Studio extracts this resource

information and merges it with its standard menus. Each user interface element — the commands

they represent — is associated with the identity (GUID) of the owner package, so the Shell

knows which package to load when a command is activated.

Visual Studio Experimental Instance

When you started the FirstLook package a new instance of Visual Studio was launched with the

“Experimental Instance” text in its caption. What is that Visual Studio instance and how did it

get to the computer?

Visual Studio Experimental Instance is a test bed to run and debug Visual Studio packages

during the development and test phase. It is not a new installation of Visual Studio. It is the same

devenv.exe file you use normally. But why you need it?

As it’s been mentioned earlier the package is registered — information is written into the system

registry — in order it could integrate with Visual Studio. Every time you build and run a package

some information goes into the registry. When you modify the package it might affect also the

information in the registry. You can imagine what an unexpected confusion it can lead that you

always modify the registry under the Visual Studio instance you actually use to develop and

debug a package? What if your package does not work or even worse it prevents Visual Studio

start correctly or even causes a crash? How would you fix the pollution of registry?

That is the point when Visual Studio Experimental Instance comes into the picture. The

Experimental Instance is simply another instance of Visual Studio that picks up its settings from

a different place — including configuration files and registry keys.

The devenv.exe keeps its configuration settings in the system registry in the CURRENT_USER

hive under the Software\Microsoft\VisualStudio\10.0_Config key. When Visual Studio runs it

reads out the configuration information from these keys by default. With the /rootsuffix

command line parameters the root key used by devenv.exe can be changed.

VS 2010 Package Development

21

The VSPackage Wizard sets up the package project so that the devenv.exe uses the /rootsuffix

Exp command line parameter when running or debugging the package. By doing it so

devenv.exe will use the Software\Microsoft\VisualStudio\10.0Exp_Config registry key under

the CURRENT_USER registry hive. So running the package with the Start Debugging (F5) or

Start Without Debugging (Ctrl+F5) functions will launch the Visual Studio Experimental

Instance using this registry key.

The build process of a package copies the package binaries and the so-called VSIX manifest

information to a well-known location under the current user’s application data folder. When the

Experimental Hive starts, it discovers the package in the folder and uses the information found

there to enter the package information into the registry key consumed by the Experimental

Instance.

Using the Experimental Instance prevents you polluting the registry of the Visual Studio instance

used for the normal development process. However, making mistakes, recompilations and faulty

package registrations does not prevent putting junk or leaving orphaned information in the

Experimental Instance registry. Making an appropriate cleanup could be very complex and

dangerous if you would do it by delving in the registry.

Cleaning up packages from the Experimental Instance’s registry is quite easy! The Visual Studio

SDK installs the CreateExpInstance.exe utility and adds it to the Visual Studio 2010 SDK

menu items under the Tools folder with the name “Reset the Microsoft Visual Studio 2010

Experimental Instance”. Running this utility will reset the registry key belonging to the

Experimental Hive to the state after the installation of VS SDK.

Note: If you develop Visual Studio packages you can get into situations several times where your

package which worked before seems suddenly stop working. In majority of these cases the cause

is the pollution of Visual Studio registry. There can be many orphaned objects in the registry as a

result of continuous modification and rebuild of packages, and that can cause problems. If you

run in such a situation, reset the Experimental Instance and then build your package with the

Rebuild All function of Visual Studio. This procedure often helps.

Diving into the Package Source Code

You have already created a FirstLook project with the VSPackage wizard and by now you have

a good overview about the basic concepts behind packages. Now we go into details and look

how those concepts and ideas are reflected in the source code.

When the VSPackage Wizard generated the code according to the parameters we specified on the

wizard pages, it made a lot of work at the background. The wizard carried out the following

activities:

 Generation of a class library project in C#.
 Adding references to this project for the interoperability assemblies required to access Visual

Studio functionality.

VS 2010 Package Development

22

 Creating resources used by the package and other resources used by the registration process.
 Adding new MSBuild targets to the project to support the build and registration process of the

package.
 Generation of types responsible for implementing the package functionality.
 Setting up the debug properties of the project to start Visual Studio Experimental Instance.

Table 1 summarizes the source files in the FirstLook project.

Table 1: FirstLook source files generated by the VSPackage wizard

Source File Description

source.extension.vsixmanifest
This is the so-called VSIX manifest file which plays vital role in the

discovery and registration mechanism of Visual Studio extensions.

FirstLook.vsct

The so-called command table file storing the definition of the menus and

commands to be merged into the Visual Studio IDE during the registration

process.

FirstLookPackage.cs Class implementing the simple functionality of the package.

GlobalSupressions.cs
Attributes used to suppress messages coming from the static code

analysis.

Guids.cs
GUID values used to identify the package and command objects within

the package.

Key.snk Signing key used to generate the strong name for the package assembly.

PkgCmdID.cs Constants for identifying command values.

Resources.resx
Resource file to store your functional package resources — resources you

use according to the functions you implement in the package.

VSPackage.resx
Resource file to store package infrastructure resources — those resources

which are used by Visual Studio to integrate your package into the IDE.

The wizard added several assemblies to the class library project. Table 2 summarizes their roles.

Their names start with the Microsoft.VisualStudio, this prefix is omitted in the table for the

sake of clarity.

Table 2: Interoperability assembly references in the project

VS 2010 Package Development

23

Source File Description

~.Shell.Interop
This assembly defines several hundreds of core interoperability

types (interfaces, structures, enumerations, classes, etc.).

~.Shell.Interop.8.0, ~.Shell.Interop.9.0

and ~.Shell.Interop.10.0

There are COM types new in VS 2005, VS 2008 and VS 2010 IDEs.

The interoperability wrappers of them are defined in these

assemblies where the 8.0 suffix is for VS 2005, the 9.0 suffix for

VS 2008 while the 10.0 suffix for VS 2010.

~.Shell.Interop.Immutable.10.0
A few abstract and enumeration types used for package

registration attributes.

~.OLE.Interop
There are a few hundred of standard OLE types and interfaces.

This assembly provides wrapper types for them.

~.Shell.9.0

The core types of the Managed Package Framework. There is a

separate version for VS 2008 with the 9.0 suffix. If you work with

VS 2008, you should use this assembly.

~.TextManager.Interop

Interoperability assembly with wrapper types to access text

editor and text management functionality. Although this

assembly is referenced by the project, it is not used in the

package you’ve created.

All assemblies having Interop in their names contain only proxy type definitions to access the

core Visual Studio COM service interface and object types.

Package Type Definition

Now, let’s see the source code of the package! The wizard added many useful comments to the

generated source files. In the code extracts listed here those commands are cut out to make the

listings shorter and improve the readability of the code. The indentation has also been changed a

bit for the same purpose.

Listing 1 shows the source code of the most important file in our project named

FirstLookPackage.cs. This file implements the type representing our package:

Listing 1: FirstLookPackage.cs

1. using System;
2. using System.ComponentModel.Design;
3. using System.Diagnostics;

VS 2010 Package Development

24

4. using System.Globalization;
5. using System.Runtime.InteropServices;
6. using Microsoft.VisualStudio.Shell;
7. using Microsoft.VisualStudio.Shell.Interop;
8.
9. namespace DeepDiver.FirstLook
10. {
11. [PackageRegistration(UseManagedResourcesOnly = true)]
12. [InstalledProductRegistration("#110", "#112", "1.0", IconResourceID =

400)]

13. [ProvideMenuResource("Menus.ctmenu", 1)]
14. [Guid(GuidList.guidFirstLookPkgString)]
15. public sealed class FirstLookPackage : Package
16. {
17. public FirstLookPackage()
18. {
19. Trace.WriteLine(string.Format(CultureInfo.CurrentCulture,

"Entering constructor for: {0}", this.ToString()));

20. }
21.
22. protected override void Initialize()
23. {
24. Trace.WriteLine(string.Format(CultureInfo.CurrentCulture,

"Entering Initialize() of: {0}", this.ToString()));

25. base.Initialize();
26.
27. // Add our command handlers for menu (commands must exist in the

.vsct file)

28. OleMenuCommandService mcs =
GetService(typeof(IMenuCommandService)) as OleMenuCommandService;

29. if (null != mcs)
30. {
31. // Create the command for the menu item.
32. CommandID menuCommandID = new

CommandID(GuidList.guidFirstLookCmdSet,

(int)PkgCmdIDList.cmdidShowMyMessage);

33. MenuCommand menuItem = new MenuCommand(MenuItemCallback,
menuCommandID);

34. mcs.AddCommand(menuItem);
35. }
36. }
37.
38. private void MenuItemCallback(object sender, EventArgs e)
39. {
40. // Show a Message Box to prove we were here
41. IVsUIShell uiShell = (IVsUIShell)GetService(typeof(SVsUIShell));
42. Guid clsid = Guid.Empty;
43. int result;
44. Microsoft.VisualStudio.ErrorHandler.ThrowOnFailure(uiShell.ShowMe

ssageBox(

45. 0,
46. ref clsid,
47. "FirstLook",
48. string.Format(CultureInfo.CurrentCulture, "Inside

{0}.MenuItemCallback()", this.ToString()),

VS 2010 Package Development

25

49. string.Empty,
50. 0,
51. OLEMSGBUTTON.OLEMSGBUTTON_OK,
52. OLEMSGDEFBUTTON.OLEMSGDEFBUTTON_FIRST,
53. OLEMSGICON.OLEMSGICON_INFO,
54. 0, // false
55. out result));
56. }
57. }
58. }

The FirstLookPackage class becomes a working package by inheriting the behavior defined in

the Package class of the Microsoft.VisualStudio.Shell namespace and by using the attributes

decorating the class definition.

The Package base class implements the IVsPackage interface that is required by Visual Studio

in order to take an object into account as a package. This interface provides a few methods

managing the lifecycle of a package and also offers methods to access package related objects

like tool windows, options pages, and automation objects. One of the most important of them is

the SetSite method having the following signature:

1. int SetSite(IServiceProvider psp);

Visual Studio calls this method immediately after the package has been instantiated by its default

constructor. The psp parameter is an instance of System.IServiceProvider and this object is the

key in keeping contact between the package and the IDE: any time the package requests a service

object from its context—from the IDE—the psp instance is used at the back, however, the

implementation of Package hides it from our eyes.

The overridden Initialize method is called after the package has been successfully sited. This

method has to do all the initialization steps that require access to services provided by the Shell

or other packages. Should you move this code to the package constructor you would get a

NullReferenceException because at that point all attempts to access the Shell would fail as the

package is not sited yet and actually has no contact with any shell objects.

The package constructor should do only inexpensive initialization that you would put normally

to a constructor. Any other kind of initialization activities should be put to the overridden

Initialize method. If you have some other expensive initialization activity that can be postponed,

you should do them right when there’s no more time to delay them.

In this case the Initialize method binds the single menu command provided by the

FirstLookPackage with its event handler method called MenuItemCallback:

1. protected override void Initialize()
2. {
3. Trace.WriteLine(string.Format(CultureInfo.CurrentCulture, "Entering

Initialize() of: {0}", this.ToString()));

4. base.Initialize();

VS 2010 Package Development

26

5.
6. // Add our command handlers for menu (commands must exist in the .vsct

file)

7. OleMenuCommandService mcs = GetService(typeof(IMenuCommandService)) as
OleMenuCommandService;

8. if (null != mcs)
9. {
10. // Create the command for the menu item.
11. CommandID menuCommandID = new

CommandID(GuidList.guidFirstLookCmdSet,

(int)PkgCmdIDList.cmdidShowMyMessage);

12. MenuCommand menuItem = new MenuCommand(MenuItemCallback,
menuCommandID);

13. mcs.AddCommand(menuItem);
14. }
15. }

First it calls the Initialize method of the base class — Package in this case. Omitting the call to

the base implementation would prevent the package running correctly. Look at the call of

GetService in Line 7! If you could select a method that is especially very important when

creating Visual Studio Extensions, probably the GetService method is that one! This method is

implemented by the Package class — many other Managed Package Framework objects also

implement this method — in order to request service objects from the environment. GetService

has one type parameter — it’s called service address — that retrieves a service object

implementing the service interface specified by the address type.

So, Line 7 obtains an OleMenuCommandService instance that you can use to bind event

handlers to so-called command objects. In Line 11 and 12 a CommandID instance is created to

address the command to be put to the Tools menu. In Line 12 a MenuCommand instance is

created to assigns the MenuItemCallback method as a response for the command specified with

the CommandID instance. Line 13 entitles the menu command service to handle events related

to the command. The result of this short initialization code is that your package handles the event

when the user clicks the Simple Message menu item in the Tools menu by executing the

MenuItemCallback method. In the next chapter you will find all nitty-gritty details about the

command handling concepts used in Visual Studio and there you will learn much more about the

initialization approach used here.

The MenuItemCallback method uses the IVsUIShell service to pop up a message box from

within the IDE.

Registration Attributes

By now you know that packages are registered with Visual Studio in order to support the on-

demand loading mechanism and allow merging menus and toolbars into the user interface of the

IDE. The information to be registered is created during the build process from attributes assigned

to the package class:

1. [PackageRegistration(UseManagedResourcesOnly = true)]

VS 2010 Package Development

27

2. [InstalledProductRegistration("#110", "#112", "1.0", IconResourceID =
400)]

3. [ProvideMenuResource("Menus.ctmenu", 1)]
4. [Guid(GuidList.guidFirstLookPkgString)]
5. public sealed class FirstLookPackage : Package
6. {
7. // --- Package body omitted
8. }

Packages are COM objects and so they must have a GUID uniquely identifying them. The Guid

attribute is used by the .NET framework to assign this GUID value to a type. All attributes above

except Guid are derived from the RegistrationAttribute class which is the abstract root class

for all attributes taking a role in package registration. Table 3 describes the attributes decorating

the FirstLookPackage:

Table 3: Registration attributes in FirstLookPackage

Source File Description

PackageRegistration

Adding this attribute to a class, the build process will handle it as a package

and looks for other attributes to prepare the package registration

according to your intention. In the example this attribute sets the

UseManagedResourcesOnly flag to tell that all resources used by the

package are described in the managed package and not in a satellite DLL.

InstalledProductRegistration

This attribute is responsible to provide information to be displayed in the

Help|About dialog in the IDE. The constructor of this attribute requires four

arguments with the following meanings:

 The first and second strings provide the name and the description
of the package. The “#” characters indicate that these values
should be looked up in the package resources with the IDs
following “#”.

 The third “1.0” parameter is the product ID (version number).
 The fourth parameter (IconResourceID) tells which icon to use for

the package.

All resources (name, description and icon) should be defined in the

VSPackage.resx file.

ProvideMenuResource

This attribute is to create registry entries about menu and toolbar items

provided by the package. Visual Studio uses the embedded resources here

to merge the package menus into the Visual Studio menus.

The attribute has two parameters. The first is the so-called resourceID. This

value is set to Menus.ctmenu as during the build process the VSCT

VS 2010 Package Development

28

compiler uses this value by default when adding the binary representation

of the .vsct file to the package resources. The second parameter is called

versionID and it plays important role in the caching mechanism of

resources. In the next chapter you are going to examine the role of this

attribute in details.

There are many other registration attribute beside the ones in the table above, later in the book

we are going to meet a few of them. You are not constrained to apply only the registration

attributes defined by the Managed Package Framework, and you can define your own attributes.

Any of them including yours are handled on the same way by the build process as the predefined

ones.

The Command Table

The wizard generated a file named FirstLook.vsct. It is an XML file and the file extension refers

to the acronym coming from the “Visual Studio Command Table” expression. The schema of the

XML file defines the command table owned by the package.

The command table is transformed into a binary format during the build process and is

embedded into the package assembly as a resource. During the registration phase the ID of this

resource is put into the registry. When Visual Studio starts, loads this binary resource

information and merges it with the menus of the IDE including toolbars and context menus.

In order to avoid menu merges every time Visual Studio is launched, the IDE uses a cache

mechanism and carries out the merge process only once for each package.

The next chapter will treat this mechanism and the structure of the command table in details.

Listing 2 shows you the command table described in the FirstLook.vsct file.

