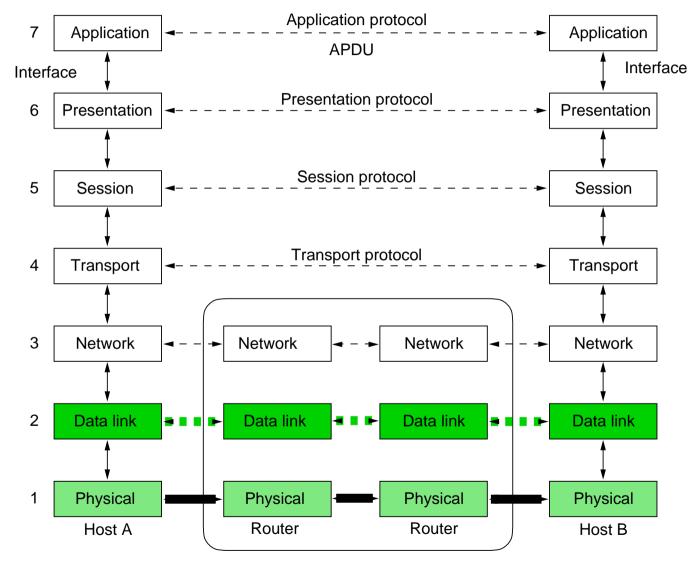
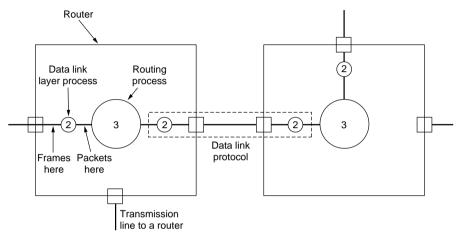
U.E. ARES Architecture des Réseaux

Cours 8/10 : Architecture support LAN - Ethernet


Olivier Fourmaux

(olivier.fourmaux@upmc.fr)

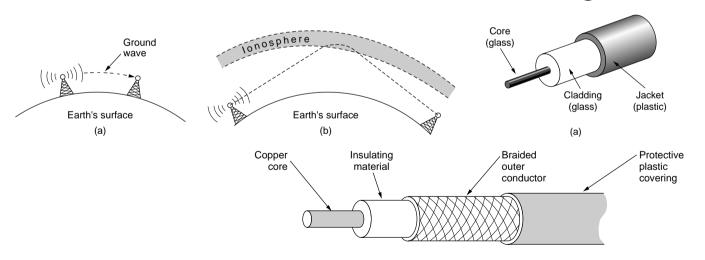
Version 5.2

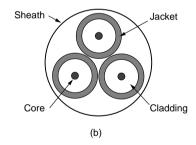


Technologies supports et modèle OSI

OSI: Couche Liaison

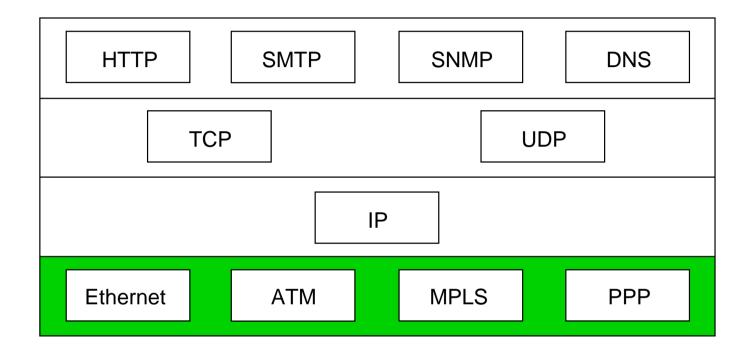
La Couche Liaison achemine les trames de bits sur un médium avec une technique de transmission. Les fonctions associées sont :


- découpage de trame (framming)
- contrôle d'erreur
- ordonnancement et fiabilité
- contrôle de flux
- trois types de technologie pour la Couche Liaison
 - ✓ point-à-point
 - ✓ multipoint sans diffusion U.E. RTEL
 - ✓ multipoint avec diffusion (médium partagé)



Couche Physique

La Couche Physique est associée à la transmission du signal :


- spécification des supports et signaux
 - ✓ encodage des bits, émission en bande de base ou large bande
 - ✓ caractéristiques des signaux électriques, optique, radio...
 - ✓ caractéristique des supports :
 - impédance des cables électriques, atténuation, longueur maximum
 - fibre optique multimode, monomode
 - forme des connecteurs, couleur des gaines...

Technologies supports et TCP/IP

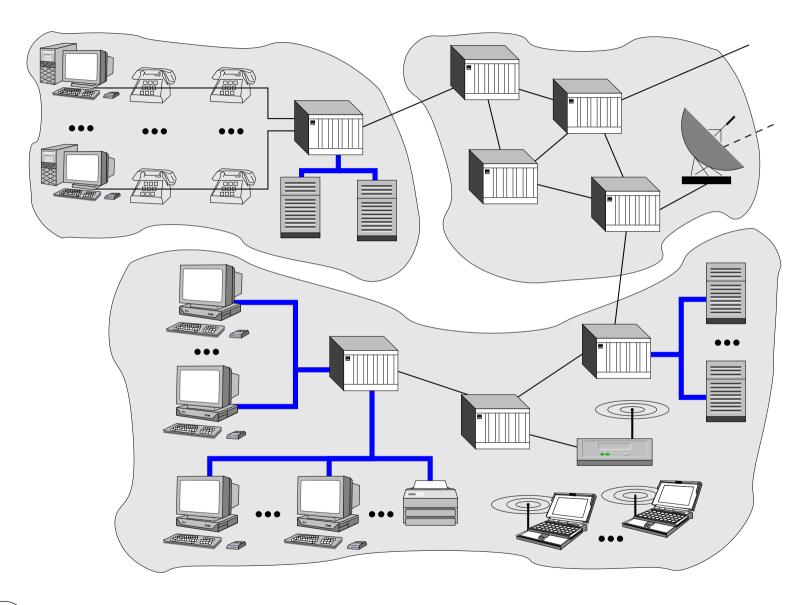
Couches OSI
$$\square$$
 Liaison \square + \square Physique \square \square Couche TCP/IP \square Accès au réseau

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Ethernet: Introduction


- années 90 : nombreuses technologies LAN
 - Ethernet, Token Ring, FDDI, ATM...

