
Programming Crystal Reports with ASP.NET 2.0 - Providing Login information for the
CrystalReportViewer control dynamically

(Page 4 of 6)

The CrystalReportViewer control needs to be provided with database logon information to execute

and show the report. At the same time, it is a bit awkward to have the database login
page displayed for every Crystal Report. No end user likes it (and of course, it is dangerous too!).

To solve this problem, we can provide database logon information to the CrystalReportViewer
control dynamically at runtime. The following is the code to achieve the same:

Imports CrystalDecisions.Shared

Partial Class _Default

 Inherits System.Web.UI.Page

 Protected Sub form1_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles form1.Load

 Dim ConnInfo As New ConnectionInfo

 With ConnInfo

 .ServerName = ".sqlexpress"

 .DatabaseName = "Northwind"

 .UserID = "sa"

 .Password = "eXpress2005"

 End With

 For Each cnInfo As TableLogOnInfo In Me.CrystalReportViewer1.LogOnInfo

cnInfo.ConnectionInfo = ConnInfo

 Next

 End Sub

End Class

You must observe that the CrystalDecisions.Shared namespace is added to the top. In the above
code, the database connection information is stored in ConnInfo and is defined as follows:

Dim ConnInfo As New ConnectionInfo

With ConnInfo

 .ServerName = ".sqlexpress"

 .DatabaseName = "Northwind"

 .UserID = "sa"

 .Password = "eXpress2005"

End With

The above connection information is assigned to CrystalReportViewer control using the following
code:

For Each cnInfo As TableLogOnInfo In Me.CrystalReportViewer1.LogOnInfo

 cnInfo.ConnectionInfo = ConnInfo

Next

Programming Crystal Reports with ASP.NET 2.0 - Hiding the toolbar and adding First, Last,
Next and Previous page buttons to the report

(Page 5 of 6)

By default, CrystalReportViewer automatically displays toolbar at the top. Not every end user uses
all features. At the same time, some end users may not like the toolbar.

To hide the toolbar, modify the CrystalReportViewer code (in Source mode) as follows:

<CR:CrystalReportViewer ID="CrystalReportViewer1" runat="server"

AutoDataBind="True" ReuseParameterValuesOnRefresh="True" DisplayToolbar="False"

EnableDatabaseLogonPrompt="False" EnableParameterPrompt="False"

DisplayGroupTree="False"

Height="1064px" ReportSourceID="CrystalReportSource1" Width="928px" />

Add First, Last, Next and Previous page buttons to the web page and modify the code behind with
new events as follows:

Protected Sub btnFirst_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles btnFirst.Click

 Me.CrystalReportViewer1.ShowFirstPage()

End Sub

Protected Sub btnLast_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnLast.Click

 Me.CrystalReportViewer1.ShowLastPage()

End Sub

Protected Sub btnNext_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnNext.Click

 Me.CrystalReportViewer1.ShowNextPage()

End Sub

Protected Sub btnPrevious_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles btnPrevious.Click

 Me.CrystalReportViewer1.ShowPreviousPage()

End Sub

Programming Crystal Reports with ASP.NET 2.0 - Enhancing the report with run-time
binding along with session handling

(Page 6 of 6)

In all of the above sections, the CrystalReportViewer worked with CrystalReportSource. Now, let us

dynamically add a report source to the CrystalReportViewer and bind it at runtime. This gives us the
flexibility to use the same viewer for different reports (showing one at a time).

Add a new web page to the project, add the four buttons (First, Previous, Next and Last) and a
CrystalReportViewer control. Modify the CrystalReportViewer control, so that it looks like the
following:

<CR:CrystalReportViewer ID="CrystalReportViewer1" runat="server"

AutoDataBind="True" ReuseParameterValuesOnRefresh="True" DisplayToolbar="False"

EnableDatabaseLogonPrompt="False" EnableParameterPrompt="False"

DisplayGroupTree="False"

Height="1064px" Width="928px" />

In the code-behind, add the following at the top:

Imports CrystalDecisions.Shared

Imports CrystalDecisions.CrystalReports.Engine

Add a new method as follows:

Private Sub BindReport()

 If Session("Rep") Is Nothing Then

 Dim ConnInfo As New ConnectionInfo

 With ConnInfo

 .ServerName = ".sqlexpress"

 .DatabaseName = "Northwind"

 .UserID = "sa"

 .Password = "eXpress2005"

 End With

 Dim rep As New ReportDocument

 rep.Load(Server.MapPath("SampleRpt01.rpt"))

 Me.CrystalReportViewer1.ReportSource = rep

 Dim RepTbls As Tables = rep.Database.Tables

 For Each RepTbl As Table In RepTbls

 Dim RepTblLogonInfo As TableLogOnInfo = RepTbl.LogOnInfo

 RepTblLogonInfo.ConnectionInfo = ConnInfo

 RepTbl.ApplyLogOnInfo(RepTblLogonInfo)

 Next

 Session("Rep") = rep

 End If

 Me.CrystalReportViewer1.ReportSource = Session("Rep")

 Me.CrystalReportViewer1.DataBind()

End Sub

Add the following code to bind the report for every button click and also during the page load event:

Protected Sub btnFirst_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles btnFirst.Click

 BindReport()

 Me.CrystalReportViewer1.ShowFirstPage()

End Sub

Protected Sub btnLast_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnLast.Click

 BindReport()

 Me.CrystalReportViewer1.ShowLastPage()

End Sub

Protected Sub btnNext_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnNext.Click

 BindReport()

 Me.CrystalReportViewer1.ShowNextPage()

End Sub

Protected Sub btnPrev_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnPrev.Click

 BindReport()

 Me.CrystalReportViewer1.ShowPreviousPage()

End Sub

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 If Not IsPostBack Then

 BindReport()

 End If

End Sub

I hope you enjoyed the article and any suggestions, bugs, errors, enhancements etc. are highly
appreciated at http://jagchat.spaces.live.com

Crystal Reports is the standard reporting tool for Visual Studio .NET used to display

data of presentation quality. You can display multiple-level totals, charts to analyze

data, and much more in Crystal Reports. Creating a Crystal Report requires minimal

coding since it is created in Designer interface. It is available as an integrated

feature of Microsoft Visual Studio .NET, Borland Delphi, and C#Builder.

Advantages of Crystal Reports

Some of the major advantages of using Crystal Reports are:

1. Rapid report development since the designer interface would ease the coding work
for the programmer.

2. Can extend it to complicated reports with interactive charts and enhance the
understanding of the business model

3. Exposes a report object model, can interact with other controls on the ASP.NET
Web form

4. Can programmatically export the reports into widely used formats

like .pdf, .doc, .xls, .html and .rtf

Implementation Models

Crystal Reports need database drivers to connect to the data source for accessing

data. Crystal Reports in .net support two methods to access data from a data source:

The Pull Method

When this model is used to access data from the data source, the database driver

directly retrieves the data from the data source. This model does not require the

developer to write code for creating a connection and retrieving data from the data

source. It is the Crystal report that manages the SQL commands for connecting by

using the specified driver.

The Push Method

When this model is used to access data from data source, the developer writes the

code to connect to the data source and retrieve data. The data from the data source

is cached in dataset and multiple crystal reports accesses data from the dataset. The

performance can be optimized in this manner by using connection sharing and

manually limiting the number of records that are passed on to the report.

Crystal Reports Types

Crystal Report Designer can load reports that are included into the project as well as

those that are independent of the project.

Strongly-typed Report

When you add a report file into the project, it becomes a "strongly-typed" report. In

this case, you will have the advantage of directly creating an instance of the report

object, which could reduce a few lines of code, and cache it to improve performance.

The related .vb file, which is hidden, can be viewed using the editor's "show all files"

icon in the Solution Explorer.

