
Introduction to programming and data processing
with Python

Exercises for DTU Course 02631–34, 02691–94.

Mikkel N. Schmidt, Kristoffer Albers, Rasmus Røge,
Vedrana Andersen, Martin S. Andersen.

2017

ii

Contents
1 Introduction to programming 1

1.1 Aims and objectives . 1
1.2 Installation . 1
1.3 The integrated development environment interface . 1
Exercise 1A: Getting to know the interface . 2
Exercise 1B: Simple arithmetic operations . 3
Exercise 1C: Help on functions . 4
Exercise 1D: Mathematical functions . 4
Exercise 1E: Scripts . 5
Assignment 1F: Hello CodeJudge! . 6
Assignment 1G: The cosine rule . 7
Assignment 1H: The quadratic formula . 8

2 Functions, vectors, and testing 9
2.1 Aims and objectives . 9
2.2 Functions and scope . 10
Assignment 2A: Taylor series . 12
2.3 Working with vectors . 14
Exercise 2B: Initializing and indexing vectors . 19
Exercise 2C: Vector operations . 20
Exercise 2D: Logical vector indexing . 21
Exercise 2E: Modifying vectors . 22
2.4 Testing . 23
Assignment 2F: Projection . 25
Assignment 2G: Box area . 27
Optional challenge 2H: Sudoku row . 29

3 Selection statements 31
3.1 Aims and objectives . 31
3.2 Using selection statements . 32
Exercise 3A: True or false . 33
Exercise 3B: Logical expressions . 34
3.3 Comparison pitfalls . 35
Assignment 3C: Angle between lines . 36
Assignment 3D: Piecewise function . 38
Assignment 3E: Acidity . 40
Optional challenge 3F: Football goal tracker . 41

4 Looping 43
4.1 Aims and objectives . 43
4.2 For- and while-loops . 44
4.3 Loop pitfalls . 45
4.4 Loops and vectorized computation . 46
4.5 Displaying formatted output . 47
Exercise 4A: Repeated printing . 48
Exercise 4B: Power series approximation . 49
Exercise 4C: Square roots . 50
Assignment 4D: Fermentation rate . 51
Assignment 4E: Bacteria growth . 52
Assignment 4F: Removing incomplete experiments . 53
Optional challenge 4G: Cluster analysis . 54

iii

Contents

5 Computer programs 57
5.1 Aims and objectives . 57
5.2 Writing useful comments . 58
Assignment 5A: Temperature conversion . 59
5.3 Input from the user . 61
Exercise 5B: Interactive temperature calculator . 63
Exercise 5C: A simple menu . 64
5.4 Creating an interactive program main script . 65
5.5 Computer simulation with random numbers . 67
Exercise 5D: Random numbers . 68
Assignment 5E: Monte Carlo estimation . 69
Optional challenge 5F: Thermodynamic simulation . 71

6 Files and matrices 73
6.1 Aims and objectives . 73
6.2 Files and directories . 74
6.3 Loading and saving variables in files . 74
Exercise 6A: Loading and saving variables . 76
6.4 Working with matrices . 77
Assignment 6B: Production cost . 79
Assignment 6C: Moving average . 81
6.5 Reading text files . 83
Assignment 6D: Frequency of letters . 84
6.6 Working with CSV files . 86
Assignment 6E: Language detection . 88
Exercise 6F: Advanced file types . 90

7 Plotting and strings 91
7.1 Aims and objectives . 91
7.2 Working with plots . 92
Exercise 7A: Cassiopeia graph . 94
Exercise 7B: Scatter plot . 95
Exercise 7C: Histograms . 96
Exercise 7D: Radiocarbon dating . 97
Exercise 7E: Temperature in the UK . 98
Exercise 7F: Saving and printing plots . 100
7.3 Working with strings . 101
Assignment 7G: The NATO alphabet . 103

iv

Introduction to programming
Aims and objectives

After working through this exercise you should be able to:

• Run the Python desktop environment (Spyder).

• Use the desktop envionment including

– The console window where you can type commands.

– The variable explorer window where you can inspect the variables in your workspace.

– The editor window where you can edit scripts and functions.

– The file explorer window where you can find files with code saved on the computer.

• Use the desktop environment to get help on functions.

• Type and execute commands in the command prompt (console window).

• Create variables and assign values of different types including

– Decimal numbers

– Whole numbers

– Text strings

– Logical values (True/False).