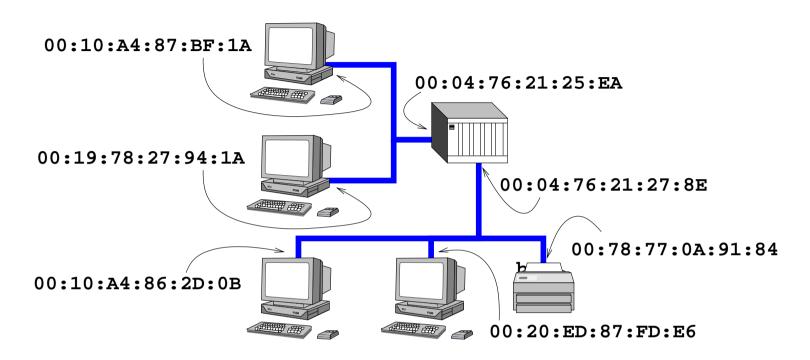
Actuellement (en filaire) : LAN = Ethernet

- Ethernet est aux réseaux locaux ce qu'Internet est aux réseaux mondiaux
- pourquoi?
 - ✓ apparu en avance (milieu des années 70)
 - ✓ simple
 - ✓ décentralisé
 - ✓ autoconfigurable
 - économique et évolutif

Ethernet: Où?

Ethernet: Variantes

Différents types d'Ethernet...


- deux topologies :
 - ✓ bus
 - ✓ étoile
- supports variés :
 - ✓ cables coaxiaux
 - ✓ paires torsadées
 - ✓ fibres optiques
- large choix de **débits** :
 - ✓ 10 Mbit/s, 100 Mbit/s, 1 Gbit/s, 10 Gbit/s...

... mais toujours la même base :

- adresses LAN
- structure de la trame
- **service** non connecté non fiable
- transmission généralement bande de base (numérique)

Ethernet: Adresses LAN

Adresses de l'adaptateur (sur 6 octets) identifiant

- aussi appelées :
 - ✓ adresses Ethernet
 - ✓ adresses physiques (physical address)
 - ✓ adresses MAC (Media Access Control address)
- notation hexadécimale: 00:10:A4:86:2D:0B
- adressage à plat administré par l'IEEE

Ethernet : Structure de la trame (1)

 8 octets	6 octets	6 octets	2	46 – 1500 max octets	4 octets
Préambule 1010101010101011	Adresse destination	Adresse source	Туре	Données	CRC
/		· · · · · · · · · · · · · · · · · · ·			

3 octets 3 octets Code Code constructeur unique

1: Diffusion ou multipoint

0: Adresse individuelle

Délimitation de la trame :

- début
 - ✓ préambule
 - détection d'émission
 - vérouillage temporel (synchronisation sur l'horloge de l'émetteur)
 - indication du début (8ème octet)
- fin
 - ✓ absence de courant pendant IFS (Inter Frame Spacing)

Ethernet : Structure de la trame (2)

Adresses destination et source :

• l'adaptateur n'accepte que les trames qui lui sont destinées

Type ethernet (Ethertype) > 1500:

```
0x0800 = DoD Internet
                          0x0806 = ARP
0x0801 = X.75 Internet
                          0x8035 = RAP
0x0802 = NBS Internet
                          0x8098 = Appletalk
0x0803 = ECMA Internet
                          0x86DD = TPv6
0x0804 = ChaosNet
```

Données:

- MTU (Maximum Transfer Unit): taille maximum = 1500 octets
- taille minimum = 46 octets

✓ si besoin, ajout d'octets de bourrage (transmis à la couche réseau)

CRC-32 (Cyclic Redundancy Check sur 32 bits), polynome générateur : $G(x) = x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1$

Ethernet: Service

Service à la couche réseau :

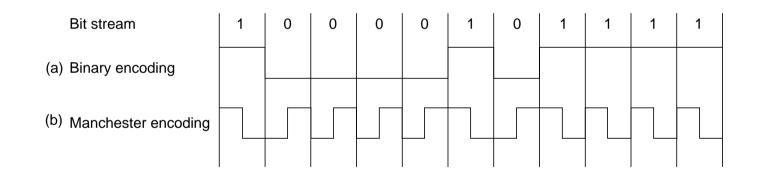
sans connexion

- ✓ service datagramme (identique à IP ou UDP)
- ✓ pas d'échange préalable à l'envoi de données

non fiable

- ✓ contrôle d'erreur (et élimination sans indication)
- ✓ pas de correction d'erreur
- ✓ pas d'acquittement
 - l'émetteur n'a pas connaissance de la remise des données
 - pas de contrôle de flux (sauf commutateurs)
 - pas de fenêtre d'anticipation
 - détection des pertes dans les couches supérieures (ex : TCP...)

simplicité


Ethernet: Transmission

Bande de base

émission directe des signaux numériques

Codage manchester

- pour les débits à 10 Mbps
 - ✓ bande passante de 20 Mhz nécéssaire (1B/2B) :

 pour les débits supérieurs, 4B/5B (FDDI), 8B/10B (Fiber Channel), 64B/66B et diverses encapsulations (FR, ATM, SONET...)

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Protocoles d'accès au médium

Liaisons directes émetteur récepteur voir le cours **Archi. point-à-point**

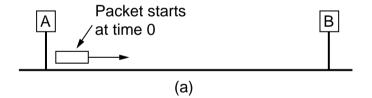
Liaisons partagées :

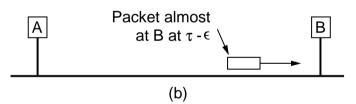
- protocoles de partage de canal
 - ✓ partage fixe de la bande passante (R/N) par émetteur)
 - multiplexage fréquenciel (FDM)
 - multiplexage temporel (TDM)
- protocoles à partage de resource (taking-turns protocols)
 - \checkmark partage déterministe de la bande passante (R par émetteur)
 - invitation à émettre (polling)
 - passage de jeton (token-passing)
- protocoles d'accès aléatoire
 - \checkmark partage statistique de la bande passante (R par émetteur) mais collisions possibles
 - ALOHA
 - **CSMA ►** Ethernet

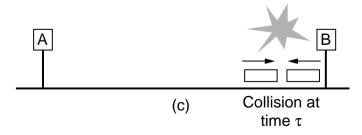
ALOHA

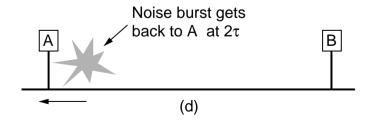
Université d'Hawaii 70'

- technologie support d'un réseau radio basé sur des datagrammes
- protocole à accès aléatoire complètement décentralisé
- si collision, retransmission après un temps aléatoire User


