Noteson Visual Basic for Applications (VBA)

By Konstantinos N. VVonatsos

Table of Contents

(g1 foTo (8o o BT OPR PSPPI 3
INtrOAUCING DBSIC TEITNS......ceeeie ettt ettt ettt b e e s be e et e e snreesnneebeeas 3
Important COMPITEN OPLIONSoiiii ittt st ir e e b e e e naneens 3
INtroduCing VBA ODJECES ...ttt ree s 4

Introducing Various Programming EIEMENES...........coouiiiiiiiiie e 6
INtrOAUCING SUDIOULINES.........eieieietie ettt ettt et et et esie e et e e e e naneebeeenneesaneens 6
INErOAUCING FUNCEIONS ...ttt ettt b e st b et esab e e be e et e e nan e e nneeenree s 13
Introducing Variables, Comments, Constants and Data TYPES..........cooveerierrieeniieenieenee e 14
Introducing Labels and the On Error SLaEMENLc.eoiiiiiiieieeiee e 18
Introducing VBA and EXCEl FUNCHIONS.........cc.oiiiiiiii i 24
Introducing control of the Program fFIOW..............eo i 27

[T-TREN SLALEEMENT ...ttt b et eab e e b e et e e san e e sbe e e b e e naneeneas 27
[f-TheN-EISE SLAEMENT ...t b e nnnas 28
[T-Then-EISElf SLAEMENTcoiiieee e b e e naeas 29
USING LOGICAl OPEIGLOIS ...ttt ettt ettt ettt be e be e s an e e naeeeneeanne e 30
SEIECE CaSE STAEIMENT ...ttt et e et be et e e san e e be e e beeanneennne s 31
FOI-NEXE SELEIMENT ...t sn e e nne e nne e e nnneas 33
DO-WhiIl@ SEEEMENT.....cc.eeeeeeeee ettt e e st e e ae e e e e s an e e sneeene e 35
DO-UNtH SEBEEMENT ...ttt bbb et e e nan e b e s e nae e e ne e 38
Creating a Non-Linear EQUALION SOIVEScoui it 42
INEFOAUCING CNAITS ...ttt st b e s s ae e e b e e sabeesnneeneenaneeas 49

INTRODUCTION

Introducing basic terms

Project: The project acts as a container for the modules, class modules, and forms for a particular file.

Module, class module, and form: These three elements act as containers for main programming
elements such as procedures and functions. We will deal with modules and forms. Note that each of
these elements requires a unique name. In a single project it is possible to have a number of different

forms, modules, class modules.

Function and Sub: The Function and Sub elements hold individual lines of code. A function returns a
value, whereas a Sub does not. You always use a Sub as the entry point for a program. A Sub is used to
perform atask and not receive a direct return value. You can also use it to display information. A very
important use is to utilize them to break up the code to smaller pieces each performing a specific task.
This makes the code easier to read and handle. You use a Function when you want to return a value.
Suppose that you need to calculate the Black-Scholes value several times in a program, you can then

create afunction that returns the price each time you call it.

Important compiler options
Y ou add the following two options at the very beginning of a module, class module, or form before any

other code.

Option base <Number>: Use this option to change how VBA numbers array elements. You can
number array elements beginning at O or 1. Be careful the default value is 0.

Option Explicit: Always use this option! It tells VBA that you want to define all the variables before
using them. It makes the code easier to read and helps you find typos in your code.

Introducing VBA objects

In EXCEL we have objects. Each EXCEL object represents a feature or a piece of functionality.

Examples of objects are: workbooks, worksheets, ranges, charts, font etc.

Objects come in collections

For example workbooks collection consists of all open workbooks. It is possible for an object to
be a singular object (a collection of only one member). For example the Font object for any cell
in the spreadsheet.

Sngular objects are referenced directly eg. Font.

Individual objects in collections are referenced either by number (Worksheets(1).) or by name
(Worksheets(“ Sheet 17).).

The Range object although a singular object is referenced in away similar to that of a collection.
Note that a Cell is not an object on itsown it is a Range object.

Objects are arranged in hierarchy
Acti veWor kbook. Sheet s(“Test1”) . Range(* Al: C10”)
Wor kbooks(“Lecturel”). Sheet s(“Exanpl el”). Range(“Al: C10")

Objects have properties

Properties are the attributes of an object, the values or settings that describe the object. An
object’s properties determine how it looks, how it behaves and whether it is visible.
Application. ScreenUpdati ng = Fal se

Range(“A2”) ="1 nput Val ue”

Range(“A3”)= 3000

Vol atility=Range(“A2"). Val ue

Vol atility=Cells(1,2). Value

Objects have methods

A method is an action you perform with an object. A method can change an object’s properties
or make the object do something. Notice that because a collection is also an object, collections
also have methods.

Sheet s(“ Sheet 1”) . Range(*“ Al: B3") . Sel ect
Act i veRange. Copy

Sheet s(“ Sheet 2”) . Range(*“ Al") . Past eSpeci al
Wor kbooks(“ Model . xI s”) . Activate

Sheet s(“ Sheetsl1”). Del ete

Objects can handle events
To do anything meaningful with an object you must do one of two things:

(a) Read or modify an object’s properties
(b) Specify a method of action to be used with an object

INTRODUCING VARIOUS PROGRAMMING ELEMENTS

Open Excel. Go to Tool saMacroaSecurity and Sel ect Medi um Level .
2. Start a new wor kbook.
3. Press Alt+F11 or go to Tool saMacroaVisual Basic Editor to
activate VBE
In VBE press Cirl+R to open Project Explorer.
Sel ect the new workbook’s name in the Project Explorer w ndow.

Choose I nsertaMdule to introduce a VBA nodule into the project

Type the following |ines of code into the nodul e:

I ntroducing Subroutines

Example

We create a subroutine that to copies a range of cellsfrom ActiveSheet to “ sheet2”.

Option Explicit
"We nust declare all variables
Sub CopyAll ()
Range(" Al"). Current Regi on. Copy
Sheet s(" Sheet 2") . Range(" Al") . Past eSpeci al
End Sub

Note the use of objects. We start by using Range(“ Al”) object and we use Cur r ent Regi on

Method. Cur r ent Regi on returns a range object representing a set of contiguous data. As long as the

datais surrounded by one empty row and one empty column, you can select the table with this method.

At this point to execute the subroutine move the cursor inside the subroutine and press F5 or select Run

aRun Sub/User Form

You could also pressAl t +F11 or Tool s&aMacr oaMacr os and select CopyAll.

Y ou can also run it by assigning a shortcut key as follows:

1. Tools & Macroa Macros (see figure below on the left)

2. Select the subroutine in the list box that appears (see figure

bel ow on the right)
3. dick the options buttons.

4. dick the Shortcut key option and enter a letter in the box next

to Ctrl+. Note that if you insert small c then you press Crl+c

to run the subroutine, whereas if you insert capital
press Ctrl +Shift+c.

5. dick ok and then exit fromthe Macro di al og box.

Tooks | [t Wincow bl Adoe FOF Jods Qats Wencow Hek Addberoe
. S 7oA 8 e -) 2
i Ermoe Checkirg -

Spaach

Tha e kb

Trasck Charges [H | J o | B F [= H | J K

Frobection
Ople Colabearation »

[Eoprad_t | en |
sl Sk 1
¥ = Cancel |
SORNM.... i =
: k Macre Optons
CallrgCubac | 5
e
T

e name;

Foaudls A diting b e [k

" Macro e

g | e

Sharird ke
| W;,r

:i L'!hl_e | fmmcriptione

Tooks on the Wik
Liaps] ' Meam. iR
Addn,. . @ froord Mew Macro

C you nust

I8 AroConmed Opione. .. SEnENY,..

o e P Veusl Banc Edior AEsFLL
Crme o0 Microdolt Senpc Editor AlceshfoeF L

] [omm] |

Assigning a Short-Cut key

Change in CopyAl | () subroutine
Range(" Al"). Current Regi on. Copy
To

Cells(1,1). Current Regi on. Copy
or to

ActiveCel | . Current Regi on. Copy

The first and the second case produce the same result. The third case copies the Cur r ent Regi on

around the Act i veCel | (i.e. the selected cell). Run the subroutine for all three cases and observe what

happens.

Introduce the following subroutine:
Sub Basi cSub()

Call CopyAll
End Sub

Executing Basi cSub() , calls and executes subroutine CopyAl | () .

Now let us make the working environment in VB Editor more user-friendly. Choose
Tool saOpt i ons. Select the Edi t or Tab and check the following options:
Auto Syntax Check: If there is a syntax error while entering your code, VBE aerts you.
Auto List Members: It provides as you type a list with objects/actions that would logically
complete the statement you are typing.
Auto Quick Info: VBE displays information regarding the syntax and the arguments of a function
asyou typeit.
Default to Full Module View: It presents all the functions and procedures in a module in a single
scrollable list.