Un-Typed Report

Those reports that are not included into the project are "un-typed" reports. In this

case, you will have to create an instance of the Crystal Report Engine's

"ReportDocument" object and manually load the report into it.

Creating Crystal Reports

You can create a Crystal Report by using three methods:

1. Manually i.e. from a blank document

2. Using Standard Report Expert

3. From an existing report

Using Pull Method

Creating Crystal Reports Manually.

We would use the following steps to implement Crystal Reports using the Pull Model:

1. Create the .rpt file (from scratch) and set the necessary database connections
using the Crystal Report Designer interface.

2. Place a CrystalReportViewer control from the toolbox on the .aspx page and
set its properties to point to the .rpt file that we created in the previous step.

3. Call the databind method from your code behind page.

I. Steps to create the report i.e. the .rpt file

1) Add a new Crystal Report to the web form by right clicking on the "Solution

Explorer", selecting "Add" --> "Add New Item" --> "Crystal Report".

2) On the "Crystal Report Gallery" pop up, select the "As a Blank Report" radio

button and click "ok".

3) This should open up the Report File in the Crystal Report Designer.

4) Right click on the "Details Section" of the report, and select "Database" ->

"Add/Remove Database".

5) In the "Database Expert" pop up window, expand the "OLE DB (ADO)" option by

clicking the "+" sign, which should bring up another "OLE DB (ADO)" pop up.

6) In the "OLE DB (ADO)" pop up, Select "Microsoft OLE DB Provider for SQL Server"

and click Next.

7) Specify the connection information.

8) Click "Next" and then click "Finish"

9) Now you should be able to see the Database Expert showing the table that have
been selected

10) Expand the "Pubs" database, expand the "Tables", select the "Stores" table and
click on ">" to include it into the "Selected Tables" section.

Note: If you add more than one table in the database Expert and the added tables

have matching fields, when you click the OK button after adding the tables, the links

between the added tables is displayed under the Links tab. You can remove the link

by clicking the Clear Links button.

11) Now the Field Explorer should show you the selected table and its fields under
the "Database Fields" section, in the left window.

12) Drag and drop the required fields into the "Details" section of the report. The

field names would automatically appear in the "Page Header" section of the report. If

you want to modify the header text then right click on the text of the "Page Header"

section, select "Edit Text Object" option and edit it.

13) Save it and we are through.

II. Creating a Crystal Report Viewer Control

1) Drag and drop the "Crystal Report Viewer>" from the web forms tool box on to
the .aspx page

2) Open the properties window for the Crystal Report Viewer control.

3) Click on the [...] next to the "Data Binding" Property and bring up the data

binding pop-up window

4) Select "Report Source".

5) Select the "Custom Binding Expression" radio button, on the right side bottom of

the window and specify the sample .rpt filename and path as shown in the fig.

6) You should be able to see the Crystal Report Viewer showing you a preview of

actual report file using some dummy data and this completes the inserting of the
Crystal Report Viewer controls and setting its properties.

Note: In the previous example, the CrystalReportViewer control was able to directly

load the actual data during design time itself as the report was saved with the data.

In this case, it will not display the data during design time as it not saved with the

data - instead it will show up with dummy data during design time and will fetch the
proper data only at run time.

7) Call the Databind method on the Page Load Event of the Code Behind file

(.aspx.vb). Build and run your .aspx page. The output would look like this.

Using a PUSH model

1. Create a Dataset during design time.

2. Create the .rpt file (from scratch) and make it point to the Dataset that we

created in the previous step.

3. Place a CrystalReportViewer control on the .aspx page and set its properties to
point to the .rpt file that we created in the previous step.

4. In your code behind page, write the subroutine to make the connections to the
database and populate the dataset that we created previously in step one.

5. Call the Databind method from your code behind page.

I. Creating a Dataset during Design Time to Define the Fields of
the Reports

1) Right click on "Solution Explorer", select "Add" --> select "Add New Item" -->

Select "DataSet"

2) Drag and drop the "Stores" table (within the PUBS database) from the "SQL

Server" Item under "Server Explorer".

3) This should create a definition of the "Stores" table within the Dataset

The .xsd file created this way contains only the field definitions without any data in

it. It is up to the developer to create the connection to the database, populate the

dataset and feed it to the Crystal Report.

II. Creating the .rpt File

4) Create the report file using the steps mentioned previously. The only difference

here is that instead of connecting to the Database thru Crystal Report to get to the
Table, we would be using our DataSet that we just created.

5) After creating the .rpt file, right click on the "Details" section of the Report file,
select "Add/Remove Database"

6) In the "Database Expert" window, expand "Project Data" (instead of "OLE DB"

that was selected in the case of the PULL Model), expand "ADO.NET DataSet",
"DataSet1", and select the "Stores"table.

7) Include the "Stores" table into the "Selected Tables" section by clicking on ">"

and then Click "ok"

8) Follow the remaining steps to create the report layout as mentioned previously in

the PULL Model to complete the .rpt Report file creation

III. Creating a CrystalReportViewer Control

9) Follow the steps mentioned previously in the PULL Model to create a Crystal
Report Viewer control and set its properties.

Code Behind Page Modifications: 10) Call this subroutine in your page load event:

 Sub BindReport()

 Dim myConnection As New SqlClient.SqlConnection()

 myConnection.ConnectionString = "server=

(local)\NetSDK;database=pubs;Trusted_Connection=yes"

 Dim MyCommand As New SqlClient.SqlCommand()

 MyCommand.Connection = myConnection

 MyCommand.CommandText = "Select * from Stores"

 MyCommand.CommandType = CommandType.Text

 Dim MyDA As New SqlClient.SqlDataAdapter()

 MyDA.SelectCommand = MyCommand

 Dim myDS As New Dataset1()

 'This is our DataSet created at Design Time

 MyDA.Fill(myDS, "Stores")

 'You have to use the same name as that of your Dataset that you created

during design time

 Dim oRpt As New CrystalReport1()

 ' This is the Crystal Report file created at Design Time

 oRpt.SetDataSource(myDS)

 ' Set the SetDataSource property of the Report to the Dataset

 CrystalReportViewer1.ReportSource = oRpt

 ' Set the Crystal Report Viewer's property to the oRpt Report object that we

created

 End Sub

Note: In the above code, you would notice that the object oRpt is an instance of the

"Strongly Typed" Report file. If we were to use an "UnTyped" Report then we would

have to use a ReportDocument object and manually load the report file into it.

Enhancing Crystal Reports

Accessing filtered data through Crystal reports

Perform the following steps for the same.

1. Generate a dataset that contains data according to your selection criteria, say
"where (cost>1000)".

2. Create the Crystal Report manually. It would look like this.

3. Right Click Group Name fields in the field Explorer window and select insert Group

from the shortcut menu. Select the relevant field name from the first list box as

shown.

The group name field is created, since the data needs to be grouped on the basis of
the cat id say.

4. A plus sign is added in front of Group Name Filed in the field explorer window. The

Group Name Field needs to be added to the Group Header section of the Crystal

Report. Notice this is done automatically.

5. Right Click the running total field and select new. Fill the required values

through > and the drop down list.

6. Since the count of number of categories is to be displayed for the total categories,

drag RTotal0 to the footer of the report.

Create a formula

Suppose if the report required some Calculations too. Perform the following steps:

1. Right Click the formula Fields in the field explorer window and select new. Enter

any relevant name, say percentage.

2. A formula can be created by using the three panes in the dialog box. The first

pane contains all the crystal report fields, the second contains all the functions, such

as Avg, Sin, Sum etc and the third contains operators such as arithmetic, conversion
and comparison operators.

3. Double click any relevant field name from the forst pane, say there's some field

like advance from some CustOrder table. Then expand Arithmetic from the third
pane and double click Divide operator.