Α		
В		
С		
D		
Ε		
	Time	•


picture from Tanenbaum A. S. Computer Networks 3rd edition


CSMA


Amélioration de l'approche aléatoire

- **détection de porteuse** : CSMA (*Carrier Sense Mutliple Access*)
 - **■** attente avant émission
- **détection de collision** : CSMA/CD (*CSMA with Collision Detection*)
 - retransmission
 - ✓ exemple avec une taille de trame mini de 64 octets
 - **T détection**: 64 octets à 10Mbps = $512/10^7 = 51, 2\mu sec$
 - **T prop. max** : 2 * 2500m à $2.10^8 ms^{-1} = 25 \mu sec + 8 * t_{repet}$

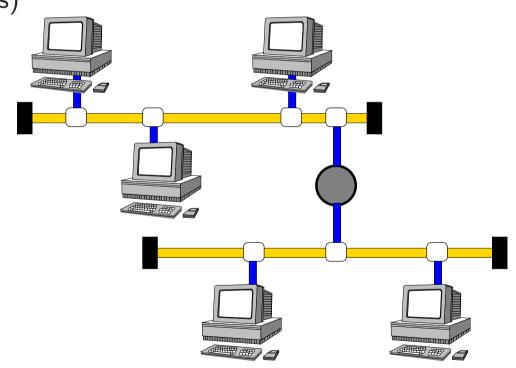
Protocole d'accès Ethernet

- fonctionnement des adaptateurs :
 - ✓ debut d'émission à tout moment : temps non discrétisé
 - ✓ pas d'émission si détection d'une activité sur le canal : CSMA
 - ✓ interruption de la transmission si autre activité : /CD
 - ✓ attente aléatoire croissante avant retransmission : TBEB (Truncated Binary Exponential Backoff)
- étapes du protocole mis en œuvre dans les adaptateurs :
 - 1. construction et mémorisation de la trame
 - 2. si activité détecté, attente fin signal
 - 3. attente IFS de 96 bits (sans détection de signal)
 - 4 début transmission
 - (a) si détection collision :
 - i. interruption de la transmission
 - ii. signal de brouillage de 32 bits jam sequence
 - iii. attente exponentielle (pour la n^{ieme} collision consécutive) $int(rand()*2^{min(10,n)})*$ 512 bits (exponential backoff phase) puis retour à l'étape 2.
 - (b) sinon continue la transmission jusqu'à la fin

Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

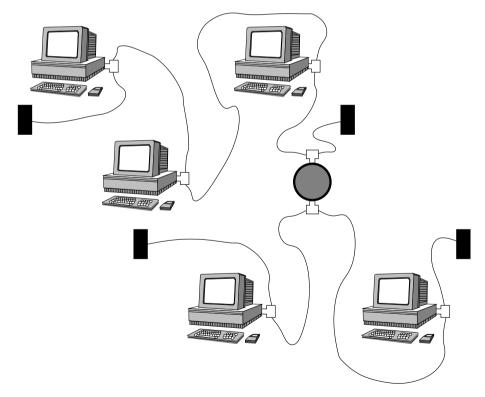

Ethernet: 10Base5

• débit : 10 Mbps

• médium : cable coaxial **jaune** de **5**00m max et **2 bouchons** (50 Ω)

• stations reliées aux transceivers agrippés au coax par un cable bleu

• topologie : **bus** étendu (51.2 μ s max \longrightarrow 4 répéteurs : 2500m max entre 2 stations)

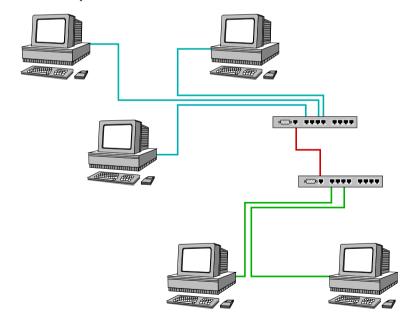


Ethernet: 10Base2

• débit : 10 Mbps

• médium : cable coaxial noir de 200m (185m max) et 30 stations max par segments, connecteurs BNC en "T" et terminateurs 50Ω

• topologie : **bus** étendu (51.2 μ s max $\stackrel{\blacksquare}{\blacksquare}$ 4 répéteurs et 925m max entre 2 stations)



Ethernet: 10BaseT

- débit : 10 Mbps
- médium : paire torsadée de 100m max (UTP3), connecteurs RJ45
- topologie : **étoile** à partir d'un **hub** (concentrateur)
- accès :
 - ✓ half duplex

 → CSMA/CD
 - $rac{1}{2}$ plusieurs hubs possibles, reliés en cascade (51.2 μ s max)
 - ✓ full duplex

 point-à-point bidirectionnel simultané (sans collision)
- détection d'activité (*Link Pulse* toutes les 16±8 ms)

Ethernet: 100BaseTX

Fast Ethernet (1995)

- débit : 100 Mbps
- médium : paires torsadées de 100m max (UTP5), connecteurs RJ45
- encodage : 4B/5B (FDDI)
- topologies : étoile à partir d'un **hub** (concentrateur)
- accès :
 - ✓ half duplex

 CSMA/CD avec toujours 64 octets mini
 - $rac{1}{2}$ 2 hubs peuvent être reliés (mais 5.12 μ s max : 210m max)
 - distance limité en entreprise... voir les commutateurs
 - ✓ full duplex point-à-point bidirectionnel simultané
- détection d'activité (Fast Link Pulse : 33 impulsions / \sim 16 ms)
 - ✓ FLP contient 16 bits pour l'auto-négociation
 - détection des vitesses, modes et mécanismes disponibles
- plusieurs variantes :
 - √ 100BaseT4 : 4 paires torsadées UTP3 (pas de full duplex)
 - ✓ 100BaseFX : deux fibres optiques (400m max en multimode, 20km) max en monomode)

Ethernet: 1000BaseT

Gigabit Ethernet (1998)

- débit : **1000** Mbps (1 Gbps)
- médium : paires torsadées de 100m max en UTP5+ (4 paires)
- encodage : 8B/10B (Fiber Channel)
- topologies : étoile à partir d'un **hub** (concentrateur)
- accès :
 - ✓ half duplex

