

Notes on Visual Basic for Applications (VBA)
By Konstantinos N. Vonatsos

 2

Table of Contents

Introduction ... 3

Introducing basic terms .. 3

Important compiler options .. 3

Introducing VBA objects ... 4

Introducing Various Programming Elements.. 6

Introducing Subroutines ... 6

Introducing Functions ...13

Introducing Variables, Comments, Constants and Data Types...14

Introducing Labels and the On Error statement ...18

Introducing VBA and Excel functions...24

Introducing control of the program flow..27

If-Then statement ..27

If-Then-Else statement ..28

If-Then-ElseIf statement ...29

Using Logical Operators ...30

Select Case statement ..31

For-Next Statement ...33

Do-While Statement..35

Do-Until Statement ...38

Creating a Non-Linear Equation Solver...42

Introducing Charts ..49

 3

INTRODUCTION

Introducing basic terms

Project: The project acts as a container for the modules, class modules, and forms for a particular file.

Module, class module, and form: These three elements act as containers for main programming

elements such as procedures and functions. We will deal with modules and forms. Note that each of

these elements requires a unique name. In a single project it is possible to have a number of different

forms, modules, class modules.

Function and Sub: The Function and Sub elements hold individual lines of code. A function returns a

value, whereas a Sub does not. You always use a Sub as the entry point for a program. A Sub is used to

perform a task and not receive a direct return value. You can also use it to display information. A very

important use is to utilize them to break up the code to smaller pieces each performing a specific task.

This makes the code easier to read and handle. You use a Function when you want to return a value.

Suppose that you need to calculate the Black-Scholes value several times in a program, you can then

create a function that returns the price each time you call it.

Important compiler options

You add the following two options at the very beginning of a module, class module, or form before any

other code.

Option base <Number>: Use this option to change how VBA numbers array elements. You can

number array elements beginning at 0 or 1. Be careful the default value is 0.

Option Explicit: Always use this option! It tells VBA that you want to define all the variables before

using them. It makes the code easier to read and helps you find typos in your code.

 4

Introducing VBA objects

In EXCEL we have objects. Each EXCEL object represents a feature or a piece of functionality.

Examples of objects are: workbooks, worksheets, ranges, charts, font etc.

• Objects come in collections

For example workbooks collection consists of all open workbooks. It is possible for an object to

be a singular object (a collection of only one member). For example the Font object for any cell

in the spreadsheet.

Singular objects are referenced directly eg. Font.

Individual objects in collections are referenced either by number (Worksheets(1).) or by name

(Worksheets(“Sheet 1”).).

The Range object although a singular object is referenced in a way similar to that of a collection.

Note that a Cell is not an object on its own it is a Range object.

• Objects are arranged in hierarchy

ActiveWorkbook.Sheets(“Test1”).Range(“A1:C10”)
Workbooks(“Lecture1”).Sheets(“Example1”).Range(“A1:C10”)

• Objects have properties

Properties are the attributes of an object, the values or settings that describe the object. An

object’s properties determine how it looks, how it behaves and whether it is visible.

Application.ScreenUpdating = False
Range(“A2”)=”Input Value”
Range(“A3”)= 3000
Volatility=Range(“A2”).Value
Volatility=Cells(1,2).Value

• Objects have methods

A method is an action you perform with an object. A method can change an object’s properties

or make the object do something. Notice that because a collection is also an object, collections

also have methods.

 5

Sheets(“Sheet1”).Range(“A1:B3”).Select
ActiveRange.Copy
Sheets(“Sheet2”).Range(“A1”).PasteSpecial
Workbooks(“Model.xls”).Activate
Sheets(“Sheets1”).Delete

• Objects can handle events

To do anything meaningful with an object you must do one of two things:

(a) Read or modify an object’s properties

(b) Specify a method of action to be used with an object

 6

INTRODUCING VARIOUS PROGRAMMING ELEMENTS

1. Open Excel. Go to ToolsàMacroàSecurity and Select Medium Level.
2. Start a new workbook.
3. Press Alt+F11 or go to ToolsàMacroàVisual Basic Editor to
 activate VBE.
4. In VBE press Ctrl+R to open Project Explorer.
5. Select the new workbook’s name in the Project Explorer window.
6. Choose InsertàModule to introduce a VBA module into the project

Type the following lines of code into the module:

Introducing Subroutines

Example

We create a subroutine that to copies a range of cells from ActiveSheet to “sheet2”.

Option Explicit
 'We must declare all variables

Sub CopyAll()
Range("A1").CurrentRegion.Copy
Sheets("Sheet2").Range("A1").PasteSpecial
End Sub

Note the use of objects. We start by using Range(“A1”) object and we use CurrentRegion

Method. CurrentRegion returns a range object representing a set of contiguous data. As long as the

data is surrounded by one empty row and one empty column, you can select the table with this method.

At this point to execute the subroutine move the cursor inside the subroutine and press F5 or select Run
àRun Sub/User Form.

You could also press Alt+F11 or ToolsàMacroàMacros and select CopyAll.

 7

You can also run it by assigning a shortcut key as follows:

1. Tools à Macroà Macros (see figure below on the left)
2. Select the subroutine in the list box that appears (see figure

below on the right)
3. Click the options buttons.
4. Click the Shortcut key option and enter a letter in the box next

to Ctrl+. Note that if you insert small c then you press Ctrl+c
to run the subroutine, whereas if you insert capital C you must
press Ctrl+Shift+c.

5. Click ok and then exit from the Macro dialog box.

Assigning a Short-Cut key

Change in CopyAll() subroutine

Range("A1").CurrentRegion.Copy
To

Cells(1,1).CurrentRegion.Copy
or to

ActiveCell.CurrentRegion.Copy

The first and the second case produce the same result. The third case copies the CurrentRegion

around the ActiveCell (i.e. the selected cell). Run the subroutine for all three cases and observe what

happens.

 8

Introduce the following subroutine:

Sub BasicSub()
 Call CopyAll
End Sub

Executing BasicSub(), calls and executes subroutine CopyAll().

Now let us make the working environment in VB Editor more user-friendly. Choose

ToolsàOptions. Select the Editor Tab and check the following options:

• Auto Syntax Check: If there is a syntax error while entering your code, VBE alerts you.

• Auto List Members: It provides as you type a list with objects/actions that would logically

complete the statement you are typing.

• Auto Quick Info: VBE displays information regarding the syntax and the arguments of a function

as you type it.

• Default to Full Module View: It presents all the functions and procedures in a module in a single

scrollable list.

Let us try to create a subroutine that creates a border around a set of contiguous data. As before we will

use the range object CurrentRegion.

Sub CreateBorder()
ActiveCell.CurrentRegion.BorderAround _

LineStyle:=xlDot, Weight:=xlThick, Color:=RGB(255, 0, 0)
End Sub
Notice that as you type ActiveCell. a box appears with all the possible object members that you can

use. Scroll down and select CurrentRegion. After you type

the “.” the pop-up window appears again and as you scroll down

you find the BorderAround Method. Unfortunately, you do

not know how to use the BorderAround Method. Select the

word BorderAround and press F1. Excel help appears with a

detailed description of the method and an example of how to use

it. Compare the example from Excel help, with the Syntax of

BorderAround Method and the example you have been

provided with.

 9

In a module you can select any object, method or procedure and after pressing F1 Excel help appears.

Another option you have in order to browse through the objects available to you is the Object Browser.

You can access it by either pressing F2 in VBE or by selecting ViewàObject Browser. At this

stage object browser will not be as helpful as the online Excel help. Usually, for our programming needs

we do not need to know a large number of object, methods, and procedures.

In the next examples we present different ways to work with range objects. A range object can consist

of many rows and columns.