4. Double click another field name from the first which you want to use as divisor of
the first field name already selected say it is CustOrder.Cost.

5. Double Click the Multiply from third pane and the type 100.

6. The formula would appear as {CustOrder.Advance}/{ CustOrder.Cost} * 100.

7. Save the formula and close Formula Editor:@Percentage dialog box.

8. Insert the percentage formula field in the details pane.

9. Host the Crystal report.

Exporting Crystal reports

When using Crystal Reports in a Web Form, the CrystalReportViewer control does not

have the export or the print buttons unlike the one in Windows Form. Although, we

can achieve export and print functionality through coding. If we export to PDF
format, Acrobat can handle the printing for us, as well as saving a copy of the report.

You can opt to export your report file into one of the following formats:

o PDF (Portable Document Format)

o DOC (MS Word Document)

o XLS (MS Excel Spreadsheet)

o HTML (Hyper Text Markup Language - 3.2 or 4.0 compliant)

o RTF (Rich Text Format)

To accomplish this you could place a button on your page to trigger the export
functionality.

When using Crystal Reports in ASP.NET in a Web Form, the CrystalReportViewer

control does not have the export or the print buttons like the one in Windows Form.

We can still achieve some degree of export and print functionality by writing our own

code to handle exporting. If we export to PDF format, Acrobat can be used to handle

the printing for us and saving a copy of the report.

Exporting a Report File Created using the PULL Model

Here the Crystal Report takes care of connecting to the database and fetching the

required records, so you would only have to use the below given code in the Event of
the button.

 Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

 Dim myReport As CrystalReport1 = New CrystalReport1()

 'Note : we are creating an instance of the strongly-typed Crystal Report file

here.

 Dim DiskOpts As CrystalDecisions.Shared.DiskFileDestinationOptions = New

CrystalDecisions.Shared.DiskFileDestinationOptions

 myReport.ExportOptions.ExportDestinationType =

CrystalDecisions.[Shared].ExportDestinationType.DiskFile

 ' You also have the option to export the report to other sources

 ' like Microsoft Exchange, MAPI, etc.

 myReport.ExportOptions.ExportFormatType =

CrystalDecisions.[Shared].ExportFormatType.PortableDocFormat

 'Here we are exporting the report to a .pdf format. You can

 ' also choose any of the other formats specified above.

 DiskOpts.DiskFileName = "c:\Output.pdf"

 'If you do not specify the exact path here (i.e. including

 ' the drive and Directory),

 'then you would find your output file landing up in the

 'c:\WinNT\System32 directory - atleast in case of a

 ' Windows 2000 System

 myReport.ExportOptions.DestinationOptions = DiskOpts

 'The Reports Export Options does not have a filename property

 'that can be directly set. Instead, you will have to use

 'the DiskFileDestinationOptions object and set its DiskFileName

 'property to the file name (including the path) of your choice.

 'Then you would set the Report Export Options

 'DestinationOptions property to point to the

 'DiskFileDestinationOption object.

 myReport.Export()

 'This statement exports the report based on the previously set properties.

 End Sub

Exporting a Report File Created Using the PUSH Model

Using Push Model, the first step would be to manually create connections and

populate the Dataset, and set the Report's "SetDataSource" property to the required

Dataset (in the same manner as shown in the Push Model example before). The next

step would be to call the above given Export.

Crystal Reports alternatives

Many people found Crystal Reports hard to learn and use and they are seeking for

simpler alternatives. I suggest you to try Stimulsoft reports especially if you work

with complex reports. Stimulsoft is much easier to use but also easier to deploy with

your application since you deploy only one more .NET assembly, written in C#. In

some areas (designer, working with different data sources, subreports) it is even
better than Crystal.

Introduction

This article explains how to use PUSH method for drawing reports. It will also explain how to use user

DataSets in an ASP.NET page for reports. There are two types of methods for drawing the reports:

1. PULL method- the crystal report makes connection with the database, brings

the fields data and draws the report.

2. PUSH method- we create the DataSet, choose fields of the DataSet as

report fields and then push it to the crystal report. Here I am going to explain

the PUSH method only.

Steps

1. Create a new ASP.NET project.

http://www.stimulsoft/

2. Insert new item as DataSet.

3. Add elements to the DataSet which you want on the report. Save All, then

right click on the DataSet filename in the solution explorer and select

command "Build and browse".

4. Then add a new item to the project as �Crystal report� and insert a blank

report.

5. In the server explorer, right click database field and select database expert

and expand the project data and select DataSet in the table selector and

press OK.

6. Then drag the fields from the database fields of server explorer in the detail

section of the report. Arrange the fields as you want.

From the toolbox, add crystal report viewer control on to the page. That will add this variable:

Collapse Copy Code

protected CrystalDecisions.Web.CrystalReportViewer CrystalReportViewer1;

7. Populate the DataSet. Set the report DataSource and

CrystalReportViewer report source.

Collapse Copy Code

private void Page_Load(object sender, System.EventArgs e)

{

CrystalReport1 report=new CrystalReport1();

CrystalReportViewer1.Visible=true;

DataSet ds=new DataSet("Account");//give same name as on

//dataset1 table header

DataTable table=new DataTable("Account");//give same name as on

//dataset1 table header

http://www.codeproject.com/KB/aspnet/crystal_report.aspx##
http://www.codeproject.com/KB/aspnet/crystal_report.aspx##

table.Columns.Add("Fname",typeof(System.String));

table.Columns.Add("Lname",typeof(System.String));

table.Columns.Add("Salary",typeof(System.String));

DataRow row=table.NewRow();

row["Fname"]="Mathew";

row["Lname"]="Hayden";

row["Salary"]="5000$";

// add to table

table.Rows.Add(row);

ds.Tables.Add(table);

// set report's dataset

report.SetDataSource(ds);

// set report source

CrystalReportViewer1.ReportSource =report;

}

The output will be as follows...

Points to be careful of

1. Give same names on Dataset and the table element name of inserted

DataSet.

2. As and when you modify DataSet, build it again and log off the current

connections in report. Set the DataSource location again pointing to new

DataSet, otherwise database fields of the report will not take the change.

3. Setting up DataBind properties of the report viewer can be avoided. It can

be done at runtime

Introduction

The main purpose of this document is to display the report without any error. I was bugged by the "Logon

Failed Error" for several days, and now I finally have a code that displays report without any error. The

code also Exports the report into .pdf, .xls, .rtf and .doc formats. It also prints the report directly to the

printer.

Using the code

Unzip the crCodes.Zip and then run the crCode.vbproj project file.

--- OR ----

Just insert the Webform1.aspx file into your existing project, then copy the crystalreport2.rpt file into your

project, and start using the code.

The entire source code of Webform1.aspx.vb is as follows. Simply design the form as shown in the image

and place the Crystal Report Viewer control, and leave the name of controls to default:

Collapse Copy Code

Imports CrystalDecisions.Shared

Imports System.IO

Public Class WebForm1

 Inherits System.Web.UI.Page

 Dim crReportDocument As CrystalReport2 = New CrystalReport2

http://www.codeproject.com/KB/aspnet/crCode.aspx##

 Protected WithEvents DropDownList1 As

System.Web.UI.WebControls.DropDownList

 Protected WithEvents Button1 As System.Web.UI.WebControls.Button

 Protected WithEvents Label1 As System.Web.UI.WebControls.Label

 Protected WithEvents CrystalReportViewer1 As _

 CrystalDecisions.Web.CrystalReportViewer

 Protected WithEvents Button2 As System.Web.UI.WebControls.Button

#Region " Web Form Designer Generated Code "

 'This call is required by the Web Form Designer.

 <System.Diagnostics.DebuggerStepThrough()>

 Private Sub InitializeComponent()

 End Sub

 'NOTE: The following placeholder declaration is required

 'by the Web Form Designer.

 'Do not delete or move it.