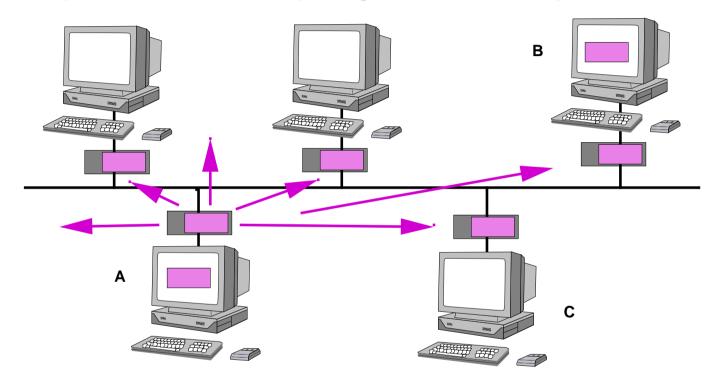
 CSMA/CD avec 512 octets mini (extension de porteuse si besoin) \longrightarrow 4.01 μ s plutôt que 0.512 μ s!
 - 2 hubs peuvent être reliés (toujours 210m max)
 - performance? burst possible pendant l'extension
 - ✓ full duplex point-à-point bidirectionnel simultané
- plusieurs variantes :
 - ✓ 1000BaseCX : 2 paires torsadées blindées STP, 25m max
 - ✓ 1000BaseSX : fibres optiques multimode 850nm 500m max
 - ✓ 1000BaseLX : fibres optiques multimode et monomode 1300nm 5km max

Ethernet: 10GBase?

10Gigabit Ethernet (2002)

- débit : 10 Gbps
- accès : full duplex uniquement (plus de CSMA/CD)
- médium : fibres optiques, OC192, DWDM...
- encodage : 64B/66B
- topologies : étoile à partir de commutateurs
- plusieurs variantes :
 - ✓ fibres optiques (850nm, 1300nm et 1550nm)
 - de 65m à 40km max...

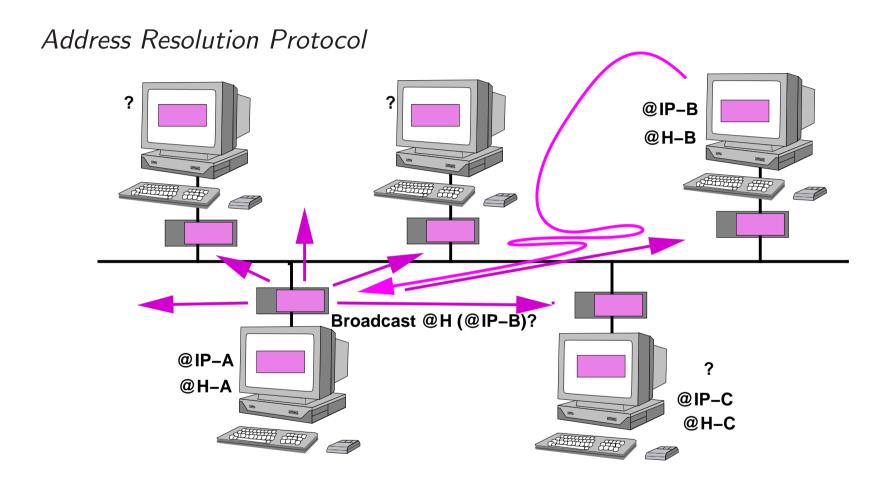
Plan


Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

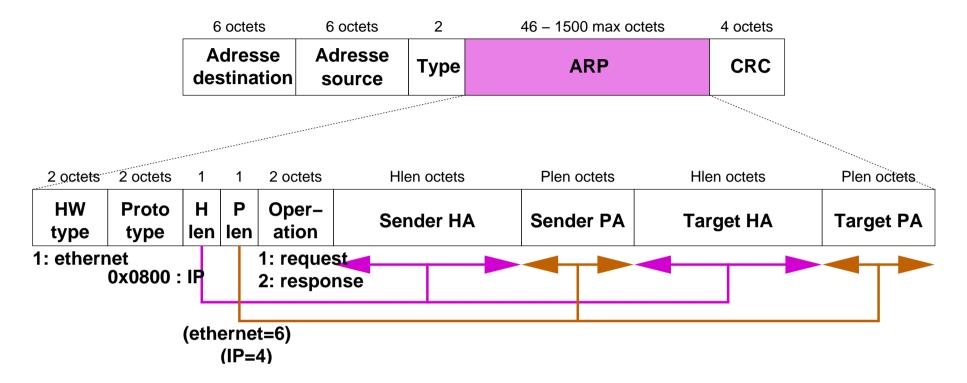
Réseaux à diffusion

Accès multiples sur un médium partagé : diffusion implicite



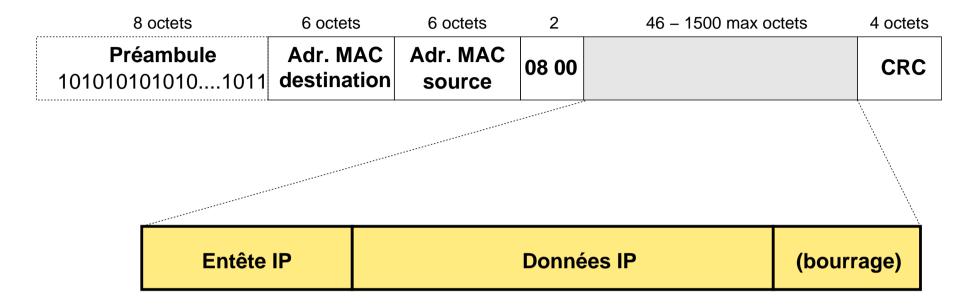
Transport d'IP:

- résolution d'adresses
- format d'encapsulation


Résolution d'adresse : ARP

Diffusion explicite (utilisation d'une adresse destination de diffusion)

ARP sur Ethernet



ARP est un protocole transporté directement dans la trame *Ethernet* :

- **ARP request**: adresse destination = diffusion (FF:FF:FF:FF:FF), source = demandeur
- ARP response : adresse destination = demandeur, source = répondeur

IP sur **Ethernet**

Type ethernet (Ethertype) > 1500:

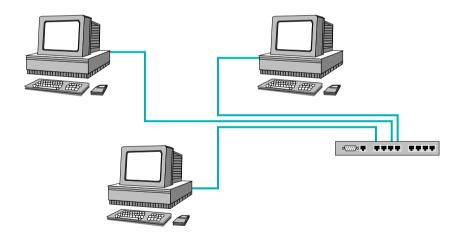
0x0800 = DoD Internet

Données:

- ullet MTU : taille maximum du paquet IP = 1500 octets
- taille minimum = 46 octets (mais le paquet IP peut faire moins)
 ✓ si besoin, ajout d'octets de bourrage (transmis à IP)

Plan

Architecture Ethernet

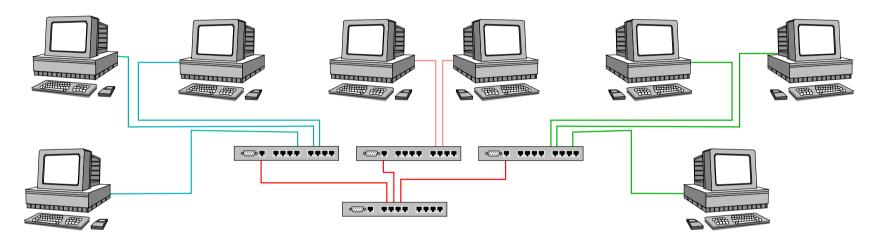

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Hub Ethernet

Concentrateur

- élément de la couche **physique** (niveau bit)
- répéteur multiport
 - ✓ un bit arrivant sur une interface est diffusé sur les autres
- possibilité d'administration : SNMP, RMON...