Listing 2: FirstLook.vsct

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="http://schemas.microsoft.com/VisualStudio/2005-10-

18/CommandTable"

3. xmlns:xs="http://www.w3.org/2001/XMLSchema">
4. <Extern href="stdidcmd.h"/>
5. <Extern href="vsshlids.h"/>
6. <Extern href="msobtnid.h"/>
7.
8. <Commands package="guidFirstLookPkg">
9. <Groups>
10. <Group guid="guidFirstLookCmdSet" id="MyMenuGroup"

priority="0x0600">

11. <Parent guid="guidSHLMainMenu" id="IDM_VS_MENU_TOOLS"/>
12. </Group>
13. </Groups>

VS 2010 Package Development

29

14.
15. <Buttons>
16. <Button guid="guidFirstLookCmdSet" id="cmdidShowMyMessage"

priority="0x0100" type="Button">

17. <Parent guid="guidFirstLookCmdSet" id="MyMenuGroup" />
18. <Icon guid="guidImages" id="bmpPic1" />
19. <Strings>
20. <CommandName>cmdidShowMyMessage</CommandName>
21. <ButtonText>Simple Message</ButtonText>
22. </Strings>
23. </Button>
24. </Buttons>
25.
26. <Bitmaps>
27. <Bitmap guid="guidImages" href="Resources\Images_32bit.bmp"

usedList="bmpPic1, bmpPic2, bmpPicSearch, bmpPicX, bmpPicArrows"/>

28. </Bitmaps>
29. </Commands>
30.
31. <Symbols>
32. <GuidSymbol name="guidFirstLookPkg" value="{d55758eb-6581-48fe-

930b-f3536f43b6f0}" />

33. <GuidSymbol name="guidFirstLookCmdSet" value="{05da2180-8d8e-4822-
913b-b6a9012c4b2b}">

34. <IDSymbol name="MyMenuGroup" value="0x1020" />
35. <IDSymbol name="cmdidShowMyMessage" value="0x0100" />
36. </GuidSymbol>
37. <GuidSymbol name="guidImages" value="{49ba23b3-1631-483d-a095-

003cb157f55d}" >

38. <IDSymbol name="bmpPic1" value="1" />
39. <IDSymbol name="bmpPic2" value="2" />
40. <IDSymbol name="bmpPicSearch" value="3" />
41. <IDSymbol name="bmpPicX" value="4" />
42. <IDSymbol name="bmpPicArrows" value="5" />
43. </GuidSymbol>
44. </Symbols>
45.
46. </CommandTable>

In this listing all comments placed into the generated file are omitted for saving space. However,

it is worth to read those comments to have a better understanding of the command table

structure.

The .vsct file tells a lot about how Visual Studio is architected, how it solves the coupling of

functions (commands) and user interface elements.

 Commands (actions to execute) are separated from the user interface element triggering the
command. The same command can be assigned to different menus and toolbars; they will use
the same action.

 Commands used together can be grouped and simply merged into existing menus by using the
command group representation. It is much easier then coupling commands with hosting menus
one-by-one.

VS 2010 Package Development

30

 Elements are identified by symbols rather than using explicit values. This makes the coupling
less error-prone: values of symbols must be defined only once, and the VSCT compiler can check
for mistyping.

The root element of a .vsct file is the CommandTable element. As you can see all related

elements are defined by the http://schemas.microsoft.com/VisualStudio/2005-10-

18/CommandTable namespace. No doubt, the most important element is Commands, because

this node defines commands, their initial layout and behavior.

Any command in the VS IDE must belong to the IDE itself or to a package. To assign a

command to the appropriate (owning) VSPackage, the package attribute of the Commands

element must name the GUID of the corresponding package.

Commands node can have a few child elements; each has a very specific role.

Group elements define so-called command groups; each of them is a logical set of related

commands that visually stand together. In the FirstLook.vsct file we have a Group element that

holds only a Button. A button represents a piece of user interface element the user can interact

with, in this case a menu item that can be clicked. The Parent element defines the relationship

between elements, for example the Button element defined above is parented in the Group.

Toolbars and menus would be poor without icons helping the user to associate a small image

with the function. The Bitmap nodes allow defining the visual elements (icons) used in menus.

The Symbols section is a central place in the command table file where you can define the

identifiers to be used in the other parts of the .vsct file. You can use the GuidSymbol element to

define the “logical container GUID” and the nested IDSymbol elements to provide (optional)

identifiers within the logical container. The name and the value attribute of these elements do

exactly what you expect: associate the symbol name with its value.

The VSPackage Wizard put the generated GUID values into the FirstLook.vsct file but they also

can be found in the Guids.cs file. The PkgCmdID.cs file defines constant values for the

IDSymbol values used by package commands. These three files must be kept consistent, so if

you change a GUID or a command identifier, the changes should be tracked in the other files as

well; otherwise your package will not work as expected.

Package Resource Files

The FirstLook project has two resource files: Resources.resx and VSPackage.resx. They both

utilize the resource handling mechanism in the .NET Framework, but have different roles.

Resources.resx is to store functional resources that are consumed by the objects and services of

your package. For instance, you can store error messages, prompt strings, UI elements, logos,

and so on in this resource file and access them programmatically through the static members of

VS 2010 Package Development

31

the Resources class generated by the ResXFileCodeGenerator custom tool attached to the .resx

file.

VSPackage.resx can store resources just like Resources.resx, but its primary role is to embed

package infrastructure resources. This resource file does not use the ResXFileCodeGenerator

custom tool and so does not generate any helper class to access resources.

As you remember the package is decorated with the InstalledProductRegistration attribute

which refers to resource identifiers 110, 112 and 400:

1. [InstalledProductRegistration("#110", "#112", "1.0", IconResourceID = 400)]

These IDs refer to string and icon resources in the VSPackage.resx file as shown in Figure 12.

Figure 12: String resources in VSPackage.resx

Package resources will be extracted from the content of the VSPackage.resx file, so if you put

them in the Resources.resx file, the package will not find the resource. Although you can put

functional resources into VSPackage.resx file, their recommended place is the Resources.resx

file.

The Package Build Process

Understanding the package build process can help a lot when you are about to debug or deploy

your application. In this part you’ll learn the steps of this process in details.

Building a package is not simply compiling the package source code into a .NET assembly.

There are other important steps to complete in order to use the package either in the

Experimental Instance or in its productive environment.

When the wizard generates the package it adds new build targets to the .csproj file of the

corresponding class library. You can discover these entries by first unloading the project and

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0312_5F00_1ADD865B.png

VS 2010 Package Development

32

then editing the project file. If you want to try it, first right-click on the project file in Solution

Explorer and use the Unload Project function, then activate the Edit FirstLook.csproj command

also with right-click. When you scroll down to the bottom of the file you can discover the

following entries:

1. <Import Project="$(MSBuildBinPath)\Microsoft.CSharp.targets" />
2. <Import

Project="$(MSBuildExtensionsPath)\Microsoft\VisualStudio\v10.0\VSSDK\\uinput1

?

3. Microsoft.VsSDK.targets" />
4.

The first Import entry can be found in any C# language projects to invoke the C# compiler and

all the other tools (for example the resource compiler) to create the assemblies from the source

project. The second Import entry is the one added by the VSPackage Wizard. The .targets file

specified here contains Visual Studio SDK related build targets. If you would like to have a look

at this file, you can find it in the MSBuild\Microsoft\VisualStudio\v10.0\VSSDK folder under

Program Files. This book is not about MSBUILD, so you won’t find more explanations about

what the build targets describe and how they internally work, instead, here are the steps of the

package build process:

 The Resources.resx and VSPackage.resx files are compiled into the corresponding .resource files.
 With the help of the vsct.exe utility the content of the .vsct file belonging to the package is

compiled into a binary file called CTO file. This file format is used by Visual Studio when merging
the package menu and command information into the IDE menu.

 The CTO file is merged into the VSPackage.resource file as a binary resource with the name of
Menus.ctmenu.

 The C# compiler is invoked to compile the project source code just like normally when we build
a standard class library. During this step the Resources.resources file and the
VSPackage.resources files are embedded into the assembly.

 The CreatePkgDef.exe utility is executed and it scans the assembly for registration metadata
information. Each registration attribute is translated to corresponding registry data. The utility is
parameterized so that it creates a .pkgdef text file containing the information that is to be
entered into the system registry.

 The binaries of the package (including the .dll and .pdb file), the corresponding .pkgdef file and
the VSIX manifest file are zipped into a file with .vsix extension. This .vsix file is the installation
kit of the package. You will find this file just beside the binaries (in the bin\Debug or bin\Release
or maybe in another folder depending on the build configuration). With double clicking on this
file you can start the Visual Studio Extension Installer utility.

 The .vsix file is installed in your LocalAppData folder under the Extensions subfolder of the Visual
Studio Experimental Instance. The location of this folder depends on your user account and
profile type. For example, if your user name is jsmith, you have installed Windows 7 on your C:
drive and you have a local profile the build process will look for the
C:\Users\jsmith\AppData\Local\Microsoft\VisualStudio folder and install the .vsix file under the
10.0Exp\Extensions subfolder. The extension will be enabled (setting a key in the registry).

VS 2010 Package Development

33

As a result of the build process the package is available in the Experimental Instance. The next

time you start the Experimental Instance, it scans the Extensions folder, uses the .pkgdef file of

your package to create the appropriate registry settings, the package’s menus gets merged into

the IDE, so your package is ready to run.

Debugging Visual Studio Packages

Anyone who develops software creates programming mistakes. Majority of them can be caught

during a simple or more complex code review. Many of them are obvious and you can find them

in the code after observing the faulty behavior. There are a few of them which cannot be easily

caught without using a debugger.

Developing VSPackages is the same story. Sooner or later you find yourself debugging a

package and searching for a bug. This book does not want to go into details about debugging

techniques; this is definitely not its topic. However, you will learn how easy is to debug your

package and what is going behind the scenes.

To debug or run a package you should set it as the startup project. If your package is the only

project is the solution, it is already marked so. If you have more projects in the solution, you

should mark any VSPackage project as the startup project.

Independently if you run a package with or without debugging, the Visual Studio Experimental

Instance is started. You can check it on the project property pages on the Debug tab as Figure 13

shows it for the FirstLook project.

VS 2010 Package Development

34

Figure 13: Debug properties

You can see that devenv.exe is selected as the startup project and it is launched with the

/rootsuffix Exp command line parameters. As you have learnt before this command line starts

the Experimental Instance.

When you start the project with the Start Debugging (F5) function Visual Studio attaches the

debugger to the Experimental Instance and so you can set breakpoints in Visual Studio. As your

package running in the Experimental Instance reaches a breakpoint, you are taken back to the

debug view as Figure 14 illustrates it. In this case a breakpoint was set within the Initialize

method of the FirstLookPackage class.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0313_5F00_3A8C6023.png

VS 2010 Package Development

35

Figure 14: The debugger in action

You can use the same techniques for debugging a VSPackage as for any other applications. All

debugging features of Visual Studio are accessible: you can watch variables, evaluate

expressions, set up conditional breakpoints, and so on.

There are cases when you would like to trace your application without a debugger using trace

messages. You can follow this practice with Visual Studio. The simplest one is writing to the

Debug pane of the Output window. You can learn about this topic in Chapter 3.

Deploying a Package

It is very comfortable to use the Experimental Instance while developing a package. The build

process takes care about setting up your package to work, so you can use either the Start

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0314_5F00_6564C435.png

VS 2010 Package Development

36

Debugging or Start Without Debugging commands to try what you’ve created. However, when

your package is ready for distribution you should care about deployment questions.

Package Deployment in the Past

With Visual Studio versions preceding 2010 developers had to do some extra activities to

prepare packages for deployment and it has a few potential pitfalls. The two main issues were

that you needed to obtain a so-called Package Load Key (PLK) through a web page and take care

of entering the required entries into the registry to allow Visual Studio recognize and integrate

your package.

¾ Any change in package information like name, GUID, company or version required obtaining

a new PLK. The Experimental Hive (this is what is now called Experimental Instance) did not

check the PLK by default, so it often happened that developers faced with a wrong (missing or

not renewed) PLK only after the installation kit was built and tested in the production Visual

Studio environment.

¾ While the build process automatically registered the package under the Experimental Hive,

developers had to create their own registration mechanism in the installation kit. It was not

difficult, but because it was not automatic, forgotten registration updates could have led to

annoying issues.

The VSIX installation

The new deployment mechanism built into Visual Studio 2010 removes this pain and provides an

easy and straightforward way for package deployment.

Generally the easiest form of deploying an artifact is if you have an installation kit. The package

build process as treated earlier creates this installation kit as a .vsix file containing the package

binaries and some additional information. You can distribute your package by simply

distributing the .vsix file to your customers. When they receive it, the Visual Studio Extension

Installer utility can be started with double clicking on the .vsix file as Figure 15 illustrates.

VS 2010 Package Development

37

Figure 15: Installing a VSIX file

When you click install the content of the VSIX file will be installed to the specified Visual

Studio instance.

If you create a package for a broad set of customers or for the community, you can upload the

VSIX file to the Visual Studio Gallery. The new Shell of Visual Studio contains a great tool

called Extension Manager that is able to search this gallery for extensions, install or remove

them, and keep track of installed extensions as well as managing their updates. Figure 16 shows

a screenshot of the Extension Manager browsing the extensions available on Visual Studio

Gallery.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0315_5F00_12E5E3F9.png

VS 2010 Package Development

38

Figure 16: Browsing Visual Studio Gallery with the Extension Manager

You can select any of the components while browsing, and on the right pane of the window you

find some more details about the highlighted item. With the More Information link you will be

directed to component’s home page on the Visual Studio Gallery. If you like this component,

you can get it with the Download button just as others can obtain your uploaded components.

The Extension Manager is the recommended way to obtain extensions. Because it runs within a

Visual Studio instance, you can use it to install a separate set of components for your

development environment and for the Experimental Instance. When using the Visual Studio

Extension Installer utility your components will be installed under the normal development

environment by default.

It was mentioned earlier that the build process packages the binaries and some other files into the

VSIX file. In order the installation process could understand your .vsix installation file you need

to create a so-called VSIX manifest file that is the soul of the installation kit. This file describes

the metadata that is used as the set of instructions about what, where and how should be put

during the setup. The VSPackage Wizard automatically creates this manifest for you and names

the file as source.extension.vsixmanifest. You are probably not surprised that the manifest is an

XML file with its own schema. When the FirstLook package was generated the wizard created

the manifest shown in Listing 3:

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0316_5F00_52AFCA7E.png

VS 2010 Package Development

39

Listing 3: source.extension.vsixmanifest

1. <?xml version="1.0" encoding="utf-8"?>
2. <Vsix Version="1.0.0" xmlns="http://schemas.microsoft.com/developer/vsx-

schema/2010">

3. <Identifier Id="d55758eb-6581-48fe-930b-f3536f43b6f0">
4. <Name>FirstLook</Name>
5. <Author>DeepDiver</Author>
6. <Version>1.0</Version>
7. <Description xml:space="preserve">Demonstrates the basic VSPackage

concepts</Description>

8. <Locale>1033</Locale>
9. <InstalledByMsi>false</InstalledByMsi>
10. <SupportedProducts>

11. <VisualStudio Version="10.0">

12. <Edition>Pro</Edition>

13. </VisualStudio>

14. </SupportedProducts>

15. <SupportedFrameworkRuntimeEdition MinVersion="4.0" MaxVersion="4.0"

/>

16. </Identifier>

17. <References>

18. </References>

19. <Content>

20. <VsPackage>|FirstLook;PkgdefProjectOutputGroup|</VsPackage>

21. </Content>

22. </Vsix>

23.

The root element of the manifest structure is the VSIX element that uses the

http://schemas.microsoft.com/developer/vsx-schema/2010 namespace. The manifest contains

three sections:

 Identifier is used to uniquely define the different installation packages. The information here is
used by the setup mechanism to manage the initial setup and the updates using the Id attribute
and Version element values. This section also contains information describing the package and
attributes taken into account during the setup process.

 References element contains a collection of dependencies. Each item is a Reference element
which defines a dependency on another product. In the FirstLook.vsix sample the package
contains one dependency.

 The Content element is a collection of content items that are packed in the payload. It our case
the content is a VSPackage where the value of the item is used to generate the .pkgdef file
containing the package information.

When running the Visual Studio Extension Installer or using the Extension Manager, the VSIX

manifest is used to determine how the VSIX package should be set up. The VSPackage content

type tells the installer that the related FirstLook.pkgdef file will contain the information to be put

into the registry in order to register the COM object representing a Visual Studio package. The

FirstLook.pkgdef file that has been created during the build process contains the information in

Listing 4:

VS 2010 Package Development

40

Listing 4: FirstLook.pkgdef

1. [$RootKey$\InstalledProducts\FirstLookPackage]
2. @="#110"
3. "Package"="{d55758eb-6581-48fe-930b-f3536f43b6f0}"
4. "PID"="1.0"
5. "ProductDetails"="#112"
6. "LogoID"="#400"
7. [$RootKey$\Packages\{d55758eb-6581-48fe-930b-f3536f43b6f0}]
8. @="DeepDiver.FirstLook.FirstLookPackage, FirstLook, Version=1.0.0.0,

Culture=neutral, PublicKeyToken=8e5c6425e9b83cf4"

9. "InprocServer32"="$WinDir$\SYSTEM32\MSCOREE.DLL"
10. "Class"="DeepDiver.FirstLook.FirstLookPackage"

11. "CodeBase"="$PackageFolder$\FirstLook.dll"

12. [$RootKey$\Menus]

13. "{d55758eb-6581-48fe-930b-f3536f43b6f0}"=", Menus.ctmenu, 1"

The content of this file resembles to the content of a .reg file that can be exported from or

imported to the Windows registry. However, the .pkgdef file contains a few tokens closed

between dollar signs. The values of these tokens are passed by the context of the .pkgdef file to

the entity processing the file content.

For example, if you use the Visual Studio Extension Installer utility to process the .vsix file, the

utility extracts the payload into the Microsoft\VisualStudio\10.0\Extensions subfolder under the

LocalAppData folder of your user profile. The files are put not directly into the Extension folder

but into the subfolder calculated from the Author, Name and Version elements of the manifest’s

Identity section. In this case the payload includes the FirstLook.pkgdef and FirstLook.dll files

beside a few others.