 Private designerPlaceholderDeclaration As System.Object

 Private Sub Page_Init(ByVal sender As System.Object,_

 ByVal e As System.EventArgs) Handles MyBase.Init

 'CODEGEN: This method call is required by the Web Form Designer

 'Do not modify it using the code editor.

 InitializeComponent()

 ' this is the most IMPORTANT line of code

 ' if this line is not writen the

 ' " LOGON FAILED" error starts displaying

 crReportDocument.SetDatabaseLogon("username",_

 "password", "sql-server", "database")

 ' the Above line works even if only username

 ' and password is supplied as below

 'crReportDocument.SetDatabaseLogon("username",_

 "password") ', "sql-server", "database")

 ' this will hide the group tree

 CrystalReportViewer1.DisplayGroupTree = False

 CrystalReportViewer1.ReportSource = crReportDocument

 ' IF REPORT Uses Parameter's

 ' Pass Paramaters As Follows

 crReportDocument.SetParameterValue("city", "Mumbai")

 ' city = Parameter Name

 ' Mumbai = Parameter Value

 ' :-) thats ALL your Report Will Be displayed

 ' now Without Logon Failed Error

 With DropDownList1.Items

 .Add("Rich Text (RTF)")

 .Add("Portable Document (PDF)")

 .Add("MS Word (DOC)")

 .Add("MS Excel (XLS)")

 End With

 End Sub

#End Region

 Private Sub Page_Load(ByVal sender As System.Object,_

 ByVal e As System.EventArgs) Handles MyBase.Load

 'Put user code to initialize the page here

 End Sub

 Sub ExportReport()

 Dim oStream As New MemoryStream ' // using System.IO

 'this contains the value of the selected export format.

 Select Case DropDownList1.SelectedItem.Text

 Case "Rich Text (RTF)"

 '---

 oStream = crReportDocument.ExportToStream(_

 CrystalDecisions.Shared.ExportFormatType.WordForWindows)

 Response.Clear()

 Response.Buffer = True

 Response.ContentType = "application/rtf"

 '--

 '--

 Case "Portable Document (PDF)"

 oStream = crReportDocument.ExportToStream(_

 CrystalDecisions.Shared.ExportFormatType.PortableDocFormat)

 Response.Clear()

 Response.Buffer = True

 Response.ContentType = "application/pdf"

 '--

 '--

 Case "MS Word (DOC)"

 oStream = crReportDocument.ExportToStream(_

 CrystalDecisions.Shared.ExportFormatType.WordForWindows)

 Response.Clear()

 Response.Buffer = True

 Response.ContentType = "application/doc"

 '--

-

 '--

-

 Case "MS Excel (XLS)"

 oStream = crReportDocument.ExportToStream(_

 CrystalDecisions.Shared.ExportFormatType.Excel)

 Response.Clear()

 Response.Buffer = True

 Response.ContentType = "application/vnd.ms-excel"

 '--

-

 End Select 'export format

 Try

 Response.BinaryWrite(oStream.ToArray())

 Response.End()

 Catch err As Exception

 Response.Write("< BR >")

 Response.Write(err.Message.ToString)

 End Try

 End Sub

 Private Sub Button2_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button2.Click

 ExportReport()

 End Sub

 Private Sub Button1_Click(ByVal sender As System.Object, _

 ByVal e As System.EventArgs) Handles Button1.Click

 crReportDocument.SetDatabaseLogon("USER", _

 "PASSWORD", "SQL-SERVER", "DATABASE")

 crReportDocument.PrintToPrinter(1, False, 0, 0)

 End Sub

End Class

Why is the "Logon Failed Error" generated

The "Logon Failed" error is generated basically because, when the report is being displayed it tries to log

on to the database server. Even though you have selected the server while designing, the report still needs

the server name while displaying or exporting or printing.

The code line that removes the error is:

Collapse Copy Code

crReportDocument.SetDatabaseLogon("USER", "PASSWORD", "SQL-SERVER", "DATABASE")

Or can also be used as:

Collapse Copy Code

crReportDocument.SetDatabaseLogon("USER", "PASSWORD")

Abstract
One of the most common questions regarding Crystal Reports in ASP.NET is how to

automatically print a Crystal Report. Because the Internet is a stateless,

disconnected medium, automatic printing of a Crystal Report using Web Forms

cannot be accomplished as easily as when using Windows Forms. This article

examines two options for automatic printing of a Crystal Report using ASP.NET and

compares one alternative method where the user must initiate printing.

Article Contents:

 Introduction
 Using Server-Side ReportDocument.PrintToPrinter Method
 Client Side JavaScript: window.Print
 Export to PDF
 Conclusion and References

Introduction

[Back To Top]

Unlike the Windows Forms CrystalReportViewer toolbar, the web-based

http://www.codeproject.com/KB/aspnet/crCode.aspx##
http://www.codeproject.com/KB/aspnet/crCode.aspx##
http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#Page1#Page1
http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#Page2#Page2
http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#Page3#Page3
http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#Page4#Page4
http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#Page5#Page5
http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#top#top

CrystalReportViewer toolbar does not include a print button. For reports that are

directly rendered as HTML, the user can simply use the browser's print button. For

reports rendered as PDF or Excel, the user can use the print functionality in either

the Acrobat Reader or Excel to print the report.

Most users can figure out how to print the report, but some still need a little help,

and in some cases, clients request this as part of their application specs. In this

article, we'll review two methods for automatically printing a Crystal Report using the

web-based CrystalReportViewer: the server side ReportDoucment.PrintToPrinter

method, and a small client-side JavaScript that uses the window.print method. We'll

also discuss rendering a report in PDF and allowing the user to print that document

as an alternative to the two other methods. Because of the disconnected nature of

web client applications, and security considerations, there isn't a perfect way to

make every web-based Crystal Report automatically print. But, under certain

conditions, we can provide this functionality in user-friendly ways.

Using Server-Side ReportDocument.PrintToPrinter Method

[Back To Top]

This server-based method is documented in the Visual Studio help files. Open the

Help Index, and enter PrintToPrinter in the "Look for:" box. The syntax for this
method is:

 Report.PrintToPrinter(<copies as int>, <collated as True/False>, <startpage as

int>, <endpage as int>)

'Collated' in this context has nothing to do with database collation. Some advanced

printers (like copier/printers) will sort each document into its own shelf. Not every

printer supports this functionality, so check the printer dialog before setting to

true. To print the entire report, set startpage and endpage each to 0.

An example in use might look like

MyReport.PrintToPrinter(1,False,0,0)

One limitation of this method is that a printer name must be specified. You can set

the default printer at design time in the report, and you can change the printer name

at run time by setting the ReportDocument.PrintOptions.PrinterName property (the
PrintOptions are also where you can assign page margins, portrait/landscape,

etc.). Keep in mind that this method prints from the server itself, not from the client

machine. This means that any printer you wish to use must be accessible from the

server. You cannot print to a client's desktop printer using this method unless that
printer is shared on the network and mapped to the server.

If your LAN has networked printers, you can make some guesses as to which printer

to assign as the default in each report. For instance, if the Accounting Department

has a departmental printer, that would be a good choice to use for the default in an

accounting report. You can provide users the option to choose a networked printer

by enumerating the printers mapped to the server and populating a drop-down

list. The PrinterSettings.InstalledPrinters property returns a collection of installed printers,

http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#top#top

and can be bound to a DropDownList as below.

DropDownList1.DataSource = System.Drawing.Printing.PrinterSettings.InstalledPrinters

DropDownList1.DataBind()

Again, since this code is executing on the server, this will only enumerate the

printers on the server mapped to the System user. If a printer does not appear in

the drop-down list, you need to ensure that it is properly mapped to the System user

(see below).

