
Introduction to Python

Outline

Why Use Python?

Running Python

Types and Operators

Basic Statements

Functions

Scope Rules (Locality and Context)

Some Useful Packages and Resources

Why Use Python? (1)

Python is object-oriented

Structure supports such concepts as polymorphism, operation

overloading, and multiple inheritance

It's free (open source)

Downloading and installing Python is free and easy

Source code is easily accessible

Free doesn't mean unsupported! Online Python community is huge

It's portable

Python runs virtually every major platform used today

As long as you have a compatible Python interpreter installed, Python

programs will run in exactly the same manner, irrespective of platform

It's powerful

Dynamic typing

Built-in types and tools

Library utilities

Third party utilities (e.g. Numeric, NumPy, SciPy)

Automatic memory management

Why Use Python? (2)

It's mixable

Python can be linked to components written in other languages easily

Linking to fast, compiled code is useful to computationally intensive

problems

Python is good for code steering and for merging multiple programs

in otherwise conflicting languages

Python/C integration is quite common

WARP is implemented in a mixture of Python and Fortran

It's easy to use

Rapid turnaround: no intermediate compile and link steps as in C or C++

Python programs are compiled automatically to an intermediate form

called bytecode, which the interpreter then reads

This gives Python the development speed of an interpreter without the

performance loss inherent in purely interpreted languages

It's easy to learn

Structure and syntax are pretty intuitive and easy to grasp

Running Python (1) In addition to being a programming language, Python is also an

interpreter. The interpreter reads other Python programs and commands,

and executes them. Note that Python programs are compiled

automatically before being scanned into the interpreter. The fact that this

process is hidden makes Python faster than a pure interpreter.

How to call up a Python interpreter will vary a bit depending on your

platform, but in a system with a terminal interface, all you need to do is

type “python” (without the quotation marks) into your command line.

Example:

From here on, the $ sign denotes the start of a terminal command line,

and the # sign denotes a comment. Note: the # sign denotes a comment

in Python. Python ignores anything written to the right of a # sign on a

given line

$ python # Type python into your terminal's command line

>>> # After a short message, the >>> symbol will appear. This

signals

 # the start of a Python interpreter's command line

Running Python (2)

Once you're inside the Python interpreter, type in commands at will.

Examples:

>>> print 'Hello world'

Hello world

Relevant output is displayed on subsequent lines without the >>>

symbol

>>> x = [0,1,2]

Quantities stored in memory are not displayed by default

>>> x

If a quantity is stored in memory, typing its name will display it

[0,1,2]

>>> 2+3

5

>>> # Type ctrl-D to exit the interpreter

$

Running Python (3)
Python scripts can be written in text files with the suffix .py. The scripts

can be read into the interpreter in several ways:

Examples:

$ python script.py

This will simply execute the script and return to the terminal afterwards

$ python -i script.py

The -i flag keeps the interpreter open after the script is finished running

$ python

>>> execfile('script.py')

The execfile command reads in scripts and executes them immediately,

as though they had been typed into the interpreter directly

$ python

>>> import script # DO NOT add the .py suffix. Script is a module

here

The import command runs the script, displays any unstored outputs, and

creates a lower level (or context) within the program. More on contexts

later.

Running Python (4)
Suppose the file script.py contains the following lines:

print 'Hello world'

x = [0,1,2]

Let's run this script in each of the ways described on the last slide:

Examples:

$ python script.py

Hello world

$

The script is executed and the interpreter is immediately closed. x is

lost.

$ python -i script.py

Hello world

>>> x

[0,1,2]

>>>

“Hello world” is printed, x is stored and can be called later, and the

interpreter is left open

Running Python (5)

Examples: (continued from previous slide)

$ python

>>> execfile('script.py')

Hello world

>>> x

[0,1,2]

>>>

For our current purposes, this is identical to calling the script from the

terminal with the command python -i script.py

$ python

>>> import script

Hello world

>>> x

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

NameError: name 'x' is not defined

>>>

When script.py is loaded in this way, x is not defined on the top level

Running Python (6)
Examples: (continued from previous slide)

to make use of x, we need to let Python know which module it came

from, i.e. give Python its context

>>> script.x

[0,1,2]

>>>

Pretend that script.py contains multiple stored quantities. To promote x

(and only x) to the top level context, type the following:

$ python

>>> from script import x

Hello world

>>> x

[0,1,2]

>>>

To promote all quantities in script.py to the top level context, type

from script import * into the interpreter. Of course, if that's what

you want, you might as well type python -i script.py into the

terminal.