When Visual Studio starts, it recognizes that a new .pkgdef file is under the Extensions folder

and processes it. It substitutes the $RootKey$ token with the corresponding registry root of

Visual Studio 2010, $Windir$ with the current Windows installation folder, $PackageFolder$

with the encapsulating folder of the .pkgdef file. After Visual Studio startup finishes, all

information required to find and load the package is entered into the registry. When the first

action demanding the package is executed, Visual Studio can pick up and initialize it.

Summary

A VSPackage is the principal architectural unit of Visual Studio, a container for extensibility

objects. It is also a unit from deployment, security and licensing aspects. Packages are not loaded

immediately as Visual Studio starts, they are read into the memory on-demand at the first time

when any of their objects or services is about to be used.

The process of integrating a package physically into the Shell is called siting. While the package

is not sited, its functions cannot be used from outside. As soon as the package gets sited, it is

ready to finish its initialization and be fully functional. Siting happens when Visual Studio loads

the package.

VS 2010 Package Development

41

Visual Studio keeps track of packages installed through registration, and package information is

stored in the system registry under a specific Visual Studio key. With command line parameters

this registration key can be suffixed in order to use another configuration set — even with

separate package registration parameters.

The Visual Studio SDK sets up the Visual Studio Experimental Instance which is a test bed to

run and debug Visual Studio packages during the development and test phases. The

Experimental Instance is not a separate Visual Studio installation, it uses the same devenv.exe

file but with different configuration settings.

VSPackages use a build process that contains some additional steps in order to prepare the

packages for debugging or deployment. The easiest way to create a package is running the

VSPackage Wizard which sets up the build process appropriately. During this process package

infrastructure resources — like to so-called command table — are embedded into the package

assembly, the package installation kit is created and installed under the Experimental Instance.

During the development phase packages run inside the process space of the Experimental

Instance and the same debug techniques can be used for tracing and troubleshooting as for any

other .NET applications.

VSPackage deployment in Visual Studio 2010 became really simple related to the preceding

versions. The package installation kit is represented by a VSIX file that can be distributed

directly to the users of your package or — and this way opens up brand new opportunities —

uploaded to the Visual Studio Gallery. The Extension Manager built into the IDE can be used to

browse, install, and remove VSPackages (and many other kinds of extensions) as well as to keep

track of them.

VS 2010 Package Development

42

Chapter 2: Commands, Menus and Toolbars

Almost all packages are created to allow the user interact with through the corresponding user

interface. This interaction generally means the user can click on a menu or toolbar item and

activates a function of the package.

From the user interface perspective it is pretty easy to imagine what a menu, a menu item or a

toolbar is. Developers either creating Windows Forms or ASP.NET applications can understand

these ideas and know their semantics. WFP developers even meet with the concept of command

binding. Coming from the world of Windows Forms application programming, most developers

put an equation sign between the menu item and the event handler for that item. Using the same

approach for Visual Studio simply will not work: the model behind the IDE is more generic and

from this aspect is more complex.

In this chapter you’ll cruise around the concepts related to command handling. Command is a

central concept of user interaction in Visual Studio — and as you are going to see, it is different

from the idea most Windows Forms or ASP.NET programmers thinks about.

After reading this chapter you will be familiar with the following things:

 Important concepts behind the command handling mechanism, like menu item, command,
context, command binding and state.

 The way the visibility and state of commands is determined by Visual Studio IDE. The
CommandState sample will provide you a demonstration about how to enable or disable
commands, and how to set their visual properties programmatically.

 The role and structure of the Visual Studio Command Table (.vsct) file. The BasicVSCTSample
and the AdvancedVSCTSample packages will show you a few simple tasks to carry out with a
.vsct file:

o Creating a main menu
o Using command groups and submenus
o Decorating commands with icons and using command flags
o Creating toolbars and menu controllers

 The concept and usage of visibility contexts. The VisibilityContextSample will demonstrate how
to set up commands to be visible only in specific contexts.

 Command routing used by Visual Studio to direct commands to an appropriate command target.

Commands are indispensable and frequently used entities in Visual Studio. Although the

fundamental ideas behind them and many practical details are treated in this chapter, you will

find a lot of command-related information also in the subsequent chapters.

VS 2010 Package Development

43

Basic Command Handling Concepts

You generally create a VSPackage (and it is true for many other kind of software artifacts) in

order to encapsulate functions. A part of these functions can be used from outside — for

instance, by services your package offers for the Shell and for other packages. A part of these

functions even can be used by users — assuming you provide appropriate interaction points to

invoke them. These functions are called commands in the Visual Studio Extensibility

terminology. A few samples are opening a solution, printing a source file, copying the selected

text in the editor to the clipboard, adding a new file to the project hierarchy, and so on.

A command can be invoked by users only if you provide a way to do that. The most obvious way

is to create a menu item or a button that can be clicked by the mouse or triggered by a keypress.

There are other alternatives, for example you can provide a way where the user can type

something in a console-like way to activate a command. If you do not think it is a real

alternative, just look what the Command Window does in Visual Studio — visit the View ð

Other Windows ð Command Window function!

Of course you have the “clickable” form of user interface representing commands in the Visual

Studio IDE as menu and toolbar items. Each of them has the same function: when the user

activates them, Visual Studio invokes the command bound to the item. From this perspective

there is no difference if a command has been invoked from a menu or a toolbar.

 Menus are generally displayed in a row at the top of the IDE and they generally provide a visual
hierarchy of the items executing commands. Other user interface elements of the IDE — like
tool windows, document windows, window frames — also can have their own context menus
that pop up when the user right-clicks on them.

 Toolbars hold a set of visual controls — typically organized in a row — that have the same
function as menu items: execute commands. Toolbars can have a variety of control types, like
buttons, text boxes, combo boxes and labels.

In this book the term of menu item is mentioned for user interface items that can be used to

invoke a command independently of whether that is a menu item or a control on a toolbar.

Commands also can be executed programmatically. For example, the DTE object which is the

root of the automation object model contains a method named ExecuteCommand that accepts a

command name string and an optional parameter string — and as you guess it executes the action

behind the command.

When pressing a button or triggering a command invocation action on any other kind of control,

an event is raised that initiates the command action.

In the traditional Windows Forms programming many developers have only the idea of menu

and toolbar items and event handler methods. Often they attach the same event handler method

to more menu and toolbar items and handle the state of the UI separately. For example, if the

VS 2010 Package Development

44

same functionality is used by a menu item and a toolbar item they attach the same event handler

method but handle the enabled/disabled state of the menu item and the toolbar item separately.

Visual Studio makes a clear separation on the concept of menu items and commands.

A command is responsible for determining its state (name, visibility, enabled, disabled, etc.) and

executing the command triggered. A menu item is responsible for presenting the visual

properties of a command and providing a way the user can trigger the execution of the command.

This means a command object can be bound to zero, one or more menu items. The command

knows its state and can report it to the related menu items: developers have one central location

to handle the state of the command independently of how many menu items make that

accessible. They only have to deal with the state of the command; menu items adjust their

appearance by themselves. Also there is only one location for the command action code

independently of the number of interaction points which can trigger the command.

So the idea of a menu (or toolbar) item and the command behind them are separated. There is

another twist in the story: a command does not own the code that is intended to run when the

command is invoked or when the status of the command is queried.

A command itself is a logical entity that can be forwarded to so-called command targets which

know how to handle the semantics of a specific command. There is a command routing model in

the IDE that forwards a command to a command target. The target either can do something with

the request related to a command (for example, sets the command state disabled, execute the

command, etc.) or can pass back the command as not supported (the target does not know what

to do with that). The target even can pass the command to other command targets.

To make it easier to follow, let me tell you an example. We have Cut, Copy and Paste menu

items in the Edit menu and on the standard toolbar of Visual Studio. Moreover, these items are

added to a number of context menus — each of them can be accessed at least from three different

locations. The items are bound to commands having the logical name of Cut, Copy and Paste.

There is not a single object in Visual Studio that knows how to execute those operations. The

IDE forwards these commands to command targets depending on the current context. For

example, when the text editor is focused the IDE sends the commands to the text editor. When

you are in the Properties window, commands are sent there. When you edit an .aspx page

visually, the designer receives these operation commands. So, the text editor, the Properties

window and the ASP.NET page designer all are command targets. They can decide if they

support the command — they understand what the command means — and how to respond to

that. If they support the command they are also able to execute the corresponding action.

Figure 1 visualizes the logical relation among basic entities that are involved in the process of

executing a command, and Table 1 describes them:

VS 2010 Package Development

45

Figure 1: Logical diagram of basic command handling entities

 Table 1: Summary of basic command handling concepts

Entity Responsibility

Menu Item

(toolbar item)

Provides a user interface to invoke commands. Allows feedback about the command

state to the user.

Context

A logical context representing the state of the environment. The context determines the

status of the command. For example, if there is no text copied to the clipboard, the Paste

function is not enabled.

State

Commands are logical entities and they have states that influence if commands are

allowed executing their related action or not and also how commands are visualized.

Commands can be enabled or disabled and they can have shown or hidden states.

Action The physical action to be invoked when an enabled command is executed by the

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/CommandArchitecture_5F00_07B2458C.png

VS 2010 Package Development

46

command target.

Command

A logical entity representing an action that can be queried about its state within the

current context, and can be resulted in executing some code. The command itself is just a

logical entity, and it does not own the code responsible for status query and action

execution.

Command

Target

An entity that knows how to execute a status query and action belonging to a command

entity. It can route, execute or even refuse actions of the command received.

Command

Binder

An entity responsible for understanding a specific command received by the command

target in the current context. The Command Binder invokes physically the action bound

to the command.

The best way of getting more information about how these concepts work in practice is to create

an example and diving into the code.

The best way of getting more information about how these concepts work in practice is to create

an example and diving into the code.

Physical Representation of Command Handling Concepts

You are going to use the FirstLook package sample code introduced in the previous chapter as

the first example, because this is one of the smallest which can demonstrate how the logical

concepts are represented in code. This sample application adds a command named Simple

Message to the Tools menu. The command displays a message box when the user clicks on the

related menu item.

First let’s have a look the code with the visual representations of commands. In the

FirstLook.vsct file you can see the items for defining and placing the menu item:

1. <Groups>
2. <Group guid="guidFirstLookCmdSet" id="MyMenuGroup" priority="0x0600">
3. <Parent guid="guidSHLMainMenu" id="IDM_VS_MENU_TOOLS"/>
4. </Group>
5. </Groups>
6.
7. <Buttons>
8. <Button guid="guidFirstLookCmdSet" id="cmdidShowMyMessage"

priority="0x0100"

9. type="Button">
10. <Parent guid="guidFirstLookCmdSet" id="MyMenuGroup" />

VS 2010 Package Development

47

11. <Icon guid="guidImages" id="bmpPic1" />
12. <Strings>
13. <CommandName>cmdidShowMyMessage</CommandName>
14. <ButtonText>Simple Message</ButtonText>
15. </Strings>
16. </Button>
17. </Buttons>

By this definition the Simple Message menu item is represented by a Button element that is

parented by a Group element. The Group, Button and Parent elements have guid and id attributes

that are used as compound identifiers. The Parent elements create the relationships so that the

Group is inserted into the Tools menu, the Button is added to the Group so as a result you’ll have

the Simple Message item added to the Tools menu.

The (guid, id) pairs are the compound keys of command table elements. The guid represents a

logical container of elements belonging together and the id represents the unique element

identifier within that container. Here the identifier of the Button element is actually the identifier

of the command represented by this Button node. The command here is used implicitly with its

ID. This nature of the compound key is also represented by the Symbols section where

GuidSymbol nodes have IDSymbol child nodes describe this logical containment:

1. <GuidSymbol name="guidFirstLookCmdSet" value="{4423366f-0518-4fd9-832f-
9efd21a9013b}">

2. <IDSymbol name="MyMenuGroup" value="0x1020" />
3. <IDSymbol name="cmdidShowMyMessage" value="0x0100" />
4. </GuidSymbol>

Let’s see how this command is represented in the code. The Initialize method of the

FirstLookPackage class contains the following code:

1. protected override void Initialize()
2. {
3. Trace.WriteLine(string.Format(CultureInfo.CurrentCulture,
4. "Entering Initialize() of: {0}", this.ToString()));
5. base.Initialize();
6. OleMenuCommandService mcs = GetService(typeof(IMenuCommandService))
7. as OleMenuCommandService;
8. if (null != mcs)
9. {
10. CommandID menuCommandID = new

CommandID(GuidList.guidFirstLookCmdSet,

11. (int)PkgCmdIDList.cmdidShowMyMessage);
12. MenuCommand menuItem = new MenuCommand(MenuItemCallback,

menuCommandID);

13. mcs.AddCommand(menuItem);
14. }
15. }

VS 2010 Package Development

48

The package is a command target, so it can receive command notifications and execute actions of

commands it understands. This behavior is defined by the IOleCommandTarget interface and the

Microsoft.VisualStudio.Shell.Package class that is the ancestor of FirstLookPackage implements

this interface. Although the package declares and understands only a single command, it receives

many command notifications. However, it will refuse all commands except the one it knows.

This command target behavior is delegated — the Package class implements it this way — to an

object instance of type OleMenuCommandService. In Line 06 and 07 the GetService method is

addressed with the type of IMenuCommandService to retrieve this OleMenuCommandService

instance. You can add commands to this OleMenuCommandService instance to handle. When

the package as a command target receives a command notification, it is processed by the

command service instance. The command service checks if the command received is on its list or

not. If the command is on the list, the required action is executed; otherwise command execution

is refused. The sender object is notified about the command execution result (executed or

refused).

Lines 10-13 contain the steps required to add a command to the list of the command service.

First a CommandID instance is created which is a simple wrapper type for the compound key of

a command. It uses a pair of System.Guid and System.UInt32 values to identify a command.

When you check the identifiers used as the two construction parameters you can guess they are

the same as the ones used for the Button node in the FirstLook.vsct file.

Line 12 creates a MenuCommand instance. MenuCommand is defined in the

System.ComponentModel.Design namespace in the System.dll assembly and is the part of the

.NET Framework and not the part of Visual Studio. It represents a part of the Command Binding

entity id Figure 1. In Line 12 you construct it using the MenuItemCallback method delegate and

the identifier of the command you have created in Line 10 and 11. MenuCommand — among the

others — has an Invoke method to execute the menu action, and properties like Enabled and

Visible to get or set the status of the related command item. The command service instance

leverages on these properties and method to implement its behavior.

Line 13 adds the MenuCommand instance to the container of the command service object.

Now you can create Table 2 for associating the types for the roles summarized in Table 1.

Table 2: Summary of types implementing the command handling concepts

Entity Implementation

Menu Item

(toolbar

item)

Menu and toolbar items do not appear as concrete .NET types in the package, they are

defined in the .vsct file of the package project.

Command In the FirstLook sample command states are not used. However, the properties of

VS 2010 Package Development

49

State MenuCommand — such as Enabled and Visible — represent the state.

Command

The command as a standalone physical entity is not used. The concept of command is

represented by a CommandID instance that is used in several places. For example, a

MenuCommand refers to a command by its CommandID property which is a CommandID

instance.

Command

Target

Objects implementing the IOleCommandTarget interface. In the FirstLook sample this is

the FirstLookPackage class that implements the interface indirectly through the Package

class. However, the package delegates this responsibility to its command service instance

with the type of OleMenuCommandService.

Command

Binder
In the FirstLook sample binders are represented by MenuCommand instances.

You have seen the implementation of a very simple command. It’s time to look other examples

demonstrating more aspects of Visual Studio’s command handling architecture.

Command State and Visibility

Each command has a state in the current Visual Studio context. This state is built up from two

orthogonal factors:

 The availability of a command (enabled or disabled) tells if it is allowed to be invoked within the
context or not. For example, if you do not have any text selected in the active text editor, the
Copy or Cut commands should not be allowed being invoked.

 The visual properties of a command tell if the menu and toolbar items related to the command
are visible and what the displayed label or icon are.

Although these factors are independent from each other, the availability of a command is also

reflected visually: menu items of disabled commands are grayed out.

The properties determining the state of commands can be set dynamically. Visual Studio updates

the user interface asynchronously. It sends status requests to the appropriate command targets

and asks them to tell the status of specific commands. This is done in Visual Studio idle time

with an algorithm that sends status queries only for commands that have a chance to be displayed

in the current context.

There is one thing that needs some consideration: how the initial state of a command is set up?

Packages are on-demand loaded, so there is a part of the command lifecycle when their owner

package is not loaded, but menu items representing them are already merged with Visual Studio

menus. In this part of their life Visual Studio does not send status requests to the command target

of unloaded commands, because it actually would require the command to be loaded.

VS 2010 Package Development

50

Visual Studio uses the following approach to handle the visibility status of commands:

 While a command is not flagged in the command table (.vsct file) as one that changes any of its
visual properties during its life — this flag wears the remarkable DynamicVisibility name —, the
explicit visual status of the command is never queried and never updated, the initial state set up
in the command table is used during the whole IDE session. Of course, you should initialize these
commands to be visible (this is their default state); otherwise they are not very useful.

 If a command is flagged to dynamically change its visual properties, the initial settings in the
command table are used unless the package is loaded. After the package gets sited the
appropriate command target object is queried for the status of the command.