All printers and the .NET Framework need to be mapped to the System user in order

for this to work. This is not a trivial task to configure. Printers can be mapped to

the system account only by editing the registry, and since the Framework is mapped

to the System user, you may need to reassign security permissions on files and

folders. This process is outlined in the "Printing Web-Based Reports From the

Server" article in the VS .NET help files (look up "Crystal Reports, printing" in the VS

help index to link to the articles.) and also in Reference 3 (at the end of this

article). The process is a little too intricate to cover here (leave comments if help is

needed, and I can amend the article later).

Client Side JavaScript: window.Print

[Back To Top]

A second option you have uses the JavaScript window.Print method. Adding this

method to the onLoad event of the BODY tag will trigger the browser to print the

current page. Adding this method to a button.onClick event can also be done, just

make sure you are using a standard HTML button and not an ASP.NET button control

(if you do use an ASP.NET button control, you'll cause a postback, not execute the

JavaScript). In a future article, we'll look at adding a print button to a
custom CrystalReportViewer toolbar that uses this method to print a report.

The window.print method does cause a printer selection window to open. The user will

have a chance to select the printer they want to use and must click the "Print" button

to start printing. There is no way to disable the prompt with JavaScript, so for

Netscape and other browsers, users will have to see the dialog. However, in some

versions of Internet Explorer, a call to the ExecWB OLE method from a second

browser object can be used to circumvent the print dialog (note: spaces have been

added to OBJECT declarations to display the code properly in this article--you should
remove the spaces to use the code):

function PrintWindow(){

if (navigator.appName == "Microsoft Internet Explorer") {

 var PrintCommand = '< O B J E C T ID="PrintCommandObject" WIDTH=0 HEIGHT=0 ';

PrintCommand += 'CLASSID="CLSID:8856F961-340A-11D0-A96B-00C04FD705A2"></O B J E C

T>';

 document.body.insertAdjacentHTML('beforeEnd', PrintCommand);

 PrintCommandObject.ExecWB(6, -1); PrintCommandObject.outerHTML = ""; }

else { window.print();} }

The ExecWB method requires IE 5.5 or higher to function. This script essentially

creates another browser object of size 0 at the end of the current page. This new
browser object then issues a print command without prompting the user.

http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#top#top

A limitation of the window.Print method is that only the current window will print. In

order to print all pages, you must set the SeparatePages property of your
CrystalReportViewer to False when the report is rendered. For example:

CrystalReportViewer1.SeparatePages=False

CrystalReportViewer1.ReportSource=MyReport

Setting SeparatePages to False will cause the entire report to be shown in the current

window. The user will not have to page through the report, but a lot of scrolling may

be required. Page breaks will appear wherever the browser puts them--there is no

way to control where page breaks occur--and the browser may wrap the layout in

order for it to fit the printer page dimensions. Your formatting may be completely

lost using the window.Print method if your report is wider than the browser window.

The basic window.Print method also prints everything in the window, including

whatever form inputs you have added, and the CrystalReportViewer toolbar. If you

have set SeparatePages= False, you probably don't need the toolbar displayed.

If you do not have any other inputs or buttons on your report page, turning off the

toolbar may be all you need to do. If you did add inputs or other buttons, having

them show on the printout will not look very professional. To make the report appear

a little more professional, we can enclose the report output in a DIV (by enclosing

the CrystalReportViewer in a DIV or Panel) and then print just that DIV using a

JavaScript function that opens a new window and includes only the information

inside the DIV. In a future article, we'll look at "skinning" the toolbar so you can

have a toolbar and this printing functionality at the same time. The basic code is

shown below (source: Reference 2; note that spaces have been added in some tag

names for them to display in this article - you should remove the spaces to use the
code):

var gAutoPrint = true; // Flag for whether or not to automatically call the print

function

function printSpecial() {

if (document.getElementById != null) {

var html = '\n\n';

if (document.getElementsByTagName != null) {

var headTags = document.getElementsByTagName("head");

if (headTags.length > 0)

html += headTags[0].innerHTML;

}

html += '\n< / H E A D >\n< B O D Y>\n';

var printReadyElem = document.getElementById("printReady");

if (printReadyElem != null) {

html += printReadyElem.innerHTML; }

else {

alert("Could not find the printReady section in the HTML"); return; }

html += '\n</ B O D Y >\n</ H T M L >';

var printWin = window.open("","printSpecial");

printWin.document.open();

printWin.document.write(html);

printWin.document.close();

if (gAutoPrint) printWin.print();

}

else {

alert("Sorry, the print ready feature is only available in modern browsers.");

} }

If you want to get really fancy, you can combine the two methods so that a report

window will automatically open and print in IE browsers or open and prompt for

printing in non-IE browsers. The combined code is shown below and has been tested

in both IE 6.0 and FireFox 0.9 (note: spaces have been inserted into tag names so

code will display properly--you should remove the spaces to use the code):

var gAutoPrint = true; // Flag for whether or not to automatically call the print

function

function printSpecial() {

if (document.getElementById != null) {

var html = '< H T M L >\n< H E A D >\n';

if (document.getElementsByTagName != null) {

var headTags = document.getElementsByTagName("head");

if (headTags.length > 0) html += headTags[0].innerHTML;

}

if (gAutoPrint) {

if (navigator.appName == "Microsoft Internet Explorer") {

html += '\n</ H E A D >\n<'

html += 'B O D Y onLoad="PrintCommandObject.ExecWB(6, -1);">\n';

}

else {

html += '\n</ H E A D >\n< B O D Y >\n';

} }

else {

html += '\n</ H E A D >\n< B O D Y >\n';

}

var printReadyElem = document.getElementById("printReady");

if (printReadyElem != null) {

html += printReadyElem.innerHTML;

}

else {

alert("Could not find the printReady section in the HTML");

return;

}

if (gAutoPrint) {

if (navigator.appName == "Microsoft Internet Explorer") {

html += '< O B J E C T ID="PrintCommandObject" WIDTH=0 HEIGHT=0 '

html += 'CLASSID="CLSID:8856F961-340A-11D0-A96B-00C04FD705A2"></ O B J E C T >\n</ B

O D Y >\n</ H T M L >'; }

else {

html += '\n</ B O D Y >\n</ H T M L >';

} }

else {

html += '\n</ B O D Y >\n</ H T M L >';

}

var printWin = window.open("","printSpecial");

printWin.document.open();

printWin.document.write(html);

printWin.document.close();

if (gAutoPrint) {

if (navigator.appName != "Microsoft Internet Explorer") {

printWin.print();

}}}

else {

alert("Sorry, the print ready feature is only available in modern browsers.");

}}

Export to PDF

[Back To Top]

http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#top#top

As you may have learned from experience, the output from a CrystalReportViewer

does not always look like you had intended. That is because the output is rendered

as HTML and sent to the browser that then generates the web page. In order to get

the exact formatting you want, you should export your reports as PDF

documents. One advantage of doing so is that most users know how to print from

the Acrobat Reader. Also, users can save reports and send them as e-mail
attachments.

One downside to this option is that users must start the printing process themselves,

which does not solve the problem of minimizing user interaction. Unfortunately,

since a PDF is not a page rendered by the browser, none of the JavaScript tricks

above will work for us. There is no simple way to automatically print an exported

Crystal Report in PDF format.

Conclusion and References

[Back To Top]

If your report is fairly simple, you can use the client-side JavaScript window.Print

command and a little scripting magic to come up with a satisfactory

solution. Complex reports generated using the JavaScript window.Print may lose the

formatting you desired, and, in non-IE browsers, some user intervention is required

to answer the Printer Setup dialog.

In a controlled networked environment, the PrintToPrinter() method may provide all the

functionality you need. Networked printers can be enumerated in a drop-down list,

and the the user can choose which printer to use. Most of the limitations have to do

with the Internet being a disconnected medium and browser security, which also

limits intranet functionality. Using the PrintToPrinter method requires editing the

registry and remapping the .NET Framework user context and limits printing to
networked printers.