Sub ProvideRowAndColumn()
Dim EndRow As Integer, EndColumn As Integer
Dim i As Integer, j As Integer

EndRow = ActiveCell.CurrentRegion.Rows.Count
EndColumn = ActiveCell.CurrentRegion.Columns.Count

For i = 1 To EndRow
 For j = 1 To EndColumn
 Cells(i, j).Value = i + j
 Next
Next
End Sub

 10

Now suppose that we have the following table in Excel and we want to fill in the third column with the

product of columns A and B

A B C

1 5

2 4

3 3

4 2

5 1

Sub DoCalculation()
Dim EndRow As Integer, EndColumn As Integer
Dim InitialRow As Integer, InitialColumn As Integer
Dim i As Integer

 InitialRow = ActiveCell.Row
 InitialColumn = ActiveCell.Column

 EndRow = ActiveCell.CurrentRegion.Rows.Count
 EndColumn = ActiveCell.CurrentRegion.Columns.Count

For i = 1 To EndRow

Cells(InitialRow + i - 1, InitialColumn + 2).Value =
Cells(InitialRow + i - 1, InitialColumn).Value _

 * Cells(InitialRow + i - 1, InitialColumn + 1).Value
Next
End Sub

Select the upper left cell of the table and run the subroutine.

In most cases subroutines need to have arguments. Arguments can be single valued variables, arrays or

strings. A subroutine has a fixed number of arguments, which are a combination of optional and required

arguments.

 11

In a new module introduce the following subroutine:

Sub FillColumnA(NoOfRows As Integer)
Dim i As Integer

For i = 1 To NoOfRows
 Cells(i, 1) = i
Next
End Sub

If you try to run this subroutine you will find out that you cannot; the reason being that you have to pass

an argument. To run this subroutine we introduce the following subroutine:

Sub CallFillColumnA()
Dim NoOfRows As Integer

NoOfRows = InputBox("Input the number of rows...")

 Call FillColumnA(NoOfRows)
End Sub

If you run CallFillColumnA it calls the subroutine FillColumnA and passes the required

argument. Now let us introduce an optional argument. Optional arguments should always be of the

variant data type (you could introduce also different data types but it is not recommended). If you

introduce an optional argument all subsequent arguments in the argument list must also be optional. To

declare an optional argument we use the word optional before the argument. In the subroutine you must

check whether an optional argument has been assigned a value and if not you must assign it its default

value.

Sub FillColumn(NoOfRows As Integer, Optional NoOfColumn As Variant)
Dim i As Integer
'Check whether the optional argument is used

If IsMissing(NoOfColumn) Then NoOfColumn = 1

 12

For i = 1 To NoOfRows
 Cells(i, NoOfColumn) = i

Next
End Sub

To run the FillColumn subroutine introduce:

Sub CallFillColumn1()
 Call FillColumn(10)
End Sub
Sub CallFillColumn2()
 Call FillColumn(10, 2)
End Sub

The CallFillColumn1 subroutine calls FillColumn and passes only the required argument. In

FillColumn subroutine as the optional argument is missing it is assigned the default value 1. In

contrast in CallFillColumn2 both arguments are passed.

 13

Introducing Functions

The use of arguments in functions is similar to their use in subroutines. We can have optional and

required arguments which are defined in exactly the same way as in subroutines. Remember functions

always return a value.

Example

Create a function that returns the cubic root of a number.

Function CubicRoot(Number As Double) As Double
'This function returns the cubic root
CubicRoot = Number ^ (1 / 3)
End Function

You can execute a function by

A. calling it from another function or subroutine

B. using the function in a worksheet formula

• Select a cell in “sheet1” and type “+cubicroot(8)” and press enter. You should have

in the cell the return value 2.

• Another way to call the function is by choosing at the main Excel menu

Insertàfunctions. In the box select category you choose User Defined
Functions and double click on CubicRoot.

• Type in the module

Sub CallingCubicRoot()
 MsgBox CubicRoot(8)

End Sub
 Run CallingCubitRoot. Change in CallingCubitRoot subroutine

MsgBoX CubicRoot(8) To

Cells(1,1).Value=CubicRoot(8) Or to

Cells(2,1).Value=CubicRoot(Cells(1,1).Value).
Note that in this last statement you read a value from A1 cell and return its cubicroot at

A2 cell.

 14

Introducing Variables, Comments, Constants and Data Types

When naming a variable keep in mind that:

• The first character should be a letter

• You cannot use any spaces or periods in a variable name

• VBA does not distinguish between uppercase and lowercase letters. So InterestRate is the same

as interestrate and INTERESTRATE.

• You are not allowed to use the following characters: #, $, %, &, !.

• The names can be no longer than 254 characters

When you name a variable write it in a readable and easy to understand format. Use either mixed case

format such as TimeToMaturity or use the underscore character Time_To_Maturity.

There are a number of reserved words that cannot be used for variable names or procedure names. For

example you cannot use built-in function names such as Ucase, Sqr, Exp, etc or language words such as

if, then , sub, with, for, etc.

Data Type Bytes Used Range of Values

Boolean 2 True or False

Integer 2 -32,768 to 32,767

Long 4 -2,147,483,648 to

 2,147,483,648

Single 4 -3.402823 E38 to

 1.401298 E45

Double (negative) 8 -1,7976931346232 E308 to

-4.94065645841247 E-324

Double (positive) 8 4.94065645841247 E-324 to

1,7976931346232 E308

Currency 8 -922,337,203,685,477.5808

to

922,337,203,685,477.5807

Date 8 1/1/100 to 12/31/9999

String 1 per character Varies

Variant Varies Varies

 15

Always choose the data type that uses the smallest number of bytes but can manage with all the data the

program assigns to it. We will see in what follows that we must be very careful when we use Excel

built-in functions to perform complicated computational task. Note that the more bytes you reserve for a

calculation the slower it is performed.

You should always include the following statement as the first statement in a VBA module: Option

Explicit. This forces you to declare all the variables you use. To ensure that this option is always present

go in the Visual Basic Editor, select ToolsàOptions and tick Require Variable
Declaration option.

When defining a variable we must also decide the scope of the variable. That means that we must decide

which modules and procedures can use a variable.

Available in a Single Procedure only: We use a Dim or Static statement in the procedure that uses the

variable. This type of variables can only be used in the procedure in which they are declared.

Example: Dim i as integer, j as integer
 Static NoOfIterations as integer

Be careful using: Dim i, j as integer declares j as integer and i as variant.

Note that a Static variable retains its value even when the procedure ends, so if you come back to the

procedure the value is not reset. This value though is not available to other procedures. You can use it,

for example, to keep track of the number of times you execute a subroutine.

Available in a particular Module only: We use a Dim statement before the first sub or function

statement in the module. This type of variable is available to all procedures in a module. Therefore it can

be used in all procedures and it will retain its value from one procedure to another.

Available in all procedures in all modules: We use a Public statement before the first sub or function

in a module. This type of variable is available in all the VBA module in a workbook.

Example: Public InterestRate as Double

To declare a constant we use the following syntax:

Const pi as Double= 3.14159265359

 16

We can make a constant available to a particular procedure, module or in all procedures in all modules

in exactly the same way as we do it for any variable.

Example: Public Const pi as Double= 3.14159265359

In many cases you will need to use strings to use and manipulate text. When dealing with strings you

can introduce either a fixed-length string or a variable-length string.

• A fixed-length string is declared as follows:

Dim NewString As String *10
In this example we specify NewString as a string with maximum 10 characters. The maximum

number of characters a fixed-length string can hold is 65,526.

• A variable-length string is declared as follows:

Dim NewString As String
NewString has an unspecified number of characters and theoretically can hold up to two billion

characters. In terms of memory efficient it is recommended to use fixed-length strings.