Interconnexion de hubs


- linéaire
- hiérarchique avec hub fédérateur

Interconnexion de hubs

Dans un système multi-niveau (plusieurs hubs)

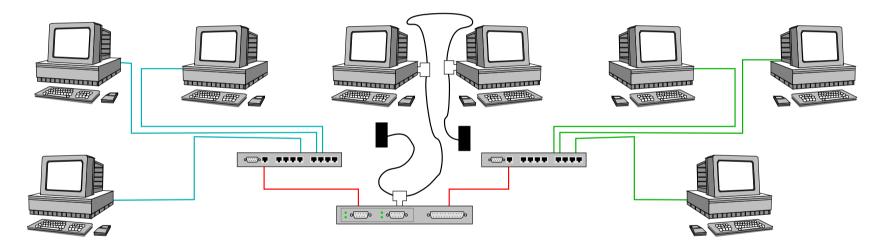
- LAN = l'ensemble du réseau local = domaine de collision)
- **segment** = les équipements reliés à un *hub*

• intérêts :

- ✓ + augmente la connectivité
- ✓ + augmente la redondance (déconnexion des hubs en panne)
- ✓ limitations physiques (distance, nb machines...)
- ✓ diminution du débit par machine
- ✓ augmentation des collisions (et réduction du débit)

Plan

Architecture Ethernet


- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Pont Ethernet

Bridge

- élément de la couche liaison (niveau trame)
- commutateur de trames
 - ✓ filtre en fonction des adresses destinations
 - ✓ une trame arrivant est transmise au port vers le destinataire
 - ✓ mémorisation + CSMA/CD (équipement sans adresse)

- intérêts :
 - ✓ + séparation des domaines de collision
 - ✓ + multi-technologie (10Base2 avec 100BaseTX...)
 - ✓ + plus de limitations physiques

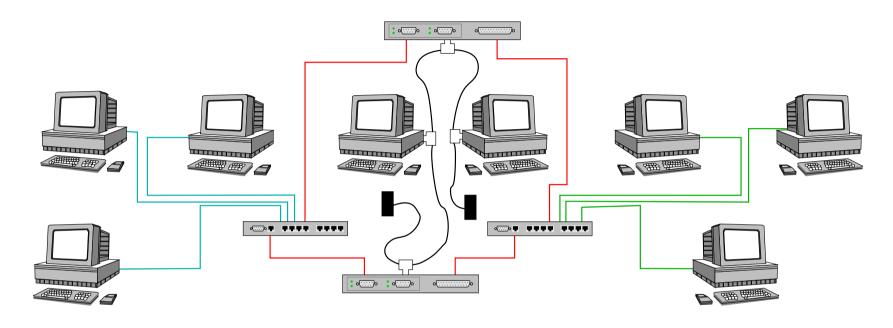
Pont : Filtrage et relayage

Filtrage (*filtering*)

- détermination de l'acceptation ou du rejet d'une trame **Relayage** (forwarding)
 - choix de l'interface de sortie
- table :

Adresse LAN	Interface	Heure
00:10:A4:86:2D:0B	1	09 : 32 : 55
00:04:76:21:27:8E	3	09 : 32 : 55
00:04:76:21:1B:95	3	09 : 32 : 55

- algorithme d'utilisation de la table :
 - ✓ lorsque qu'une trame avec @LAN_dest arrive par If_x, la table indique comme port de sortie IF_y :
 - si IF_x = IF_y alors la trame provient du segment du destinataire is filtrage

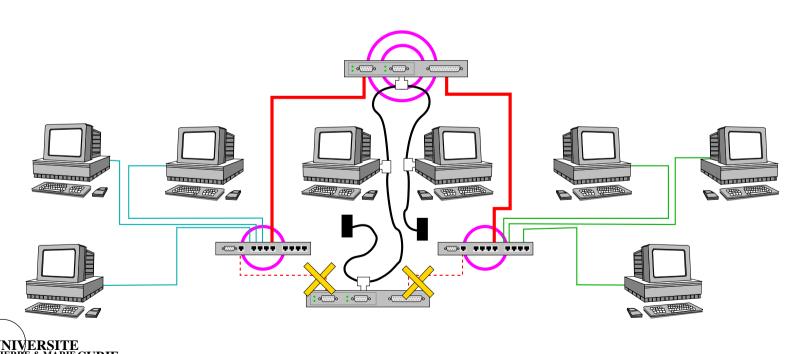

Pont: Auto-apprentissage

Self-learning

- Algorithme de création de la table
 - 1. table **vide** initialement
 - 2. lors de la réception d'une trame, insertion dans la table de :
 - (a) son @LAN_source
 - (b) son interface d'arrivée
 - (c) son heure d'arrivée
 - 3. validité limitée dans le temps
- remarques :
 - ✓ si @LAN_dest absente de la table, alors diffusion (recopie vers les autres interfaces, mémorisation + CMSA/CD)
 - ✓ les ponts sont dits :
 - auto-adaptatifs (plug and play)
 - transparents (non adressés)

Ponts: Redondance

- chemins multiples
 - ✓ + chemin de secours
 - ✓ + auto-configuration
 - ✓ création de boucles (duplication)
 - protocole d'arbre couvrant (STP)



Ponts: STP

Spanning Tree Protocol

- réseaux pontés avec redondance \sim graphe (nœuds = ponts)
 - ✓ graphe sans boucle = arbre

 construction d'un arbre couvrant
 - pont avec un numéro identificateur : le plus petit est la racine
 - # échange de BPDU <id_root, dst_root, id_snd, num_port>
 - inhibition des ports qui n'atteignent pas la racine par le plus court chemin

Pont ou routeur

Comment choisir?