Printing Crystal Reports is not a process that can be easily automated in a very

satisfactory manner. There is no single magic solution to fit every need; you will

need to see which option works best in each situation. Future versions of Crystal

Reports .NET may contain additional functionality, and there are additional tricks we

can use in Crystal Reports 10 that will be looked at in a future article.

A web developer may or may not be aware of crystal report in depth as compared to

desktop application developer.

Couple of months back I was suppose to access crystal reports in asp.net, but I

found many problems while working with crystal report using crystalreportviewer in

asp.net. I am writing this application for web-developers who want to access crystal

reports in asp.net by using multiple tables or views etc. This application might help
them and save their development time.

List of problems which I came across while accessing crystal reports in asp.net

http://aspalliance.com/509_Automatically_Printing_Crystal_Reports_in_ASPNET.all#top#top

 Logon failure

Refer to following URL

http://support.businessobjects.com/library/kbase

/articles/c2010371.asp

 DLL not found

On a development machine if crystal report is not installed then you might get

above error

 Fail to render page

Basically there could be two possible ways for the solution

1. This error can occur due to the unsuppressed report header, removing

space between the header might solve the problem.

2. This error can be solved by assigning permission to ASPNET user by

default. ASPNET user does not have permission on windows XP and XP

professional machine. To explain in detail it creates crystal report

image in the local machine's temp directory or in the same directory

where application is residing, due to security issue or permission

problem. ASP.net unable to render image created in the memory and

hence error occur.

Refer to following URL for the detail information

http://support.businessobjects.com/library/kbase/articles/c2013414.asp

http://support.businessobjects.com/library/kbase/articles/c2014843.asp
http://support.businessobjects.com/library/kbase/articles/c2014618.asp

Merge Modules

Once build is ready and wanted to deployed it on the development server. You

should add merge module in the build. This is important because you never know

that crystal report is installed on the development machine and it is not possible for

you to provide crystal report to the client. You can include following modules in the
build and it will take care of all the further issues of deployment on the server.

 Crystal_managed2003.msm

 Crystal_database_Access2003.msm

 Crystal_datavase_Access2003.msm
 Crystal_regwiz2003.msm

-- I have used Northwind database of SQL-SERVER
--View Categorywise_products on product and categories table

create view ProductsList AS

SELECT Categories.CategoryName, Products.ProductName, Products.QuantityPerUnit,

Products.UnitsInStock, Products.Discontinued

FROM Categories INNER JOIN Products ON Categories.CategoryID =

Products.CategoryID
WHERE Products.Discontinued <> 1

To create a dataset object from a database

Create a new schema file in the project:

http://support.businessobjects.com/library/kbase/articles/c2010371.asp
http://support.businessobjects.com/library/kbase/articles/c2010371.asp
http://support.businessobjects.com/library/kbase/articles/c2013414.asp
http://support.businessobjects.com/library/kbase/articles/c2014843.asp
http://support.businessobjects.com/library/kbase/articles/c2014618.asp
http://www.vbdotnetheaven.com/UploadFile/munnamax/viewReport12102006230500PM/viewReport.aspx
http://www.vbdotnetheaven.com/UploadFile/munnamax/viewReport12102006230500PM/viewReport.aspx

1. In the Solution Explorer, right-click the project name, point to Add, and click

Add New Item.

2. In the Categories area of the Add New Item dialog box, expand the folder and

select Data.

3. In the Templates area, select Dataset.
4. Accept the default name Dataset1.xsd.

This creates a new schema file (Dataset1.xsd) that will be used to generate a

strongly-typed dataset. The schema file will be displayed in the ADO.NET Dataset
Designer.

Specify where the database is located:

1. In the Server Explorer, right-click Data Connections and select Add

Connection.

2. In the Data Link Properties dialog box, click the Provider tab and select a

provider (for example, Microsoft OLE DB Provider for SQL Server).

3. Click the Connection tab and specify the location of your database. Enter

server and logon information where necessary.
4. Click OK.

Your database, its tables, and its fields now appear in the Server Explorer under the

Data Connections node.

In the Solution Explorer, double-click Dataset1.xsd, if it is not already the active view.
Dataset1.xsd should now be displayed in the Dataset tab.

To build a schema for your dataset, drag the desired tables from the Server Explorer

to the Dataset tab of Dataset1.xsd. Click Save Dataset1.xsd to save the

Dataset1.xsd file. On the Build menu, click Build to generate the dataset object for

the project.

There is another reason why I have created xsd (schema file) for report. Let us

consider a situation where you want to deploy your application on client's server.

Now situation is you have set location of crystal report to your development server

and though you set logon information programmatically logon failure occurs. To

overcome this problem, I have a view associated in schema file. I can set location of

ADO.NET Dataset to the xsd view and this will take care of all the problems for

setting location while runtime, since it is independent of any of the server and to

access dataset we are applying separate connection string from the web.config file.
This way you can get rid of all the problems to access crystal reports in asp.net.

Actual code as below

Imports System

Imports System.Collections

Imports System.ComponentModel

Imports System.Data

Imports System.Data.SqlClient

Imports System.Drawing

Imports System.Web

http://www.vbdotnetheaven.com/UploadFile/munnamax/viewReport12102006230500PM/viewReport.aspx
http://www.vbdotnetheaven.com/UploadFile/munnamax/viewReport12102006230500PM/viewReport.aspx

Imports System.Web.SessionState

Imports System.Web.UI

Imports System.Web.UI.WebControls

Imports System.Web.UI.HtmlControls

Imports CrystalDecisions.Shared

Imports CrystalDecisions.CrystalReports.Engine

Imports System.Configuration
Namespace CrystalReports
 ''' <summary>

 ''' Summary description for WebForm1.

 ''' </summary>
Public Class WebForm1

 Inherits System.Web.UI.Page

 Protected CrystalReportViewer1 As CrystalDecisions.Web.CrystalReportViewer

 Private Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

 ' Put user code to initialize the page here

 End Sub 'Page_Load

Protected Overrides Sub OnInit(ByVal e As EventArgs)

 '

 ' CODEGEN: This call is required by the ASP.NET Web Form Designer.

 '

 InitializeComponent()

 MyBase.OnInit(e)

 'Database connectivity

 Dim mycon As New

SqlConnection(ConfigurationSettings.AppSettings("connectionString"))

 Dim dtbl As New DataTable

 Dim dtst As New DataSet

 Dim sqdt As SqlDataAdapter

 Try

 'Database activity

 sqdt = New SqlDataAdapter("SELECT * FROM ProductsList", mycon)

 sqdt.Fill(dtbl)

 dtst.Tables.Add()

 Dim crptProList As New productList

 crptProList.SetDataSource(dtst)

 CrystalReportViewer1.DisplayGroupTree = False

 CrystalReportViewer1.ReportSource = crptProList
 'Passing parameter to the crystal report
 'let us assume that i have added a parameter to the crystal report which

accepts

 'categoryname and based on this generate report this parameter you can pass

 'from any web form as a request parameter

 'string catName = Request.QueryString["catageoryName"];

 'you can set parameter after setting report source as below

'crptProList.SetParameteraValue("CatagoryName",catName) similarly you can set

 'multiple parameters to the crystal report

 'Overcomming problem of setting location at runtime ------

 'Setting Logon Information--------------------------------------

 Catch ex As Exception

 Response.Write(ex.Message)

 End Try

End Sub

 ''' <summary>

 ''' Required method for Designer support - do not modify

 ''' the contents of this method with the code editor.