In computational applications the most important element of a computer language is the array (matrix).

We declare an array in the same way we declare any variable. We can declare an array as follows:

Dim Underlying(1 to 100) As Double
Dim Underlying(100) As Double
Dim Underlying() As Double

Note that the first and second declaration can result in different arrays. Visual Basic assumes by default

that the lower index is 0. Therefore the second declaration is equivalent to:

Dim Underlying(0 to 100) As Double

If we want to force VBA to use 1 as the lower index we must include just below the Option
Explicit statement, Option Base 1. In that case the following two statements are equivalent:

Dim Underlying(1 to 100) As Double
Dim Underlying(100) As Double

Using the statement Dim Underlying() As Double, declares a dynamic array. In order to use

this array we must define its size using:

ReDim Underlying(100)

 17

We can use ReDim as many times and as often as we need. Note that every time we use ReDim we

clear all the values stored in the array. If we need to keep the 100 values we have found, and also need to

increase the size of the array to 200 elements we use the following statement:

ReDim Preserve Underlying(200)
In this case you keep the first 100 elements intact and you have room for 100 more.

In all codes it is a good practice to introduce comments. Use comments whenever and wherever you

think that you need them. A good comment should be easy to understand and should help clarify how

the code works. VBA treats as a comment anything on a line that follows the apostrophe ‘. A good

practice for bits of code that you do not need is to comment them out instead of completely deleting

them. Furthermore, try to make your code more readable. If you type all the statement for your program

one after the other you have a cramped result that is difficult to read. The code still works, but makes it

difficult to handle. Leave white space between particular statements or steps in a function or subroutine.

Furthermore, use indention to make the main part of a subroutine or function clearer.

 18

Introducing Labels and the On Error statement

In some cases in VBA you will need to use labels. Labels are introduced if you plan to use the GoTo

statement. A label begins with a character and ends with a colon.

Example
Sub CopyAllNew()
On Error GoTo ErrorHandle

 Sheets("Sheet1").Range("A1").CurrentRegion.Copy
 Sheets("Sheet4").Range("A1").PasteSpecial
 MsgBox "Data Successfully Pasted"

 Exit Sub
ErrorHandle:
 MsgBox "Cannot find Sheet4"
End Sub

In this subroutine we introduced a number of new elements. First of all we introduced the On Error

statement, which bypasses Excel default error handling and uses our own error handling code.

Run the previous subroutine with the On Error GoTo ErrorHandle statement and without and

observe the difference.

Suppose now that we want instead of simply having a MsgBox informing us that “Sheet4” does not

exist to be able to add “sheet4” and redo the process. We have no idea of what sort of commands to use,

but there is help at hand. We can record a macro a see the code produced to get an idea of the commands

we need. Note that the macro recorder creates only subroutines (not functions). The macro recorder is

suitable for straightforward tasks such as formatting, copying, creating a graph etc. You cannot use it to

introduce conditional actions, iterations etc.

To use the macro recorder go to ToolsàMacroàRecord New Macro.

 19

While recording select in Excel Insert à WorkSheet then right-click on the new WorkSheet and select

rename. Type in a new name and then stop recording.

Go to VB Editor and check under module 1 the code inserted. It should look something like the

following code:

Sub Macro1()
 Sheets.Add
 Sheets("Sheet4").Select
 Sheets("Sheet4").Name = "New"
End Sub

Based on the recorded macro, we introduce the following subroutine:

Sub CopyAllNew_1()
 On Error GoTo ErrorHandle

 Sheets("Sheet1").Range("A1").CurrentRegion.Copy
 Sheets("NewSheet").Range("A1").PasteSpecial
 MsgBox "Data Successfully Pasted"

 Exit Sub
ErrorHandle:
 Sheets.Add
 ActiveSheet.Name = "NewSheet"
 Resume
End Sub

First of all we must be extra careful so that the ErrorHandle label is reached only if an error occurs.

Use Exit Sub or Exit Function just before the error handling part of your code. After we have

taken care of the error we ask the subroutine to Resume.

The resume statement resumes execution after an error-handling routine is finished:

Resume: Execution resumes with the statement that caused the error.

Resume Next: Execution resumes with the statement immediately following the statement that

caused the error.

Resume label: Execution resumes at the specified label.

 20

Remove worksheet “NewSheet” and introduce the following subroutine:

Sub CopyAllNew_2()
 On Error GoTo ErrorHandle

 Sheets("Sheet1").Range("A1").CurrentRegion.Copy
 Sheets("NewSheet").Range("A1").PasteSpecial
 MsgBox "Data Successfully Pasted"

 Exit Sub
ErrorHandle:
 Sheets.Add
 ActiveSheet.Name = "NewSheet"
 Resume Next
End Sub

Notice that when you run this last subroutine while the new worksheet is added the data are not pasted in

the “NewSheet”. The error is caused by the statement:

 Sheets("NewSheet").Range("A1").PasteSpecial
After the error-handling we resume at the statement immediately following this statement. That is why

we get the message regarding the successful completion. In the error handling part of the code we could

have also used Resume Label. Consider the following subroutine:

Sub SquareRoot_1()
Dim Number As Double, Answer As VbMsgBoxResult
Start:
 On Error GoTo ErrorHandle
 Number = InputBox("Provide a number")
 MsgBox "The square root is " & Str(Sqr(Number))

 Exit Sub
ErrorHandle:
 Answer = MsgBox("An error occured. Do you want to try

again?", vbYesNo)
 If Answer = vbYes Then Resume Start
End Sub

 21

This implementation is more cumbersome and should be used only if after the error handling process

you have to move to a different point in the procedure. The specific subroutine represents a poor

example of handling errors. The use of a large number of labels can make a code difficult to understand

and more importantly difficult to alter and correct if problems arise. Consider instead the following

subroutine:

Sub SquareRoot_2()
Dim Number As Double, Answer As VbMsgBoxResult

 On Error GoTo ErrorHandle
 Number = InputBox("Provide a number")
 MsgBox "The square root is " & Str(Sqr(Number))

 Exit Sub
ErrorHandle:

Answer = MsgBox("An error occured. Do you want to try again?",
vbYesNo)

 If Answer = vbYes Then
 Number = InputBox("Provide a number")
 Resume
 End If
End Sub

In this subroutine we resolve the error and resume from the statement that the error occurred. Let us try

to understand what resume does in the error handling process. Run the SquareRoot_1 subroutine as

follows: Type -2, select Yes, Type -2, Select Yes, Type 2.

Now, change in SquareRoot_1 the statement

If Answer = vbYes Then Resume Start

To

If Answer = vbYes Then GoTo Start
And run the subroutine again as follows: Type -2, select Yes, Type -2, Select Yes, Type 2.

 22

You will see that your error-handling process cannot understand that an error occurs as we have not

cleared the original error condition. When we use Resume the error condition clears!

On Error statements:

On Error GoTo Label : If an error occurs you go to the specified lined by the label.

On Error Resume Next: If an error occurs it is ignored and you move to the next line of code,

clearing the error conditon.

A good way to avoid problems with the use of your code is to identify the possible sources of run-time

errors. If you write codes that you only use, you might think that error handling is unnecessary. It is true

that if you have written a code of which you are the sole user and an error occurs you can try and correct

it. Error handling though is very important if you expect other people to also use your code. In that case

you should make certain that proper messages appear that would help them to overcome the problem. In

the following subroutine we do exactly that.