Let ustry to create a subroutine that creates a border around a set of contiguous data. As before we will
use the range object Cur r ent Regi on.
Sub Creat eBorder ()
ActiveCel | . Current Regi on. Bor der Around _
Li neStyl e: =x| Dot, Wei ght: =xI Thi ck, Col or: =RGB(255, 0, 0)
End Sub
Notice that as you type Act i veCel | . abox appears with all the possible object members that you can

Upoiue inpla

ST use. Scroll down and select Cur r ent Regi on. After you type
mw ﬂi, e the“.” the pop-up window appears again and as you scroll down
grsﬁ:wl you find the Bor der Ar ound Method. Unfortunately, you do
— not know how to use the Bor der Ar ound Method. Select the

word Bor der Ar ound and press F1. Excel help appears with a

Opzior Zwmlizis

Sl Sentcuede ! detailed description of the method and an example of how to use

mm o ““".:: it. Compare the example from Excel help, with the Syntax of
T Bor der Around Method and the example you have been
SEenns | povided with

Horkbook {Cade}] [=1)

w B Tooh Addlra Window Helb r . B x] "'1
==y BB ity - =
B TR R ATLD A% ¥
[{Gemes att =| [Crvateiierder = =
Opeien Explicie T' m _gj &mi
Bub CremsteBorderi]
yrezeres Wiz |mr1|l' Bordara { niathiod
ActiveTell.Curcent ey 1on. EODdRCAround bt sl o Bk e i pplies To Exnmple
Efd Sl T¥ed W Qumetion P #dds a bordes ko a range and sebs the Colir, LineStyle, and
= them cick Search. Wisight peopaerted for thae P border. Varnet
e Borderfnound, Dinestds, Weaghs,
Cotoetes, Gt
i s) e Faueed, A expoesin that retusms one of the
pbjects in the Apples To kst
LaveSTwie Dptioad XilimeBtybe, T b syl for tr Gorder,
Wreighi Cmtional KiBooderwaight. Tha barder waight
Colarfndex Sptiona SIolorindese. The border color, as 50
redecsd i tha urrent collor pallstte o aa 8 S olorIndle cosstant
Coler Optional Yarlank. The bordes color, == an BGE vabos,

In amodule you can select any object, method or procedure and after pressing F1 Excel help appesrs.

Another option you have in order to browse through the objects available to you is the Object Browser.
You can access it by either pressing F2 in VBE or by selecting Vi ewaObj ect Browser . At this
stage object browser will not be as helpful asthe online Excel help. Usually, for our programming needs
we do not need to know alarge number of object, methods, and procedures.

In the next examples we present different ways to work with range objects. A range object can consist

of many rows and columns.

Sub Pr ovi deRowAndCol umm()
D m EndRow As I nteger, EndCol umm As | nteger
Dmi As Integer, j As Integer

EndRow = ActiveCel |l . Current Regi on. Rows. Count
EndCol um = ActiveCel | . Current Regi on. Col ums. Count

For i = 1 To EndRow
For j = 1 To EndCol um
Cells(i, j).Value =i +]
Next
Next
End Sub

Now suppose that we have the following table in Excel and we want to fill in the third column with the

product of columns A and B

A B C
1 5
2 4
3 3
4 2
5 1

Sub DoCal cul ati on()

D m EndRow As I nteger, EndCol umm As | nteger
Dmilnitial Row As Integer, Initial Colum As Integer
Dmi As Integer

Initial Row = ActiveCell. Row
Initial Colum = ActiveCell. Colum

EndRow = ActiveCel |l . Current Regi on. Rows. Count
EndCol um = ActiveCel |. Current Regi on. Col ums. Count

For i = 1 To EndRow
Cells(Initial Row + i - 1, Initial Colum + 2).Value =
Cells(Initial Row + i - 1, Initial Colum). Value _
* Cells(InitialRow + i - 1, Initial Colum + 1).Val ue
Next
End Sub

Select the upper left cell of the table and run the subroutine.
In most cases subroutines need to have arguments. Arguments can be single valued variables, arrays or

strings. A subroutine has a fixed number of arguments, which are a combination of optional and required

arguments.

10

In a new module introduce the following subroutine:
Sub Fill Col utmA(NoOF Rows As | nteger)
Dmi As Integer

For i = 1 To NoOf Rows
Cells(i, 1) =i

Next

End Sub

If you try to run this subroutine you will find out that you cannot; the reason being that you have to pass

an argument. To run this subroutine we introduce the following subroutine:

Sub Cal | Fi I | Col umA()
D m NoOf Rows As | nt eger

NoOF Rows = | nput Box("Il nput the nunber of rows...")

Call Fill Col umA(NoOf Rows)
End Sub

If you run Cal | Fi || Col umA it calls the subroutine Fi | | Col umA and passes the required
argument. Now let us introduce an optional argument. Optional arguments should always be of the
variant data type (you could introduce also different data types but it is not recommended). If you
introduce an optional argument all subsequent arguments in the argument list must also be optional. To
declare an optional argument we use the word optional before the argument. In the subroutine you must
check whether an optional argument has been assigned a value and if not you must assign it its default

value.
Sub Fill Col um(NoOf Rows As Integer, Optional NoOFColumm As Variant)
Dmi As Integer

' Check whether the optional argunent is used

I f IsM ssing(NoOF Col utmm) Then NoOF Colum = 1

11

For i = 1 To NoOf Rows
Cel I s(i, NoOf Columm) =i
Next
End Sub

ToruntheFi | | Col urm subroutine introduce:

Sub Cal I Fill Col um1()

Call Fill Col um(10)
End Sub
Sub Cal | Fi Il Col um2()

Call FillColum(10, 2)
End Sub

The Cal | Fi | | Col uim1 subroutine calls Fi | | Col unm and passes only the required argument. In

Fi | I Col umm subroutine as the optional argument is missing it is assigned the default value 1. In

contrag inCal | Fi | | Col umm2 both arguments are passed.

12

I ntroducing Functions

The use of arguments in functions is similar to their use in subroutines. We can have optional and
required arguments which are defined in exactly the same way as in subroutines. Remember functions

awaysreturn avalue.

Example

Create a function that returnsthe cubic root of a number.

Function Cubi cRoot (Nunber As Doubl e) As Doubl e
"This function returns the cubic root

Cubi cRoot = Nunber ~ (1 / 3)

End Function

Y ou can execute a function by
A. calling it from another function or subroutine
B. using the function in aworksheet formula
Select acell in “sheetl” and type “+cubi cr oot (8) ” and press enter. Y ou should have
in the cell the return value 2.
Another way to cal the function is by choosng a the main Excel menu
| nsert &functions. In the box select category you choose User Defi ned
Funct i ons and double click on Cubi cRoot .
Type in the module
Sub Cal I i ngCubi cRoot ()
MsgBox Cubi cRoot (8)
End Sub
Run Cal I i ngCubi t Root. ChangeinCal | i ngCubi t Root subroutine
MsgBoX Cubi cRoot (8) To
Cel I s(1,1). Val ue=Cubi cRoot (8) Orto
Cell s(2,1). Val ue=Cubi cRoot (Cel I s(1, 1). Val ue) .
Note that in this last statement you read a value from A1 cell and return its cubicroot a
A2 cell.

13

Introducing Variables, Comments, Constants and Data Types

When naming a variable keep in mind that:
The first character should be a letter
Y ou cannot use any spaces or periods in a variable name
VBA does not distinguish between uppercase and lowercase letters. So InterestRate is the same
asinterestrate and INTERESTRATE.
You are not allowed to use the following characters. #, $, %, &, !.

The names can be no longer than 254 characters

When you name a variable write it in a readable and easy to understand format. Use either mixed case
format such as TimeToMaturity or use the underscore character Time_To_Maturity.

There are a number of reserved words that cannot be used for variable names or procedure names. For
example you cannot use built-in function names such as Ucase, Sgr, Exp, etc or language words such as
if, then , sub, with, for, etc.

Data Type Bytes Used Range of Values

Boolean 2 True or False

Integer 2 -32,768 to 32,767

Long 4 -2,147,483,648 to
2,147,483,648

Single 4 -3.402823 E38 to
1.401298 E45

Double (negative) 8 -1,7976931346232 E308 to
-4.94065645841247 E-324

Double (positive) 8 4.94065645841247 E-324 to
1,7976931346232 E308

Currency 8 -922,337,203,685,477.5808
to
922,337,203,685,477.5807

Date 8 1/1/100 to 12/31/9999

String 1 per character Varies

Variant Varies Varies

14

Always choose the datatype that uses the smallest number of bytes but can manage with all the data the
program assigns to it. We will see in what follows that we must be very careful when we use Excel
built-in functions to perform complicated computational task. Note that the more bytes you reserve for a
calculation the slower it is performed.

You should always include the following statement as the first statement in a VBA module: Option
Explicit. This forces you to declare all the variables you use. To ensure that this option is always present
go in the Visua Basic Editor, select Tool saOptions and tick Require Variable

Decl ar at i on option.

When defining a variable we must also decide the scope of the variable. That means that we must decide

which modules and procedures can use a variable.

Availablein a Single Procedure only: We use a Dim or Static statement in the procedure that uses the
variable. This type of variables can only be used in the procedure in which they are declared.
Example Dimi as integer, |j as integer

Static NoOflterations as integer

Becarefulusng: Dimi, j as integer declaresjasinteger andi asvariant.

Notethat aSt at i ¢ variable retains its value even when the procedure ends, so if you come back to the
procedure the value is not reset. This value though is not available to other procedures. You can use it,

for example, to keep track of the number of times you execute a subroutine.

Available in a particular Module only: We use a Dim statement before the first sub or function
statement in the module. This type of variable is available to al procedures in a module. Therefore it can

be used in all procedures and it will retain its value from one procedure to another.

Availablein all proceduresin all modules: We use a Public statement before the first sub or function
in amodule. Thistype of variable is available in al the VBA module in a workbook.