Types and Operators: Types of Numbers (1)

Python supports several different numeric types

Integers

Examples: 0, 1, 1234, -56

Integers are implemented as C longs

Note: dividing an integer by another integer will return only the integer

part of the quotient, e.g. typing 7/2 will yield 3

Long integers

Example: 999999999999999999999L

Must end in either l or L

Can be arbitrarily long

Floating point numbers

Examples: 0., 1.0, 1e10, 3.14e-2, 6.99E4

Implemented as C doubles

Division works normally for floating point numbers: 7./2. = 3.5

Operations involving both floats and integers will yield floats:

6.4 – 2 = 4.4

Types and Operators: Types of Numbers (2)

Other numeric types:

Octal constants

Examples: 0177, -01234

Must start with a leading 0

Hex constants

Examples: 0x9ff, 0X7AE

Must start with a leading 0x or 0X

Complex numbers

Examples: 3+4j, 3.0+4.0j, 2J

Must end in j or J

Typing in the imaginary part first will return the complex number in the

order Re+ImJ

Types and Operators: Operations on Numbers
Basic algebraic operations

Four arithmetic operations: a+b, a-b, a*b, a/b

Exponentiation: a**b

Other elementary functions are not part of standard Python, but included

in packages like NumPy and SciPy

Comparison operators

Greater than, less than, etc.: a < b, a > b, a <= b, a >= b

Identity tests: a == b, a != b

Bitwise operators

Bitwise or: a | b

Bitwise exclusive or: a ^ b # Don't confuse this with exponentiation

Bitwise and: a & b

Shift a left or right by b bits: a << b, a >> b

Other

Not surprisingly, Python follows the basic PEMDAS order of operations

Python supports mixed-type math. The final answer will be of the most

complicated type used.

Types and Operators: Strings and Operations

Thereon
Strings are ordered blocks of text

Strings are enclosed in single or double quotation marks

Double quotation marks allow the user to extend strings over multiple

lines without backslashes, which usually signal the continuation of an

expression

Examples: 'abc', “ABC”

Concatenation and repetition

Strings are concatenated with the + sign:

>>> 'abc'+'def'

'abcdef'

Strings are repeated with the * sign:

>>> 'abc'*3

'abcabcabc'

Types and Operators: Indexing and Slicing (1)

Indexing and slicing

Python starts indexing at 0. A string s will have indexes running from 0 to

len(s)-1 (where len(s) is the length of s) in integer quantities.

s[i] fetches the ith element in s

>>> s = 'string'

>>> s[1] # note that Python considers 't' the first element

't' # of our string s

s[i:j] fetches elements i (inclusive) through j (not inclusive)

>>> s[1:4]

'tri'

s[:j] fetches all elements up to, but not including j

>>> s[:3]

'str'

s[i:] fetches all elements from i onward (inclusive)

>>> s[2:]

'ring'

Types and Operators: Indexing and Slicing (2)

Indexing and slicing, contd.

s[i:j:k] extracts every kth element starting with index i (inlcusive)

and ending with index j (not inclusive)

>>> s[0:5:2]

'srn'

Python also supports negative indexes. For example, s[-1] means

extract the first element of s from the end (same as s[len(s)-1])

>>> s[-1]

'g'

>>> s[-2]

'n'

Python's indexing system is different from those of Fortan, MatLab, and

Mathematica. The latter three programs start indexing at 1, and have

inclusive slicing, i.e. the last index in a slice command is included in the

slice

Types and Operators: Lists

Basic properties:

Lists are contained in square brackets []

Lists can contain numbers, strings, nested sublists, or nothing

Examples: L1 = [0,1,2,3], L2 = ['zero', 'one'],

L3 = [0,1,[2,3],'three',['four,one']], L4 = []

List indexing works just like string indexing

Lists are mutable: individual elements can be reassigned in place.