Sub SquareRoot()
Dim Number As Variant, Answer As VbMsgBoxResult

Start:
 Number = InputBox("Please, provide a number:")

 If IsNumeric(Number) = False Then
 Answer = MsgBox("No numeric input! The input should be

a positive number. Do you want to try again?",
vbYesNo)

 If Answer = vbYes Then
 GoTo Start
 Else
 Exit Sub
 End If
 ElseIf Number < 0 Then
 Answer = MsgBox("Negative number! The input should be

a positive number. Do you want to try
again?", vbYesNo)

 If Answer = vbYes Then

 23

 GoTo Start
 Else
 Exit Sub
 End If
 End If

 MsgBox "The square root is " & Str(Sqr(Number))

End Sub

 24

Introducing VBA and Excel functions

Excel and VBA provide you with a number of different functions that you can use in you VBA

programs. Extra care is needed though when we use such functions to make certain that we fully

understand how these functions should be used.

Commonly Used VBA Built-in functions

Abs: Returns the absolute value of a number

Atan: Returns the arctangent of a number

CInt: Converts a numeric or string expression into an integer

CDbl: Converts a numeric or string expression into a double

CLng: Converts a numeric or string expression into a long

Cos: Returns the cosine of a number

Exp: Returns the base of the natural logarithm (e) raised to a power

InputBox: Displays a box to prompt a user for an input

Int: Returns the integer part of a number

IsArray: Returns True if a variable is an array

IsEmpty: Returns True if a variable has been initialized

IsNull: Returns True if an expression contains no valid data

IsNumeric: Returns True if an expression can be evaluated as a number

LCase: Returns a string converted to lowercase

Log: Returns the natural logarithm (Ln) of a number

LTrim: Strips the leading spaces from a string

MsgBox: Displays a modal message box

Rnd: Returns a random number between 0 and 1

RTrim: Strips the trailing spaces from a string

Sin: Returns the sine of a number

Str: Returns the string representation of a number

Sqr: Returns the square root of a number

Tan: Returns the tangent of a number

Trim: Returns a string without leading or trailing spaces

UCase: Returns a string converted to uppercase

Val: Returns the numbers contained in a string

 25

In VBA you are able to use all the worksheet function available in Excel. In order to do so you must

type Application.WorksheetFunction.TheFunctionYouWantToUse

Let us create in a new module a subroutine that finds the maximum value in a column array.

Option Explicit

Sub HowToUseExcelFunctions()
Dim NoOfPoints As Integer, MyArray() As Double
Dim i As Integer, LargestNumber As Double

NoOfPoints = Val(InputBox("Define the size of the matrix"))

ReDim MyArray(NoOfPoints)

For i = 1 To NoOfPoints
MyArray(i) = i
ActiveSheet.Cells(i,1)=i

Next

LargestNumber = Application.WorksheetFunction.Max(MyArray)
MsgBox ("The largest number is " & Str(LargestNumber))

End Sub

Run the HowToUseExcelFunctions() subroutine for:

(a) NoOfPoints =20

(b) NoOfPoints =32,766

(c) NoOfPoints =32,767

Notice that you get an overflow error message in the third case because you have declared i and

NoOfPoints as Integers. Declare them as Long.

Run the HowToUseExcelFunctions() subroutine for:

(a) NoOfPoints =20

 26

(b) NoOfPoints =65,536

(c) NoOfPoints =65,537

If you scroll down in excel up to the last row you will see that it ends at 65,536 (=216). Select the last

row and try to insert a new row. Notice that no new row is inserted. All functions that deal with ranges

can accept a maximum of 65,536 elements for a specific column.

Whenever you use a built-in function be certain that you fully understand how it works. Let us create a

subroutine that finds the average value in a column array.

Option Explicit

Sub FindAverage()
Dim NoOfPoints As Integer, MyArray() As Double
Dim i As Integer, Average As Double

NoOfPoints = Val(InputBox("Define the size of the matrix"))

ReDim MyArray(1, NoOfPoints)

For i = 1 To NoOfPoints
MyArray(1, i) = 1

Next

Average = Application.WorksheetFunction.Average(MyArray)
MsgBox ("The average is " & Str(Average))

End Sub

Run the HowToUseExcelFunctions () subroutine for:

(a) NoOfPoints =20

(b) NoOfPoints =50,000

You would expect to find average 1 but you do not. The problem is that you introduce an array

MyArray(1, NoOfPoints) but the base is 0 in Excel by default. That means that you have

 27

introduced not a column matrix but a (2 x NoOfPoints) matrix and the first columns when it is

initialized is set equal to 0. Introduce Option Base 1 and rerun the code. Note that if you only

change MyArray(1, NoOfPoints) to MyArray(NoOfPoints) you still don’t get average

equal to 1 as MyArray(0)=0. Run the code with Option Base 1 for NoOfPoints = 65,536

and 65,537. Notice that once more you have a problem. You should keep in mind these limitations of

built-in Excel functions, especially when you deal with Monte-Carlo simulation and you need to

calculate the mean.

Introducing control of the program flow

GoTo: jump to a particular statement (you have to introduce a label). Never use GoTo statement to do

loops. Use a standard loop statement like “for-next”; such practice helps others to

understand your intentions and keeps bugs like endless iterations to a minimum. Avoid using

GoTo to exit a subroutine or a function, instead use Exit Sub or Exit Function. We

discuss the Exit statement in more detail later in this section.

If-Then statement
The structure of the command is:

If [condition] Then [statement]
Example

Sub SelectOptionType()
Dim OptionType As String

OptionType = InputBox("Call or Put option? ")

If LCase(OptionType) = "call" Then MsgBox "You selected a call
option"

If LCase(OptionType) = "put" Then

MsgBox "You selected a put option"
End If

End Sub

Type in the inputbox:

(a) Call

(b) CALL

 28

(c) Put

(d) American

In the code we convert the OptionType string to lowercase using the LCase function. That means

that even if someone types “CaLl” we convert it to “call” and the comparison we make in the code

is meaningful. As we will discuss later we have to introduce one more action if we want to be 100%

certain before we compare the introduced string with the expected strings in our code. Note in case (d)

that nothing happens and the code exits without message.

If-Then-Else statement
The structure of the command is:

If [condition] Then
[statement 1]

Else
[statement 2]

End if

Change the subroutine to be:

Sub SelectOptionType()
Dim OptionType As String

OptionType = InputBox("Call or Put option? ")

If LCase(OptionType) = "call" Then
MsgBox "You selected a call option"

Else
MsgBox "You selected a put option"

End If
End Sub

Type in the inputbox:

(a) Call

(b) Put

(c) American

 29

Note in this case the wrong use of the else statement.

If-Then-ElseIf statement
The structure of the command is:

If [condition] Then
[statement 1]

ElseIf
[statement 2]

 Else
[statement 3]

End if

Now, change the subroutine in the following form:

Sub SelectOptionType()
Dim OptionType As String

OptionType = InputBox("Call or Put option? ")

If LCase(OptionType) = "call" Then
MsgBox "You selected a call option"

ElseIf LCase(OptionType) = "put" Then
MsgBox "You selected a put option"

Else
MsgBox "Not a valid selection"

End If
End Sub

Type in the inputbox:

(a) Call

(b) Put

(c) American

What do you observe?

 30

Using Logical Operators

VBA has a number of logical operators that can be used. The most commonly used logical operators are

the following:

Not: performs a logical negation on an expression

And: performs a logical conjunction on two expressions

Or: performs a logical disjunction on two expressions

Sub SelectOptionType ()
Dim OptionType As String, ExerciseRights As String

OptionType = InputBox("Call or Put option? ")
If LCase(OptionType) <> "call" And LCase(OptionType) <> "put"
Then

MsgBox "Not a valid selection"
Exit Sub

End If

ExerciseRights = InputBox("American or European option? ")
If LCase(ExerciseRights) <> "american" And LCase(ExerciseRights)
<> "european" Then

MsgBox "Not a valid selection"
Exit Sub

End If

If LCase(OptionType) = "call" And LCase(ExerciseRights) =
"american" Then

MsgBox "You selected an American call option"
ElseIf LCase(OptionType) = "call" And LCase(ExerciseRights) =
"european" Then

MsgBox "You selected a European Call option"
ElseIf LCase(OptionType) = "put" And LCase(ExerciseRights) =
"american" Then

MsgBox "You selected a American Put option"

 31

ElseIf LCase(OptionType) = "put" And LCase(ExerciseRights) =
"european" Then

MsgBox "You selected a European Put option"
End If

End Sub

In many cases users introduce by error strings with trailing or leading spaces. For example it is possible

that a user mistakenly types “Call ”. Go back and check to see what happens. The program cannot

recognize that the input was call. To avoid this type of errors you use the trim function.