Example: Publ i ¢ I nterest Rate as Doubl e

To declare a constant we use the following syntax:
Const pi as Doubl e= 3. 14159265359

15

We can make a constant available to a particular procedure, module or in all procedures in all modules
in exactly the same way as we do it for any variable.
Example: Publ i ¢ Const pi as Doubl e= 3. 14159265359

In many cases you will need to use strings to use and manipulate text. When dealing with strings you
can introduce either afixed-length string or avariable-length string.

A fixed-length string is declared as follows:

Dm NewString As String *10

In this example we specify NewString as a string with maximum 10 characters. The maximum
number of characters a fixed-length string can hold is 65,526.

A variable-length string is declared as follows:

Dim NewString As String

NewString has an unspecified number of characters and theoretically can hold up to two billion

characters. In terms of memory efficient it is recommended to use fixed-length strings.

In computational applications the most important element of a computer language is the array (matrix).
We declare an array in the same way we declare any variable. We can declare an array as follows:

Dim Underlying(l to 100) As Doubl e

D m Under | yi ng(100) As Doubl e

D m Underlying() As Double

Note that the first and second declaration can result in different arrays. Visual Basic assumes by default
that the lower index is 0. Therefore the second declaration is equivalent to:
Dim Underlying(0 to 100) As Doubl e

If we want to force VBA to use 1 as the lower index we must include just below the Opti on
Explicit statement, Opti on Base 1.Inthat case the following two statements are equivalent:
Dim Underlying(l to 100) As Doubl e

D m Under | yi ng(100) As Doubl e

Using the statement Di m Under | yi ng() As Doubl e, declares a dynamic array. In order to use
this array we must define its size using:
ReDi m Under | yi ng(100)

16

We can use ReDi mas many times and as often as we need. Note that every time we use ReDi mwe
clear all the values stored in the array. If we need to keep the 100 values we have found, and also need to
increase the size of the array to 200 elements we use the following statement:

ReDi m Preserve Underl yi ng(200)

In this case you keep the first 100 elements intact and you have room for 100 more.

In all codes it is a good practice to introduce comments. Use comments whenever and wherever you
think that you need them. A good comment should be easy to understand and should help clarify how
the code works. VBA treats as a comment anything on a line that follows the apostrophe ‘. A good
practice for bits of code that you do not need is to comment them out instead of completely deleting
them. Furthermore, try to make your code more readable. If you type all the statement for your program
one after the other you have a cramped result that is difficult to read. The code still works, but makes it
difficult to handle. Leave white space between particular statements or steps in a function or subroutine.

Furthermore, use indention to make the main part of a subroutine or function clearer.

17

Introducing L abels and the On Error statement

In some cases in VBA you will need to use labels. Labels are introduced if you plan to use the GoTo
statement. A label begins with a character and ends with a colon.

Example
Sub CopyAl | New()
On Error GoTo ErrorHandl e

Sheet s(" Sheet 1") . Range(" Al") . Current Regi on. Copy
Sheet s(" Sheet 4") . Range(" Al") . Past eSpeci al
MsgBox "Data Successfully Pasted"

Exit Sub
Err or Handl e:

MsgBox "Cannot find Sheet4"
End Sub

In this subroutine we introduced a number of new elements. First of all we introduced theOn Err or

statement, which bypasses Excel default error handling and uses our own error handling code.

Run the previous subroutine withthe On Error GoTo Error Handl e statement and without and

observe the difference.

Suppose now that we want instead of simply having a MsgBox informing us that “Sheet4” does not
exist to be able to add “ sheet4” and redo the process. We have no idea of what sort of commandsto use,
but there is help at hand. We can record a macro a see the code produced to get an idea of the commands
we need. Note that the macro recorder creates only subroutines (not functions). The macro recorder is
suitable for straightforward tasks such as formatting, copying, creating a graph etc. Y ou cannot use it to
introduce conditional actions, iterations etc.

To use the macro recorder go to Tool saMacr oaRecord New Macr o.

18

While recording select in Excel Insert & WorkSheet then right-click on the new WorkSheet and select
rename. Type in anew name and then stop recording.
Go to VB Editor and check under module 1 the code inserted. It should look something like the
following code:
Sub Macrol()

Sheet s. Add

Sheet s(" Sheet 4") . Sel ect

Sheet s(" Sheet4"). Name = " New'
End Sub

Based on the recorded macro, we introduce the following subroutine:
Sub CopyAl | New_1()
On Error GoTo ErrorHandl e

Sheet s(" Sheet 1") . Range(" Al") . Curr ent Regi on. Copy
Sheet s(" NewSheet ") . Range(" Al") . Past eSpeci al
MsgBox "Data Successfully Pasted"

Exit Sub
Err or Handl e:
Sheet s. Add
ActiveSheet. Name = "NewSheet"
Resune
End Sub

First of all we must be extra careful so that the Er r or Handl e label isreached only if an error occurs.
UseExit Sub orExit Function just beforethe error handling part of your code. After we have

taken care of the error we ask the subroutine to Resune.

Ther esune st at enent resumes execution after an error-handling routine is finished:

Resune: Execution resumes with the statement that caused the error.

Resunme Next : Execution resumes with the statement immediately following the statement that
caused the error.

Resume | abel : Execution resumes at the specified label.

19

Remove worksheet “NewSheet” and introduce the following subroutine:
Sub CopyAl | New 2()
On Error GoTo ErrorHandl e

Sheet s(" Sheet 1") . Range(" Al") . Curr ent Regi on. Copy
Sheet s(" NewSheet ") . Range(" Al") . Past eSpeci al
MsgBox "Data Successfully Pasted"

Exit Sub
Err or Handl e:
Sheet s. Add
ActiveSheet. Name = "NewSheet"
Resune Next
End Sub

Notice that when you run this last subroutine while the new worksheet is added the data are not pasted in
the “NewSheet”. The error is caused by the statement:

Sheet s(" NewSheet ") . Range(" Al") . Past eSpeci al

After the error-handling we resume at the statement immediately following this statement. That is why
we get the message regarding the successful completion. In the error handling part of the code we could
have also used Resune Label . Consider the following subroutine:

Sub Squar eRoot _1()

D m Nunber As Doubl e, Answer As VbMsgBoxResul t

Start:
On Error GoTo ErrorHandl e

Nunber = I nput Box("Provide a nunber™)
MsgBox "The square root is " & Str(Sqgr(Nunber))
Exit Sub

Err or Handl e:
Answer = MsgBox("An error occured. Do you want to try

agai n?", vbYesNo)

I f Answer = vbYes Then Resunme Start

End Sub

20

This implementation is more cumbersome and should be used only if after the error handling process
you have to move to a different point in the procedure. The specific subroutine represents a poor
example of handling errors. The use of a large number of labels can make a code difficult to understand
and more importantly difficult to alter and correct if problems arise. Consider instead the following

subroutine;

Sub Squar eRoot _2()
D m Nunber As Doubl e, Answer As VbMsgBoxResul t

On Error GoTo ErrorHandl e
Nunber = I nput Box("Provide a nunber™)
MsgBox "The square root is " & Str(Sqgr(Nunber))

Exit Sub
Err or Handl e:
Answer = MsgBox("An error occured. Do you want to try again?",
vbYesNo)
| f Answer = vbYes Then
Nunber = I nput Box("Provi de a nunber™)
Resune
End If

End Sub

In this subroutine we resolve the error and resume from the statement that the error occurred. Let ustry
to understand what resume does in the error handling process. Run the Squar eRoot _1 subroutine as

follows: Type -2, select Yes, Type -2, Select Yes, Type 2.

Now, change in Squar eRoot _1 the statement

| f Answer = vbYes Then Resune Start
To
| f Answer = vbYes Then GoTo Start

And run the subroutine again as follows: Type -2, select Yes, Type -2, Select Yes, Type 2.

21

You will see that your error-handling process cannot understand that an error occurs as we have not
cleared the original error condition. When we use Resume the error condition clears!

On Error statements:

On Error GoTo Label : If an error occurs you go to the specified lined by the label.

On Error Resume Next: If an error occurs it is ignored and you move to the next line of code,
clearing the error conditon.

A good way to avoid problems with the use of your code is to identify the possible sources of run-time
errors. If you write codes that you only use, you might think that error handling is unnecessary. It istrue
that if you have written a code of which you are the sole user and an error occurs you can try and correct
it. Error handling though is very important if you expect other people to aso use your code. In that case
you should make certain that proper messages appear that would help them to overcome the problem. In
the following subroutine we do exactly that.

Sub Squar eRoot ()
Di m Nunber As Variant, Answer As VbMsgBoxResul t

Start:
Number = | nput Box("Pl ease, provide a nunber:")

I f IsNumeric(Nunber) = Fal se Then
Answer = MsgBox("No nuneric input! The input should be
a positive nunber. Do you want to try agai n?",
vbYesNo)
| f Answer = vbYes Then
GoTo Start
El se
Exit Sub
End If
El self Nunber < 0 Then
Answer = MsgBox("Negative nunber! The input should be
a positive nunber. Do you want to try
agai n?", vbYesNo)
| f Answer = vbYes Then

22

GoTo Start

El se
Exit Sub
End If
End If

MsgBox "The square root

End Sub

is " & Str(Sqr(Number))

23

Introducing VBA and Excel functions

Excel and VBA provide you with a number of different functions that you can use in you VBA
programs. Extra care is needed though when we use such functions to make certain that we fully
understand how these functions should be used.