Command availability is not part of the explicit visual state. The enabled or hidden state of a

command is maintained independently of the DynamicVisibility flag is used or not. While the

package of the command is not loaded, the initial availability state defined in the command table

is used. As soon as the package gets loaded the command target is queried for availability even if

explicit visual state is not queried.

The Command State Sample

To follow the concepts above you’ll examine a package example named CommandState. This

package adds five menu items to the Tools menu as indicated in Figure 2.

Figure 2: Menu items of the CommandState package

There is a hidden fifth menu item with the text “Changes Visibility #2”. When you click any of

the Changes Visibility items, #1 and #2 are swapped. The “Click count: 0” item counts every

click and indicates this counter in the menu text. The bottom menu item changes its availability.

It is enabled when the click count above is an even number; otherwise it is disabled. So clicking

3 times on the Changes Visibility items and three times on the Click count item leads to the

command status result that is illustrated in Figure 3.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0302_5F00_2D3BC2ED.png
http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0303_5F00_45CB603D.png

VS 2010 Package Development

51

Figure 3: Menu items after changing their visibility state

Listing 1 shows the command table defining the layout of the menu and initial state of

commands.

Listing 1: CommandState.vsct

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="http://schemas.microsoft.com/VisualStudio/2005-10-

18/CommandTable"

3. xmlns:xs="http://www.w3.org/2001/XMLSchema">
4. <Extern href="stdidcmd.h"/>
5. <Extern href="vsshlids.h"/>
6. <Extern href="msobtnid.h"/>
7. <Commands package="guidCommandStatePkg">
8. <Groups>
9. <Group guid="guidCommandStateCmdSet" id="MyMenuGroup"

priority="0x0600">

10. <Parent guid="guidSHLMainMenu" id="IDM_VS_MENU_TOOLS"/>
11. </Group>
12. </Groups>
13.
14. <Buttons>
15. <Button guid="guidCommandStateCmdSet"

id="AlwaysVisibleAndEnabled"

16. priority="0x0100" type="Button">
17. <Parent guid="guidCommandStateCmdSet" id="MyMenuGroup" />
18. <Icon guid="guidOfficeIcon" id="msotcidClock" />
19. <Strings>
20. <CommandName>AlwaysVisibleAndEnabled</CommandName>
21. <ButtonText>Always visible and enabled</ButtonText>
22. </Strings>
23. </Button>
24.
25. <Button guid="guidCommandStateCmdSet" id="ChangesVisibility1"
26. priority="0x0200" type="Button">
27. <Parent guid="guidCommandStateCmdSet" id="MyMenuGroup" />
28. <Icon guid="guidOfficeIcon" id="msotcid1" />
29. <CommandFlag>DynamicVisibility</CommandFlag>
30. <Strings>
31. <CommandName>ChangesVisibility1</CommandName>
32. <ButtonText>Changes Visibility #1</ButtonText>
33. </Strings>
34. </Button>
35. <Button guid="guidCommandStateCmdSet" id="ChangesVisibility2"
36. priority="0x0300" type="Button">
37. <Parent guid="guidCommandStateCmdSet" id="MyMenuGroup" />
38. <Icon guid="guidOfficeIcon" id="msotcid2" />
39. <CommandFlag>DynamicVisibility</CommandFlag>
40. <CommandFlag>DefaultInvisible</CommandFlag>
41. <CommandFlag></CommandFlag>

VS 2010 Package Development

52

42. <Strings>
43. <CommandName>ChangesVisibility2</CommandName>
44. <ButtonText>Changes Visibility #2</ButtonText>
45. </Strings>
46. </Button>
47.
48. <Button guid="guidCommandStateCmdSet" id="ChangesText"
49. priority="0x0400" type="Button">
50. <Parent guid="guidCommandStateCmdSet" id="MyMenuGroup" />
51. <Icon guid="guidOfficeIcon" id="msotcidPaperStack" />
52. <CommandFlag>TextChanges</CommandFlag>
53. <Strings>
54. <CommandName>ChangesText</CommandName>
55. <ButtonText>Click count: 0</ButtonText>
56. </Strings>
57. </Button>
58.
59. <Button guid="guidCommandStateCmdSet" id="ChangesEnabledState"
60. priority="0x0500" type="Button">
61. <Parent guid="guidCommandStateCmdSet" id="MyMenuGroup" />
62. <Icon guid="guidOfficeIcon" id="msotcidBlank" />
63. <Strings>
64. <CommandName>ChangesEnabledState</CommandName>
65. <ButtonText>Enabled on even click count</ButtonText>
66. </Strings>
67. </Button>
68. </Buttons>
69. </Commands>
70.
71. <Symbols>
72. <GuidSymbol name="guidCommandStatePkg"
73. value="{ff5ab687-afbb-46c1-8542-17510542549a}"/>
74. <GuidSymbol name="guidCommandStateCmdSet"
75. value="{ab0f163e-cd16-404d-a378-60423d214c32}">
76. <IDSymbol name="MyMenuGroup" value="0x1020" />
77. <IDSymbol name="AlwaysVisibleAndEnabled" value="0x0100" />
78. <IDSymbol name="ChangesVisibility1" value="0x0101" />
79. <IDSymbol name="ChangesVisibility2" value="0x0102" />
80. <IDSymbol name="ChangesText" value="0x0103" />
81. <IDSymbol name="ChangesEnabledState" value="0x0104" />
82. </GuidSymbol>
83. </Symbols>
84.
85. </CommandTable>

Each menu item representing a command is set up a bit differently than the others. Button

elements can define flags determining their behavior in CommandFlag elements as highlighted in

the listing. Table 3 describes the behavior defined by the initial settings of Button elements.

Table 3: Behavior of Button elements

Button element ID Description

VS 2010 Package Development

53

AlwaysVisibleAndEnabled

This element does not define any flags to handle the visibility properties

dynamically, so its visibility state is always the default (visible). Even if the

package is loaded, its visibility state is never queried.

ChangesVisibility1

By using the DynamicVisibility command flag this item is visible unless the

package is loaded. When the package gets sited, the command target is

queried for visibility status.

ChangesVisibility2

This element combines the DefaultInvisible flag with DynamicVisibility. As a

result, it behaves exactly like ChangesVisibility1 except that its initial state is

invisible.

ChangesText

Here the TextChanges command flag is used. While the package is not loaded

the string specified in the ButtonText element is used as the label of the

command. When the package is loaded Visual Studio asks the package for the

label text before displaying the command.

ChangesEnabledState

Similarly to the AlwaysVisibleAndEnabled command this element does not

define any flags to handle visibility state dynamically. However, you change

the availability of the command programmatically and the appearance of the

menu item follows it. This is because as soon as the package gets loaded

availability status is queried before displaying the menu item.

The command table defines only the initial visual state of commands and some of them are

changed during runtime. Listing 2 contains the source code for the CommandStatePackage class

that defines this behavior:

Listing 2: CommandStatePackage.cs

1. using System;
2. using System.Runtime.InteropServices;
3. using System.ComponentModel.Design;
4. using System.Text;
5. using Microsoft.VisualStudio.Shell.Interop;
6. using Microsoft.VisualStudio.Shell;
7.
8. namespace DeepDiver.CommandState
9. {
10. [PackageRegistration(UseManagedResourcesOnly = true)]
11. [InstalledProductRegistration("#110", "#112", "1.0", IconResourceID =

400)]

12. [ProvideMenuResource("Menus.ctmenu", 1)]
13. [Guid(GuidList.guidCommandStatePkgString)]
14. public sealed class CommandStatePackage : Package
15. {

VS 2010 Package Development

54

16. private OleMenuCommandService _CommandService;
17. private OleMenuCommand _ChangesVisibility1;
18. private OleMenuCommand _ChangesVisibility2;
19. private OleMenuCommand _ChangesText;
20. private OleMenuCommand _ChangesEnabledState;
21. private int _ClickCount;
22.
23. protected override void Initialize()
24. {
25. base.Initialize();
26. _CommandService = GetService(typeof(IMenuCommandService)) as

OleMenuCommandService;

27. RegisterCommand(CmdIDs.AlwaysVisibleAndEnabled,
AlwaysVisibleCallback);

28. _ChangesVisibility1 =
29. RegisterCommand(CmdIDs.ChangesVisibility1,

ChangesVisibilityCallback);

30. _ChangesVisibility2 =
31. RegisterCommand(CmdIDs.ChangesVisibility2,

ChangesVisibilityCallback);

32. _ChangesVisibility2.Visible = false;
33. _ChangesText =
34. RegisterCommand(CmdIDs.ChangesText, ChangesTextCallback);
35. _ChangesEnabledState =
36. RegisterCommand(CmdIDs.ChangesEnabledState,

ChangesEnabledStateCallback);

37. }
38.
39. private void AlwaysVisibleCallback(object caller, EventArgs args)
40. {
41. OutputCommandString("'Always visible and enabled' command

executed.");

42. }
43.
44. private void ChangesVisibilityCallback(object caller, EventArgs

args)

45. {
46. _ChangesVisibility1.Visible = !_ChangesVisibility1.Visible;
47. _ChangesVisibility2.Visible = !_ChangesVisibility1.Visible;
48. OutputCommandString("Visibility of buttons #1 and #2 swapped.");
49. }
50.
51. private void ChangesTextCallback(object caller, EventArgs args)
52. {
53. _ChangesText.Text = String.Format("Click count: {0}",

++_ClickCount);

54. _ChangesEnabledState.Enabled = _ClickCount % 2 == 0;
55. OutputCommandString("Current click counter is " + _ClickCount);
56. }
57.
58. private void ChangesEnabledStateCallback(object caller, EventArgs

args)

59. {
60. OutputCommandString("Command is enabled at click count " +

_ClickCount);

VS 2010 Package Development

55

61. }
62.
63. private OleMenuCommand RegisterCommand(uint id, EventHandler

callback)

64. {
65. if (_CommandService == null) return null;
66. var menuCommandID = new

CommandID(GuidList.guidCommandStateCmdSet, (int)id);

67. var menuItem = new OleMenuCommand(callback, menuCommandID);
68. _CommandService.AddCommand(menuItem);
69. return menuItem;
70. }
71.
72. private void OutputCommandString(string text)
73. {
74. // --- Build the string to write on the debugger and Output

window.

75. var outputText = new StringBuilder();
76. outputText.AppendFormat("CommandStatePackage: {0} ", text);
77. // --- Get a reference to IVsOutputWindow.
78. var outputWindow = GetService(typeof(SVsOutputWindow)) as

IVsOutputWindow;

79. if (outputWindow == null) return;
80.
81. // --- Get the window pane for the general output.
82. var guidGeneral =

Microsoft.VisualStudio.VSConstants.GUID_OutWindowDebugPane;

83. IVsOutputWindowPane windowPane;
84. if (Microsoft.VisualStudio.ErrorHandler.Failed(
85. outputWindow.GetPane(ref guidGeneral, out windowPane)))
86. {
87. return;
88. }
89. // --- As the last step, write to the output window pane
90. windowPane.OutputString(outputText.ToString());
91. windowPane.Activate();
92. }
93. }
94. }

The package sets up command bindings in the overridden Initialize methods. Commands use the

event handler methods having a Callback suffix. The RegisterCommand helper method carries

out the necessary steps to bind a command handler to its logical command. Each command

generates a diagnostic message to the Debug pane of the Output window in Visual Studio,

OutputCommandString implements this functionality. Output window handling is treated in

details in Chapter 3: Window Management and Tool Windows so there you will find more

explanation about how OutputCommandString method works.

In the FirstLook sample at the beginning of this chapter you could see a MenuCommand instance

was used as the command binder, whilst in this example OleMenuCommand instances are used.

OleMenuCommand derives from MenuCommand and this kind of object is passed as the sender

argument in the event handler methods. Each OleMenuCommand instances represent the

VS 2010 Package Development

56

command binders in private fields, and later these are used to change command status. The

RegisterCommand method is implemented so that it retrieves the binder object.

AlwaysVisibleCallback simply generates an output message.

You can observe that both _ChangesVisibility1 and _ChangesVisibility2 are bound to

ChangesVisibilityCallback that is a very simple method swapping the current visibility states of

these two commands:

1. private void ChangesVisibilityCallback(object caller, EventArgs args)
2. {
3. _ChangesVisibility1.Visible = !_ChangesVisibility1.Visible;
4. _ChangesVisibility2.Visible = !_ChangesVisibility1.Visible;
5. OutputCommandString("Visibility of buttons #1 and #2 swapped.");
6. }

The menu binder triggering the event is passed in the caller argument, so you could write the

code above like this:

1. private void ChangesVisibilityCallback(object caller, EventArgs args)
2. {
3. var command = caller as OleMenuCommand;
4. if (command == null || (command.CommandID.ID !=

CmdIDs.ChangesVisibility1 &&

5. command.CommandID.ID != CmdIDs.ChangesVisibility2))
6. {
7. return;
8. }
9. _ChangesVisibility1.Visible = command.CommandID.ID ==

CmdIDs.ChangesVisibility2;

10. _ChangesVisibility2.Visible = !_ChangesVisibility1.Visible;
11. OutputCommandString("Visibility of buttons #1 and #2 swapped.");
12. }

You need an additional step to make the swapping commands work correctly: you have to

initialize the visibility state of _ChangesVisibility2 to hidden in the Initialize method:

1. _ChangesVisibility1 =
2. RegisterCommand(CmdIDs.ChangesVisibility1, ChangesVisibilityCallback);
3. _ChangesVisibility2 =
4. RegisterCommand(CmdIDs.ChangesVisibility2, ChangesVisibilityCallback);
5. _ChangesVisibility2.Visible = false;

If you omit the last line, the package seems working properly. But click on the Always visible

and enabled item first and then drop down the Tools menu. You will observe some unexpected

thing as Figure 4 shows.

VS 2010 Package Development

57

Figure 4: Both Changes Visibility commands are visible!

What’s wrong with the command logic? If you invoke the Always visible and enabled item first,

it causes the package to load. The Initialize method runs and creates the binders for the Changes

Visibility items. By default these binders are created with their Visibility property set to true.

Because the package is loaded, the IDE uses the package to query the visibility status when you

drop down the Tools menu and this time both commands are visible.

The ChangesText command also uses a very simple logic:

1. private void ChangesTextCallback(object caller, EventArgs args)
2. {
3. _ChangesText.Text = String.Format("Click count: {0}", ++_ClickCount);
4. _ChangesEnabledState.Enabled = _ClickCount%2 == 0;
5. OutputCommandString("Current click counter is " + _ClickCount);
6. }

It uses the _ClickCount member variable to count the number of clicks and updates the label of

the command through the Text property. This command controls the availability of the

ChangesEnabledState command. Try to omit the TextChanges flag from the command table and

run the package. You can use the ChangesText command — as you click the availability status

of ChangesEnabledState switches between enabled and hidden — but the count of click is not

displayed.

You do not need an event handler method for the ChangesEnabledState command, because its

state is handled by the ChangesTextCallback method, but in this example the handler is used to

display a trace message.

Commands and Visibility

When you move around in Visual Studio you can see that a few toolbars, menus and menu items

are visible or invisible depending on the context you are in. For example, the Project and Debug

menu items cannot be seen while there is no project open. Similarly, you cannot reach the Team

menu unless you connect to a Team Server.

Visual Studio shows or hides commands according to the current context. Please note, showing

or hiding commands means to make them visible or invisible. If a command is visible,

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0304_5F00_0C485046.png

VS 2010 Package Development

58

availability state also influences the appearance — disabled commands are dimmed — but

availability is totally independent of visibility.

Commands can be defined in different locations — they logically belong to one of the following

entities:

 The VS IDE environment. All commands defined by the Visual Studio IDE are always visible.
 Packages registered in the IDE. Packages may define commands and decide whether to show or

hide a certain command. Please remember that Visual Studio IDE is a combination of the core
IDE (Shell) and the packages registered with the IDE. When you install Visual Studio many
packages also get registered.

 The active project. In Visual Studio you work with solutions that contain projects. There can be
only one active project (the currently selected project) determined by either the active editor
file or the item selected in the Solution Explorer. All the other projects (if there are any others in
the solution) are inactive. Only the commands belonging to the active project are visible.

 Active editor. When you edit a source file in the text editor or a form with the form editor or
creating a class diagram, you work with an editor. If you have documents open you always have
one active editor (and might have a set of inactive ones). The active editor can define its own
commands (think about the Windows Forms editor). The commands defined by the active
editors are visible, but any commands of other (inactive) editors are hidden. There are editors
that support a variety of file types (e.g. the Image Editor). There can be commands that are
available for one file type but not for another file type. For instance, you can set the transparent
pixels for an icon but not for a .BMP file in the image editor. It is always the responsibility of the
editor to show or hide a command depending on the file type currently used.

 Tool windows. Packages can register tool windows and tool windows can have their own
commands. When you register a package providing a tool window with Visual Studio, the
related commands are visible by default. Of course, to make them appear on the screen you
must show up the tool window.

Any time when you are in a concrete Visual Studio context all visible commands from the

locations above are merged. So, the union of IDE environment commands, package commands,

active project commands, active editor commands (depending on the file type) and visible tool

window commands determine the set of visible commands.