• Use the basic arithmetic operators to add, subtract, multiply, divide, and exponentiate variables.

• Use simple functions such as cos(), sin(), tan(), exp(), and log().

• Write a script containing multiple statements and run it in the desktop environment.

• Save scripts in a file and open and run scripts saved in files.

Suggested preparation
Downey, “Think Python: How to Think Like a Computer Scientist”, Chapter 1–2.

Video: Using the desktop environment

Installation
Python can be downloaded from http://continuum.io/downloads Choose the newest version.

The integrated development environment interface

When you start Spyder, you will be met by an interface, similar to the following.

1

http://continuum.io/downloads

Module 1. Introduction to programming

The interface is split into several windows.

• The console window is used to prompt commands, that you want Python to execute. Make sure the
’iPython console’ tab is selected to show the correct window.

• The variable explorer window shows a list of all created variables. The list is initially empty, as no variables
have yet been created. Make sure the ’Variable explorer’ tab is selected to show the correct window.

• The file explorer window shows a list of files present in the current working directory. You must select the
’File explorer’ tab to show the file explorer window, next to the ’Variable explorer’ tab.

Exercise 1A Getting to know the interface

1. Click with the mouse in the console window. Type a = 3 and press enter. You have now prompted
Python to create a variable called a, and given it the initial value 3. Notice that the variable a is now
shown in the variable explorer window.

2. Type a+2 in the console window and press enter. Python now shows the result of the arithmetic operation
of adding 2 to the value of a. Notice in the variable explorer window that the value of a is unchanged.

3. Type a = a + 2 and press enter. This instructs Python to perform the arithmetic operation and write
the result to the variable a.

• What it the value of a now? What has happened with the old value of a?

4. Use the console window to perform the following operations:

• Create a new variable x with the value 4.

• Create a new variable y with the value 7.

• Create a new variable z and set its value to the sum of x and y.

• Inspect the variable explorer window to ensure that the value of z is in fact 11.

5. If you type in the following sequence of commands,
a = 7
b = a
a = 9

2

Module 1. Introduction to programming

what will the final value of the variable b be? Check your answer by typing it into the console window. If
it is not clear to you why b still has the value 7 even though a has been assigned a new value 9, you need
to read up on how variable assignment works.

1A

Representing and displaying numbers

When we do computations with numbers in Python, we usually work with the socalled double-precision floating-
point format. Numbers are represented with a finite number of significant digits, corresponding to approximately
16 decimals. This means that numbers that can not be represented by a finite number of binary digits will
automatically be rounded. Usually this is no problem, because 16 significant digits is most often more than
enough, but sometimes the finite precision can be a bit confusing: For example, try typing the following into
Python and see what the result is

1.1 + 2.2 - 3.3

Hint
Python always displays decimal numbers with at least one decimal, even if the decimal is zero. For example,
the number 12 will be displayed as 12.0.

Exercise 1B Simple arithmetic operations

The arithmetic operators +, -, *, / are used to add, subtract, multiply and divide.

Hint
In some older versions of Python, division of two integer numbers will always result in an integer number. For
example the expression 9/2 will give the result 4. To avoid this behaviour, just one of the operands must be a
real number. For instance 9.0/2 will give the result 4.5 as wanted. Write the two expressions 9/2 and 9.0/2 in
the console window to determine the behaviour of your installed Python interpreter.

1. What are the results of the following expressions? Think about it first, then type the expressions in the
console window to verify.

9 / 2 + 2

6 + 4 * 4

4 / 6 + 2

2 - 3 * 2 - 4

(7 - 5) * (7 + 5)

(3 * (4 - 2 * (3) + 4))

2. The exponentiation operator in Python is **. What do you expect the results of the following expressions
to be? Verify, by writing the expressions in the console window.

2**3

3**2 - 4**2

2**2**3

2**(2**3)

3. Verify in Python that the following expressions are correct.

3 · (2 + 32) = 33

42 + 33 + 24 + 1 = 60

3

Module 1. Introduction to programming

1
1
2 + 1

3 + 1
6

= 1

1B

Exercise 1C Help on functions

Hint
Much of the functionality in Python must be explicitly imported into the interpreter before it can be used.
Write import math in the console and press enter. The math module is now imported. It contains many
mathematical functions and variables that you can now use.