Commonly Used VBA Built-in functions

Abs: Returns the absolute value of a number

At an: Returns the arctangent of a number

Clnt: Converts a numeric or string expression into an integer

CDbl : Converts a numeric or string expression into a double

CLng: Converts a numeric or string expression into a long

Cos: Returns the cosine of a number

Exp: Returns the base of the natural logarithm (e) raised to a power

| nput Box: Displaysabox to prompt a user for an input

I nt: Returns the integer part of a number

| sArray: ReturnsTrueif avariableisan array

| sEnpty: Returns Trueif a variable has been initialized

| sNul | : Returns True if an expression contains no valid data

| sNunmer i c: Returns True if an expression can be evaluated as a number

LCase: Returns a string converted to lowercase

Log: Returns the natural logarithm (Ln) of a number
LTrim Strips the leading spaces from a string
MsgBox: Displays a modal message box

Rnd: Returns a random number between 0 and 1
RTrim Strips the trailing spaces from a string

Si n: Returns the sine of a number

Str: Returns the string representation of a number
Sqr: Returns the square root of a number

Tan: Returns the tangent of a number

Trim Returns a string without leading or trailing spaces
UCase: Returns a string converted to uppercase

Val : Returns the numbers contained in a string

24

In VBA you are able to use all the worksheet function available in Excel. In order to do so you must

type Appl i cati on. Wr ksheet Functi on. TheFuncti onYouWant ToUse

Let us create in a new module a subroutine that finds the maximum value in a column array.
Option Explicit

Sub HowToUseExcel Functi ons()

D m NoOf Poi nts As Integer, MyArray() As Doubl e

Dmi As Integer, LargestNunber As Doubl e

NoOF Poi nts = Val (I nput Box("Define the size of the matrix"))

ReDi m MyAr r ay(NoOf Poi nt s)

For i = 1 To NoOf Poi nts
MArray(i) =i
ActiveSheet. Cel I s(i,1)=i

Next

Lar gest Nunber = Application. Wr ksheet Functi on. Max(MyArr ay)
MsgBox (" The | argest nunber is " & Str(LargestNunber))
End Sub

Run the HowToUseExcel Functi ons() subroutine for:
(8 NoOf Poi nt s =20
(b) NoOF Poi nt s =32,766
(c) NoOF Poi nt s =32,767

Notice that you get an overflow error message in the third case because you have declared i and

NoCOf Poi nts as I ntegers. DeclarethemasLong.

Run the HowToUseExcel Functi ons() subroutine for:
(8 NoOf Poi nt s =20

25

(b) NoOF Poi nt s =65,536
(c) NoOF Poi nt s =65,537

If you scroll down in excel up to the last row you will see that it ends at 65,536 (=2'°). Select the last
row and try to insert a new row. Notice that no new row is inserted. All functions that deal with ranges
can accept a maximum of 65,536 elements for a specific column.

Whenever you use a built-in function be certain that you fully understand how it works. Let us create a
subroutine that finds the average value in a column array.

Option Explicit
Sub Fi ndAver age()
D m NoOf Poi nts As Integer, MyArray() As Doubl e
Dmi As Integer, Average As Doubl e

NoOF Poi nts = Val (I nput Box("Define the size of the matrix"))
ReDi m MyArray(1, NoOf Points)

For i = 1 To NoOf Poi nts

MArray(1l, i) =1
Next
Average = Application. Wrksheet Functi on. Aver age(MArr ay)

MsgBox (" The average is " & Str(Average))
End Sub

Run the HowToUseExcel Functi ons () subroutinefor:
(8 NoOf Poi nt's =20

(b) NoOF Poi nt s =50,000

You would expect to find average 1 but you do not. The problem is that you introduce an array
MyArray(1l, NoOf Points) but the base is O in Excel by default. That means that you have

26

introduced not a column matrix but a (2 x NoOf Poi nt s) matrix and the first columns when it is
initialized is set equal to 0. Introduce Opti on Base 1 and rerun the code. Note that if you only
change MyArray(1, NoOf Points) to MyArray(NoOf Poi nts) you gill don't get average
equal to 1 as MyAr r ay(0) =0. Run the code with Opt i on Base 1 for NoOf Poi nts = 65, 536
and 65, 537. Notice that once more you have a problem. Y ou should keep in mind these limitations of
built-in Excel functions, especially when you deal with Monte-Carlo simulation and you need to
calculate the mean.

I ntroducing control of the program flow

GoTo: jump to a particular statement (you have to introduce a label). Never use GoTo statement to do
loops. Use a standard loop statement like “f or - next”; such practice helps others to
understand your intentions and keeps bugs like endless iterations to a minimum. Avoid using
GoTo to exit a subroutine or a function, instead use Exit Sub or Exit Functi on. We

discussthe Exi t statement in more detail later in this section.

| f - Then st at enent

The structure of the command is:
| f [condition] Then [statenent]
Example
Sub Sel ect Opti onType()
Dim Opti onType As String
OptionType = I nputBox("Call or Put option? ")

| f LCase(OptionType) = "call" Then MsgBox "You selected a call
option"

| f LCase(OptionType) = "put” Then
MsgBox "You sel ected a put option”
End If
End Sub

Type in the inputbox:
(a) call
(b) CALL

27

(c) Put
(d) American

In the code we convert the Opt i onType gring to lowercase using the LCase function. That means

that even if someone types*® CaLl " we convertitto“ cal | ” and the comparison we make in the code

is meaningful. As we will discuss later we have to introduce one more action if we want to be 100%

certain before we compare the introduced string with the expected strings in our code. Note in case (d)

that nothing happens and the code exits without message.

| f - Then- El se st at enent

The structure of the command is:
If [condition] Then
[statement 1]
El se
[st at ement 2]
End if

Change the subroutine to be:

Sub Sel ect Opti onType()
Dim Opti onType As String
OptionType = I nputBox("Call or Put option? ")

| f LCase(OptionType) = "call" Then
MsgBox "You sel ected a call option"
El se
MsgBox "You sel ected a put option”
End If
End Sub

Type in the inputbox:
(a) call
(b) Put
(c) American

28

Note in this case the wrong use of theel se statement.

| f - Then- El sel f st at enent

The structure of the command is:

If [condition] Then
[statement 1]

El sel f
[stat ement 2]

El se
[st at ement 3]

End if

Now, change the subroutine in the following form:

Sub Sel ect Opti onType()
Dim Opti onType As String
OptionType = I nputBox("Call or Put option? ")

| f LCase(OptionType) = "call" Then
MsgBox "You sel ected a call option"

El self LCase(OptionType) = "put" Then
MsgBox "You sel ected a put option”

El se
MsgBox "Not a valid selection”

End If

End Sub

Type in the inputbox:
(a) Cal
(b) Put
(c) American
What do you observe?

29

Using Logical Operators

VBA has a number of logical operators that can be used. The most commonly used logical operators are
the following:

Not : performsalogical negation on an expression

And: performsalogical conjunction on two expressions

O : performsalogical digunction on two expressions

Sub Sel ect Opti onType ()
Dim OptionType As String, ExerciseR ghts As String

OptionType = I nputBox("Call or Put option? ")
| f LCase(OptionType) <> "call" And LCase(OptionType) <> "put"

Then
MsgBox "Not a valid selection”
Exit Sub
End If
Exerci seRi ghts = | nput Box("Anerican or European option? ")

| f LCase(ExerciseRights) <> "american" And LCase(ExerciseR ghts)
<> "european” Then

MsgBox "Not a valid selection”

Exit Sub
End If
If LCase(OptionType) = "call"™ And LCase(ExerciseR ghts) =

"american" Then

MsgBox "You sel ected an Anerican call option"
El self LCase(OptionType) = "call" And LCase(ExerciseR ghts)
"eur opean” Then

MsgBox "You sel ected a European Call option"
El self LCase(OptionType) = "put" And LCase(ExerciseRights) =
"american" Then

MsgBox "You sel ected a American Put option”

30

El self LCase(OptionType) = "put" And LCase(ExerciseRights) =
"eur opean” Then
MsgBox "You sel ected a European Put option”
End If
End Sub

In many cases users introduce by error strings with trailing or leading spaces. For example it is possible

that a user mistakenly types “Cal | ”. Go back and check to see what happens. The program cannot
recognize that the input was call. To avoid this type of errors you use the trim function.

Change:

OptionType = I nputBox("Call or Put option? ") to

OptionType = Trin(InputBox("Call or Put option? "))

And

Exerci seRi ghts | nput Box (" Ameri can or European option? ") to

Exerci seRi ghts Tri m(| nput Box(" Ameri can or European option? "))

TypeCal | or Put, Aeri can or Eur opean with leading and trailing spaces and see what happens.