You may feel that something is missing. As it has been treated here commands are visible or

hidden for a package, editor or tool window. An example was also mentioned earlier that the

Project and Debug menus are not available unless a file or a project is opened. How does this fit

into the picture? How does Visual Studio handle this thing? How can a package make a

command visible or hidden depending on whether a project is open or closed?

Visual Studio allows further control about command visibility. The IDE defines visibility

contexts and commands can be bound to them. The most frequently used contexts are

summarized in Table 4.

Table 4: User interface context definitions

VS 2010 Package Development

59

Context name Description

NoSolution
No solution is opened in the IDE (the Solution Explorer tool window is

empty).

SolutionExists

There is an existing solution opened in the IDE. This can be an empty

solution, a solution created by opening a single file, a solution with one or

more project. Commands bound to this context are visible if you can see a

root solution in the Solution Explorer.

EmptySolution
There is a solution opened in the IDE and this solution is empty (does not

contain any item).

SolutionHasSingleProject
There is a solution opened in the IDE and this solution contains exactly one

project of any type.

SolutionHasMultipleProjects
There is a solution opened in the IDE and this solution contains multiple

projects loaded.

SolutionBuilding
The current solution or any of its projects is being built. The IDE stays in

this context unless the build process finishes.

Debugging The IDE is in Debug mode: its debugger is attached to a running process.

DesignMode The IDE is in design mode (not in Debug mode).

FullScreenMode
The IDE is running in Full screen mode (it can be activated with the View |

Full Screen function.

Dragging Currently there is an active drag/drop operation in the Visual Studio IDE.

When a command is bound to a set of visibility contexts it is visible only when Visual Studio

IDE is in one of the contexts bound to it. You can define your own contexts and notify Visual

Studio about entering into the specified context. Commands can be also bound to your custom

contexts. Later in this chapter you are going to see a few code samples about handling visibility

contexts.

The Visual Studio Command Table

You have already seen the Visual Studio Command Table in a few examples in the previous and

also in this chapter. The command table is defined in the .vsct file of the package project and is

compiled to a binary resource which is embedded into the package infrastructure resources

VS 2010 Package Development

60

during the build process. When deploying the package the command table is merged into the

menus and toolbars of the IDE.

In this section you dive into the details of the command table structure and create a few more

samples to understand the basic concepts. Of course, all nitty-gritty details cannot be handled,

but the information here is enough that you can to discover the advanced aspects of the command

table by yourself.

Note: The .vsct file was introduced as a new format for the command table substituting the .ctc

file in the previous versions of Visual Studio SDK. Visual Studio 2005 SDK used a textual

format (using files with .ctc extension). Editing and understanding a .ctc file was not a simple

task. With the release of Visual Studio 2008 SDK Microsoft created the new XML-based file

format with the .vsct extension and a new compiler to produce the binary .cto format.

The main advantage of using the .vsct file is that it is editable just like other XML files and so

has all the great XML editing features like automatic generation of closing tags or IntelliSense

based on the VSCT XML schema. Due to the fact XML format has so many advantage the old

.ctc format has been deprecated. Microsoft recommends using the VSCT compiler to generate

the .cto files, although CTC is still supported.

VSCT File Structure

When describing the elements of an XML file one alternative is to provide an XSD schema. It

tells a lot about the syntax and the semantics and is said to be readable by either a human or a

machine. There is no doubt that machines can easily understand an XSD, but for understanding

concepts behind a certain XML file XSD is not the best way. Instead, here you will be shown

small examples to help you understand the structure of the command file.

The root element of this structure is the CommandTable element:

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable
3. xmlns="http://schemas.microsoft.com/VisualStudio/2005-10-

18/CommandTable"

4. xmlns:xs="http://www.w3.org/2001/XMLSchema">
5. <!-- Content of the command table -->
6. </CommandTable>

The elements of the command table are defined by the

http://schemas.microsoft.com/VisualStudio/2005-10-18/CommandTable namespace. You will

rarely create the startup state of a command table by hand, because the VSPackage wizard does it

for you when you ask it to create an initial command or tool window. When you create the

command table by hand, do not forget about specifying this namespace otherwise your command

table will not compile. In the code examples later the namespace information will be omitted just

for the sake of brevity.

VS 2010 Package Development

61

The CommandTable itself uses a few child elements to define the content of the table:

1. <CommandTable xmlns="..." xmlns:xs="...">
2. <Extern/>
3. <Include/>
4. <Define/>
5. <Commands/>
6. <CommandPlacements>
7. <VisibilityConstraints/>
8. <KeyBindings/>
9. <UsedCommands/>
10. <Symbols/>
11. </CommandTable>

For a developer new to Visual Studio Extensibility, the Extern, Commands and Symbols

elements are the most important and, of course, the most frequently used ones. When the

VSPackage wizard creates a package with a simple menu command, you get something similar

(the wizard injects a lot of comments to explain the content but here those are omitted):

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="..." xmlns:xs="...">
3. <Extern href="stdidcmd.h"/>
4. <Extern href="vsshlids.h"/>
5. <Extern href="msobtnid.h"/>
6.
7. <Commands package="guidSimpleCommandPkg">
8. <Groups>
9. <Group guid="guidSimpleCommandCmdSet" id="MyMenuGroup"

priority="0x0600">

10. <Parent guid="guidSHLMainMenu" id="IDM_VS_MENU_TOOLS"/>
11. </Group>
12. </Groups>
13.
14. <Buttons>
15. <Button guid="guidSimpleCommandCmdSet" id="cmdidMyFirstCommand"
16. priority="0x0100" type="Button">
17. <Parent guid="guidSimpleCommandCmdSet" id="MyMenuGroup" />
18. <Icon guid="guidImages" id="bmpPic1" />
19. <Strings>
20. <CommandName>cmdidMyFirstCommand</CommandName>
21. <ButtonText>My First Command</ButtonText>
22. </Strings>
23. </Button>
24. </Buttons>
25.
26. <Bitmaps>
27. <Bitmap guid="guidImages" href="Resources\Images_32bit.bmp"
28. usedList="bmpPic1, bmpPic2, bmpPicSearch, bmpPicX,

bmpPicArrows"/>

29. </Bitmaps>
30. </Commands>
31.
32. <Symbols>

VS 2010 Package Development

62

33. <GuidSymbol name="guidSimpleCommandPkg"
34. value="{2291da24-92e5-4ea4-bdb7-72a9b5ac7d59}" />
35. <GuidSymbol name="guidSimpleCommandCmdSet"
36. value="{a982b107-4ad4-437e-b2bc-cdf2708aa376}">
37. <IDSymbol name="MyMenuGroup" value="0x1020" />
38. <IDSymbol name="cmdidMyFirstCommand" value="0x0100" />
39. </GuidSymbol>
40. <GuidSymbol name="guidImages" value="{5c3faf04-8190-48c4-a6e9-

71f04f1848e5}" >

41. <IDSymbol name="bmpPic1" value="1" />
42. <IDSymbol name="bmpPic2" value="2" />
43. <IDSymbol name="bmpPicSearch" value="3" />
44. <IDSymbol name="bmpPicX" value="4" />
45. <IDSymbol name="bmpPicArrows" value="5" />
46. </GuidSymbol>
47. </Symbols>
48.
49. </CommandTable>

You already know that commands and other elements of the command table objects are uniquely

identified by a compound key composed from a GUID and a 32-bit unsigned integer. Command

table elements have references to each other and the unique identifiers are used to describe this

reference. The parts of the key are defined by the guid and id attributes, respectively.

In a .vsct file you generally use most element identifiers at least twice: once for identifying an

object and at least once for referencing it. If you would use the GUID and uint values directly

those would not provide the best readability. If you had to type the same GUID value several

times it would make the hand-edited .vsct file very fragile, as humans are not very good in

typing, comparing and checking GUID values.

The Symbols section is a central place in the command table file where you can define the

identifiers to be used in the other parts of the .vsct file. You can use the GuidSymbol element to

define the logical container represented by the GUID and the nested IDSymbol elements to

provide (optional) identifiers within the logical container. The name and the value attribute of

these elements do exactly what you expect: associate the symbol name with its value. The GUID

and uint values of the compound key are checked together, the VSCT compiler takes care of that

the uint value should be defined by an IDSymbol nested in the corresponding GuidSymbol

elements value.

In the example above there are three GUID containers defined. The first is an empty container

(with the symbolic name of guidSimpleCommandPkg) the last two contain a few nested ID

elements. The identifiers defined here are referenced in the upper parts of the command table

definition as in the following extract:

1. <Commands package="guidSimpleCommandPkg">
2. <Groups>
3. <Group guid="guidSimpleCommandCmdSet" id="MyMenuGroup"

priority="0x0600">

4. <!-- ... -->

VS 2010 Package Development

63

5. </Group>
6. </Groups>
7.
8. <Buttons>
9. <Button guid="guidSimpleCommandCmdSet" id="cmdidMyFirstCommand"
10. priority="0x0100" type="Button">
11. <!-- ... -->
12. </Button>
13. </Buttons>
14.
15. <Bitmaps>
16. <Bitmap guid="guidImages" href="Resources\Images_32bit.bmp"
17. usedList="bmpPic1, bmpPic2, bmpPicSearch, bmpPicX,

bmpPicArrows"/>

18. </Bitmaps>
19. </Commands>

Objects defined by the Visual Studio IDE are frequently referenced in the command table. For

example, when you add a menu item to the Tools menu, somehow you must refer to the Tools

menu so that the VSCT compiler can understand it. Of course, the Tools menu is identified on

the same way as any other command table elements:

1. <Group guid="guidSimpleCommandCmdSet" id="MyMenuGroup" priority="0x0600">
2. <Parent guid="guidSHLMainMenu" id="IDM_VS_MENU_TOOLS"/>
3. </Group>

Here the Parent element defines the location where the logical command group declared by the

Group element should be placed. The guidSHLMainMenu defines the logical container of the

main menu bar of the IDE and the IDM_VS_MENU_TOOLS is the identifier of the Tools menu

within the logical container. As you guess, there are thousands of GUIDs and IDs related to

Visual Studio IDE elements.

The Extern element is the key to access them:

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="..." xmlns:xs="...">
3. <Extern href="stdidcmd.h"/>
4. <Extern href="vsshlids.h"/>
5. <Extern href="msobtnid.h"/>
6. <!-- ... -->
7. </CommandTable>

When the VSCT compiler processes the .vsct file it can run a preprocessor on its content. This

preprocessor is by default the C++ preprocessor that allows including files defining symbols and

macros. The Extern element is one of the elements directing the preprocessor. The href attribute

names the file with .h (standard C++ header file) extension. After the preprocess phase the

symbols in the #define pragmas and in the macro definitions of referenced files can be used

anywhere just like GUID and ID values defined in the Symbols section of the command table.

VS 2010 Package Development

64

The files named in the href attributes are searched in the include path passed to the VSCT

compiler. This is the VisualStudioIntegration\Common\Inc folder under the root installation

folder of VS SDK by default when you create your package with the VSPackage wizard. The

wizard also creates three Extern elements. Table 5 describes the role of the referenced files.

Table 5: External file references in the VSCT file

File Content

stdidcmd.h

This file represents the command IDs for all commands exposed by Visual Studio. IDs

include the visible (or hidden) menu command IDs prefixed with cmdid, standard editor

commands with ECMD_ prefix and a few others.

vsshlids.h This file collects command IDs for the menus provided by the Visual Studio Shell.

msobtnid.h
This file represents IDs of the standard Microsoft Office commands (many of them, like Cut,

Copy and Paste are also used in VS IDE).

If you look into the header files, you can find the definitions for guidSHLMainMenu and

IDM_VS_MENU_TOOLS in the vsshlids.h file. The preprocessor understands both the

DEFINE_GUID macro and the #define pragma.

1. ...
2. DEFINE_GUID (guidSHLMainMenu,
3. 0xd309f791, 0x903f, 0x11d0, 0x9e, 0xfc, 0x00, 0xa0, 0xc9, 0x11, 0x00,

0x4f);

4. ...
5. #define IDM_VS_MENU_TOOLS 0x0085
6. ...

The DEFINE_GUID macro here sets the guidSHLMainMenu to the value of {d309f791-903f -

11d0-9efc-00a0c911004f}. Any time you know a GUID value but you do not know which

symbolic name is used for that value, search the VisualStudioIntegration\Common\Inc folder to

find if the GUID value is defined there or not. If necessary add a new Extern directive to the

command table.

Command Definitions

No doubt, the most important element of the .vsct file is Commands. Its role is to define

commands, their initial layout and behavior:

1. <Commands package="...">
2. <Groups/>
3. <Menus/>
4. <Buttons/>

VS 2010 Package Development

65

5. <Combos/>
6. <Bitmaps/>
7. </Commands>

Any command in the IDE must belong to the IDE itself or to a package. A package assembly can

implement one or more packages. To assign a command to the appropriate (owning) VSPackage,

the package attribute of the Commands element must name the GUID of the corresponding

package. Generally you have only one package in one assembly so you put the package ID

generated by the VSPackage wizard into this attribute:

1. <Commands package="guidSimpleCommandPkg">
2. <!-- ... -->
3. </Commands>

As you obviously guessed Visual Studio uses the package ID here to find out which package is

to be loaded to handle a command. There are several types of nested child elements in

Commands, and each of them has a specific role.

The Groups element defines so-called command groups using a nested Group element. A

command group is a logical set of related commands that generally stand together. For example,

the Build Solution, Rebuild Solution and Clean Solution menu items form a logical group: they

stand together in the Build menu and in the context menu of a Solution item as shown in Figure

5.

Figure 5: Visual effect of a Group element

Instead of putting individual commands to an existing menu you can place them into a group and

that group can be placed to the menu. Even if you have only one element to add to a menu, you

must create a Group element for it and put the item into this group. Visual Studio menu groups

also have related symbolic IDs in the header files, so you can add a command to one of the

predefined groups. Each command in the logical set formed by the group appears in the related

menu.

You can nest Menu elements as children of Menus to define a single menu. A single menu is a

placeholder for items and of course, you also can put submenu items there.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0305_5F00_32AA3391.png

VS 2010 Package Development

66

Menus can have different appearance and behavior. The most frequent forms are:

 Standard menus (for example the File, Edit and View menus in the IDE).
 Context menus: They show up when right-clicking on the object they provide a command

context for.
 Toolbars: standard toolbars where commands are organized in rows with icons — and/or text

labels — representing them.

The Buttons element is a container for nested Button elements. A Button represents a piece of

user interface the user can interact with. The name is a bit confusing, because when saying the

word button you generally associate it with the pushbutton. Here, Button relates to a menu or

toolbar item. In .vsct you can define a few types of Button items:

 Standard buttons represent a simple menu items which execute a command.
 Menu buttons display a submenu.
 Dropdown buttons allow functions like Undo and Redo on the main toolbar of the IDE.
 “Swatch” buttons display color choices such as those in a font color dialog.

Not surprisingly Combos is a container for Combo elements. A Combo defines a set of

commands that appear in a combo box.

Toolbars and menus would be poor without icons helping the user to associate a small image

with the function. The Bitmaps section allows defining the visual elements (icons) used in

menus. The section describes Bitmap elements that are uniquely identified. A bitmap can come

from an external file or from a package resource.

When referring to bitmaps, you can use a few formats like .bmp, .gif, .png. Right now you

cannot use all formats in the same way. For example, you may have problems with the 32-bit

.bmp formats (alpha channel information for partial transparency). If you use 120 DPI in your

display settings, the original 16x16 pixel images will be stretched to a 20x20 pixel size. If you

use .png format, stretching is smooth without disturbing artifacts. In some cases only a few

formats are accepted: for example for icons representing tool windows on their tabs, .png format

is not welcomed (no icon appears), only 24-bit .bmp with fuchsia as the transparent color.

If you have problems with icon images, try a few formats and you can generally find the one

expected by VS IDE.

Working with Commands and Bitmaps

To successfully define commands appearing in the VS IDE menus you have to use at least one

Group and one Button element. If you want to add icons, you need at least one additional Bitmap

element. If you prefer your own menu instead of inserting a command group in the middle of a

Visual Studio menu, at least one Menu element should be defined. To establish the layout and

the relation among the elements you have to look behind their attributes and child elements.

VS 2010 Package Development

67

Menu, Group, Button and other elements have common attributes and child element with very

similar semantics summarized in Table 6.

Table 6: Common attributes of command table elements

Attribute Description

guid The GUID part of the element identifier. This attribute is required.

id The uint part of the element identifier. This attribute is required.

priority

An optional numeric value determining the order of the element. The lower this value is the

closer the element is to the position of the first element. Visual Studio IDE sorts elements

according to their priority. However, you cannot know the priority value of all other elements,

so exact position is not guaranteed.

type

An optional stereotype of the element determining its layout and behavior. The Group

element does not have this attribute (as it is a behavior-less element). The possible values and

the meaning of this attribute changes according to the element type.

There are child elements connecting UI elements together and adding properties which fine-tune

layout and behavior. Except of Bitmap all other types of Commands children have the child

elements in Table 7.

Table 7: Common child elements

Child

element
Description

Parent

Optional parent of the element. A command element can be attached to one or more

menu items. Here you can define zero or one Parent element. If you want to attach a

command to more than one menu item, the CommandPlacement element is for you.