Change:

OptionType = InputBox("Call or Put option? ") to

OptionType = Trim(InputBox("Call or Put option? "))
And

ExerciseRights = InputBox("American or European option? ") to

ExerciseRights = Trim(InputBox("American or European option? "))

Type Call or Put, American or European with leading and trailing spaces and see what happens.

Select Case statement
The structure of the command is:

Select Case [expression]
 Case [condition 1]
 [statements 1]
 Case [condition 2]
 [statements 2]
 Case Else
 [else statements]

End Select

 32

Sub SelectOptionTypeCase()
Dim OptionType As String, ExerciseRights As String

OptionType = Trim(InputBox("Call or Put option? "))

Select Case LCase(OptionType)
 Case "call"

ExerciseRights = Trim(InputBox("American or European option? "))
 Select Case LCase(ExerciseRights)
 Case "american"
 MsgBox "You selected an American call option"
 Case "european"
 MsgBox "You selected an European call option"
 Case Else
 MsgBox "Not a valid selection"
 End Select
 Case "put"
 ExerciseRights = Trim(InputBox("American or European option? "))
 Select Case ExerciseRights
 Case "american"
 MsgBox "You selected an American put option"
 Case "european"
 MsgBox "You selected an European put option"
 Case Else
 MsgBox "Not a valid selection"
 End Select
 Case Else
 MsgBox "Not a valid selection"
End Select

End Sub

 33

In scientific computing in the various calculations that you have to perform there is a need to do

iterations, or loop through a process until a certain conditions has been met. When designing a loop

make certain that it will always end. In the following pages we deal with the following looping

structures:

(A) For-Next-Step
(B) Do-While
(C) Do-Until

To understand how we can use these looping structures we will create a subroutine that solves a non-

linear algebraic equation using the bisection method, which is based on the following theorem:

 Suppose that f:[a,b]àR is continuous and f(a)f(b)<0. Then for some c in (a,b), f(c)=0.

For-Next Statement

Sub BisectionMethod_ForNext(UpperBound As Double, LowerBound As
Double, TOLERANCE As Double, MaximumNumberOfIterations As Integer)

Dim i As Integer, MidPoint As Double

‘Check that the required conditions for the bisection method to
be applied are satisfied

 If F(UpperBound) * F(LowerBound) > 0 Then
 MsgBox "Change the interval so that f(a)*f(b)<0"
 Exit Sub
 End If

 'Check whether the endpoints are roots
 If Abs(F(UpperBound)) < TOLERANCE Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub
 End If
 If Abs(F(LowerBound)) < TOLERANCE Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub

 34

 End If

 'Begin iterations
 For i = 1 To MaximumNumberOfIterations

 MidPoint = (UpperBound + LowerBound) / 2

 'Check whether the midpoint is a root
 If Abs(F(MidPoint)) < TOLERANCE Then
 MsgBox "The root is " & Str(MidPoint)
 Exit Sub
 End If

 'Update the interval
 If F(UpperBound) * F(MidPoint) > 0 Then
 UpperBound = MidPoint
 Else
 LowerBound = MidPoint
 End If
 Next
 MsgBox "Maximum number of iterations was exceeded"

End Sub

Function F(x As Double) As Double
F = x ^ 3 - 2 * x - 1
End Function

Sub RunBisectionMethod_WithForNext()
 Call BisectionMethod_ForNext(2, 0, 10 ^ (-10), 1000)
End Sub

Note in the use of For-Next statement that the code ends with certainty if we reach the maximum

number of iterations. If we want to iterate from i=100 to t=1 we should use the Step statement:

For i=100 To 1 Step -1 … Next

 35

Do-While Statement
The bisection method can be implemented using the Do-While Loop as follows:

Sub BisectionMethod_DoWhile(UpperBound As Double, LowerBound As
Double, TOLERANCE As Double, MaximumNumberOfIterations As Integer)

Dim i As Integer, NumberOfIterations As Integer, MidPoint As Double

'Check that the required conditions for the bisection method to
'be applied are satisfied

 If F(UpperBound) * F(LowerBound) > 0 Then
 MsgBox "Change the interval so that f(a)*f(b)<0"
 Exit Sub
 End If

 'Check whether the endpoints are roots
 If Abs(F(UpperBound)) < TOLERANCE Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub
 End If

 If Abs(F(LowerBound)) < TOLERANCE Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub
 End If

 NumberOfIterations = 0

 MidPoint = (UpperBound + LowerBound) / 2

 'Begin iterations

Do While Abs(F(MidPoint)) > TOLERANCE And NumberOfIterations <=
MaximumNumberOfIterations

 MidPoint = (UpperBound + LowerBound) / 2

 36

 If F(UpperBound) * F(MidPoint) > 0 Then
 UpperBound = MidPoint
 Else
 LowerBound = MidPoint
 End If

 NumberOfIterations = NumberOfIterations + 1

 Loop

 If NumberOfIterations > MaximumNumberOfIterations Then
 MsgBox "Maximum number of iterations was exceeded"
 Exit Sub
 End If

 MsgBox "The root is " & Str(MidPoint)

End Sub

Sub RunBisectionMethod_DoUntil()
 Call BisectionMethod_DoWhile(2, 0, 10 ^ (-10), 1000)
End Sub

Note the difference in the way the bisection method is implemented in this case compared to the For-
Next case. In both cases the iteration ends if one of two conditions is met. We stop if the maximum

number of iterations is reached or if a root to a predetermined level of tolerance has been found. With

the For-Next statement we iterate up to a maximum acceptable number of iteration. In each iteration

we check whether a root has been found and end the iterations if the answer is affirmative. With the Do-
While statement we iterate for as long as neither of the two conditions has been met and we exit the

moment one of the two is satisfied. Outside the loop though we must find which condition was

responsible for exiting the loop. The Do-While statement can be implemented in a way that is closer to

the For-Next implementation.

 37

Sub BisectionMethod_DoWhile_2(UpperBound As Double, LowerBound As
Double, Tolerance As Double, MaximumNumberOfIterations As Integer)

Dim i As Integer, NumberOfIterations As Integer, MidPoint As Double

'Check that the required conditions for the bisection method to
'be applied are satisfied

 If F(UpperBound) * F(LowerBound) > 0 Then
 MsgBox "Change the interval so that f(a)*f(b)<0"
 Exit Sub
 End If

 'Check whether the endpoints are roots
 If Abs(F(UpperBound)) < Tolerance Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub
 End If

 If Abs(F(LowerBound)) < Tolerance Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub
 End If

 NumberOfIterations = 0

 MidPoint = (UpperBound + LowerBound) / 2

 'Begin iterations
 Do While Abs(F(MidPoint)) > Tolerance

 If NumberOfIterations > MaximumNumberOfIterations Then
 MsgBox "Maximum number of iterations was exceeded"
 Exit Sub
 End If

 38

 MidPoint = (UpperBound + LowerBound) / 2

 If F(UpperBound) * F(MidPoint) > 0 Then
 UpperBound = MidPoint
 Else
 LowerBound = MidPoint
 End If