Sel ect Case st atenent

The structure of the command is:
Sel ect Case [expression]
Case [condition 1]
[statenents 1]
Case [condition 2]
[statenents 2]
Case El se
[el se statenents]
End Sel ect

31

Sub Sel ect Opti onTypeCase()
Dim OptionType As String, ExerciseR ghts As String

OptionType = Trin(InputBox("Call or Put option? "))

Sel ect Case LCase(OptionType)
Case "cal | "
Exerci seRi ghts = Trin(| nput Box("Aneri can or European option? "))
Sel ect Case LCase(ExerciseR ghts)
Case "anerican"
MsgBox "You sel ected an Anerican call option"
Case "european"
MsgBox "You sel ected an European call option”
Case El se
MsgBox "Not a valid selection”
End Sel ect
Case "put"
Exerci seRi ghts = Trin(| nput Box("Anmeri can or European option? "))
Sel ect Case ExerciseRi ghts
Case "anerican"
MsgBox "You sel ected an Anmerican put option"
Case "european"
MsgBox "You sel ected an European put option"
Case El se
MsgBox "Not a valid selection”
End Sel ect
Case El se
MsgBox "Not a valid selection”
End Sel ect

End Sub

32

In scientific computing in the various calculations that you have to perform there is a need to do
iterations, or loop through a process until a certain conditions has been met. When designing a loop
make certain that it will always end. In the following pages we deal with the following looping
structures:

(A)For - Next - St ep

(B) Do- Whi | e

(C)Do- Unti |

To understand how we can use these looping structures we will create a subroutine that solves a non-
linear algebraic equation using the bisection method, which is based on the following theorem:

Suppose that f:[a,b] &R is continuous and f(a)f(b)<0. Then for some c in (a,b), f(c)=0.

For - Next St at enent

Sub Bi secti onMet hod_For Next (Upper Bound As Doubl e, Lower Bound As
Doubl e, TOLERANCE As Doubl e, Maxi numNunber Oflterati ons As |nteger)

Dmi As Integer, M dPoint As Double

‘Check that the required conditions for the bisection nethod to
be applied are satisfied
| f F(UpperBound) * F(LowerBound) > 0 Then
MsgBox "Change the interval so that f(a)*f(b)<0"
Exit Sub
End If

' Check whether the endpoints are roots

| f Abs(F(UpperBound)) < TOLERANCE Then
MsgBox "F(" & Str(UpperBound) & ")<TCOL. This is a root"
Exit Sub

End If

| f Abs(F(LowerBound)) < TOLERANCE Then
MsgBox "F(" & Str(UpperBound) & ")<TCOL. This is a root"
Exit Sub

33

End I f

"Begin iterations
For i =1 To Maxi numNunber Ol terations

M dPoi nt = (Upper Bound + Lower Bound) / 2

' Check whether the mdpoint is a root

| f Abs(F(M dPoint)) < TOLERANCE Then
MsgBox "The root is " & Str(M dPoi nt)
Exit Sub

End If

' Update the interval
| f F(UpperBound) * F(MdPoint) > 0 Then
Upper Bound = M dPoi nt
El se
Lower Bound = M dPoi nt
End If
Next
MsgBox " Maxi mum nunber of iterations was exceeded"

End Sub

Function F(x As Doubl e) As Double
F=x""3-2*x-1
End Function

Sub RunBi secti onMet hod_W t hFor Next ()
Cal | BisectionMethod_ForNext(2, 0, 10 ~ (-10), 1000)
End Sub

Note in the use of For - Next statement that the code ends with certainty if we reach the maximum
number of iterations. If we want to iterate from i=100 to t=1 we should use the St ep statement:
For 1=100 To 1 Step -1 ...Next

Do- Wi | e St at enent

The bisection method can be implemented using the Do- Wi | e Loop asfollows:

Sub Bi sectionMet hod_DoWhi | e(Upper Bound As Doubl e, Lower Bound As
Doubl e, TOLERANCE As Doubl e, Maxi numNunber Oflterations As |nteger)

Dmi As Integer, NunberOlterations As Integer, M dPoint As Double

' Check that the required conditions for the bisection nethod to
"be applied are satisfied
| f F(UpperBound) * F(LowerBound) > 0 Then
MsgBox "Change the interval so that f(a)*f(b)<0"
Exit Sub
End If

' Check whether the endpoints are roots

| f Abs(F(UpperBound)) < TOLERANCE Then
MsgBox "F(" & Str(UpperBound) & ")<TCOL. This is a root"
Exit Sub

End If

| f Abs(F(LowerBound)) < TOLERANCE Then
MsgBox "F(" & Str(UpperBound) & ")<TCOL. This is a root"
Exit Sub

End If

NumberOf lterations = 0
M dPoi nt = (Upper Bound + Lower Bound) / 2
"Begin iterations
Do Wiile Abs(F(MdPoint)) > TOLERANCE And NunberOflterations <=

Maxi nrumNunber Of It er ati ons

M dPoi nt = (Upper Bound + Lower Bound) / 2

35

| f F(UpperBound) * F(MdPoint) > 0 Then
M dPoi nt

Upper Bound
El se

Lower Bound M dPoi nt

End I f

NumberOflterations = NunberOlterations + 1

Loop

I f NunberOflterations > Maxi mumNunber Of I terations Then
MsgBox " Maxi mum nunber of iterations was exceeded"
Exit Sub

End If

MsgBox "The root is " & Str(M dPoi nt)

End Sub

Sub RunBi secti onMet hod_DoUnti | ()
Cal |l BisectionMethod_Dowile(2, 0, 10 ~ (-10), 1000)
End Sub

Note the difference in the way the bisection method is implemented in this case compared to the For -
Next case. In both cases the iteration ends if one of two conditions is met. We stop if the maximum
number of iterations is reached or if a root to a predetermined level of tolerance has been found. With
the For - Next statement we iterate up to a maximum acceptable number of iteration. In each iteration
we check whether aroot has been found and end the iterations if the answer is affirmative. With the Do-

Wi | e statement we iterate for as long as neither of the two conditions has been met and we exit the

moment one of the two is satisfied. Outside the loop though we must find which condition was
responsible for exiting the loop. The Do- Whi | e statement can be implemented in away that is closer to

the For - Next implementation.

36

Sub
Doubl

Dmi

Bi secti onMet hod_DoWhi | e_2(Upper Bound As Doubl e,
e, Tol erance As Doubl e, Maxi mumNunberOflterations As | nteger)

As Integer, NunberOflterations As |nteger,

' Check that the required conditions for
"be applied are satisfied
| f F(UpperBound) * F(LowerBound) > 0 Then

M dPoi nt As Doubl e

MsgBox "Change the interval so that f(a)*f(b)<0"

Exit Sub
End I f

' Check whether the endpoints are roots
| f Abs(F(UpperBound)) < Tol erance Then

MsgBox "F(" & Str(UpperBound) & ")<TOL.

Exit Sub
End I f

| f Abs(F(Lower Bound)) < Tol erance Then

MsgBox "F(" & Str(UpperBound) & ")<TOL.

Exit Sub
End I f

NumberOflterations = 0

M dPoi nt = (Upper Bound + Lower Bound) / 2

"Begin iterations
Do While Abs(F(M dPoint)) > Tol erance

This is a root"

This is a root"

I f NunberOflterations > Maxi numNunber Ol terati ons Then

MsgBox " Maxi mum nunber of iterations was exceeded"

Exit Sub
End I f

Lower Bound As

the bisection nethod to

37

M dPoi nt = (Upper Bound + Lower Bound) / 2

| f F(UpperBound) * F(M dPoint) > 0 Then
M dPoi nt

Upper Bound
El se
M dPoi nt

Lower Bound
End I f

NumberOflterations = NunberOlterations + 1

Loop

MsgBox "The root is " & Str(M dPoi nt)

End Sub

Do-Until Statenent

The bisection method can be implemented using theDo- Unti | Loop asfollows:

Sub BisectionMethod_DoUntil (UpperBound As Doubl e, Lower Bound As
Doubl e, Tol erance As Doubl e, Maxi numNunber Oflterations As | nteger)

Dmi As Integer, NunberOilterations As Integer, M dPoint As Double

' Check that the required conditions for the bisection nethod to
"be applied are satisfied
| f F(UpperBound) * F(LowerBound) > 0 Then
MsgBox "Change the interval so that f(a)*f(b)<0"
Exit Sub
End If

' Check whether the endpoints are roots
| f Abs(F(UpperBound)) < Tol erance Then
MsgBox "F(" & Str(UpperBound) & ")<TCOL. This is a root"

38

Exit Sub
End I f

| f Abs(F(Lower Bound)) < Tol erance Then
MsgBox "F(" & Str(UpperBound) & ")<TCOL. This is a root"

Exit Sub
End I f

Nunmber Ol terati ons

=0

M dPoi nt = (Upper Bound + Lower Bound) / 2

"Begin iterations
Do Until Abs(F(M

dPoint)) < Tolerance O NunberOilterations >

Maxi nrumNunber Of I t er ati ons

M dPoi nt = (Upper Bound + Lower Bound) / 2

| f F(UpperBound) * F(MdPoint) > 0 Then

Upper Bound
El se

Lower Bound
End If

Nunmber Ol terati
Loop
[f NunmberOlterati
MsgBox " Maxi mum
Exit Sub

End I f

MsgBox "The root i
End Sub

= M dPoi nt

M dPoi nt

ons = NunberOlterations + 1

ons > Maxi mumNunber Ol terati ons Then
nunber of iterations was exceeded"

s " & Str(MdPoint)

39

Note how in the use of Do- Unt i | statement we iterate up until either of the two conditions is met. As

is the case for the Do- Whi | e Loop we can set only one condition in the Do- Unt i | statement and

check whether the other condition has been met during each iteration.