The Parent element has the guid and id attribute to uniquely name the parent the

element belongs to. For a Button the parent element must refer to a command Group.

For a Group, the parent must refer to a Menu.

Annotation
This element allows adding optional comment information to the element. Annotations can

have either simple text or a nested structure.

Table 8 summarizes child elements extending the layout and behavior of Menu, Button and

Combo.

VS 2010 Package Development

68

Table 8: Child elements influencing behavior

Child element Description

CommandFlag

This child element can be applied zero, one or more times to its parent element. As the

name indicates it sets flags influencing the layout and behavior of its parent. The VSCT

Schema Reference enumerates all the command flags that can be applied to a particular

element. Several flags have effect only when combining with other flags. For example,

applying the DynamicVisibility and DefaultInvisible flags causes a menu item to be hidden

at Visual Studio startup time.

Strings

This element is a container for children representing string information of UI elements.

At least the ButtonText child of Strings should be applied to display a caption for the

element. Possible child elements include ButtonText, ToolTipText, MenuText,

CommandName and others. For details see the VSCT Schema reference.

Icon Available only for Button. Optionally defines the icon associated with the button.

The Bitmaps section of Commands provides a place to define bitmaps you want to use in menu

and toolbar items. Each definition must be in a Bitmap element. The concept of Bitmap covers

one bitmap with a physical size of 16x16 pixels or a bitmap strip that has 16xN pixels where N is

a multiple of 16 (number of pixels in a column). Bitmap handles the simple 16x16 pixel bitmap

as a bitmap strip, where N equals 1. A Bitmap is identified with a GUID that must be a separate

GUID from the package ID, command set IDs, and so on. When you refer to a certain item in the

bitmap strip you do it by using a one-based index for the bitmap in the strip.

Just as in case of commands, menu IDs you can use the Symbols section of the command table to

define IDs related to a bitmap. For example when you create a new Tool window package With

the VSPackage wizard, the following entries are related to bitmaps:

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="..." xmlns:xs="...">
3. <!-- Extern elements -->
4. <Commands package="...">
5. <!-- Menus, Groups and Buttons -->
6. <Bitmaps>
7. <Bitmap guid="guidImages" href="Resources\Images_32bit.bmp"
8. usedList="bmpPic1, bmpPic2, bmpPicSearch, bmpPicX,

bmpPicArrows"/>

9. </Bitmaps>
10. </Commands>
11. <Symbols>
12. <GuidSymbol name="guidImages" value="{...}" >

VS 2010 Package Development

69

13. <IDSymbol name="bmpPic1" value="1" />
14. <IDSymbol name="bmpPic2" value="2" />
15. <IDSymbol name="bmpPicSearch" value="3" />
16. <IDSymbol name="bmpPicX" value="4" />
17. <IDSymbol name="bmpPicArrows" value="5" />
18. </GuidSymbol>
19. </Symbols>
20. </CommandTable

The Symbols section defines a GUID used only by the Bitmap definition (guidImages) and

symbolic names for the one-based bitmap indexes within the strip. In the example above

bmpPicSearch is the third picture within the strip.

The Bitmap element’s href attribute names the file where the bitmap strip can be found. This

folder is relative to the location of the .vsct file. The usedList attribute enumerates the symbolic

indices that can be used to identify bitmaps in the strip. If you want to set a button icon to the

third image in the strip, you should use the following Icon child element in a Button:

1. <Button ...="">
2. <Icon guid="guidImages" id="bmpPicSearch" >
3. </Button>

You are allowed to use stocked icons. For example, the CommandState sample uses such icons:

1. <Icon guid="guidOfficeIcon" id="msotcidClock" />

The guidOfficeIcon symbol is defined in the vsshlids.h file and is a logical container for office

icons. The msotcidClock and thousands of other IDs can be found in the msobtnid.h file. If you

are looking for stocked icons, definitely this is the place you should search for them. The

msobtnid.h contains comments that help you to identify icons you are looking for.

Basic VSCT Samples

By now you have an understanding of the essential VSCT concepts, moreover, you have seen a

few samples. In order to illustrate the structure and usage of command table element you are

going to build a few more samples. You start from a very simple package created with the help

of VSPackage wizard using a simple menu command. The package does not have any real

function, because it is just a container for menu resources, the package class definition is quite

simple as Listing 3 shows.

Listing 3: The BasicVSCTSamplePackage definition

1. // --- BasicVSCTSamplePackage.cs
2.
3. using System.Runtime.InteropServices;
4. using Microsoft.VisualStudio.Shell;
5.
6. namespace DeepDiver.BasicVSCTSample

VS 2010 Package Development

70

7. {
8. [PackageRegistration(UseManagedResourcesOnly = true)]
9. [InstalledProductRegistration(false, "#110", "#112", "1.0",

IconResourceID = 400)]

10. [ProvideMenuResource("Menus.ctmenu", 1)]
11. [Guid(GuidList.guidBasicVSCTSamplePkgString)]
12. public sealed class BasicVSCTSamplePackage : Package
13. {
14. }
15. }
16.
17. // --- Guids.cs
18.
19. namespace DeepDiver.BasicVSCTSample
20. {
21. static class GuidList
22. {
23. public const string guidBasicVSCTSamplePkgString =
24. "41fe6025-c174-4d02-af4f-ea948a272830";
25. }
26. }

You are going to work only with the BasicVSCTSample.vsct file. You start from simple scenario

and transform the .vsct file to discover new usage opportunities. You can use the VSPackage

wizard to create the sample, or open the BasicVSCTSample project downloaded from the book’s

website.

Creating a Main Menu Level Command

The VSPackage wizard puts menu items in a fixed place: in the Tools menu if you create a

simple command or into the View menu if you create a simple tool window. However, when you

create a package you often would like to put your own package-specific menu in the main menu

bar of Visual Studio. Now you are going to learn how to do that.

You create a new main level menu VSCTSample with two menu command items. This task

requires the following steps:

 Step1: Create a GuidSymbol element with children for the symbols you are going to use. Nest
this element in the Symbols section.

 Step 2: Create a Menu element representing the main level menu. Put this item into the Menus
section and set up the Parent of this menu to a main menu level menu group.

 Step 3: Create a Group element representing the logical group holding the menu command
items. Set the Parent of this group to the Menu created in the previous step.

 Step 4: Create two Button elements representing the commands and set their Parent to the
Group created previously.

Following the steps the .vsct file looks like in Listing 4.

Listing 4: Creating main menu commands

VS 2010 Package Development

71

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="http://schemas.microsoft.com/VisualStudio/2005-10-

18/CommandTable"

3. xmlns:xs="http://www.w3.org/2001/XMLSchema">
4. <Extern href="stdidcmd.h"/>
5. <Extern href="vsshlids.h"/>
6. <Extern href="msobtnid.h"/>
7.
8. <Commands package="guidBasicVSCTSamplePkg">
9. <Menus>
10. <Menu guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenu"

priority="0x100"

11. type="Menu">
12. <Parent guid="guidSHLMainMenu" id="IDG_VS_MM_BUILDDEBUGRUN" />
13. <Strings>
14. <ButtonText>VSCTSample</ButtonText>
15. <CommandName>VSCTSample</CommandName>
16. </Strings>
17. </Menu>
18. </Menus>
19.
20. <Groups>
21. <Group guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenuGroup"
22. priority="0x0600">
23. <Parent guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenu"/>
24. </Group>
25. </Groups>
26.
27. <Buttons>
28. <Button guid="guidBasicVSCTSampleCmdSet" id="FirstCommand"

priority="0x0100"

29. type="Button">
30. <Parent guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenuGroup"

/>

31. <Strings>
32. <CommandName>FirstCommand</CommandName>
33. <ButtonText>First Command</ButtonText>
34. </Strings>
35. </Button>
36. <Button guid="guidBasicVSCTSampleCmdSet" id="SecondCommand"
37. priority="0x0101" type="Button">
38. <Parent guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenuGroup"

/>

39. <Strings>
40. <CommandName>SecondCommand</CommandName>
41. <ButtonText>Second Command</ButtonText>
42. </Strings>
43. </Button>
44. </Buttons>
45.
46. </Commands>
47.
48. <Symbols>
49. <GuidSymbol name="guidBasicVSCTSamplePkg"
50. value="{41fe6025-c174-4d02-af4f-ea948a272830}" />

VS 2010 Package Development

72

51. <GuidSymbol name="guidBasicVSCTSampleCmdSet"
52. value="{234580c4-8a2c-4ae1-8e4f-5bc708b188fe}">
53. <IDSymbol name="TopLevelMenu" value="0x0100" />
54. <IDSymbol name="TopLevelMenuGroup" value="0x0200" />
55. <IDSymbol name="FirstCommand" value="0x0300" />
56. <IDSymbol name="SecondCommand" value="0x0301" />
57. </GuidSymbol>
58. </Symbols>
59.
60. </CommandTable>

As you see, you have to write quite a lot for such a simple task. In the menu definition the IDs

used in the Parent elements are highlighted. If you build and run your package, you can discover

the new menu located just after the View menu group and before the Tools menu as Figure 6

shows.

Figure 6: New main menu item

When you open a solution the Build menu gets visible and VSCTSample menu goes between

Build and Debug as it can be seen in Figure 7.

Figure 7: VSCTSample is located between Build and Debug

This is due to the Parent definition of Menu and the priority you assigned to it:

1. <Menu guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenu" priority="0x100"
type="Menu">

2. <Parent guid="guidSHLMainMenu" id="IDG_VS_MM_BUILDDEBUGRUN" />
3. <Strings>
4. <ButtonText>VSCTSample</ButtonText>
5. <CommandName>VSCTSample</CommandName>
6. </Strings>
7. </Menu>

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0306_5F00_029FE210.png
http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0307_5F00_36D40B56.png

VS 2010 Package Development

73

The IDG_VS_MM_BUILDDEBUGRUN is the identifier of a logical group representing the

Build and Debug menus on the main VS IDE menu bar. The priority value of 0x100 sets our

menu to be shown before the Debug menu. If you change priority to 0x700 (and rebuild the

package and run) VSCTSample moves after the Debug menu, as Figure 8 shows.

Figure 8: Changing the location of VSCTSample item

Looking into the Button definition you may say there is no need for a Group definition: let’s set

the Parent attribute of Buttons directly to the Menu item like in the following example:

1. <Button ...="">
2. <Parent guid=" guidBasicVSCTSampleCmdSet " id="TopLevelMenu" />
3. <!-- ... -->
4. </Button>

When running the package, no VSCTSample menu will appear. The cause of this phenomenon is

the fact that buttons cannot have menus as parents. They must have command groups as parents

to be displayed in a menu. Because your VSCTSample menu does not have any child, it is not

displayed.

Separating Command Groups in a Menu

As it’s been treated, a command group is a logical container for commands belonging together.

This kind of grouping also can be used for visual effects. If you put more than one command

group in a menu, a separator is created to visually emphasize the separation of command groups.

Let’s add two more commands with a separate group to the .vsct file you’ve created above:

 Step 1: Add new symbols representing the two new buttons and the group for new commands.
 Step 2: Create new Group definition
 Step 3: Define two new Button elements parented in the newly created Group.

After the third step your new .vsct file looks like in Listing 5. Please note, only new parts added

in the steps above are indicated in this listing:

Listing 5: Separating Command Groups in a Menu

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0308_5F00_2F489BE9.png

VS 2010 Package Development

74

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="..." xmlns:xs="...">
3. <!-- Extern elements -->
4. <Commands package="...">
5. <!-- Menus section unchanged -->
6.
7. <Groups>
8. <!-- New group added -->
9. <Group guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenuGroup2"
10. priority="0x0600">
11. <Parent guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenu"/>
12. </Group>
13. </Groups>
14.
15. <Buttons>
16. <!-- New buttons added -->
17. <Button guid="guidBasicVSCTSampleCmdSet" id="ThirdCommand"

priority="0x0100"

18. type="Button">
19. <Parent guid="guidBasicVSCTSampleCmdSet"

id="TopLevelMenuGroup2" />

20. <Strings>
21. <CommandName>ThirdCommand</CommandName>
22. <ButtonText>Third Command</ButtonText>
23. </Strings>
24. </Button>
25. <Button guid="guidBasicVSCTSampleCmdSet" id="FourthCommand"
26. priority="0x0101" type="Button">
27. <Parent guid="guidBasicVSCTSampleCmdSet"

id="TopLevelMenuGroup2" />

28. <Strings>
29. <CommandName>FourthCommand</CommandName>
30. <ButtonText>Fourth Command</ButtonText>
31. </Strings>
32. </Button>
33. </Buttons>
34. </Commands>
35.
36. <Symbols>
37. <GuidSymbol name="guidHowToPackageCmdSet" value="{...}" >
38. <!-- New IDSymbols added -->
39. <IDSymbol name="TopLevelMenuGroup2" value="0x0201" />
40. <IDSymbol name="ThirdCommand" value="0x0302" />
41. <IDSymbol name="FourthCommand" value="0x0303" />
42. </GuidSymbol>
43. <!-- Other Guids for the package -->
44. </Symbols>
45.
46. </CommandTable>

Running the package after these modifications you can see the VSCTSample menu where the

two command groups are separated, as shown in Figure 9.

VS 2010 Package Development

75

Figure 9: Separating commands into groups

Adding Icons to the Menu Items

If you want to add icons to the menu items representing a command, you have to define a Bitmap

node and assign it to the Button elements with their Icon property:

 Step 1: Create IDs for the bitmap strip and each individual icon in the strip.
 Step 2: Create the Bitmap element and set it up to use the icons in the strip.
 Step 3: Add Icon properties to the buttons.

After this change the .vsct file changes as indicated in Listing 6.

Listing 6: Adding Icons to the Buttons

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="..." xmlns:xs="...">
3. <!-- Extern elements -->
4. <Commands package="...">
5. <!-- Menus section unchanged -->
6. <!-- Groups section unchanged -->
7. <Buttons>
8. <Button guid="guidBasicVSCTSampleCmdSet" id="FirstCommand"

priority="0x0100"

9. type="Button">
10. <!-- Icon added, other children unchanged -->
11. <Icon guid="guidImages" id="bmpPic1" />
12. </Button>
13. <Button guid="guidBasicVSCTSampleCmdSet" id="SecondCommand"
14. priority="0x0101" type="Button">
15. <!-- Icon added, other children unchanged -->
16. <Icon guid="guidImages" id="bmpPic2" />
17. </Button>
18. <Button guid="guidBasicVSCTSampleCmdSet" id="ThirdCommand"

priority="0x0100"

19. type="Button">
20. <!-- Icon added, other children unchanged -->
21. <Icon guid="guidImages" id="bmpPicX" />
22. </Button>
23. <Button guid="guidBasicVSCTSampleCmdSet" id="FourthCommand"
24. priority="0x0101" type="Button">
25. <!-- Icon added, other children unchanged -->

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0309_5F00_6EA64F79.png

VS 2010 Package Development

76

26. <Icon guid="guidImages" id="bmpPicArrows" />
27. </Button>
28. </Buttons>
29.
30. <Bitmaps>
31. <!-- A new Bitmap added -->
32. <Bitmap guid="guidImages" href="Resources\Images_24bit.bmp"
33. usedList="bmpPic1, bmpPic2, bmpPicSearch, bmpPicX,

bmpPicArrows"/>

34. </Bitmaps>
35. </Commands>
36.
37. <Symbols>
38. <!-- New GuidSymbol section added -->
39. <GuidSymbol name="guidImages" value="{...}" >
40. <IDSymbol name="bmpPic1" value="1" />
41. <IDSymbol name="bmpPic2" value="2" />
42. <IDSymbol name="bmpPicSearch" value="3" />
43. <IDSymbol name="bmpPicX" value="4" />
44. <IDSymbol name="bmpPicArrows" value="5" />
45. </GuidSymbol>
46. <!-- Other Guids for the package -->
47. </Symbols>
48.
49. </CommandTable>

As you can see, separate identifiers with bmp prefix are defined to index icons in the bitmap

strip. The Bitmap element references the physical resource and in the usedList attribute

enumerates the symbols for the icons which can be referenced in Button definitions. Button

elements use the Icon node to name the bitmap with guidImages and the appropriate strip index

with its symbolic name.

Running the package with this .vsct file results the menu in Figure 10.

Listing 10: Adding Icons to the buttons

Playing with CommandFlag Values

Menu item behavior can be influenced by using so-called command flags. To discover a few of

them you modify two buttons with CommandFlag elements. Add a TextOnly flag to the first

command. Although the first command has an associated Icon, the TextOnly command flag sets

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0310_5F00_4E1F0FC7.png

VS 2010 Package Development

77

the menu item appearance to show only the text and not the icon. Add a DynamicVisibility and a

DefaultDisabled flag to the third command. These flags initialize the command in disabled state

by default. Listing 7 shows the changes.