The help command is useful for learning more about functions and how they are used. For example, writing
help(math.sin) in the console window shows a helpful description of the sinus function.

1. Use the help to confirm that the function calculates and returns the sine of an angle in radians and not
in degrees.

Next, test this in the console window by writing both of the following lines and inspecting the results.

math.sin(0.5*math.pi)
math.sin(90)

2. Use the help to examine what the functions round, math.floor, math.ceil, and math.trunc do.

Next, verify your findings by answering the following questions:
• Is math.floor(2.5) the same as math.trunc(2.5)?

• Is math.ceil(-3.6) the same as math.trunc(-3.2)?

• Is round(3.4) the same as math.ceil(3.4)?

• Is round(-3.4) the same as math.ceil(-3.4)?

3. The round function can also take a second argument, specifying how many decimal places to round off
to. Try using this to round of the number 1234.56789 to the following values:

• 1234.568

• 1234.6

• 1235

• 1200

4. The function math.log can be used to compute the logarithm of a number. There exists different logarithm
functions with different base, such as the base-10 logarithm and the natural logarithm where the base is
Euler’s number, e. Use the help to find out what the base is in the math.log function.

1C

Exercise 1D Mathematical functions

1. Write the following lines in the console window and observe what they do:

math.pi
math.sqrt(25)

The radius r of a circle can be found when the area A is known as:

r =
√
A

π
(1.1)

4

Module 1. Introduction to programming

How can you calculate the radius of a circle with area A = 30?

Solution

math.sqrt(30/math.pi)

2. Type a = 51 and press enter. Now the variable a contains the value 51. Type b = math.log(a) to get
Python to compute the logarithm of 51. What do the variables a and b contain now?

Next, type a = "fiftyone". Again, type b = math.log(a). This time you will get an error message—
why? Confirm that since the command failed, the variable b whas not changed.

1D

Exercise 1E Scripts

A script is simply a textfile, where each line contains a command. When the script is run, the commands are
executed in sequence. This is essentially the same as prompting the commands one at a time in the console
window.

There are however some advantages of using scripts. They give you a more clear overview of your code, lets
you save the sequence of commands for future use and makes it easy to share your code with other people.

A script must have the extention .py (for example MyScript.py) and is therefore sometimes referred to simply
as a py-file. Scripts can be created with the built-in editor.

• Create a new empty file in the editor window.

• In the empty file, write the three commands you used to solve exercise 1A part 4.

• Save your script (for instance as myFirstScript.py). Notice that the script is now listed in the file explorer
window.

• Execute the commands in your script. This can be done by pressing F5 from within the editor.

• Save your script under a different name, and observe that both script-files are now present in the file
explorer window.

1E

5

Module 1. Introduction to programming

Assignment 1F Hello CodeJudge!

Create a script in which you create a variable named WhatISay and assign to it the string

Hello CodeJudge!

Be careful to name your variable exactly as specified, and assign the string with correct case and including the
exclamation point.

Save your script in a file.

Hint
It is important that your script does not print out anything to the screen or does anything else that is not
specified.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
print(WhatISay) Hello CodeJudge!

Hand in on CodeJudge

Hand in your solution on CodeJudge.

1F

6

Module 1. Introduction to programming

Assignment 1G The cosine rule

The cosine rule can be used to compute the length of a side in a triangle (a), when you know the other two
sides (b, and c) and the opposing angle (A):

a =
√
b2 + c2 − 2bc cos(A) (1.2)

Problem definition

Create a script that carries out the following steps:

1. Create a variable b and set it to 12.

2. Create a variable c and set it to 10.

3. Create a variable A and set it to 0.25 · π.

4. Compute the length of the side a using the cosine rule.

• Save the solution in a variable a.

Check that your script produces the correct results, namely a = 8.6194 (here show with four decimals).

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
print(a) 8.619418339727373

Hand in on CodeJudge

Your script must be handed in on CodeJudge.

1G

7

Module 1. Introduction to programming

Assignment 1H The quadratic formula

A quadratic equation has the following form

ax2 + bx+ c = 0. (1.3)

Solutions to the equation can be found using the quadratic formula

x = −b±
√
b2 − 4ac

2a . (1.4)

Problem definition

Create a script that carries out the following steps:

1. Create a variable a and set it to 2.

2. Create a variable b and set it to -5.

3. Create a variable c and set it to 2.

4. Compute the two solutions using the quadratic formula.

• Save the smallest solution in a variable x1.