Moreover, they can grow and shrink in place

Example:

>>> L1 = [0,1,2,3]

>>> L1[0] = 4

>>> L1[0]

4

Types and Operators: Operations on Lists (1)

Some basic operations on lists:

Indexing: L1[i], L2[i][j]

Slicing: L3[i:j]

Concatenation:

>>> L1 = [0,1,2]; L2 = [3,4,5]

>>> L1+L2

[0,1,2,3,4,5]

Repetition:

>>> L1*3

[0,1,2,0,1,2,0,1,2]

Appending:

>>> L1.append(3)

[0,1,2,3]

Sorting:

>>> L3 = [2,1,4,3]

>>> L3.sort()

[1,2,3,4]

Types and Operators: Operations on Lists (2)

More list operations:

Reversal:

>>> L4 = [4,3,2,1]

>>> L4.reverse()

>>> L4

[1,2,3,4]

Shrinking:

>>> del L4[2]

>>> Lx[i:j] = []

Index and slice assignment:

>>> L1[1] = 1

>>> L2[1:4] = [4,5,6]

Making a list of integers:

>>> range(4)

[0,1,2,3]

>>> range(1,5)

[1,2,3,4]

Types and Operators: Tuples

Basic properties:

Tuples are contained in parentheses ()

Tuples can contain numbers, strings, nested sub-tuples, or nothing

Examples: t1 = (0,1,2,3), t2 = ('zero', 'one'),

t3 = (0,1,(2,3),'three',('four,one')), t4 = ()

As long as you're not nesting tuples, you can omit the parentheses

Example: t1 = 0,1,2,3 is the same as t1 = (0,1,2,3)

Tuple indexing works just like string and list indexing

Tuples are immutable: individual elements cannot be reassigned in place.

Concatenation:

>>> t1 = (0,1,2,3); t2 = (4,5,6)

>>> t1+t2

(0,1,2,3,4,5,6)

Repetition:

>>> t1*2

(0,1,2,3,0,1,2,3)

Length: len(t1) (this also works for lists and strings)

Types and Operators: Arrays (1)

Note: arrays are not a built-in python type; they are included in third-party

packages such as Numeric and NumPy. However, they are very useful to

computational math and physics, so I will include a discussion of them

here.

Basic useage:

Loading in array capabilities: # from here on, all operations involving

arrays assume you have already made this step

>>> from numpy import *

Creating an array:

>>> vec = array([1,2,3])

Creating a 3x3 matrix:

>>> mat = array([[1,2,3],[4,5,6],[7,8,9]])

If you need to initialize a dummy array whose terms will be altered later,

the zeros and ones commands are useful;

zeros((m,n),'typecode') will create an m-by-n array of zeros, which

can be integers, floats, double precision floats etc. depending on the type

code used

Types and Operators: Arrays (2)

Arrays and lists have many similarities, but there are also some important

differences

Similarities between arrays and lists:

Both are mutable: both can have elements reassigned in place

Arrays and lists are indexed and sliced identically

The len command works just as well on arrays as anything else

Arrays and lists both have sort and reverse attributes

Differences between arrays and lists:

With arrays, the + and * signs do not refer to concatenation or repetition

Examples:

>>> ar1 = array([2,4,6])

>>> ar1+2 # Adding a constant to an array adds the constant to each

term

[4,6,8,] # in the array

>>> ar1*2 # Multiplying an array by a constant multiplies each term in

[4,8,12,] # the array by that constant

Types and Operators: Arrays (3)
More differences between arrays and lists:

Adding two arrays is just like adding two vectors

>>> ar1 = array([2,4,6]); ar2 = array([1,2,3])

>>> ar1+ar2

[3,6,9,]

Multiplying two arrays multiplies them term by term:

>>> ar1*ar2

[2,8,18,]

Same for division:

>>> ar1/ar2

[2,2,2,]

Assuming the function can take vector arguments, a function acting on an

array acts on each term in the array

>>> ar2**2

[1,4,9,]

>>> ar3 = (pi/4)*arange(3) # like range, but an array

>>> sin(ar3)

[0. , 0.70710678, 1. ,]

Types and Operators: Arrays (4)
More differences between arrays and lists:

The biggest difference between arrays and lists is speed; it's much faster

to carry out operations on arrays (and all the terms therein) than on each

term in a given list.