Listing 7: Applying CommandFlags

1. <Buttons>
2. <Button guid="guidBasicVSCTSampleCmdSet" id="FirstCommand"

priority="0x0100"

3. type="Button">
4. <!-- CommandFlag added, other children unchanged -->
5. <CommandFlag>TextOnly</CommandFlag>
6. </Button>
7. <Button guid="guidBasicVSCTSampleCmdSet" id="ThirdCommand"

priority="0x0100"

8. type="Button">
9. <!-- CommandFlag added, other children unchanged -->
10. <CommandFlag>DynamicVisibility</CommandFlag>
11. <CommandFlag>DefaultDisabled</CommandFlag>
12. </Button>
13. <!-- Other buttons are unchanged -->
14. </Buttons>

After building and running the package you can recognize the effect of command flag applied as

Figure 11 shows.

Figure 11: Using CommandFlag elements to modify behavior

Creating Submenus

You have already seen how to create a new main menu item and separate items visually by using

command groups. Now you make a little modification to use submenus for grouping related

commands. Remove the command flags you have added in Listing 7 and change the VSCT

content:

 Step 1: Rename the TopLevelMenuGroup2 to SubMenuGroup (and all references). You turn the
group of third and fourth command into a submenu group.

 Step 2: Add a new menu representing the submenu and attach it to the existing
TopLevelMenuGroup. Name it SubMenu and create a symbol for it.

 Step 3: Attach the SubMenuGroup to the newly created submenu.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0311_5F00_4693A05A.png

VS 2010 Package Development

78

Listing 8 indicates the changes you have done.

Listing 8: Moving commands into a submenu

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="...">
3. <!-- Extern section unchanged -->
4. <Commands package="guidHowToPackagePkg">
5. <Menus>
6. <!-- New menu added -->
7. <Menu guid="guidBasicVSCTSampleCmdSet" id="SubMenu"

priority="0x200"

8. type="Menu">
9. <Parent guid="guidBasicVSCTSampleCmdSet" id="TopLevelMenuGroup"

/>

10. <Strings>
11. <ButtonText>Other Commands</ButtonText>
12. <CommandName>Other Commands</CommandName>
13. </Strings>
14. </Menu>
15. </Menus>
16. <Groups>
17. <!-- Group changed to SubMenuGroup and attached to SubMenu -->
18. <Group guid="guidBasicVSCTSampleCmdSet" id="SubMenuGroup"
19. priority="0x0600">
20. <Parent guid="guidBasicVSCTSampleCmdSet" id="SubMenu"/>
21. </Group>
22. </Groups>
23.
24. <Buttons>
25. <!-- We attached these two buttons to SubMenuGroup -->
26. <Button guid="guidBasicVSCTSampleCmdSet" id="ThirdCommand"

priority="0x0100"

27. type="Button">
28. <Parent guid="guidBasicVSCTSampleCmdSet" id="SubMenuGroup" />
29. <Icon guid="guidImages" id="bmpPicX" />
30. <Strings>
31. <CommandName>ThirdCommand</CommandName>
32. <ButtonText>Third Command</ButtonText>
33. </Strings>
34. </Button>
35. <Button guid="guidBasicVSCTSampleCmdSet" id="FourthCommand"
36. priority="0x0101" type="Button">
37. <Parent guid="guidBasicVSCTSampleCmdSet" id="SubMenuGroup" />
38. <Icon guid="guidImages" id="bmpPicArrows" />
39. <Strings>
40. <CommandName>FourthCommand</CommandName>
41. <ButtonText>Fourth Command</ButtonText>
42. </Strings>
43. </Button>
44. </Buttons>
45.
46. </Commands>
47.

VS 2010 Package Development

79

48. <Symbols>
49. <!-- We add a SubMenu and changed SubMenuGroup -->
50. <GuidSymbol name="guidBasicVSCTSampleCmdSet" value="...">
51. <IDSymbol name="SubMenu" value="0x0101" />
52. <IDSymbol name="SubMenuGroup" value="0x0201" />
53. </GuidSymbol>
54. </Symbols>
55. </CommandTable>

After building and running the package with the modified command table, you can see the

submenu as Figure 12 shows.

Figure 12: Commands moved to a submenu

If you carefully examine the command table, you can observe the following nesting:

TopLevelMenu --> TopLevelMenuGroup --> SubMenu --> SubMenuGroup --> Button

elements. As you see, menus can be nested to each other through Group elements. Should you

break this nesting the menu would not display as expected.

Adding Shortcut Keys to Menu Items

The command table allows you to bind shortcut keys to commands, and here you are going to

examine this feature. Till this time you’ve used all commands in the BasicVSCTSample package

that have no code behind to execute. In order to demonstrate that shortcut keys are working, add

code to commands to display the name of the command invoked. Listing 9 shows the code of

BasicVSCTSamplePackage:

Listing 9: Command handling in BasicVSCTSample

1. using System;
2. using System.ComponentModel.Design;
3. using System.Runtime.InteropServices;
4. using System.Text;
5. using Microsoft.VisualStudio.Shell;
6. using Microsoft.VisualStudio.Shell.Interop;
7.
8. namespace DeepDiver.BasicVSCTSample
9. {
10. [PackageRegistration(UseManagedResourcesOnly = true)]

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0312_5F00_6CF583A5.png

VS 2010 Package Development

80

11. [InstalledProductRegistration(false, "#110", "#112", "1.0",
IconResourceID = 400)]

12. [ProvideMenuResource("Menus.ctmenu", 1)]
13. [Guid(GuidList.guidBasicVSCTSamplePkgString)]
14. public sealed class BasicVSCTSamplePackage : Package
15. {
16. private OleMenuCommandService _CommandService;
17.
18. protected override void Initialize()
19. {
20. base.Initialize();
21. _CommandService = GetService(typeof(IMenuCommandService)) as

OleMenuCommandService;

22. RegisterCommand(CmdIDs.FirstCommand, "First Command",
CommandHandlerCallback);

23. RegisterCommand(CmdIDs.SecondCommand, "Second Command",
CommandHandlerCallback);

24. RegisterCommand(CmdIDs.ThirdCommand, "Third Command",
CommandHandlerCallback);

25. RegisterCommand(CmdIDs.FourthCommand, "Fourth Command",
CommandHandlerCallback);

26. }
27.
28. private void CommandHandlerCallback(object caller, EventArgs args)
29. {
30. var command = caller as OleMenuCommand;
31. if (command == null) return;
32. OutputCommandString(command.Text + " has been invoked");
33. }
34.
35. private void RegisterCommand(uint id, string initialText,
36. EventHandler callback)
37. {
38. if (_CommandService == null) return;
39. var menuCommandID = new

CommandID(GuidList.guidBasicVSCTSampleCmdSet, (int)id);

40. var menuItem = new OleMenuCommand(callback, menuCommandID) { Text
= initialText };

41. _CommandService.AddCommand(menuItem);
42. }
43.
44. private void OutputCommandString(string text)
45. {
46. // --- Build the string to write on the debugger and Output

window.

47. var outputText = new StringBuilder();
48. outputText.AppendFormat("BasicVSCTSamplePackage: {0} ", text);
49. var outputWindow = GetService(typeof(SVsOutputWindow)) as

IVsOutputWindow;

50. if (outputWindow == null) return;
51. var guidGeneral =

Microsoft.VisualStudio.VSConstants.GUID_OutWindowDebugPane;

52. IVsOutputWindowPane windowPane;
53. if (Microsoft.VisualStudio.ErrorHandler.Failed(
54. outputWindow.GetPane(ref guidGeneral, out windowPane)))

VS 2010 Package Development

81

55. {
56. return;
57. }
58. windowPane.Activate();
59. windowPane.OutputStringThreadSafe(outputText.ToString());
60. }
61. }
62. }

Each command invokes the CommandHandlerCallback method as a response for their

invocation. This method uses the OutputCommandString method to display the name of the

command. The RegisterCommand method is used to bind the commands to the code to execute

and setup their Text property. Because you do not use the TextChanges command flag the values

set here never get reflected in the menu items.

While shortcut keys are generally assigned to menu items, in Visual Studio shortcuts are

assigned to commands. Because the same command can be used in different contexts, shortcuts

of commands are also interpreted in different contexts. It might be so that in a certain context a

command does not have a keyboard shortcut while in another it has. In a third context the

command may even have a different shortcut.

The VSCT schema has an element called KeyBinding that is put into the KeyBindings container

like in the following example:

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="..." xmlns:xs="...">
3. <Commands package="...">
4. <!-- Command information goes here -->
5. </Commands>
6.
7. <KeyBindings>
8. <KeyBinding guid=".." id=".." ... />
9. <!-- More key bindings -->
10. </KeyBindings>
11.
12. </CommandTable>

Please note, that KeyBindings is located outside of the Command element, directly within the

CommandTable element. In the BasicVSCTSample you can add shortcut keys as defined in

Listing 10.

Listing 10: Shortcut key definitions in BasicVSCTSample

1. <KeyBindings>
2. <KeyBinding guid="guidBasicVSCTSampleCmdSet" id="FirstCommand"

editor="guidVSStd97"

3. key1="VK_F6" mod1="Control Alt" key2="VK_F1" />
4. <KeyBinding guid="guidBasicVSCTSampleCmdSet" id="SecondCommand"

editor="guidVSStd97"

5. key1="VK_F6" mod1="Control Alt" key2="VK_F2" />

VS 2010 Package Development

82

6. </KeyBindings>

You can assign not only a simple hotkey for a command but also two. The key1 and mod1

attributes set the first hotkey, key2 and mod2 the second one. These hotkeys are not alternatives

of each other: you have to press the first then the second to activate the command.

For example, in the code above for FirstCommand the first key is Ctrl+Alt+F7, the second F1. In

values of key1 and key2 attributes you can use alphanumeric characters available on the

keyboard, VK_ constants (IntelliSense will offer you as you type) or two digit hexadecimal

constants with 0x prefix.

The values of mod1 and mod2 specify the modification keys. You can use the Control, Alt and

Shift values or a combination of them where the value items are separated by a space.

With the guid and id attributes you can bind the specified key combination to the appropriate

command. The editor attribute defines the context for a specific binding. The guidVSStd97 value

defines that the command is global, so it is available in anywhere in Visual Studio.

Shortcut keys are displayed in menu items as Figure 13 shows.

Figure 13: Shortcut keys are displayed

Open the Output window and use the First Command and Second Command menu items with

their keyboard shortcuts. You can see the trace messages in the Output window indicating that

the commands are executed.

Advanced VSCT Samples

You have just scratched the surface of the command table features as you created a main menu

item and played with groupings, icons and submenus. In this section you dive a bit deeper and

look after other useful samples: you are going to build toolbars, menu controllers and examine

visibility contexts.

You are going to examine a new package (AdvancedVSCTSample) that was created with

VSPackage wizard. You can download it from the book’s website. The package is non-

functional, it is only a container for resources, so it has an empty body.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0313_5F00_7746A805.png

VS 2010 Package Development

83

Creating a Toolbar

In many cases a toolbar represents commands in a more useful way than a menu does. Here you

are going to turn a menu above into a toolbar and then play with a few options. The steps to

create the toolbar with the commands are very similar to the ones you’ve used when creating a

main menu item.

 Step1: Create a GuidSymbol element with children for the symbols we are going to use. Nest
this element in the Symbols section.

 Step 2: Create a Menu element representing the toolbar menu. Put this item into the Menus
section and set up the Parent pointing to the menu item itself.

 Step 3: Create a Group element representing the logical group holding the four toolbar
command items. Set the Parent of this group to the Menu created in the previous step.

 Step 4: Create four Button elements representing the commands and set their Parent to the
Group created previously.

After these steps the .vsct file should look like in Listing 11.

Listing 11: Creating a toolbar

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="...">
3. <!-- Extern section unchanged -->
4. <Commands package="guidAdvancedVSCTSamplePkg">
5. <Menus>
6. <Menu guid="guidAdvancedVSCTSampleCmdSet" id="VSCTToolbar"

priority="0x0000"

7. type="Toolbar">
8. <Parent guid="guidAdvancedVSCTSampleCmdSet" id="VSCTToolbar" />
9. <CommandFlag>DefaultDocked</CommandFlag>
10. <Strings>
11. <CommandName>VSCTSampleToolbar</CommandName>
12. <ButtonText>VSCT Sample Toolbar</ButtonText>
13. </Strings>
14. </Menu>
15. </Menus>
16.
17. <Groups>
18. <Group guid="guidAdvancedVSCTSampleCmdSet" id="VSCTToolbarGroup"
19. priority="0x0600">
20. <Parent guid="guidAdvancedVSCTSampleCmdSet" id="VSCTToolbar"/>
21. </Group>
22. </Groups>
23.
24. <Buttons>
25. <Button guid="guidAdvancedVSCTSampleCmdSet" id="FirstCommand"

priority="0x0100"

26. type="Button">
27. <Parent guid="guidAdvancedVSCTSampleCmdSet"

id="VSCTToolbarGroup" />

28. <Strings>

VS 2010 Package Development

84

29. <CommandName>FirstCommand</CommandName>
30. <ButtonText>First Command</ButtonText>
31. </Strings>
32. </Button>
33. <Button guid="guidAdvancedVSCTSampleCmdSet" id="SecondCommand"
34. priority="0x0101" type="Button">
35. <Parent guid="guidAdvancedVSCTSampleCmdSet"

id="VSCTToolbarGroup" />

36. <Strings>
37. <CommandName>SecondCommand</CommandName>
38. <ButtonText>Second Command</ButtonText>
39. </Strings>
40. </Button>
41. <Button guid="guidAdvancedVSCTSampleCmdSet" id="ThirdCommand"

priority="0x0102"

42. type="Button">
43. <Parent guid="guidAdvancedVSCTSampleCmdSet"

id="VSCTToolbarGroup" />

44. <Strings>
45. <CommandName>ThirdCommand</CommandName>
46. <ButtonText>Third Command</ButtonText>
47. </Strings>
48. </Button>
49. <Button guid="guidAdvancedVSCTSampleCmdSet" id="FourthCommand"
50. priority="0x0103" type="Button">
51. <Parent guid="guidAdvancedVSCTSampleCmdSet"

id="VSCTToolbarGroup" />

52. <Strings>
53. <CommandName>FourthCommand</CommandName>
54. <ButtonText>Fourth Command</ButtonText>
55. </Strings>
56. </Button>
57. </Buttons>
58.
59. </Commands>
60.
61. <Symbols>
62. <GuidSymbol name="guidAdvancedVSCTSamplePkg" value="..." />
63. <GuidSymbol name="guidAdvancedVSCTSampleCmdSet" value="...">
64. <IDSymbol name="VSCTToolbar" value="0x0100" />
65. <IDSymbol name="VSCTToolbarGroup" value="0x0200" />
66. <IDSymbol name="FirstCommand" value="0x0300" />
67. <IDSymbol name="SecondCommand" value="0x0301" />
68. <IDSymbol name="ThirdCommand" value="0x0302" />
69. <IDSymbol name="FourthCommand" value="0x0303" />
70. </GuidSymbol>
71. </Symbols>
72. </CommandTable>

The key in this scenario is the Menu element that uses the Toolbar value in its type attribute.

Standard menus have parent groups defined by Visual Studio. However, for toolbars the concept

of parent menu or menu group has no meaning just like as a nested toolbars does not. As a

convention, you set the Parent of a toolbar to the same GUID and ID pair as used for the toolbar

identification. The first time the toolbar is shown up you want it to be docked so you set a

VS 2010 Package Development

85

CommandFlag with the value of DefaultDocked. The Button elements now are parented into the

Group element that points to the Menu instance.

Now, you can build the project and see how the toolbar works. Start debugging and make the

toolbar visible by enabling our toolbar with View ð Toolbars ð VSCTSampleToolbar menu item.

The toolbar will be shown docked right under the standard toolbar as shown in Figure 14.

Figure 14: Toolbar with button placeholders

Note: In previous Visual Studio versions this .vcst file would have resulted in a toolbar with four

button placeholders without any text. To achieve the save visual properties you can see in Figure

3-14 the TextOnly command flag should have been assigned to the Button elements. Visual

Studio 2010 changes this behavior. By default, when a toolbar button does not have an icon, its

text is displayed even if the TextOnly command flag is not used.

Well, this toolbar resembles to a standard menu, the original concept of a toolbar seems lost. So,

let’s move on using icons. To set up button icons you are going to use exactly the same code

changes as used in Listing 3-6. Now the result shown in Figure 15 rather resembles to a toolbar

than the first one.

Figure 15: Toolbar buttons with text

With toolbars you can use some other controls. Let’s see a few examples!

Menu Controllers on Toolbars

By now you have seen examples for two kinds of menus: standard menus and submenus. In

toolbars you can use a third kind of menu called menu controller: this is a split-button drop-down

menu. You can change the toolbar above so that the last three buttons go into a menu controller

just like in Figure 16.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0314_5F00_0B5FC48F.png
http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0315_5F00_71F7C154.png
http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0316_5F00_23832EEA.png

VS 2010 Package Development

86

Figure 16: Menu controller with three items

Creating a menu controller is very similar to creating a submenu. To setup the items as in Error!

Reference source not found. the following steps should be carried out:

 Step 1: Create IDs for a new Menu element and a new Group.
 Step 2: Create a Menu item with type of MenuController.
 Step 3: Create a Group item for encapsulate the three Button controls that will appear in the

menu controller.
 Step 4: Attach the button items to the Group created in the third step.

Listing 12 summarizes the changes to establish the menu controller.