• Save the largest solution in a variable x2.

Check that your script produces the correct results, namely 0.5 and 2.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
print(a) 2

Hand in on CodeJudge

Your script must be handed in on CodeJudge.

1H

8

Functions, vectors, and testing
Aims and objectives

After working through this exercise you should be able to:

• Create your own user-defined functions that accept a single input and produces a single output.

– Execute the functions both from the console and from within a script.

• Describe the difference between a script and a function.

• Describe how the scope of variables works. In particular you should be able to explain:

– Which variables can be accessed from a script and which can be accessed from within a function?

– What is the relation between a variable that is passed as an input argument to a function, and the
corresponding variable inside the function?

• Initialize a vector and do basic vector operations:

– Indexing, including logical indexing.

– Elementwise operations such as division and multiplication.

– Vector operations such as addition, subtraction, dot products, and outer products.

– Operations that work on vectors, such as computing the sum, mean, maximum, minimum, and
product of the elements in the vector.

– Determine the length of a vector.

• Understand simple error messages that occur for example in the following situations:

– Calling functions with a wrong number of arguments.

– When trying to do vector operations that are not possible.

Suggested preparation
Downey, “Think Python: How to Think Like a Computer Scientist”, Chapter 3.

Video: Working with functions
Video: Indexing vectors
Video: Assert statements and unit tests

9

Module 2. Functions, vectors, and testing

Functions and scope

A script and a function are quite similar: They both contain multiple lines of code that can be executed. The
main difference lies in which variables a script and a function have access to. A script has access to all variables
in the workspace (these are often called global variables) whereas a function primarily has access to variables
that are defined within the function (these are often called local variables). The scope of a variable is the part
of your program in which the variable is accesible.

While it is possible to access global variables from within a function, it is often not a good idea. The structure
of your program is more clear, if functions only work with variables that are defined within the function itself.
Variables that you need from outside should be passed as input arguments, and variables containing the results
of the computations in the function should be passed as return-values.

You can think of a variable as a name that refers to a value. In two different functions it is allowed to use
the same name to refer to different values: For example, in one function you might have a variable called data
which is equal to the number 13, and in another function you might have a variable which is also called data
which is equal to the string datafile.txt. This is no problem, because the two variables only exist inside the
two functions, and can not be directly accessed from outside: They are only accesible inside the function scope.

Creating your own functions in Python is easy. For example, the following defines a function which evaluates
the polynomial 5x2 − 7x+ 3.

def evaluate_polynomial(x):
a = 5
b = -7
c = 3
return a*x**2 + b*x + c

To use the function you must save it in a file and run it. Now, the function evaluate_polynomial can be used
in the console window, in a script, or in another function.

Hint
In general, to use a function myfunction which is stored in a file myfunction.py, you must import the function
into Python, either by running the file or by writing from myfile import myfunction.

We can for example type the following in the console window:

>> t = 3
>> x = evaluate_polynomial(t)
>> x
27

Note that in the console window, the global variable t is has the value 3 and the global variable x gets the
value 27. Inside the function, the local input variable is also called x, but since this is inside the function it is
a different x. The local x gets its value from the argument to the function which is t equal to 3. Thus, inside
evaluate_polynomial, x is equal to 3.

Printing versus returning values

It is important to distinguish between printing a value and returning a value in a function. Compare the
following code to the previous implementation of the evaluate_polynomial function:

def evaluate_polynomial(x):
a = 5
b = -7
c = 3
print(a*x**2 + b*x + c)

10

Module 2. Functions, vectors, and testing

In this second version, the value of the polynomial is not returned from the function, but is printed to the
screen. A common mistake is to print out a value which should have been returned from a function. Printing
something to the should screen only be done to display information to the user of the computer program. If
you compute something that you want to be able to use on other parts of a computer program, it should be
returned rather than printed.