Pont (couche 2):

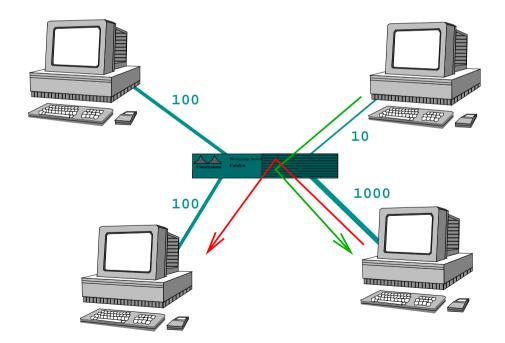
- commutateur de trames
 - ✓ + auto-configurable
 - ✓ + performance de relayage
 - ✓ toutes les trames empruntent le même arbre couvrant (SPF)
 - ✓ les diffusions (broadcast) sont globales
 - réseau de taille limitée (→100 machines)
 - recherche de simplicité

Routeur (couche 3):

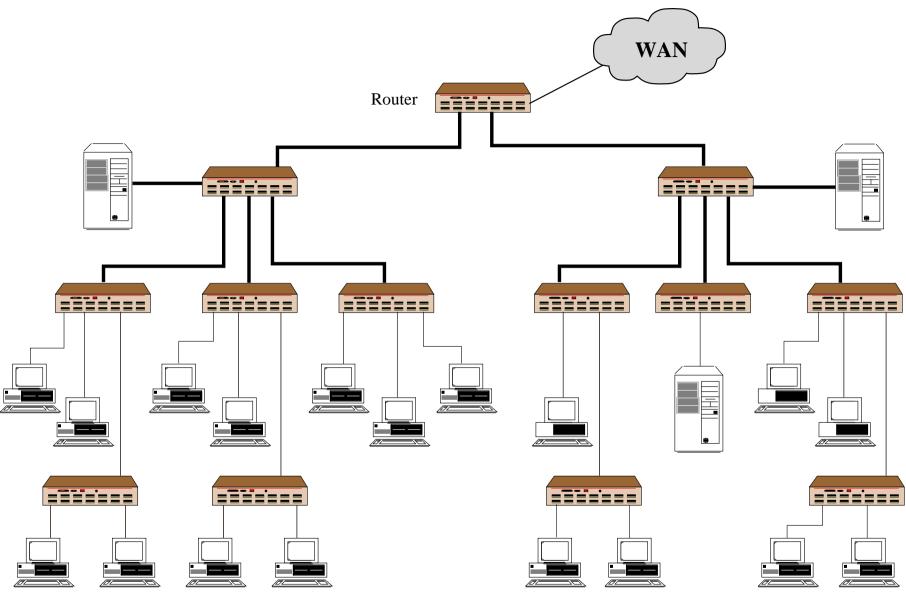
- commutateur de paquets
 - \checkmark + pas de boucle (TTL limitatif en période transitoire)
 - ✓ + calcul du meilleur chemin (routage)
 - ✓ configuration manuelle
 - ✓ traitement plus long des messages
 - réseau taille importante (1000→ machines)
 - fonctions "intelligentes": isolation de trafic, filtrage...

Plan

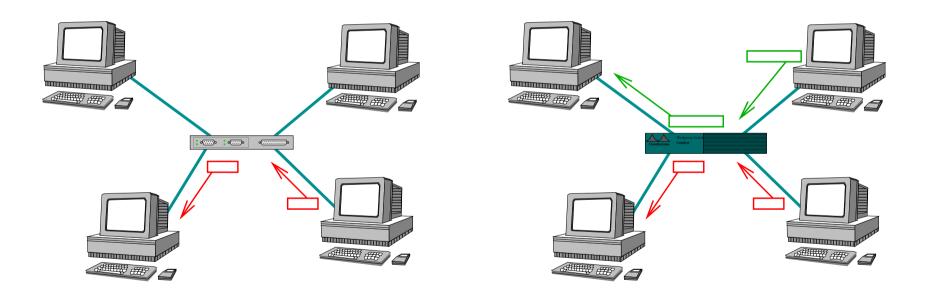
Architecture Ethernet


- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Commutateurs Ethernet


Ethernet Switch

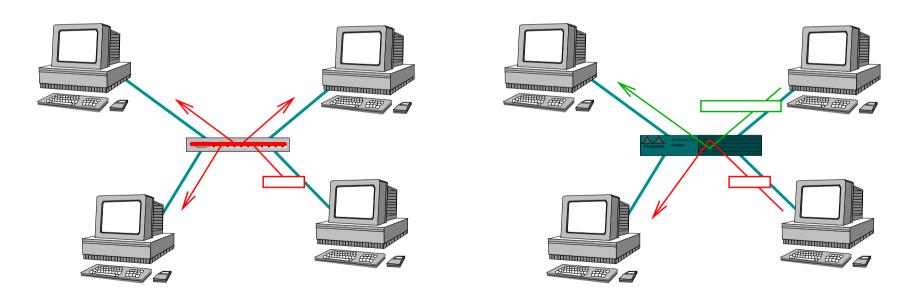
- ponts à hautes performances (couche 2)
 - ✓ nombreuses interfaces ($\sim hubs$)
- multi-débit
 - ✓ 10 Mbps, 100 Mbps, 1 Gbps...
- full duplex
 - ✓ possibilité d'éviter CSMA/CD (~ liaison point-à-point)

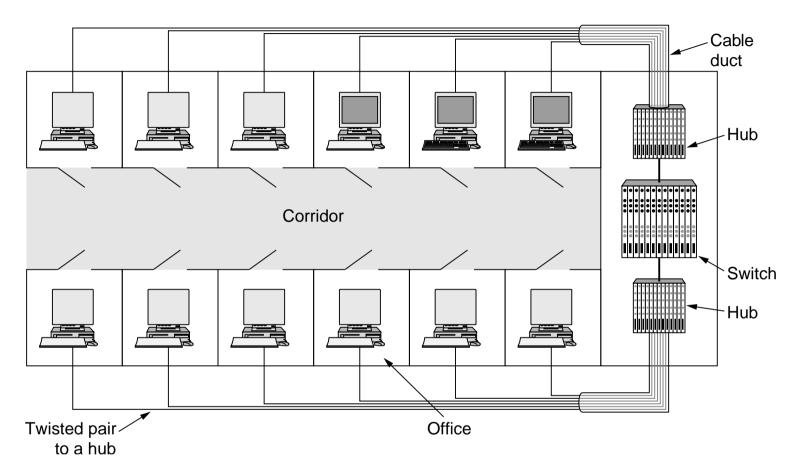

Hiérarchie Ethernet

Commutation "Store and Forward"