Listing 12: Using a menu controller

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="...">
3. <!-- Extern section unchanged -->
4. <Commands package="guidAdvancedVSCTSamplePkg">
5. <Menus>
6. <!-- New item representing the menu controller -->
7. <Menu guid="guidAdvancedVSCTSampleCmdSet" id="VSCTMenuController"
8. priority="0x0200" type="MenuController">
9. <Parent guid="guidAdvancedVSCTSampleCmdSet"

id="VSCTToolbarGroup"/>

10. <CommandFlag>IconAndText</CommandFlag>
11. <Strings>
12. <ButtonText>VSCT Menu Controller</ButtonText>
13. <CommandName>Menu Controller</CommandName>
14. </Strings>
15. </Menu>
16. </Menus>
17.
18. <Groups>
19. <!-- New group for the items in the menu controller -->
20. <Group guid="guidAdvancedVSCTSampleCmdSet"

id="VSCTControllerGroup"

21. priority="0x0600">
22. <Parent guid="guidAdvancedVSCTSampleCmdSet"

id="VSCTMenuController"/>

23. </Group>
24. </Groups>
25.
26. <Buttons>
27. <!-- We leave the first button as it is -->
28. <!-- We change the 2nd 3rd and 4th button as indicated -->
29. <Button guid="guidHowToPackageCmdSet" id="cmdSecondCommand"
30. priority="0x0101" type="Button">
31. <Parent guid="guidAdvancedVSCTSampleCmdSet"

id="VSCTControllerGroup" />

32. <CommandFlag>IconAndText</CommandFlag>
33. <Icon guid="guidImages" id="bmpPic2" />

VS 2010 Package Development

87

34. <Strings>
35. <CommandName>cmdidSecondCommand</CommandName>
36. <ButtonText>Second Command</ButtonText>
37. </Strings>
38. </Button>
39. <!-- Code for the 3rd and 4th button is similar -->
40. </Buttons>
41. <!-- Bitmaps section unchanged -->
42. </Commands>
43.
44. <Symbols>
45. <GuidSymbol name="guidHowToPackageCmdSet" value="..." >
46. <!-- We use these two new IDs -->
47. <IDSymbol name="VSCTMenuController" value="0x0101" />
48. <IDSymbol name="VSCTControllerGroup" value="0x0201" />
49. </GuidSymbol>
50. <!-- Other Guids of the package -->
51. </Symbols>
52. </CommandTable>

The Menu item for a menu controller can be defined so that the type attribute is set to

MenuController. The Parent of the menu is the command group representing the four command

buttons as it was used in the previous example.

You attach the newly created group to the Menu item above and then connect the last three

Button elements to this Group. You also change the CommandFlag elements for the new menu

controller item and for the tree involved button to IconAndText in order to make it dropdown-

menu-like.

IconAndText is the default value for the buttons attached to a menu controller, so if you leave

them for buttons, the toolbar appearance will not change. However, for the menu controller itself

the default mode displays only the icons. If you had omitted the IconAndText flag from the

controller definition we could see the toolbar like in Figure 17.

Figure 17: Menu controller with icon only

Combo Boxes

Combo boxes provide you an enhanced form of input by allowing a combination of hand-typed

text selection with picking items from a list. Visual Studio also allows combo boxes on the user

interface. The command table file (.vsct) has Combo elements to represent UI of commands with

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0317_5F00_7BDCB2BF.png

VS 2010 Package Development

88

combo boxes instead of standard menu items or buttons. There are four stereotypes of combos;

each of them is identified by a type name used in the .vsct file.

 DropDownCombo: This type does not let the user type into the combo box; they can only pick
an item from a list. After selecting an item the string value of the selected element is returned.

 IndexCombo: This type is the same as a DropDownCombo in that it allows only picking up items
from a list. However, an IndexCombo returns the zero-based index of the selected value on the
list and not the value itself.

 MRUCombo: This combo type allows the user to type into the edit box. The history of strings
entered is automatically persisted by the IDE on a per-user or per-machine basis for the last 16
items.

 DynamicCombo: This combo allows the user to type into the edit box or pick from the list. The
list of choices is managed dynamically by a command event handler method.

Handling combo boxes is more complicated than working with simple menu items. A part of the

complexity comes from the fact that combo boxes use two commands behind. The first

command is executed as you select an item from the dropdown list. The second command is used

to fill up the list of items.

Working with Visibility Contexts

In the beginning of this chapter you have already learnt about the concept of visibility contexts,

and in Table 4 you can see the most frequently used ones. In this section you are going to create

a small sample package demonstrating concepts treated there.

You can examine a package named VisibilityContextSample and similarly to the previous

samples this package is only a container for the menu and does not provide any real function.

The package adds a menu that looks like as shown in Figure 18.

Figure 18: Menus defined by the VisibilityContextSample package

The command table producing this menu can be found in Listing 13 and uses exactly the same

approach that can be found in Listing 4.

Listing 13: VisibilityContextSample initial command table

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0318_5F00_4259A2C8.png

VS 2010 Package Development

89

1. <?xml version="1.0" encoding="utf-8"?>
2. <CommandTable xmlns="http://schemas.microsoft.com/VisualStudio/2005-10-

18/CommandTable" xmlns:xs="http://www.w3.org/2001/XMLSchema">

3. <Extern href="stdidcmd.h"/>
4. <Extern href="vsshlids.h"/>
5. <Extern href="msobtnid.h"/>
6. <Commands package="guidVisibilityContextSamplePkg">
7. <Menus>
8. <Menu guid="guidVisibilityContextSampleCmdSet" id="TopLevelMenu"

priority="0x100"

9. type="Menu">
10. <Parent guid="guidSHLMainMenu" id="IDG_VS_MM_BUILDDEBUGRUN" />
11. <Strings>
12. <ButtonText>Visibility Sample</ButtonText>
13. <CommandName>Visibility Sample</CommandName>
14. </Strings>
15. </Menu>
16. </Menus>
17.
18. <Groups>
19. <Group guid="guidVisibilityContextSampleCmdSet"

id="TopLevelMenuGroup"

20. priority="0x0600">
21. <Parent guid="guidVisibilityContextSampleCmdSet"

id="TopLevelMenu"/>

22. </Group>
23. </Groups>
24.
25. <Buttons>
26. <Button guid="guidVisibilityContextSampleCmdSet" id="NoSolution"

priority="0x0100"

27. type="Button">
28. <Parent guid="guidVisibilityContextSampleCmdSet"

id="TopLevelMenuGroup" />

29. <Strings>
30. <CommandName>cmdNoSolution</CommandName>
31. <ButtonText>No Open Solution</ButtonText>
32. </Strings>
33. </Button>
34.
35. <Button guid="guidVisibilityContextSampleCmdSet"

id="EmptySolution"

36. priority="0x0101" type="Button">
37. <Parent guid="guidVisibilityContextSampleCmdSet"

id="TopLevelMenuGroup" />

38. <Strings>
39. <CommandName>cmdEmptySolution</CommandName>
40. <ButtonText>Empty Solution</ButtonText>
41. </Strings>
42. </Button>
43.
44. <Button guid="guidVisibilityContextSampleCmdSet"

id="SingleProject"

45. priority="0x0102" type="Button">

VS 2010 Package Development

90

46. <Parent guid="guidVisibilityContextSampleCmdSet"
id="TopLevelMenuGroup" />

47. <Strings>
48. <CommandName>cmdSingleProject</CommandName>
49. <ButtonText>Single Project</ButtonText>
50. </Strings>
51. </Button>
52.
53. <Button guid="guidVisibilityContextSampleCmdSet"

id="MultipleProject"

54. priority="0x0103" type="Button">
55. <Parent guid="guidVisibilityContextSampleCmdSet"

id="TopLevelMenuGroup" />

56. <Strings>
57. <CommandName>cmdMultipleProject</CommandName>
58. <ButtonText>Multiple Project</ButtonText>
59. </Strings>
60. </Button>
61.
62. <Button guid="guidVisibilityContextSampleCmdSet" id="NotBound"

priority="0x0104"

63. type="Button">
64. <Parent guid="guidVisibilityContextSampleCmdSet"

id="TopLevelMenuGroup" />

65. <Strings>
66. <CommandName>cmdNotBound</CommandName>
67. <ButtonText>Not bound to context</ButtonText>
68. </Strings>
69. </Button>
70.
71. <Button guid="guidVisibilityContextSampleCmdSet"

id="SingleOrMultiple"

72. priority="0x0105" type="Button">
73. <Parent guid="guidVisibilityContextSampleCmdSet"

id="TopLevelMenuGroup" />

74. <Strings>
75. <CommandName>cmdSingleOrMultiple</CommandName>
76. <ButtonText>Single or Multiple</ButtonText>
77. </Strings>
78. </Button>
79. </Buttons>
80.
81. </Commands>
82.
83. <Symbols>
84. <GuidSymbol name="guidVisibilityContextSamplePkg" value="..." />
85. <GuidSymbol name="guidVisibilityContextSampleCmdSet" value="...">
86. <IDSymbol name="TopLevelMenu" value="0x1000" />
87. <IDSymbol name="TopLevelMenuGroup" value="0x1020" />
88. <IDSymbol name="NoSolution" value="0x0100" />
89. <IDSymbol name="EmptySolution" value="0x0101" />
90. <IDSymbol name="SingleProject" value="0x0102" />
91. <IDSymbol name="MultipleProject" value="0x0103" />
92. <IDSymbol name="NotBound" value="0x0104" />
93. <IDSymbol name="SingleOrMultiple" value="0x0105" />

VS 2010 Package Development

91

94. </GuidSymbol>
95. </Symbols>
96.
97. </CommandTable>

If you apply this .vsct file for a package you will get the menu in the Figure 18, but nothing

extra. Bind the commands to specific visibility contexts! First, add DynamicVisibility command

flag to all buttons. Without this flag the sample would not work. Second, add the

VisibilityConstraints section as in Listing 14 to the command table.

Listing 14: VisibilityContextSample initial command table

1. <VisibilityConstraints>
2. <VisibilityItem guid="guidVisibilityContextSampleCmdSet"

id="NoSolution"

3. context="UICONTEXT_NoSolution"/>
4. <VisibilityItem guid="guidVisibilityContextSampleCmdSet"

id="EmptySolution"

5. context="UICONTEXT_EmptySolution"/>
6. <VisibilityItem guid="guidVisibilityContextSampleCmdSet"

id="SingleProject"

7. context="UICONTEXT_SolutionHasSingleProject"/>
8. <VisibilityItem guid="guidVisibilityContextSampleCmdSet"

id="MultipleProject"

9. context="UICONTEXT_SolutionHasMultipleProjects"/>
10. <VisibilityItem guid="guidVisibilityContextSampleCmdSet"

id="SingleOrMultiple"

11. context="UICONTEXT_SolutionHasSingleProject"/>
12. <VisibilityItem guid="guidVisibilityContextSampleCmdSet"

id="SingleOrMultiple"

13. context="UICONTEXT_SolutionHasMultipleProjects"/>
14. </VisibilityConstraints>

Each VisibilityItem node binds the specified command to a visibility context defined by the

context attribute. Symbols starting with the UICONTEXT_ prefix define the contexts as

summarized in Table 3-4. The NotBound button is not assigned with any contexts, so it is always

visible (it is displayed in every context). The SingleOrMultiple command is bound to two

contexts (represented by the last two VisibilityItem nodes), so it is displayed when there is a

solution with one or more projects open.

We can check in a few steps how these constraints work. First, when you open Visual Studio you

can see the initial state of the menu as shown in Figure 19.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0319_5F00_2FA4A911.png

VS 2010 Package Development

92

Figure 19: Initial menu state after starting Visual Studio

Now, carry out the following steps and see the results in the corresponding figures:

 Create an empty solution (Figure 20)
 Add a C# class library (or any other kind of project) to the solution (Figure 21)
 Add another project to the existing solution (Figure 22)

Figure 20: Empty solution created

Figure 21: A new project is added to the solution

Figure 22: Another project is added to the solution

As you see, visibility contexts work as expected.

Command Routing and Nested Contexts

The Visual Studio IDE, its registered packages, and objects owned by packages (editors, tool

windows, and so on) define a huge set of executable commands. A command can be executed by

a number of entities depending on the current context, for instance by the active editor window,

the currently selected project, active tool window, and so on.

http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0320_5F00_014B2364.png
http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0321_5F00_00DEF06F.png
http://dotneteers.net/cfs-file.ashx/__key/CommunityServer.Blogs.Components.WeblogFiles/divedeeper/f0322_5F00_326A5E04.png

VS 2010 Package Development

93

There are many objects at the same time in the IDE which are command targets and so are able

to receive and execute commands. Visual Studio has a well-defined routing architecture that lays

down the rules how commands are executed in a certain context — in which order command

targets are offered to process commands. This algorithm starts form the innermost context and

goes to the outermost context while it reaches the global context that is the core Visual Studio

IDE.

From this point of view contexts are nested into each other. Here is a very simple example how

contexts are nested. The real life is a bit more complex, but this helps you imagine nesting.

Assume you create a package with a tool window and register it with Visual Studio IDE.

Because both the package itself and the tool window owned by the package are command

targets, you have the following contexts from the top to the bottom:

 The top level (global context) is Visual Studio IDE.
 Your package is sited in the IDE. Before siting it has its own logical context. After you site the

package its context logically will be a context nested into the IDE.
 The tool window of the package has its own contexts. When an instance is created its context

becomes a nested context within the package.

Visual Studio IDE, packages and package-owned objects form a tree of nested command

contexts. From this perspective the routing algorithm starts from a leaf of that tree and bubbles

up while it reaches the root of this tree that is called the global context.

The Routing Algorithm

The algorithm that routes commands has many fine details which add small twists. Here you will

not learn all those subtle details; instead you’ll be given a high level overview.

In the route the current level is called the active command context. This context has the chance to

handle the command or to say “I do not know what to do with this command” and the bubble

goes on its way.

The routing algorithm defines the following levels from the leaves to the root:

 Present Add-ins and special packages. Commands first are offered to the registered and loaded
Add-ins or specially registered packages.

 Context (shortcut) menus. If the user initiates a command from a context menu, the command
target object belonging to this menu has the first chance to handle the command. If it does not,
then the normal route (starting from Present Add-Ins) is applied.

 Focus window. The window having the focus is the next entity that can undertake command
handling. This can be either a tool window or a document window, for instance, a window
related to an editor. The management of the command is different depending on what kind of
window is focused.

VS 2010 Package Development

94

o Document window. There are windows in Visual Studio like editors and designers that
have physical or virtual documents behind them. Document windows are composed
logically from two separate parts: a document view that is responsible to display the UI
representing the document and a document data object that is responsible to handle
the information set behind the document. Both the document view and the document
data can be command targets. The command first goes to the document view and goes
on to the document data if the view does not support the command.

o Tool window. The tool window can handle the command by its own logic. There are tool
windows that route the commands within themselves to nested command targets. The
Solution Explorer window is an example of them. Within Solution Explorer a command is
routed according to the hierarchy composed from the elements of the Solution Explorer
where each node type (file, folder, project, solution, etc.) has the ability to handle the
command. This internal route also goes from the lower hierarchy levels to the upper
ones.

 Current project. The current project gets the opportunity to process the command. If it does not
handle, the command goes up in the hierarchy of projects till the level of solution. All nodes on
this route can manage the command just like other command target objects. (Visual Studio
allows creating nested projects. When subprojects are used, the upper level of a project is not
necessary the solution.)

 Environment. Each package should be able to handle commands owned (defined) by it.
Theoretically it is not mandatory, but why to define a custom command which is not handled by
the only entity that knows it?

 Global level. If a command is not handled in the previous levels, the environment attempts to
route it to the appropriate package (the package defining the command). If necessary, Visual
Studio loads the appropriate package into the memory.

Any command target objects along the route can decide how to process a command. They must

answer status queries and execute requested commands.

Summary

Visual Studio clearly separates the concept of menu items and commands.

A command is responsible for determining its state (name, visibility, enabled, disabled, etc.) and

executing the command triggered. A menu item is responsible for presenting the visual

properties of a command and providing a way the user can trigger the execution of the command.

A command object can be bound to zero, one or more menu items.

A command itself it a logical entity that can be forwarded to command targets which know how

to handle the semantics of a specific command. There is a command routing model in the IDE

that forwards a command to a command target. The target either can do something with the

request related to a command (for example, set the command state disabled, execute the

command, etc.) or can pass back the command as not supported (the target does not know what

to do with that). The target even can pass the command to other command targets.

VS 2010 Package Development

95

Each command has a state in the current Visual Studio context. This state is built up from two

orthogonal factors: availability (the command is enabled or disabled) and visuals (the command

is visible or hidden, the label it has, and so on).

The Visual Studio Command Table describes the commands and related UI elements that should

be merged with Visual Studio menus. The command table is compiled to a binary resource which

is embedded into the package infrastructure resources during the build process. When deploying

the package the command table is merged into the menus and toolbars of the IDE.

Visual Studio 2010 uses an XML format with .vsct extension to describe the command table.

Older versions used a simple textual format called .ctc that has been deprecated.

In this chapter you have seen the structure of the .vsct file and solved simple tasks like building a

new main menu item or a toolbar, putting commands visually into command groups or

submenus, working with menu controllers, etc. You have also examined a sample illustrating

how visibility constraints work.