Example: take the following script:

tt1 = time.clock()

sarr = 1.*arange(0,10001)/10000;

sinarr = sin(sarr)

tt2 = time.clock()

slist = []; sinlist = []

for i in range(10001):

 slist.append(1.*i/10000)

 sinlist.append(sin(slist[i]))

tt3 = time.clock()

Running this script on my system shows that tt2-tt1 (i.e., the time it

takes to set up the array and take the sin of each term therein) is 0.0

seconds, while tt3-tt2 (the time to set up the list and take the sin of

each term therein) is 0.26 seconds.

Types and Operators: Mutable vs. Immutable Types

(1)
Mutable types (dictionaries, lists, arrays) can have individual items

reassigned in place, while immutable types (numbers, strings, tuples)

cannot.

>>> L = [0,2,3]

>>> L[0] = 1

>>> L

[1,2,3]

>>> s = 'string'

>>> s[3] = 'o'

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

TypeError: object does not support item assignment

However, there is another important difference between mutable and

immutable types; they handle name assignments differently. If you assign

a name to an immutable item, then set a second name equal to the first,

changing the value of the first name will not change that of the second.

However, for mutable items, changing the value of the first name will

change that of the second.

An example to illustrate this difference follows on the next slide.

Types and Operators: Mutable vs. Immutable Types

(2)
Immutable and mutable types handle name assignments differently

>>> a = 2

>>> b = a # a and b are both numbers, and are thus immutable

>>> a = 3

>>> b

2

Even though we set b equal to a, changing the value of a does not change

the value of b. However, for mutable types, this property does not hold.

>>> La = [0,1,2]

>>> Lb = La # La and Lb are both lists, and are thus mutable

>>> La = [1,2,3]

>>> Lb

[1,2,3]

Setting Lb equal to La means that changing the value of La changes that

of Lb. To circumvent this property, we would make use of the function

copy.copy().

>>> La = [0,1,2]

>>> Lb = copy.copy(La)

Now, changing the value of La will not change the value of Lb.

Basic Statements: The If Statement (1)

If statements have the following basic structure:

inside the interpreter # inside a script

>>> if condition: if condition:

... action action

...

>>>

Subsequent indented lines are assumed to be part of the if statement.

The same is true for most other types of python statements. A statement

typed into an interpreter ends once an empty line is entered, and a

statement in a script ends once an unindented line appears. The same is

true for defining functions.

If statements can be combined with else if (elif) and else statements as

follows:

if condition1: # if condition1 is true, execute action1

 action1

elif condition2: # if condition1 is not true, but condition2 is,

execute

 action2 # action2

else: # if neither condition1 nor condition2 is true,

execute

 action3 # action3

Basic Statements: The If Statement (2)

Conditions in if statements may be combined using and & or statements

if condition1 and condition2:

 action1

if both condition1 and condition2 are true, execute action1

if condition1 or condition2:

 action2

if either condition1 or condition2 is true, execute action2

Conditions may be expressed using the following operations:

<, <=, >, >=, ==, !=, in

Somewhat unrealistic example:

>>> x = 2; y = 3; L = [0,1,2]

>>> if (1<x<=3 and 4>y>=2) or (1==1 or 0!=1) or 1 in

L:

... print 'Hello world'

...

Hello world

>>>

Basic Statements: The While Statement (1)

While statements have the following basic structure:

inside the interpreter # inside a script

>>> while condition: while condition:

... action action

...

>>>

As long as the condition is true, the while statement will execute the action

Example:

>>> x = 1

>>> while x < 4: # as long as x < 4...