Mémorisation puis transmission de la trame

- ullet \sim fonctionne comme un pont
- stockage complet avant retransmission (et calcul du CRC-32)
- latence mini de L_F/R_i (L_F taille trame, R_i débit du lien de sortie)



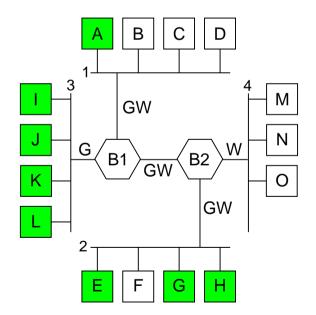

Commutation "Cut-Through"

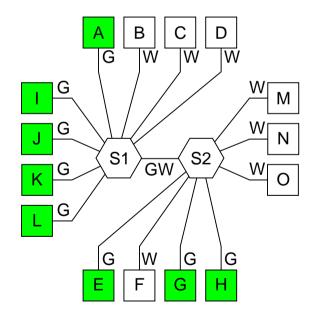
Transmission directe

- $\bullet \sim$ fonctionne comme un hub
- émission dès que le tampon de sortie est vide
- latence mini = lecture de l'adresse destination \checkmark exemple : 100Mbps, trame de 1518 octets \Longrightarrow gain de \sim 120 μ s
- plus de contrôle de la trame (CRC-32)

VLAN(1)

picture from Tanenbaum A. S. Computer Networks 4rd edition


Infrastructure de cablage générique


configuration logique des LAN : Virtual LAN

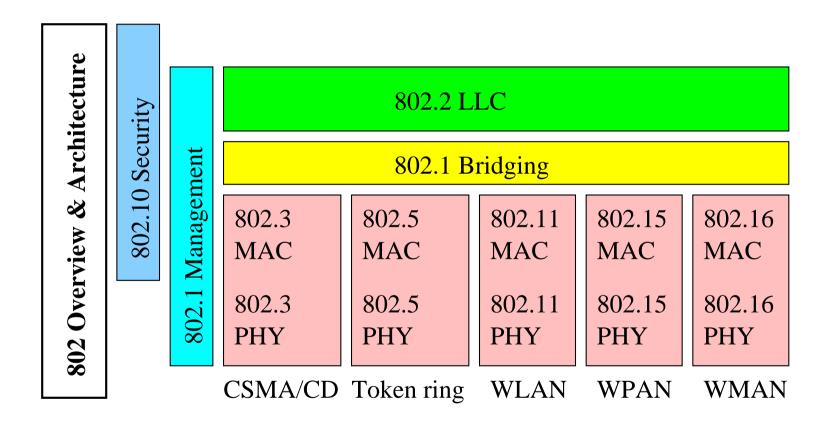
VLAN(2)

Table de configuration dans les ponts et commutateurs

- détermination de l'appartenance à un VLAN
 - ✓ par port
 - ✓ par adresse LAN
 - ✓ par protocole ou réseau de la couche 3
- plusieurs VLAN par port pour le transit (Virtual STP)

picture from Tanenbaum A. S. Computer Networks 4rd edition

Plan

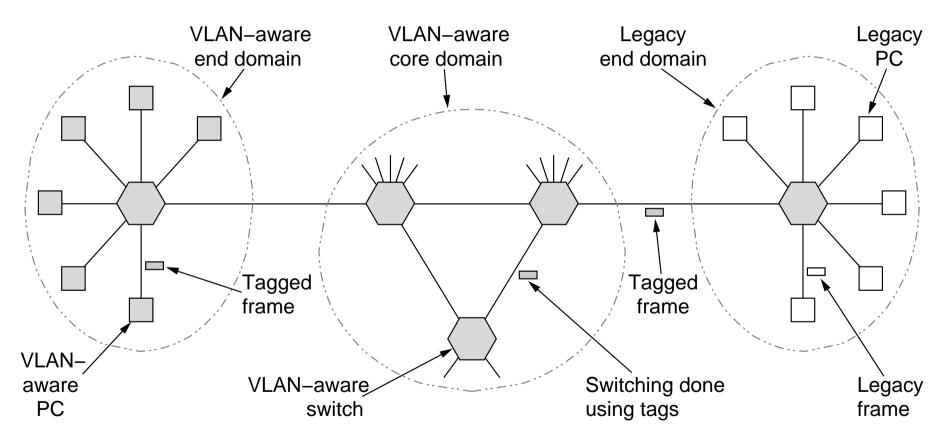

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

Normalisation IEEE 802

Définition de l'architecture

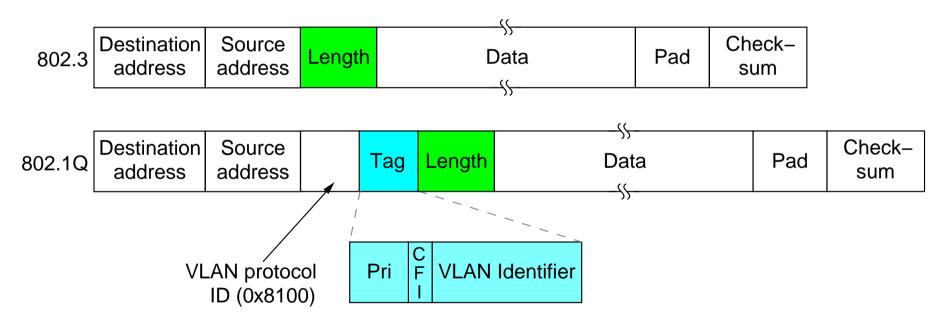
802.1x


Quelques normes intéressantes :

- 802.1d MAC Bridges ✓ protocole STP...
- **802.1f** MIB IEEE 802
- **802.1g** *MAC* distant bridging ✓ inteconnexion de LAN avec des technologies WAN
- 802.1h MAC Bridging of Ethernet V2 in IEEE 802 LAN
- **802.1q** Virtual Bridged LAN...