 NumberOfIterations = NumberOfIterations + 1

 Loop

 MsgBox "The root is " & Str(MidPoint)
End Sub

Do-Until Statement
The bisection method can be implemented using the Do-Until Loop as follows:

Sub BisectionMethod_DoUntil(UpperBound As Double, LowerBound As
Double, Tolerance As Double, MaximumNumberOfIterations As Integer)

Dim i As Integer, NumberOfIterations As Integer, MidPoint As Double

'Check that the required conditions for the bisection method to
'be applied are satisfied

 If F(UpperBound) * F(LowerBound) > 0 Then
 MsgBox "Change the interval so that f(a)*f(b)<0"
 Exit Sub
 End If

 'Check whether the endpoints are roots
 If Abs(F(UpperBound)) < Tolerance Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"

 39

 Exit Sub
 End If

 If Abs(F(LowerBound)) < Tolerance Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub
 End If

 NumberOfIterations = 0

 MidPoint = (UpperBound + LowerBound) / 2

 'Begin iterations
 Do Until Abs(F(MidPoint)) < Tolerance Or NumberOfIterations >
MaximumNumberOfIterations

 MidPoint = (UpperBound + LowerBound) / 2

 If F(UpperBound) * F(MidPoint) > 0 Then
 UpperBound = MidPoint
 Else
 LowerBound = MidPoint
 End If

 NumberOfIterations = NumberOfIterations + 1

 Loop

 If NumberOfIterations > MaximumNumberOfIterations Then
 MsgBox "Maximum number of iterations was exceeded"
 Exit Sub
 End If

 MsgBox "The root is " & Str(MidPoint)
End Sub

 40

Note how in the use of Do-Until statement we iterate up until either of the two conditions is met. As

is the case for the Do-While Loop we can set only one condition in the Do-Until statement and

check whether the other condition has been met during each iteration.

Sub BisectionMethod_DoUntil_2(UpperBound As Double, LowerBound As
Double, Tolerance As Double, MaximumNumberOfIterations As Integer)

Dim i As Integer, NumberOfIterations As Integer, MidPoint As Double

'Check that the required conditions for the bisection method to
'be applied are satisfied

 If F(UpperBound) * F(LowerBound) > 0 Then
 MsgBox "Change the interval so that f(a)*f(b)<0"
 Exit Sub
 End If

 'Check whether the endpoints are roots
 If Abs(F(UpperBound)) < Tolerance Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub
 End If

 If Abs(F(LowerBound)) < Tolerance Then
 MsgBox "F(" & Str(UpperBound) & ")<TOL. This is a root"
 Exit Sub
 End If

 NumberOfIterations = 0

 MidPoint = (UpperBound + LowerBound) / 2

 'Begin iterations
 Do Until Abs(F(MidPoint)) < Tolerance

 If NumberOfIterations > MaximumNumberOfIterations Then

 41

 MsgBox "Maximum number of iterations was exceeded"
 Exit Sub
 End If
 MidPoint = (UpperBound + LowerBound) / 2

 If F(UpperBound) * F(MidPoint) > 0 Then
 UpperBound = MidPoint
 Else
 LowerBound = MidPoint
 End If

 NumberOfIterations = NumberOfIterations + 1
 Loop

 MsgBox "The root is " & Str(MidPoint)

End Sub

A very useful statement is the Exit statement, which is used to exit a Do-Loop, a For-Next, a

Function or a Subroutine:

Exit Sub: The code exits the specific subroutine the statement is contained and continues

with the statement that follows the line of code that called the exited subroutine.
Exit Function: The code exits the specific function the statement is contained and continues with

the statement that follows the line of code that called the exited function.

Exit For: The code exits a For-Next loop and control is transferred to the statement

following the Next statement. In nested For-Next loops the control is

transferred to the loop nested one level above the loop where the Exit For

occurs.

Exit Do: The code exits a Do-Loop statement and control is transferred to the statement

following the Loop statement. In nested Do-Loops the control is transferred to

the loop nested one level above the loop where the Exit Do occurs.

Note that the previous subroutines that use the bisection method to find a root of a non-linear equation

could have been implemented as functions that would return the root.

 42

Creating a Non-Linear Equation Solver

In this section we introduce a visual interface for the easier use of the non-linear equation solvers we

have developed. The first step is to introduce a UserForm object. Choose in the VB Editor Insert à

UserForm. Double clicking on the UserForm in the VBA project window produces the following

screenshot. If the toolbox is not displayed choose View à Toolbox. Make certain that the

properties window is visible (if it is not press F4 or choose View à Properties Window).

Using the properties window we can change the properties of the various objects we use in designing a

UserForm.

Snapshot of VBE with a new UserForm. The properties and toolbox windows are present.

Using the toolbox we create the UserForm shown on the

left. If you click on the form in the properties window you

will see that the Name of the form is FormBisection

and the Caption has been changed to “Non-Linear Equation

Solver”. We have introduced four TextBox objects for

the user to provide the upper bound, the lower bound, the

tolerance and the maximum number of iterations. Each

TextBox has on its left a Label that provides information on the entry required in the specific

 43

TextBox. If you click on the TextBox introduced for the Upper Bound you will see that its name has

been set to TeBoUpperBound. We have also introduced two Option Buttons, one Combo
Box and two Command Buttons. We use the option buttons to select the method that we want to

use to solve the non-linear equation and the combo box to select based on the method we use which

implementation to use i.e. For-Next, Do-While. The only reason for introducing this second choice

is for showing you how the Combo Box object is used.

Below you can see for all objects on the form the respective properties.

We have set: We have set:

Name: TeBoUpperBound Name: TeBoLowerBound

We have set: We have set:

Name: TeBoTolerance Name: TeBoMaximumNumberOfIterations

 44

We have set: We have set:

Name: OpBuBisection Name: OpBuNewtonRaphson

Caption: Bisection Method Caption: Newton-Raphson Method

We have set: We have set:

Name: CoBuFindRoot Name: CoBuCancel

Caption: Find Root Caption: Cancel

 45

When we want to introduce a visual interface we must plan for an action

that will make this interface available to the user. We insert a new

module named FormHandling and in this module we enter the

following subroutine:

Sub ShowFormBisection()
 Call InitializeFormBisection
 FormBisection.Show
End Sub

We have set:

Name: CoBoSubroutine

The FormBisection.Show command displays the form named FormBisection. Before we show

the form we call a subroutine that initializes the form by introducing numerical values and the various

available options in the objects we have inserted on the form.

Sub InitializeFormBisection()

 With FormBisection
 'Select the option button for the Bisection method
 .OpBuBisection.Value = True

 'Setup the Combo Box
 With .CoBoSubroutine
 .AddItem "Next-For Loop"
 .AddItem "Do-While Loop"
 .AddItem "Do-Until Loop"
 End With

 'Set the default value for the Combo Box
 .CoBoSubroutine.Value = "Next-For Loop"

 'Initialize the remaining inputs

 46

 .TeBoLowerBound = -10
 .TeBoUpperBound = 10
 .TeBoTolerance = 10 ^ (-10)
 .TeBoMaximumNumberOfIterations = 1000
 End With
End Sub

In this subroutine we introduced the With statement. For more information on this statement select the

With statement in VB editor and press F1.

Run the ShowFormBisection subroutine and see what happens. On the form that appears select the

Newton-Raphson method. Notice that you are allowed to select only one of the option buttons. In the

properties box of an OptionButton we find the GroupName property. OptionButtons with the

same GroupName are associated and only one of them can be selected each time out of the particular

group. Next, select the combo box. A drop-down menu appears from which you can select any of the

three subroutines. For the time being though we have not introduced any event-handler subroutines, so

our form cannot actually do something. Close the form and go back to the VB editor, select the form and

double click on the Find Root button. At this point you should see:

Private Sub CoBuFindRoot_Click()

End Sub

The subroutine CoBuFindRoot_Click() is executed whenever the Find Root button is clicked.