 ''' </summary>

PrivateSubInitializeComponent()

EndSub'InitializeComponent

EndClass'WebForm1

EndNamespace'CrystalReports

Working with Parameters with Crystal Reports and ASP.NET 2.0

(Page 1 of 6)

This is the second article in a series that covers programming with Crystal Reports with

ASP.NET 2.0. In this article, we will focus on working with parameters using Crystal

Reports and passing the parameter values from an ASP.NET 2.0 web site.

A downloadable zip file is available for this article.

If you are new to Crystal report programming, I strongly suggest that you read the first

article in this series, Programming Crystal Reports with ASP.NET 2.0. This article uses

and enhances the solution (source code) provided at the above link.

The entire solution (source code) for this article is available as a free download in the

form of a zip. The source code in this article has been developed using Microsoft Visual

Studio 2005 Professional Edition on Microsoft Windows XP Professional Edition with

Microsoft SQL Server 2005 Express Edition. I used the same version of Crystal Reports

which comes with Visual Studio 2005 Professional Edition. I didn't test the code in any

other tools/IDEs/servers/editions/versions. If you have any problems, please feel free to

post in the discussion area.

Adding a single parameter to the Crystal Report at design time
Before proceeding further, open the "SampleWebSite01" website (available as a

download with this article) and add a new Crystal Report (named "SampleParam1.rpt")

focusing on the Orders table of the Northwind database. Make sure you add OrderID,

CustomerID, EmployeeID and OrderDate to the report. All of this is explained in the first

article of this series.

The following are the steps required to add a parameter to the Crystal report:

http://images.devshed.com/af/stories/Programming_Crystal_Reports/SampleWebSite01.zip
http://www.aspfree.com/c/a/ASP.NET/Programming-Crystal-Reports-with-ASP-NET-2-0/
http://www.aspfree.com/##
http://www.aspfree.com/##

Using the "FieldExplorer," right click on "Parameter Fields" and click "New" as shown in

the following figure (01).

Enter "Name" as "p_EmployeeID," "Prompting Text" as "Enter Employee ID," specify

"Value Type" as "Number" and click on "OK" as shown below in figure 02.

Click on "Select Expert" on the tool bar, as highlighted in red in figure 03.

In the "Choose Field" dialog box, select "Orders.EmployeeID" and click on OK as shown

in figure 04.

In the "Select Expert" dialog box, select the operator as "is equal to," select

"{?p_EmployeeID}" as the value (shown in Figure 05) and click OK.

Working with Parameters with Crystal Reports and ASP.NET 2.0 - Passing the value to
Crystal Report Parameter dynamically: source code

(Page 2 of 6)

In the previous section, we added a parameter named "p_EmployeeID" to the report. Now it is time
to access the report (say, get a list of orders) based on the user specified value of Employee ID.

Let us modify the web page so that it looks like the following (Fig 06):

The Source for the above page design is as follows:

<form id="form1" runat="server">

 <div>

 <asp:Label ID="lblEmployeeID" runat="server" Text="Employee

ID:"></asp:Label>

 <asp:TextBox ID="txtEmployeeID" runat="server"></asp:TextBox>

 <asp:Button ID="btnShow" runat="server" Text="Show" />

 <asp:Button ID="btnFirst" runat="server" Text="First Page" />

 <asp:Button ID="btnPrevious" runat="server" Text="Previous Page" />

 <asp:Button ID="btnNext" runat="server" Text="Next Page" />

 <asp:Button ID="btnLast" runat="server" Text="Last Page" />

 <CR:CrystalReportViewer ID="CrystalReportViewer1" runat="server"

AutoDataBind="true" DisplayGroupTree="False" DisplayToolbar="False"

EnableDatabaseLogonPrompt="False" EnableParameterPrompt="False" Height="1055px"

ReuseParameterValuesOnRefresh="True" Width="789px" />

 </div>

</form>

The following is the code for the "Show" button:

Protected Sub btnShow_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnShow.Click

 Dim ConnInfo As New ConnectionInfo

 With ConnInfo

 .ServerName = ".sqlexpress"

 .DatabaseName = "Northwind"

 .UserID = "sa"

 .Password = "eXpress2005"

End With

 Me.CrystalReportViewer1.ParameterFieldInfo.Clear()

 If Me.txtEmployeeID.Text.Trim.Length > 0 Then

 Me.CrystalReportViewer1.ReportSource = Server.MapPath("SampleParam1.rpt")

 Dim ParamFields As ParameterFields =

Me.CrystalReportViewer1.ParameterFieldInfo

 Dim p_EmpID As New ParameterField

 p_EmpID.Name = "p_EmployeeID"

 Dim p_EmpID_Value As New ParameterDiscreteValue

 p_EmpID_Value.Value = Me.txtEmployeeID.Text

 p_EmpID.CurrentValues.Add(p_EmpID_Value)

 ParamFields.Add(p_EmpID)

 Else

 Me.CrystalReportViewer1.ReportSource = Server.MapPath("SampleRpt01.rpt")

 End If

 For Each cnInfo As TableLogOnInfo In Me.CrystalReportViewer1.LogOnInfo

 cnInfo.ConnectionInfo = ConnInfo

 Next

 Me.CrystalReportViewer1.RefreshReport()

End Sub

The explanation for the above code is provided in the next section.

Working with Parameters with Crystal Reports and ASP.NET 2.0 - Passing the value to
Crystal Report Parameter dynamically at run-time: explanation

(Page 3 of 6)

First of all, you must observe that the CrystalDecisions.Shared namespace is added to work with

Crystal Reports-related classes and objects. In the previous section's code, the database connection
information is stored in ConnInfo and is defined as follows:

Dim ConnInfo As New ConnectionInfo

With ConnInfo

 .ServerName = ".sqlexpress"

 .DatabaseName = "Northwind"

 .UserID = "sa"

 .Password = "eXpress2005"

End With

The above connection information is assigned to the CrystalReportViewer control using the following
code:

For Each cnInfo As TableLogOnInfo In Me.CrystalReportViewer1.LogOnInfo

 cnInfo.ConnectionInfo = ConnInfo

Next

Finally, the ReportSource and Parameter are added as following:

Me.CrystalReportViewer1.ParameterFieldInfo.Clear()

 Me.CrystalReportViewer1.ReportSource = Server.MapPath("SampleParam1.rpt")

 Dim ParamFields As ParameterFields =

Me.CrystalReportViewer1.ParameterFieldInfo

 Dim p_EmpID As New ParameterField

 p_EmpID.Name = "p_EmployeeID"

 Dim p_EmpID_Value As New ParameterDiscreteValue

 p_EmpID_Value.Value = Me.txtEmployeeID.Text

 p_EmpID.CurrentValues.Add(p_EmpID_Value)

 ParamFields.Add(p_EmpID)

We can add as many numbers of parameters as we want to the "ParameterFields" collection to
provide values at run-time. The following is the code which deals with paging:

 Protected Sub btnFirst_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles btnFirst.Click

 Me.CrystalReportViewer1.ShowFirstPage()

End Sub

Protected Sub btnPrevious_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles btnPrevious.Click

 Me.CrystalReportViewer1.ShowPreviousPage()

End Sub

Protected Sub btnNext_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnNext.Click

 Me.CrystalReportViewer1.ShowNextPage()

End Sub

Protected Sub btnLast_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnLast.Click

 Me.CrystalReportViewer1.ShowLastPage()

End Sub

Protected Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)

Handles Me.Load

 If Not IsPostBack Then

 btnShow_Click(Nothing, Nothing)

 End If

End Sub

Adding a Range Value parameter to Crystal Report

Add a new report named "SampleParam2.rpt" with the same fields, in a way that is similar to the
previous report. Now, we shall add a range value parameter to the Crystal Report.

The following are the steps to take to add a range value parameter:

In the "FieldExplorer," right click on "Parameter Fields" and click "Add."