802.1q (1)

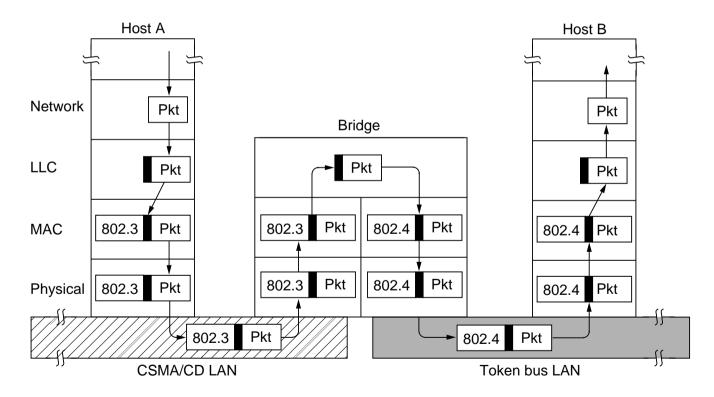
Ajout d'un identifiant de VLAN dans la trame


picture from Tanenbaum A. S. Computer Networks 4rd edition

802.1q (2)

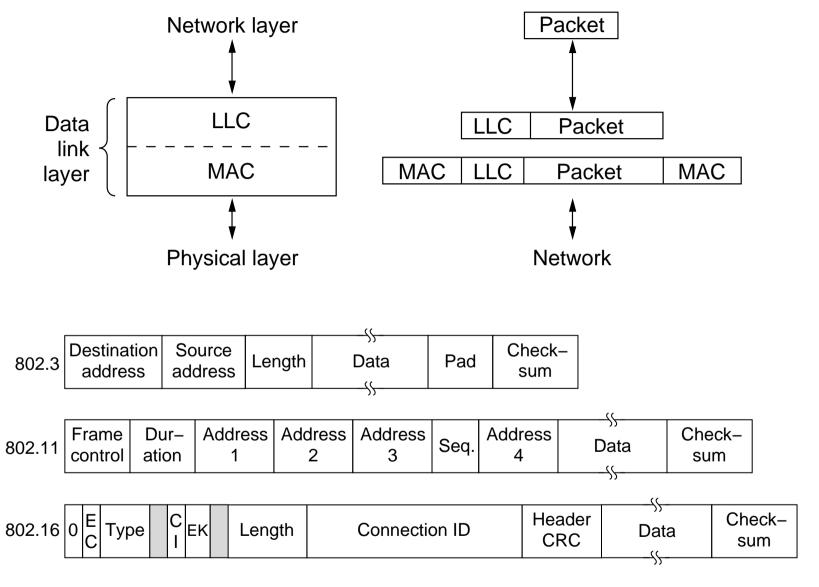
Evolution de la structure la trame Ethernet : 1522 octets max!

- seuls les équipements 802.1q échangent les nouvelles trames
- 4096 VLAN identifiables
- 3 bits de priorité


picture from Tanenbaum A. S. Computer Networks 4rd edition

Pontage 802.2

Subdivision en 2 sous-couches de la Couche ISO Liaison


- LLC (Logical Link Control) sublayer
- MAC (Medium Access Control) sublayer
- permet le pontage direct des différents réseaux IEEE 802 :

picture from Tanenbaum A. S. Computer Networks 3rd edition

IEEE 802.2



picture from Tanenbaum A. S. Computer Networks 4rd edition

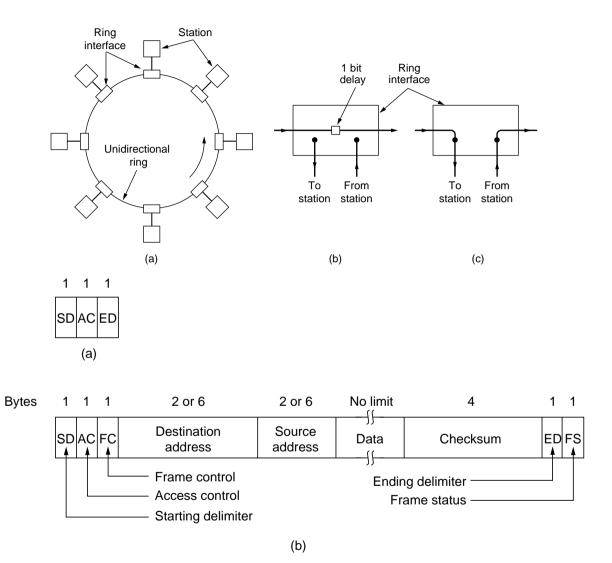
IEEE 802.3 : CSMA/CD

Encapsulation de type SNAP/LLC :

Sous couche LLC

IEEE 802.3 : Appellations

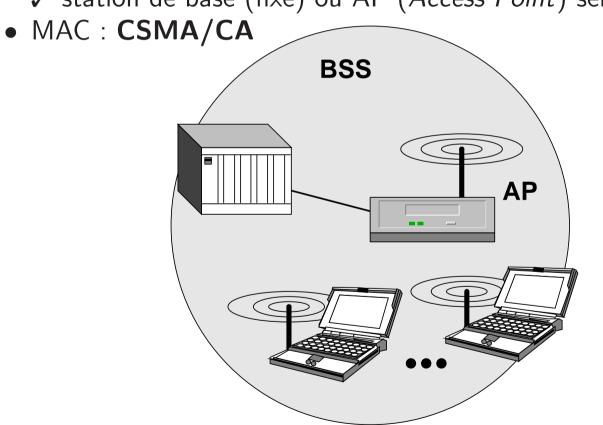
Norme	date	nom	remarque
802.3	1985	10Base5	coaxial épais 50Ω
802.3a	1988	10Base2	coaxial fin 50Ω
802.3b	1985	10Broad36	coaxial TV 75Ω
802.3i	1990	10BaseT	sur 2 paires UTP3
802.3j	1993	10BaseF	sur fibres MM/SM
802.3u	1995	100BaseT4	sur 4 paires UTP3
802.3x et	1997	100BaseT2	sur 2 paires UTP5
802.3y			
802.3z	1998	1000BaseX	module GBIC
802.3ab	1999	1000BaseT	sur 4 paires UTP5
802.3ac	1998	VLAN	pour 802.3
802.3ad	2000	Agrégation	plusieurs liens <i>(trunking)</i>
802.3ae	2002	10GBaseX	sur fibres MM/SM


Plan

Architecture Ethernet

- protocole d'accès au médium
- technologies Ethernet
- intégration TCP/IP
- hubs Ethernet
- ponts Ethernet
- commutateurs Ethernet
- standards IEEE
- autres LAN IEEE

IEEE 802.5 : Token Ring


picture from Tanenbaum A. S. Computer Networks 3rd edition

IEEE802.11: WLAN

Wireless Ethernet

- zone de service : cellule ou BSS (Basic Service Set)
 - ✓ stations sans-fil
 - ✓ station de base (fixe) ou AP (Access Point) servant de pont 802

Fin

Document réalisé avec LATEX. Classe de document foils. Dessins réalisés avec xfig.

Olivier Fourmaux, olivier.fourmaux@upmc.fr http://www-rp.lip6.fr/~fourmaux

Ce document est disponible en format PDF à http://www-master.ufr-info-p6.jussieu.fr/