Sub
Doubl

Dmi

Bi secti onMet hod_DoUnti| _2(UpperBound As Doubl e,
e, Tolerance As Doubl e, Maxi mumNunberCflterations As |nteger)

As Integer, NunberOflterations As |nteger,

' Check that the required conditions for
"be applied are satisfied
| f F(UpperBound) * F(LowerBound) > 0 Then

M dPoi nt As Doubl e

MsgBox "Change the interval so that f(a)*f(b)<0"

Exit Sub
End I f

' Check whether the endpoints are roots

| f Abs(F(UpperBound)) < Tol erance Then
MsgBox "F(" & Str(UpperBound) & ")<TOL.
Exit Sub

End If

| f Abs(F(Lower Bound)) < Tol erance Then
MsgBox "F(" & Str(UpperBound) & ")<TOL.
Exit Sub

End If

NunberOflterations = 0

M dPoi nt = (Upper Bound + Lower Bound) / 2

"Begin iterations
Do Until Abs(F(M dPoint)) < Tol erance

This is a root"

This is a root"

I f NunberOflterations > Maxi numNunber Ol terati ons Then

Lower Bound As

the bisection nethod to

40

MsgBox " Maxi mum nunber of iterations was exceeded"
Exit Sub

End I f

M dPoi nt = (Upper Bound + Lower Bound) / 2

| f F(UpperBound) * F(M dPoint) > 0 Then

Upper Bound

El se

Lower Bound

End I f

M dPoi nt

M dPoi nt

NumberOflterations = NunberOlterations + 1

Loop

MsgBox "The root is " & Str(M dPoi nt)

End Sub

A very useful statement is the Exi t statement, which is used to exit a Do- Loop, a For - Next, a

Functi on or aSubr outi ne:

Exit Sub:

Exit Functi on:

Exit For:

Exit Do:

The code exits the specific subroutine the statement is contained and continues
with the statement that follows the line of code that called the exited subroutine.
The code exits the specific function the statement is contained and continues with
the statement that follows the line of code that called the exited function.

The code exits a For - Next loop and control is transferred to the statement
following the Next statement. In nested For - Next loops the control is
transferred to the loop nested one level above the loop where the Exit For
occurs.

The code exits a Do- Loop statement and control is transferred to the statement
following the Loop statement. In nested Do- Loops the control is transferred to
the loop nested one level above the loop wherethe Exi t Do occurs.

Note that the previous subroutines that use the bisection method to find a root of a non-linear equation

could have been implemented as functions that would return the root.

41

Creating a Non-Linear Equation Solver

In this section we introduce a visual interface for the easier use of the non-linear equation solvers we
have developed. The first step isto introduce aUser For mobject. Choose in the VB Editor | nsert a
User For m Double clicking on the User For min the VBA project window produces the following
screenshot. If the toolbox is not displayed choose Vi ew & Tool box. Make certain that the
properties w ndowisvisible (if it isnot pressF4 or choose Vi ew & Properti es W ndow).
Using the properties window we can change the properties of the various objects we use in designing a

User For m

% File Edit ‘ew Insert Format Debug Run Tools Add-Ins Window Help

5 g - y 1 m i HEYH R G -

B £ " UserForm1

EH) Sheet (Sheet3) [
@ Sheets (MewsSheet)
& Thisworkbook
-3 Farms
FormBisection
UserFarmi
-5 Modules
&% E01_IntroducingSubrautines
% E0z_subroutinesWwithargument
«&; EN3_IntroducingFunctions
&% E0d_IntroducingLabelsAndonE
2% E0S_IntroducingBuiltInFunction)

Cu:untrnlsl

kA abl BB EB
P el M
et g = =]

OpkionButkon
5|

|UserFurml UserForm j
Alphabetic lCategDrized |

[MName) UserForml [
BackCalar [] &Hs000000FE: '
BorderColor B =Hz000001 26
Biorderstyle 0 - fmBorderstyletone

L 1l Emernd

Snapshot of VBE with anew UserForm. The properties and toolbox windows are present.

on-Linear Equation Solver

Using the toolbox we create the User For m shown on the

e left. If you click on the form in the properties window you

" Bisection Method - 00

---- will see that the Name of the form is For nBi secti on

R e) and the Caption has been changed to “Non-Linear Equation

| ¢ Masimum Number — T " . .
____________ Ho mor Solver”. We have introduced four Text Box objects for

the user to provide the upper bound, the lower bound, the

Find Rook

tolerance and the maximum number of iterations. Each

Text Box has on its left a Label that provides information on the entry required in the specific

42

Text Box. If you click on the Text Box introduced for the Upper Bound you will see that its name has
been set to TeBoUpper Bound. We have also introduced two Opti on Buttons, one Conbo
Box and two Conmmand But t ons. We use the option buttons to select the method that we want to
use to solve the non-linear equation and the combo box to select based on the method we use which
implementation to use i.e. For - Next , Do- Wi | e. The only reason for introducing this second choice
is for showing you how the Conbo Box object is used.

Below you can see for all objects on the form the respective properties.

[TenlippesBound T et | Tefal awerbaand Tedtbox
Fiphatais: | Catmgaad | #phabete | Cabagonend
Vool DB nd [rerens T Tt comer Boared
. | Fales g ze Pales
Teb P it Tab Fan
ot Trm sl otoreledt Taue
lor [metsnoooomes ko [0 asmtacn s
1 - Frdad ot Hopaem Baechstpln 1 = irefiac kSl Cpacu:
dherdCckor I EHEnmo0006s Borger ok Il sremoonoss
e dhyls 13 - Frflordar Stylabiore Borgarat i 0 - Iberdartylationa
boon ot Smsnie I ok ol mncs
onrol TipTestt okl T
,rNon{lnur Equition Sofver THan Linews Equation Selver E
ek gsis I:I":":.IJ: .I b 11 1=, 1=, I
Mol e R | B + ¢ = Lipper Bourd:
i Bisachion Mesthed e ”"—"“—"EE | © eaan hed L
. ™ Mewtn-flagheon Method e | Nowton-fchson Method RS,
- - St ST firdn o Sebart Subeculting 1=l o) 1= -
s [| oMb
: SLI00 ! oF Thmrations; | | . - T of Renatiang:
Fedia |0 sl I-;; I Fined Rioct | Carcel i
We have set: We have set:
Name: TeBoUpper Bound Name: TeBoLower Bound
[TeBoT dlerance TectBoe e —— pr—
F § L) 1 [T T ey T
| =" = 1-lBa-T!Dhrlrm Aphatati: | Cabmgeriend |
Lukn®ira Faan T el it oo sl i U B
Lo Tab Fuhn False
Lt rwortielect Ex ff‘:
sk NS
] hHsdnndnees
kvl 1 - fnBakshyisOmaque [
darColer | PRt P
derFode 0 - eEnaes Skybehbons
mriromrce - - FrBorderatriiorg
ool T Tt
et N Y e (Mo Lioear Eqation Saber
Hathad Lissd - -
i i Lippetr B :Ielhncll.ls:ucl : BBk [
- o Lowser Bound: o | Bawetion Methed A |
i cbiaillolo SISO L = pot "
Savipet S twoutine: ; S e c——"r ; g ek [
Hali Select Subrouine
| e e H-nbﬂl ———— “ ; E B E
k e of Iharation: G =5
s S Buswmnd
LT ST N ¢ Pdrat | el |
We have set: We have set:
Name: TeBoTol erance Name: TeBoMaxi mumNunber Of I t er ati ons

43

tohateeic | Categorond | Aiphabwtic | Categoresd |
OBt ion b il onR e
At
Akorusant 1 - FnFleprerarigh: 1 - fntlpnanesndFighi.
Wuofion Faln L]
m [senconnms, ook [s-enoonmes.

1 » fnEdSryisOnague 1 - ey Cnape
aphion Eisection Method i BarsooneRapiion Method
T Copate ot o]

ControlTipTest atraTiles
Erisbied T Trae

Name: OpBuBi secti on Name: OpBuNewt onRaphson
Caption: Bi secti on Mt hod Caption: Newt on- Raphson Met hod

We have set: We have set:
Name: CoBuFi ndRoot Name: CoBuCancel
Caption: Fi nd Root Caption: Cancel

When we want to introduce a visual interface we must plan for an action

that will make this interface available to the user. We insert a new
module named For mHandl i ng and in this module we enter the

following subroutine:

rlhl{l‘-&-'ll Eqgieation Salbaei Eﬂ . .
U Bk | L)))
B ﬁ:':*“:zw Lowes Bcurd | Call InitializeFornBisection
i i Ll T — . .
| et e g ' For nBi secti on. Show
i.}-—g of Toratizng:
| End Sub
Fird P | Carsl
We have set:

Name: CoBoSubroutine

The For nBi sect i on. Show command displays the form named For nBi sect i on. Before we show
the form we call a subroutine that initializes the form by introducing numerical values and the various
available options in the objects we have inserted on the form.

Sub InitializeFornBisection()

Wth FornBisection
'Sel ect the option button for the Bisection nethod
. OpBuBi section. Val ue = True

" Setup the Conmbo Box

Wth . CoBoSubroutine
. Addl t em " Next - For Loop"
. Addl tem " Do- Wi | e Loop"
.Addltem "Do-Until Loop"

End Wth

'Set the default value for the Conbo Box
. CoBoSubr out i ne. Val ue = "Next - For Loop"

"Initialize the remaining inputs

45

. TeBoLower Bound = -10
. TeBoUpper Bound = 10
. TeBoTol erance = 10 ~ (-10)
. TeBoMaxi mumNunber Of I t erati ons = 1000
End Wth
End Sub

In this subroutine we introduced the W t h statement. For more information on this statement select the

W t h statement in VB editor and pressF1.