... print x**2 # print the square of x

... x = x+1 # increment x by +1

...

1 # only the squares of 1, 2, and 3 are printed,

because

4 # once x = 4, the condition is false

9

>>>

Basic Statements: The While Statement (2)

Pitfall to avoid:

While statements are intended to be used with changing conditions. If the

condition in a while statement does not change, the program will be stuck

in an infinite loop until the user hits ctrl-C.

Example:

>>> x = 1

>>> while x == 1:

... print 'Hello world'

...

Since x does not change, Python will continue to print “Hello world” until

interrupted

Basic Statements: The For Statement (1)

For statements have the following basic structure:

for item i in set s:

 action on item i

item and set are not statements here; they are merely intended to clarify

the relationships between i and s

Example:

>>> for i in range(1,7):

... print i, i**2, i**3, i**4

...

1 1 1 1

2 4 8 16

3 9 27 81

4 16 64 256

5 25 125 625

6 36 216 1296

>>>

Basic Statements: The For Statement (2)

The item i is often used to refer to an index in a list, tuple, or array

Example:

>>> L = [0,1,2,3] # or, equivalently, range(4)

>>> for i in range(len(L)):

... L[i] = L[i]**2

...

>>> L

[0,1,4,9]

>>>

Of course, we could accomplish this particular task more compactly using

arrays:

>>> L = arange(4)

>>> L = L**2

>>> L

[0,1,4,9,]

Basic Statements: Combining Statements

The user may combine statements in a myriad of ways

Example:

>>> L = [0,1,2,3] # or, equivalently, range(4)

>>> for i in range(len(L)):

... j = i/2.

... if j – int(j) == 0.0:

... L[i] = L[i]+1

... else: L[i] = -i**2

...

>>> L

[1,-1,3,-9]

>>>

Functions (1)

Usually, function definitions have the following basic structure:

def func(args):

 return values

Regardless of the arguments, (including the case of no arguments) a

function call must end with parentheses.

Functions may be simple one-to-one mappings

>>> def f1(x):

... return x*(x-1)

...

>>> f1(3)

6

They may contain multiple input and/or output variables

>>> def f2(x,y):

... return x+y,x-y

...

>>> f2(3,2)

(5,1)

Functions (2)

Functions don't need to contain arguments at all:

>>> def f3():

... print 'Hello world'

...

>>> f3()

Hello world

The user can set arguments to default values in function definitions:

>>> def f4(x,a=1):

... return a*x**2

...

>>>

If this function is called with only one argument, the default value of 1 is

assumed for the second argument

>>> f4(2)

4

However, the user is free to change the second argument from its default

value

>>> f4(2,a=2) # f4(2,2) would also work

8

Functions (3)

Functions need not take just numbers as arguments, nor output just

numbers or tuples. Rather, they can take multiple types as inputs and/or

outputs.

Examples:

>>> arr = arange(4)

>>> f4(arr,a=2) # using the same f4 as on the previous slide

[0,2,8,18,]

>>> def f5(func, list, x):

... L = []

... for i in range(len(list)):

... L.append(func(x+list[i]))

... arr = array(L)

... return L,arr

...

>>> L1 = [0.0,0.1,0.2,0.3]

>>> L,arr = f5(exp,L1,0.5)

>>> arr

[1.64872127, 1.8221188 , 2.01375271, 2.22554093,]

Note: the function above requires Numeric, NumPy, or a similar package

Functions (4)

Anything calculated inside a function but not specified as an output

quantity (either with return or global) will be deleted once the function

stops running

>>> def f5(x,y):

... a = x+y

... b = x-y

... return a**2,b**2

...

>>> f5(3,2)

(25,1)

If we try to call a or b, we get an error message:

>>> a

Traceback (most recent call last):

 File "<stdin>", line 1, in ?

NameError: name 'a' is not defined

This brings us to scoping issues, which will be addressed in the next

section.

Functions: Getting Help If you forget how to use a standard function, Python's library utilities can

help. Say we want to know how to use the function execfile(). In this

case, Python's help() library functions is extremely relevant.