In the "Create Parameter Field" dialog box, provide "Name" as "p_OrderDateRange," "Prompting
Text" as "Enter Start and End Dates," "Value Type" as "DateTime," select "Range Values" in the
"Options" and click OK (Fig 07).

In the "Choose Field" dialog box, select "Orders.OrderDate" and click on OK (as shown in figure 08).

Using the "Select Expert" provide information as follows (Fig 09) and click OK.

Working with Parameters with Crystal Reports and ASP.NET 2.0 - Passing the value to the
Crystal Report Range Parameter dynamically: source code

(Page 4 of 6)

In the previous section, we added a parameter named "p_OrderDateRange" to the report. Now, it is
time to access the report (say, get a list of orders) based on the user-specified range of dates.

Let us modify the web page so that it looks like the following (Fig 10):

The source for the above page design is as follows:

<form id="form1" runat="server">

 <div>

 <asp:Label ID="lblStartDate" runat="server" Text="Start Date:"></asp:Label>

 <asp:TextBox ID="txtStartDate" runat="server"></asp:TextBox><asp:Label

 ID="lblEndDate" runat="server" Text="End Date:"></asp:Label><asp:TextBox

ID="txtEndDate"

 runat="server"></asp:TextBox><asp:Button ID="btnShow" runat="server"

Text="Show" />

 <asp:Button ID="btnFirst" runat="server" Text="First Page" />

 <asp:Button ID="btnPrevious" runat="server" Text="Previous Page" />

 <asp:Button ID="btnNext" runat="server" Text="Next Page" />

 <asp:Button ID="btnLast" runat="server" Text="Last Page" />

 <CR:CrystalReportViewer ID="CrystalReportViewer1" runat="server"

AutoDataBind="true" DisplayGroupTree="False" DisplayToolbar="False"

EnableDatabaseLogonPrompt="False" EnableParameterPrompt="False" Height="1055px"

ReuseParameterValuesOnRefresh="True" Width="789px" />

 </div>

</form>

Following is the code for the "Show" button:

Protected Sub btnShow_Click(ByVal sender As Object, ByVal e As System.EventArgs)

Handles btnShow.Click

 Dim ConnInfo As New ConnectionInfo

 With ConnInfo

 .ServerName = ".sqlexpress"

 .DatabaseName = "Northwind"

 .UserID = "sa"

 .Password = "eXpress2005"

 End With

 Me.CrystalReportViewer1.ParameterFieldInfo.Clear()

 If Me.txtStartDate.Text.Trim.Length > 0 And

Me.txtStartDate.Text.Trim.Length > 0 Then

 Me.CrystalReportViewer1.ReportSource = Server.MapPath("SampleParam2.rpt")

 Dim ParamFields As ParameterFields =

Me.CrystalReportViewer1.ParameterFieldInfo

 Dim p_OrderDateRange As New ParameterField

 p_OrderDateRange.Name = "p_OrderDateRange"

 Dim p_OrderDateRange_Value As New ParameterRangeValue

 p_OrderDateRange_Value.StartValue = Me.txtStartDate.Text

 p_OrderDateRange_Value.EndValue = Me.txtEndDate.Text

 p_OrderDateRange.CurrentValues.Add(p_OrderDateRange_Value)

 ParamFields.Add(p_OrderDateRange)

 Else

 Me.CrystalReportViewer1.ReportSource = Server.MapPath("SampleRpt01.rpt")

 End If

 For Each cnInfo As TableLogOnInfo In Me.CrystalReportViewer1.LogOnInfo

 cnInfo.ConnectionInfo = ConnInfo

 Next

 Me.CrystalReportViewer1.RefreshReport()

End Sub

Working with Parameters with Crystal Reports and ASP.NET 2.0 - Adding Multiple Value
(Discrete and Range) parameters to Crystal Report

(Page 5 of 6)

This is very similar to the previous report except that this accepts multiple values (both discrete and
range parameters).

In a way similar to the previous reports, add a new report named "SampleParam3.rpt" with the
same fields. Now we shall add a new parameter to the Crystal Report.

The following are the steps required to add multiple value (Discrete and Range) parameters:

In the "FieldExplorer," right click on "Parameter Fields" and click "Add."

In the "Create Parameter Field" dialog box, provide "Name" as "p_OrderDate_Discrete_Range,"
"Prompting Text" as "Enter Start and End Dates or single date," "Value Type" as "DateTime," switch

"Allow multiple values" to on in the "Options," select "Discrete and Range Values" from the radio
button list and click OK (Fig 11).

Using the "Select Expert," provide the information for the "Choose Field" dialog box as being from
"Orders.OrderDate" and click on OK (as shown in figure 12).

Using the "Select Expert" provide information as follows (Fig 13) and click OK.

Working with Parameters with Crystal Reports and ASP.NET 2.0 - Passing the value to
Multiple Crystal Report Parameters dynamically: source code

(Page 6 of 6)

In the previous section, we added a parameter named "p_OrderDate_Discrete_Range" to the report.
Now it is time to access the report (say, get a list of orders) based on the user-specified range of
dates.

Let us modify the web page so that it looks like the following (Fig 14):

The source for the above page design is as follows:

<form id="form1" runat="server">

 <div>

 <asp:Label ID="lbl" runat="server" Text="Order Date:"></asp:Label>

 <asp:TextBox ID="txtParticularOrderDate" runat="server"></asp:TextBox>

 <asp:Button ID="btnShow" runat="server" Text="Show" />

 <asp:Label ID="Label1" runat="server" Text="Order Date

From:"></asp:Label>

 <asp:TextBox ID="txtOrderDateFrom" runat="server"></asp:TextBox>

 <asp:Label ID="Label2" runat="server" Text="Order Date To:"></asp:Label>

 <asp:TextBox ID="txtOrderDateTo" runat="server"></asp:TextBox>

 <asp:Button ID="btnRangeShow" runat="server" Text="Show" />

 <CR:CrystalReportViewer ID="CrystalReportViewer1" runat="server"

AutoDataBind="true" DisplayGroupTree="False" DisplayToolbar="False"

EnableDatabaseLogonPrompt="False" EnableParameterPrompt="False"

Height="1055px" ReuseParameterValuesOnRefresh="True" Width="789px" />

 </div>

</form>

The following is the code for the "Show" button:

Protected Sub btnShow_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles btnShow.Click

.

.

.

Dim ParamCurrentValues As New ParameterValues

 Dim p_OrderDate_Value As New ParameterDiscreteValue

 p_OrderDate_Value.Value = Me.txtParticularOrderDate.Text

 ParamCurrentValues.Add(p_OrderDate_Value)

 Dim ParamFields As ParameterFieldDefinitions =

rep.DataDefinition.ParameterFields

 Dim p_OrderDate As ParameterFieldDefinition = ParamFields

("p_OrderDate_Discrete_Range")

 p_OrderDate.ApplyCurrentValues(ParamCurrentValues)

End Sub

Following is the code for the "Range Show" button:

Protected Sub btnRangeShow_Click(ByVal sender As Object, ByVal e As

System.EventArgs) Handles btnRangeShow.Click

.

.

.

 Dim ParamCurrentValues As New ParameterValues

 Dim p_OrderDate_Value As New ParameterRangeValue

 p_OrderDate_Value.StartValue = Me.txtOrderDateFrom.Text

 p_OrderDate_Value.EndValue = Me.txtOrderDateTo.Text

 ParamCurrentValues.Add(p_OrderDate_Value)

 rep.DataDefinition.ParameterFields

("p_OrderDate_Discrete_Range").ApplyCurrentValues(ParamCurrentValues)

 Me.CrystalReportViewer1.ReportSource = rep

 Me.CrystalReportViewer1.DataBind()

End Sub

I hope you enjoyed the article and any suggestions, bugs, errors, enhancements etc. are highly
appreciated at http://jagchat.spaces.live.com