Run the Showfor nBi sect i on subroutine and see what happens. On the form that appears select the
Newton-Raphson method. Notice that you are allowed to select only one of the option buttons. In the
properties box of an Opt i onBut t on we find the G oupNane property. Opt i onBut t ons with the
same G oupNane are associated and only one of them can be selected each time out of the particular
group. Next, select the combo box. A drop-down menu appears from which you can select any of the
three subroutines. For the time being though we have not introduced any event-handler subroutines, so
our form cannot actually do something. Close the form and go back to the VB editor, select the form and

double click onthe Fi nd Root button. At this point you should see:

Private Sub CoBuFi ndRoot _C i ck()

End Sub

The subroutine CoBuFi ndRoot _Cl i ck() is executed whenever the Find Root button is clicked.

Type the following statements inside the subroutine:

Private Sub CoBuFi ndRoot _C i ck()

Di m Upper Bound As Doubl e, Lower Bound As Doubl e, Tol erance As Doubl e
Di m Maxi mumNunber Of I terati ons As | nteger

On Error GoTo ErrorHandling

'"Check that the entries are in the correct format
I f Trinm TeBoUpper Bound. Val ue) = "" Then

46

Maxi

MsgBox "Problemw th the upper bound val ue”

Exit Sub
End I f
| f Trim TeBoLower Bound. Val ue) = "" Then
MsgBox "Problemw th the | ower bound val ue”
Exit Sub
End | f
I f Trim TeBoTol erance. Value) = "" Then
MsgBox "Problemw th the tol erance val ue”
Exit Sub
End | f
I f Trim TeBoMaxi numNunmber Ol terations. Value) = "" Then
MsgBox "Problemw th the maxi mum nunber of iterations val ue"
Exit Sub
End | f

'Read the required data

Upper Bound = Val (TeBoUpper Bound. Val ue)

Lower Bound = Val (TeBoLower Bound. Val ue)

Tol erance = Val (TeBoTol er ance. Val ue)

mumMNunber O I t erati ons =Cl nt (TeBoMaxi munNunber O I t er ati ons. Val ue)

| f OpBuBi section. Val ue = True Then
Sel ect Case CoBoSubrouti ne. Val ue
Case "Next-For Loop"
Cal | BisectionMthod_For Next (Upper Bound, Lower Bound,

Tol erance, Maxi munNunber O It erations)

Case "Do-Wile Loop"

47

Call BisectionMet hod_DoWwhi | e(Upper Bound, Lower Bound,
Tol erance, Maxi munNunber O It erations)

Case "Do-Until Loop"
Call BisectionMethod _DoUntil (UpperBound, LowerBound,
Tol erance, Maxi munNunber O It erations)

End Sel ect

End I f

| f OpBuNewt onRaphson. Val ue = True Then

MsgBox "Under construction”

Exit Sub
End I f
Exit Sub

Err or Handl i ng:

MsgBox "Check that all the entries are correct. There was an
error."
End Sub

Finally, go back to the form and double click the Cancel button. Enter the following subroutine:
Private Sub CoBuCancel _dick()

Unl oad For nBi section
End Sub
For a user to use our calculator he needs to call ShowBi secti onFor n() . An easy and neat way to
cal it is by assigning a short-cut key. Activate the Excel window and select

Tool saMacr oaMacr os. In the menu that appears select ShowBi sect i onFor mand click the

48

options button. In the dialog box that appears enter an uppercase S and click ok. Exit from the Macro

dialog box. In the Excel window pressCt r | +Shi f t +S and your solver appears on the screen.

Introducing Charts

Using charts in VBA can be very confusing and we will not deal with them in detail. You will be
provided with two subroutines that are quite helpful which you can alter to meet your needs. When
dealing with charts it is a good idea to use the macro recorder to get an idea of the commands you need
to use. Both subroutines read data from an Excel worksheet and either create a new chart or update an

1
2

i

pala e s

N ol
— i

e il
ey AEs

existing chart.
= F [n = F = Manchly Salas
leaks Sale 20! s iy

roum AL 51} =

Hi7
Hmzd
5

b

o —
> 7 . ro
N I

Ll

Ve e L heaphi el Sl Pelem T RLLET T TR R I LRI I

In worksheet G aph Dat al we have the data seen in the figure above on the left. Suppose that we

need to plot the sales in each region per month (figure on the right). Introduce the following subroutine:

Sub AddChart Sheet XI Col umC ust ered(cht Nane As String, chtSheet As
String, chtRange As String, chtTitle As String,

cht Axi sTitl eCategory As String, chtAxisTitleValue As String)

' Subroutine that updates a chart if it already exists or it creates a

new one

On Error GoTo ErrorHandling

Wth Charts(cht Nane)
. Chart Type = x| Col umd ust ered

49

"Link to source data range
. Set Sour ceDat a Sour ce: =Sheet s(cht Sheet) . Range(cht Range),
Pl ot By: =x| Rows

.HasTitle = True

.ChartTitle. Text = chtTitle

. Axes(x| Category, xlPrimary).HasTitle = True

. Axes(xl Category, xlPrimary).AxisTitle.Characters. Text = _
cht Axi sTitl eCat egory

. Axes(xl Val ue, xlPrimary).HasTitle = True

. Axes(xl Val ue, xlPrimary).AxisTitle.Characters. Text = _
cht Axi sTitl eVal ue

' . HasLegend = Fal se

End Wth

Exit Sub

Er r or Handl i ng:
MsgBox "The referred chart does not exist. A new graph will be _

i ntroduced"
Charts. Add
ActiveChart. Name = cht Nane
Resure
End Sub

To use this subroutine for plotting introduce the following subroutine:

Sub Main()

Cal | AddChart Sheet Xl Col umd ustered("New G aph", "G aph Datal"
"Al: D5", "Monthly Sal es", "Mnth", "Sales")

End Sub

Run the Mai n() subroutine and see what happens. Add on Sheet s(“ G aph Datal”) data for
January and change in Mai n() subroutine “A1:D5” to “A1:E5” so that the new data are also plotted.

50

Note that if you go to Sheet s(“ G aph Datal”) and change the data the graph is automatically
updated. Let us now automate the selection process.

Make in AddChar t Sheet XI Col umC ust er ed subroutine the following changes:

Change

Sub AddChart Sheet XI Col uimC ust ered(chtNane As String, chtSheet As
String, chtRange As String, chtTitle As String,

cht Axi sTitl eCategory As String, chtAxisTitleValue As String)

To

Sub AddChart Sheet XI Col uimC ust ered(chtNane As String, chtSheet As
String, chtRange As Range, chtTitle As String,

cht Axi sTitl eCategory As String, chtAxisTitleValue As String)

Change
. Set Sour ceDat a Sour ce: =Sheet s(cht Sheet) . Range(cht Range),
Pl ot By: =x| Rows
To
. Set Sour ceDat a Sour ce: =cht Range, Pl ot By: =x| Rows

Change the Mai n() subroutine as follows:
Sub Main()
D m cht Range As Range

Set cht Range = Sheets("G aph Datal").Range("Al"). CurrentRegi on
Cal | AddChart Sheet XI Col umC ustered ("New G aph", "G aph Datal",

cht Range, "Monthly Sal es”, "Mnth", "Sales")
End Sub

Add onsheet (“ G- aph Dat al”) datafor January, February and March and run this new Mai n()
subroutine. The graph is automatically created.

51

- v
Shibi P ive lmp iad alaliiny el Snile

: 1)
: * T

Fl i L

= [[]

1 u [

B H -iF

£ 10

T

m

1

12

1

N =

1 i

10] —_— 1
I E

] U

19

-

K

2 -

it TFo=o

e o

h

gl 1 T T

o u e #1 s . s
.

(=}

]

. s
r P Fa wa ek CulmlsE o F R S I R IV PRI T I e s i

In worksheet G aph Dat a2 we have the data seen in the figure above on the left. Suppose that we
need to plot the implied volatility against the strike (figure on the right). Introduce the following

subroutine;

Sub AddChart Sheet XI Li ne(cht Name As String, chtSheet As String,
cht RangeX As String, chtRangeY As String, chtTitle As String,
cht XAxi sTitle As String, cht YAxisTitle As String)

On Error GoTo ErrorHandling

Wth Charts(cht Nane)
. Chart Type = x| Li ne

"Link to source data range
. Set Sour ceDat a Sour ce: =Sheet s(cht Sheet). Range(cht RangeY),
Pl ot By: =x| Col umms
. SeriesCollection(1).XVal ues= _
Sheet s(cht Sheet) . Range(cht RangeX)
.HasTitle = True
.ChartTitle. Text = chtTitle
. Axes(x| Category, xlPrimary).HasTitle = True
. Axes(x| Category, xlPrimary).AxisTitle.Characters. Text = _
cht XAxi sTitle
. Axes(xl Val ue, xlIPrimary).HasTitle = True