Type the following statements inside the subroutine:

Private Sub CoBuFindRoot_Click()
Dim UpperBound As Double, LowerBound As Double, Tolerance As Double
Dim MaximumNumberOfIterations As Integer

On Error GoTo ErrorHandling

 'Check that the entries are in the correct format
 If Trim(TeBoUpperBound.Value) = "" Then

 47

 MsgBox "Problem with the upper bound value"
 Exit Sub
 End If

 If Trim(TeBoLowerBound.Value) = "" Then
 MsgBox "Problem with the lower bound value"
 Exit Sub
 End If

 If Trim(TeBoTolerance.Value) = "" Then
 MsgBox "Problem with the tolerance value"
 Exit Sub
 End If

 If Trim(TeBoMaximumNumberOfIterations.Value) = "" Then
 MsgBox "Problem with the maximum number of iterations value"
 Exit Sub
 End If

 'Read the required data
 UpperBound = Val(TeBoUpperBound.Value)
 LowerBound = Val(TeBoLowerBound.Value)
 Tolerance = Val(TeBoTolerance.Value)
MaximumNumberOfIterations =CInt(TeBoMaximumNumberOfIterations.Value)

 If OpBuBisection.Value = True Then

 Select Case CoBoSubroutine.Value
 Case "Next-For Loop"

Call BisectionMethod_ForNext(UpperBound, LowerBound, _
Tolerance, MaximumNumberOfIterations)

 Case "Do-While Loop"

 48

Call BisectionMethod_DoWhile(UpperBound, LowerBound, _
Tolerance, MaximumNumberOfIterations)

 Case "Do-Until Loop"

Call BisectionMethod_DoUntil(UpperBound, LowerBound, _
Tolerance, MaximumNumberOfIterations)

 End Select

 End If

 If OpBuNewtonRaphson.Value = True Then

 MsgBox "Under construction"
 Exit Sub

 End If

 Exit Sub
ErrorHandling:
 MsgBox "Check that all the entries are correct. There was an
error."
End Sub

Finally, go back to the form and double click the Cancel button. Enter the following subroutine:

Private Sub CoBuCancel_Click()
 Unload FormBisection
End Sub

For a user to use our calculator he needs to call ShowBisectionForm(). An easy and neat way to

call it is by assigning a short-cut key. Activate the Excel window and select

ToolsàMacroàMacros. In the menu that appears select ShowBisectionForm and click the

 49

options button. In the dialog box that appears enter an uppercase S and click ok. Exit from the Macro

dialog box. In the Excel window press Ctrl+Shift+S and your solver appears on the screen.

Introducing Charts

Using charts in VBA can be very confusing and we will not deal with them in detail. You will be

provided with two subroutines that are quite helpful which you can alter to meet your needs. When

dealing with charts it is a good idea to use the macro recorder to get an idea of the commands you need

to use. Both subroutines read data from an Excel worksheet and either create a new chart or update an

existing chart.

In worksheet Graph Data1 we have the data seen in the figure above on the left. Suppose that we

need to plot the sales in each region per month (figure on the right). Introduce the following subroutine:

Sub AddChartSheetXlColumnClustered(chtName As String, chtSheet As
String, chtRange As String, chtTitle As String, _
chtAxisTitleCategory As String, chtAxisTitleValue As String)
'Subroutine that updates a chart if it already exists or it creates a
new one

On Error GoTo ErrorHandling

 With Charts(chtName)
 .ChartType = xlColumnClustered

 50

 'Link to source data range
 .SetSourceData Source:=Sheets(chtSheet).Range(chtRange), _
 PlotBy:=xlRows

 .HasTitle = True
 .ChartTitle.Text = chtTitle
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = _
 chtAxisTitleCategory
 .Axes(xlValue, xlPrimary).HasTitle = True
 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = _
 chtAxisTitleValue
 '.HasLegend = False

End With

 Exit Sub

ErrorHandling:
 MsgBox "The referred chart does not exist. A new graph will be _

 introduced"
 Charts.Add
 ActiveChart.Name = chtName
 Resume
End Sub

To use this subroutine for plotting introduce the following subroutine:

Sub Main()

Call AddChartSheetXlColumnClustered("New Graph", "Graph Data1", _

 "A1:D5", "Monthly Sales", "Month", "Sales")

End Sub

Run the Main() subroutine and see what happens. Add on Sheets(“Graph Data1”) data for

January and change in Main() subroutine “A1:D5” to “A1:E5” so that the new data are also plotted.

 51

Note that if you go to Sheets(“Graph Data1”) and change the data the graph is automatically

updated. Let us now automate the selection process.

Make in AddChartSheetXlColumnClustered subroutine the following changes:
Change
Sub AddChartSheetXlColumnClustered(chtName As String, chtSheet As
String, chtRange As String, chtTitle As String, _
chtAxisTitleCategory As String, chtAxisTitleValue As String)
To
Sub AddChartSheetXlColumnClustered(chtName As String, chtSheet As
String, chtRange As Range, chtTitle As String, _
chtAxisTitleCategory As String, chtAxisTitleValue As String)

Change
.SetSourceData Source:=Sheets(chtSheet).Range(chtRange), _

PlotBy:=xlRows
To

.SetSourceData Source:=chtRange, PlotBy:=xlRows

Change the Main() subroutine as follows:

Sub Main()
Dim chtRange As Range

Set chtRange = Sheets("Graph Data1").Range("A1").CurrentRegion

Call AddChartSheetXlColumnClustered ("New Graph", "Graph Data1", _

chtRange, "Monthly Sales", "Month", "Sales")
End Sub

Add on sheet(“Graph Data1”) data for January, February and March and run this new Main()

subroutine. The graph is automatically created.

 52

In worksheet Graph Data2 we have the data seen in the figure above on the left. Suppose that we

need to plot the implied volatility against the strike (figure on the right). Introduce the following

subroutine:

Sub AddChartSheetXlLine(chtName As String, chtSheet As String, _
 chtRangeX As String, chtRangeY As String, chtTitle As String, _
 chtXAxisTitle As String, chtYAxisTitle As String)

On Error GoTo ErrorHandling

 With Charts(chtName)
 .ChartType = xlLine

 'Link to source data range
 .SetSourceData Source:=Sheets(chtSheet).Range(chtRangeY), _

 PlotBy:=xlColumns
 .SeriesCollection(1).XValues= _
 Sheets(chtSheet).Range(chtRangeX)
 .HasTitle = True
 .ChartTitle.Text = chtTitle
 .Axes(xlCategory, xlPrimary).HasTitle = True
 .Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = _
 chtXAxisTitle
 .Axes(xlValue, xlPrimary).HasTitle = True

 53

 .Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = _
 chtYAxisTitle

 End With

 Exit Sub
ErrorHandling:
 MsgBox "The referred chart does not exist. A new graph will be _
 introduced"
 Charts.Add
 ActiveChart.Name = chtName
 Resume
End Sub

Sub Main ()
 Call AddChartSheetXlLine("New Graph2", "Graph Data2", "A1:A8", _
 "B1:B8", "Volatility Smile", "Strike Price", "Implied Volatility")
End Sub

Running the Main() subroutine produces the required graph. Suppose that we want to automate the

process as well. We need to be able to find the last row in A and B columns. We will use two different

ways with the second being the preferable one. First of all change in AddChartSheetXlLine

subroutine:

Change:
Sub AddChartSheetXlLine(chtName As String, chtSheet As String, _
 chtRangeX As String, chtRangeY As String, chtTitle As String, _
 chtXAxisTitle As String, chtYAxisTitle As String)

To
Sub AddChartSheetXlLine_New(chtName As String, chtSheet As String, _

chtRangeX As Range, chtRangeY As Range, chtTitle As String,_
chtXAxisTitle As String, chtYAxisTitle As String)

 54

Change
.SetSourceData Source:=Sheets(chtSheet).Range(chtRangeY), PlotBy:= _

 xlColumns
.SeriesCollection(1).XValues = Sheets(chtSheet).Range(chtRangeX)

To
.SetSourceData Source:=chtRangeY, PlotBy:=xlColumns
.SeriesCollection(1).XValues = chtRangeX

In this particular case the number of elements in both the implied volatility and the strike price are the

same. That means that the rows used in both column A and column B are the same. To find the number

of columns we can use the CurrentRegion method as follows:

NumberOfRows = Sheets("Graph Data2").Range("A1"). CurrentRegion._
 Rows.Count

Having found the number of rows we can define the two ranges using Range(Cells1, Cells2).