Usage:

>>> help(execfile)

don't include the parentheses when using the function name as an

argument

Entering the above into the interpreter will call up an explanation of the

function, its usage, and the meanings of its arguments and outputs. The

interpreter will disappear and the documentation will take up the entire

terminal. If the documentation takes up more space than the terminal

offers, you can scroll through the documentation with the up and down

arrow keys. Striking the q key will quit the documentation and return to the

interpreter.

WARP has a similar library function called doc(). It is used as follows:

>>> from warp import *

>>> doc(execfile)

The main difference between help() and doc() is that doc() prints the

relevant documentation onto the interpreter screen.

Scope Rules (1)

Python employs the following scoping hierarchy, in decreasing order of

breadth:

Built-in (Python)

Predefined names (len, open, execfile, etc.) and types

Global (module)

Names assigned at the top level of a module, or directly in the

interpreter

Names declared global in a function

Local (function)

Names assigned inside a function definition or loop

Example:

>>> a = 2 # a is assigned in the interpreter, so it's global

>>> def f(x): # x is in the function's argument list, so it's local

... y = x+a # y is only assigned inside the function, so it's local

... return y # using the sa

...

>>>

Scope Rules (2)
If a module file is read into the interpreter via execfile, any quantities

defined in the top level of the module file will be promoted to the top level

of the program

As an example: return to our friend from the beginning of the presentation,

script.py:

print 'Hello world'

x = [0,1,2]

>>> execfile('script.py')

Hello world

>>> x

[0,1,2]

If we had imported script.py instead, the list x would not be defined on the

top level. To call x, we would need to explicitly tell Python its scope, or

context.

>>> import script

Hello world

>>> script.x

[0,1,2]

As we saw on slide 9, if we had tried to call x without a context flag, an

error message would have appeared

Scope Rules (3)
Modules may well contain submodules. Say we have a file named

module.py which, in its definition, imports a submodule named submodule,

which in turn contains some quantity named x.

>>> import module

If we load the module this way, we would type the following to call x:

>>> module.submodule.x

We can also import the submodule without importing other quantities

defined in module.py:

>>> from module import submodule

In this case, we would type the following to call x:

>>> submodule.x

We would also call x this way if we had read in module.py with

execfile()

Scope Rules (4)

You can use the same names in different scopes

Examples:

>>> a = 2

>>> def f5(x,y)

... a = x+y # this a has no knowledge of the global a, and vice-

versa

... b = x-y

... return a**2,b**2

...

>>> a

2

The local a is deleted as soon as the function stops running

>>> x = 5

>>> import script # same script as before

Hello world

>>> x

5

>>> script.x # script.x and x are defined in different scopes,

and

[0,1,2] # are thus different

Scope Rules (5)

Changing a global name used in a function definition changes the function

Example:

>>> a = 2

>>> def f(x):

... return x+a # this function is, effectively, f(x) = x+2

...

>>> f(4)

6

>>> a = 1

>>> f(4) # since we set a=1, f(x) = x+1 now

5

Unlike some other languages, Python function arguments are not modified

by default:

>>> x = 4

>>> f(x)

5

>>> x

4

Some Useful Packages and Resources
Useful packages:

Numeric – good for numerical algebra, trigonometry, etc. CAUTION: no

longer supported

NumPy – similar to Numeric, but handles arrays slightly differently and

has a few other built-in commands and functions

SciPy – useful for numerical integration, ODE solutions, interpolations,

etc.: based on NumPy

Books:

Learning Python, Mark Lutz & David Ascher, O'Reilly Press, 1999

Programming Python, Mark Lutz, O'Reilly Press, 2006

Core Python Programming (2nd Edition), Wesley J. Chun, Prentice Hall,

2006

Websites:

http://docs.python.org - online version of built-in Python function

documentation

http://laurent.pointal.org/python/pqrc - Python Quick Reference Card

http://rgruet.free.fr - long version of Python Quick Reference Card

http://mail.python.org - extensive Python forum

http://docs.python.org/
http://laurent.pointal.org/python/pqrc
http://rgruet.free.fr/
http://mail.python.org/