52

. Axes(xl Val ue, xlPrimary).AxisTitle.Characters. Text = _
cht YAxi sTitle

End Wth
Exit Sub

Err or Handl i ng:
MsgBox "The referred chart does not exist. A new graph will be _

i ntroduced"
Charts. Add
ActiveChart. Name = cht Nane
Resune
End Sub
Sub Main ()
Cal | AddChart Sheet Xl Li ne(" New G aph2", "G aph Data2", "Al:A8",
"B1:B8", "Volatility Smle", "Strike Price", "lInplied Volatility")
End Sub

Running the Mai n() subroutine produces the required graph. Suppose that we want to automate the
process as well. We need to be able to find the last row in A and B columns. We will use two different
ways with the second being the preferable one. First of all change in AddChar t Sheet Xl Li ne

subroutine;

Change:

Sub AddChart Sheet XI Li ne(cht Nanme As String, chtSheet As String,
cht RangeX As String, chtRangeY As String, chtTitle As String,
cht XAxi sTitle As String, cht YAxisTitle As String)

To

Sub AddChart Sheet XI Li ne_New(cht Name As String, chtSheet As String,
cht RangeX As Range, chtRangeY As Range, chtTitle As String, _
cht XAxi sTitle As String, cht YAxisTitle As String)

53

Change

. Set Sour ceDat a Sour ce: =Sheet s(cht Sheet). Range(cht RangeY), PlotBy:= _
x| Col ums

. SeriesCol | ection(1l).XVal ues = Sheet s(cht Sheet). Range(cht RangeX)

To
. Set Sour ceDat a Sour ce: =cht RangeY, Pl ot By: =x| Col umms
. SeriesColl ection(1).Xval ues = cht RangeX

In this particular case the number of elements in both the implied volatility and the strike price are the
same. That means that the rows used in both column A and column B are the same. To find the number

of columns we can use the Cur r ent Regi on method as follows:

Nunber OF Rows = Sheet s(" G aph Data2").Range("Al"). CurrentRegion. _
Rows. Count

Having found the number of rows we can define the two ranges using Range(Cel | s1, Cel | s2).
More specifically to define Sheet s(" G- aph Dat a2"). Range(“Al: ANoOf Rows”) weuse

Set chtRangeX = Range(Sheets("Graph Data2").Cells(1, 1), Sheets("Graph Data2").
Cells(NumberOfRows, 1))
Based on these the Mai n(') subroutine becomes:

Sub Main()
D m Nunmber O Rows As I nteger, chtRangeX As Range, cht RangeY As Range

"Find the nunber of rows using the CurrentRegion nmethod. You can use
it as you need the same nunber of rows for both x-variable and vy-
‘variabl e
Nunber OF Rows = Sheet s(" G aph Data2"). Range("Al").

Cur r ent Regi on. Rows. Count

'Based on this define the ranges
Set cht RangeX = Range(Sheets(" G aph Data2").Cells(1, 1),

Sheet s(" G aph Data2"). Cel | s(Nunber O Rows, 1))

Set cht RangeY = Range(Sheets(" G aph Data2").Cells(1, 2),
Sheet s(" G aph Data2"). Cel | s(Nunmber O Rows, 2))

Cal | AddChart Sheet Xl Li ne_New(" New G aph2", "G aph Data2", chtRangeX, _
cht RangeY, "Volatility Smle", "Strike Price", "Inplied Volatility")

End Sub

For the second way we will use the End method, which returns a range object that represents the cell at
the end of the region that contains the source range. It is equivalent to pressing END+UP ARROW
(xlUp), END+DOWN ARROW (xIDown), END+LEFT ARROW (xIToLeft), or END+RIGHT
ARROW (xIToRight).

For example to select from A4 to the cell just before the first blank cell in arow on the right we use
Range("A4", Range("A4").End(xl ToR ght)). Sel ect

To select from A1l to the cell above the first blank cell in the column we use
Range(" Al"). End(x| Down) . Sel ect

Therefore, a different implementation for Mai n() would be:

Sub Mai n2()
D m cht RangeX As Range, chtRangeY As Range

'Use the End nethod to select the range fromthe cell you define till
‘the cell just above the first blank cells

" The End nethod returns a range object
Set cht RangeX = Range(Sheets(" G aph Data2").Cells(1, 1), _
Sheet s(" G aph Data2").Cells(1, 1).End(xl Down))

Set cht RangeY = Range(Sheets(" G aph Data2").Cells(1, 2),

55

Sheet s(" G aph Data2").Cells(1, 2).End(xl Down))

Cal | AddChart Sheet Xl Li ne_New(" New G aph2", "G aph Data2", chtRangeX, _
cht RangeY, "Volatility Smle", "Strike Price", "Inplied Volatility")

End Sub

In many cases you may need to export a graph as a G F image file. The following subroutine saves a
chart to the hard disk

Sub ExportingCharts()
Dimcht Nane As String
DmchartFile As String

On Error GoTo ErrorHandling

cht Name = "New G aph2"
chartFile = "D:\ NewChart.gif"

Charts(cht Nane) . Export Fil enane: =chartFile, filternanme:="4G F"

Exit Sub
Error Handl i ng:

MsgBox "The graph does not exist”
End Sub

If you want you can take the saved chart and load it in aworksheet. Add intheExpor ti ngChart s()
Subroutine:

D m Wor kSheet Nane as string (belowD mchartFile As String)

Wor kSheet Nanme = "G aph Dat a2" (belowchartFile = "D:\ NewChart.gif")

Wor kSheet (Wor kSheet Nanme) . Pi ctures. I nsert(chartFil e) (beforeExit Sub)

56

Note that the GIF file will not be automatically updated if the data change, whereas the graph will be
automatically updated, if any datain the defined source ranges that the graph is using, change.
Finally, if you want you can remove the chart sheet using the following command after the export
command:

Charts(cht Nane). Del ete
When you run the subroutine there is an alert message that the graph will be permanently deleted. To
avoid these alert messages insert before the delete action:

Application. D splayAlerts = Fal se
When the subroutine ends Excel automatically sets the Appl i cati on. Di spl ayAl erts back to

true. The application object is very important as it represents Excel itself (we have already used it when

—

& Wi tovatt Veimal Buak Falp =25 we introduced Excel built-in functions). There are a number
f@ of very useful properties that belong to this object. For
M@+ S8 example the Cal cul ationl nterrupt Key property,
Eivinad Wiz | |rides | 8 '!l Application Otvject
*r“:"”"‘”“’”““""_""" e e e wes | which sets or returns the key that interrupts Excel while
T'pPsa o quattion s 3
et performing calculations. It can have one of three values

St bopet b deplig

abort a VBA subroutine that goes into an endless loop. Excel normally calculates each cell as you enter

x| NoKey or value 0, x|l EscKey value 1,

x| AnyKey val ue 2. Note that using this key does not

it and minimizes the number of calculation by recalculating only the cells that were linked to the
changed cell. You can request a recalculation (in the manual mode) of all changed cells by pressing F9,
and Excel will recalculate all the changed cells and all the cells linked to them. This can be a very
resource intensive process that you can interrupt using the x| I nt errupt Key. The following

subroutine clarifies how the Cal cul ati onl nt er r upt Key property can be used.

Sub ApplicationCbject()
Application. Cal cul ati onl nterrupt Key = x| NoKey
MsgBox Application. Cal cul ati onl nterrupt Key

Application. Cal cul ati onl nterrupt Key = x|l EscKey
MsgBox Application. Cal cul ati onl nterrupt Key

Application. Cal cul ati onl nterrupt Key = x|l AnyKey
MsgBox Application. Cal cul ati onl nt errupt Key

End Sub

57

In general, if in your worksheet you have a large number of cells with complex formulas and

calculations, you can speed up your calculations if you change the calculation mode to manual.

x| Manual

Application. Cal cul ation
Application. Cal cul ati on = x|l Automatic

Furthermore, when you run a macro the screen is automatically updated. This can significantly slow
down your calculations. Y ou can turn on/off the screen updating using:

Fal se (turns screen updating off)

Appl i cation. ScreenUpdati ng

Tr ue (turns screen updating on)

Appl i cation. ScreenUpdati ng

Finally, in a number of subroutines dealing with graphs we introduced a new command, the Set

command. Using the Set command we create an object variable. For example the following statement:

Set MyRange = Wor ksheet s(" Sheet 1") . Range(" Al: A8")
MsgBox Str (Application. Wr ksheet Functi on. Aver age(MyRange))

isthe same as;

MsgBox Str(Application. Wrksheet Functi on. Average _
(Worksheet s(" Sheet 1"). Range("Al: A8")))

Using the Set command created a Range object and we can use the MyRange variable instead of the

Wor ksheet s(" Sheet 1") . Range(" Al: A8") statement anywhere in the code. This results in

simpler and easier to understand codes which also run faster.

58

Note

These notes are not meant to be a substitute for a book on Visual Basic for Applications. They are
provided as a quick introduction to VBA, but you should also use books that cover the specific subject
matter. | would suggest the following three books:

Excel 2000 Programming for Dummies, by John Walkenbach
This is the best introduction to Excel programming that | am aware of. Very easy to read and covers all
the basics and much more than what you will probably ever need.

VBA and Macrosfor Microsoft Excel, by Bill Jelen and Tracy Syrstad
This is a cookbook for Excel users. It contains a large number of VBA procedures that deal with

virtually every possible need you might have.
Advanced modeling in finance using Excel and VBA, by Mary Jackson and Mike Staunton

This is not the book to use to learn VBA, but it is a very good book in teaching what the title promises.

The book assumes that you know the underlying theory and focuses on the implementation issues.

59