More specifically to define Sheets("Graph Data2").Range(“A1:ANoOfRows”) we use

Set chtRangeX = Range(Sheets("Graph Data2").Cells(1, 1), Sheets("Graph Data2"). _

 Cells(NumberOfRows, 1))

Based on these the Main() subroutine becomes:

Sub Main()
Dim NumberOfRows As Integer, chtRangeX As Range, chtRangeY As Range

'Find the number of rows using the CurrentRegion method. You can use
'it as you need the same number of rows for both x-variable and y-
'variable
NumberOfRows = Sheets("Graph Data2").Range("A1"). _
 CurrentRegion.Rows.Count

'Based on this define the ranges
Set chtRangeX = Range(Sheets("Graph Data2").Cells(1, 1), _

 55

 Sheets("Graph Data2").Cells(NumberOfRows, 1))

Set chtRangeY = Range(Sheets("Graph Data2").Cells(1, 2), _
 Sheets("Graph Data2").Cells(NumberOfRows, 2))

Call AddChartSheetXlLine_New("New Graph2", "Graph Data2", chtRangeX,_
 chtRangeY, "Volatility Smile", "Strike Price", "Implied Volatility")

End Sub

For the second way we will use the End method, which returns a range object that represents the cell at

the end of the region that contains the source range. It is equivalent to pressing END+UP ARROW

(xlUp), END+DOWN ARROW (xlDown), END+LEFT ARROW (xlToLeft), or END+RIGHT

ARROW (xlToRight).

For example to select from A4 to the cell just before the first blank cell in a row on the right we use
Range("A4", Range("A4").End(xlToRight)).Select

To select from A1 to the cell above the first blank cell in the column we use
Range("A1").End(xlDown).Select

Therefore, a different implementation for Main() would be:

Sub Main2()
Dim chtRangeX As Range, chtRangeY As Range

'Use the End method to select the range from the cell you define till
‘the cell just above the first blank cells

'The End method returns a range object
Set chtRangeX = Range(Sheets("Graph Data2").Cells(1, 1), _
 Sheets("Graph Data2").Cells(1, 1).End(xlDown))

Set chtRangeY = Range(Sheets("Graph Data2").Cells(1, 2), _

 56

 Sheets("Graph Data2").Cells(1, 2).End(xlDown))

Call AddChartSheetXlLine_New("New Graph2", "Graph Data2", chtRangeX,_
 chtRangeY, "Volatility Smile", "Strike Price", "Implied Volatility")

End Sub

In many cases you may need to export a graph as a GIF image file. The following subroutine saves a

chart to the hard disk

Sub ExportingCharts()
Dim chtName As String
Dim chartFile As String

On Error GoTo ErrorHandling

 chtName = "New Graph2"
 chartFile = "D:\NewChart.gif"

 Charts(chtName).Export Filename:=chartFile, filtername:="GIF"

 Exit Sub
ErrorHandling:

 MsgBox "The graph does not exist"
End Sub

If you want you can take the saved chart and load it in a worksheet. Add in the ExportingCharts()

Subroutine:

Dim WorkSheetName as string (below Dim chartFile As String)
WorkSheetName = "Graph Data2" (below chartFile = "D:\NewChart.gif")

WorkSheet(WorkSheetName).Pictures.Insert(chartFile) (before Exit Sub)

 57

Note that the GIF file will not be automatically updated if the data change, whereas the graph will be

automatically updated, if any data in the defined source ranges that the graph is using, change.

Finally, if you want you can remove the chart sheet using the following command after the export

command:

 Charts(chtName).Delete
When you run the subroutine there is an alert message that the graph will be permanently deleted. To

avoid these alert messages insert before the delete action:

 Application.DisplayAlerts = False
When the subroutine ends Excel automatically sets the Application.DisplayAlerts back to

true. The application object is very important as it represents Excel itself (we have already used it when

we introduced Excel built-in functions). There are a number

of very useful properties that belong to this object. For

example the CalculationInterruptKey property,

which sets or returns the key that interrupts Excel while

performing calculations. It can have one of three values

xlNoKey or value 0, xlEscKey value 1,

xlAnyKey value 2. Note that using this key does not

abort a VBA subroutine that goes into an endless loop. Excel normally calculates each cell as you enter

it and minimizes the number of calculation by recalculating only the cells that were linked to the

changed cell. You can request a recalculation (in the manual mode) of all changed cells by pressing F9,

and Excel will recalculate all the changed cells and all the cells linked to them. This can be a very

resource intensive process that you can interrupt using the xlInterruptKey. The following

subroutine clarifies how the CalculationInterruptKey property can be used.

Sub ApplicationObject()

Application.CalculationInterruptKey = xlNoKey
MsgBox Application.CalculationInterruptKey

Application.CalculationInterruptKey = xlEscKey
MsgBox Application.CalculationInterruptKey

Application.CalculationInterruptKey = xlAnyKey
MsgBox Application.CalculationInterruptKey

End Sub

 58

In general, if in your worksheet you have a large number of cells with complex formulas and

calculations, you can speed up your calculations if you change the calculation mode to manual.

Application.Calculation = xlManual
Application.Calculation = xlAutomatic

Furthermore, when you run a macro the screen is automatically updated. This can significantly slow

down your calculations. You can turn on/off the screen updating using:

Application.ScreenUpdating = False (turns screen updating off)

Application.ScreenUpdating = True (turns screen updating on)

Finally, in a number of subroutines dealing with graphs we introduced a new command, the Set

command. Using the Set command we create an object variable. For example the following statement:

Set MyRange = Worksheets("Sheet1").Range("A1:A8")
MsgBox Str(Application.WorksheetFunction.Average(MyRange))

is the same as:

MsgBox Str(Application.WorksheetFunction.Average _
(Worksheets("Sheet1").Range("A1:A8")))

Using the Set command created a Range object and we can use the MyRange variable instead of the

Worksheets("Sheet1").Range("A1:A8") statement anywhere in the code. This results in

simpler and easier to understand codes which also run faster.

 59

Note

These notes are not meant to be a substitute for a book on Visual Basic for Applications. They are

provided as a quick introduction to VBA, but you should also use books that cover the specific subject

matter. I would suggest the following three books:

Excel 2000 Programming for Dummies, by John Walkenbach

This is the best introduction to Excel programming that I am aware of. Very easy to read and covers all

the basics and much more than what you will probably ever need.

VBA and Macros for Microsoft Excel, by Bill Jelen and Tracy Syrstad

This is a cookbook for Excel users. It contains a large number of VBA procedures that deal with

virtually every possible need you might have.

Advanced modeling in finance using Excel and VBA, by Mary Jackson and Mike Staunton

This is not the book to use to learn VBA, but it is a very good book in teaching what the title promises.

The book assumes that you know the underlying theory and focuses on the implementation issues.