Returning multiple values

It is also possible to return more than one value from a function. You can do this by returning a tuple, i.e.
multiple values surrounded by parentheses and separated by commas.

def painting():
name = "Mona Lisa"
value = 100000000
return (name, value)

When you call the function, you can then access the two return values like this:

>>> artName, artVal = painting()
>>> artName
'Mona Lisa'
>>> artVal
100000000

11

Module 2. Functions, vectors, and testing

Assignment 2A Taylor series

A Taylor series is a way to represent a complicated mathematical function as a an infinite sum of terms. Often,
a Taylor series can be used to approximate a mathematical function by computing a small number of the terms
and ignoring the remaining. For example, the first three terms of the Taylor series for the log(x) function are
given by the following polynomial expression:

y = (x− 1)− 1
2 (x− 1)2 + 1

3 (x− 1)3 (2.1)

Problem definition

Create a function named evaluateTaylor that evaluates the Taylor series approximation in Equation (2.1) at
an input x and returns the result.

Solution template

def evaluateTaylor(x):
Insert your code here
y = ... ?
return y

Input
x Input x (real scalar value)
Output
y Result of Taylor series at x (real scalar values)

Example

Evaluating the Taylor series at x = 1 should give the result y = 0, since all three terms are zero in that case.
Evaluating the series at x = 2 yields

y = (2− 1)− 1
2 (2− 1)2 + 1

3 (2− 1)3 = 1− 1
2 + 1

3 = 5
6 ≈ 0.833. (2.2)

You can use these examples to validate your code before you submit your solution to CodeJudge.

Hint
Note that in Python the indentation whitespace (spaces, tabs, and newlines) is what determines the code
sections. Therefore wrongly indented code will often not run. The following two implementations of the
function multiply_by_three will not work due to wrong indentation

Will NOT work
def multiply_by_three(n):

m = 3*n
return m

Will NOT work
def multiply_by_three(n):
m = 3*n
return m

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

12

Module 2. Functions, vectors, and testing

Test code Expected output
print(evaluateTaylor(2)) 0.8333333333333333

Hand in on CodeJudge

In order to validate you can either upload a file containing your implementation of the function or directly copy
the code into codejudge.

Discussion and futher analysis

• Run the function from the console with different input.

• What happens when you run the function with a vector as input?

• What happens when you try to run the function without input.

2A

13

Module 2. Functions, vectors, and testing

Working with vectors

The following is a short introduction to working with vectors in Python.

The NumPy module To work with vectors and matrices in Python, we will use a package for scientific
computing called NumPy. It is included by default in most Python installations, but if you have a version
of Python that does not include NumPy it can be downloaded and manually installed from www.scipy.org/
Download.

The most common way to import the NumPy packages is

import numpy as np

This imports all the libraries and gives it the short name np. All functions in NumPy must then be preceeded
with the np keyword. Alternatively you can write

from numpy import *

This means you can now access NumPy functions without using any keywords. While this might seem easier,
it will make it difficult to tell which library a specific function belongs and this method is therefore not recom-
mended. Further documentation on NumPy can be obtained from the NumPy reference guide available online:
docs.scipy.org/doc/numpy/reference. There is also a simple but more extensive guide to NumPy available
from www.engr.ucsb.edu/~shell/che210d/numpy.pdf. Note that all the functions mentioned here have addi-
tional functionality. For a complete description of the functionality and notation of a function visit the NumPy
reference guide. For the rest of this section we assume that NumPy has been included by import numpy as np.

Creating vectors A vector is called an array in NumPy and can be created by converting a list of numbers
(in square brackets) using the np.array function.

a = np.array([1, 2, 3])

Accessing elements The elements can be accessed using square brackets. The index of the first element of
a vector is 0 and the index of the last element is N-1 where N is the length of the vector.

>> a[0]
1

You can also use this notation to change an element in a vector.

>> a = np.array([1, 2, 3])
>> a[0] = 7
>> a
array([7, 2, 3])

You can use the colon operator as an index in a vector to extract a sub-range.

>> a = np.array([3.4, 5.2, 7.4, 9.2, 5.3])
>> a[1:4]
array([5.2, 7.4, 9.2])

You can also access multiple elements in a vector by using a vector of indexes.

>> index = np.array([0, 2, 4]);
>> a[index]
array([3.4, 7.4, 5.3])

You can also use the colon operator or a vector of indices to change multiple elements in a vector.

14

www.scipy.org/Download
www.scipy.org/Download
docs.scipy.org/doc/numpy/reference
www.engr.ucsb.edu/~shell/che210d/numpy.pdf

Module 2. Functions, vectors, and testing

>>> a = np.array([3.4, 5.2, 7.4, 9.2, 5.3]);
>>> index = np.array([0, 2, 4])
>>> a[index] = 0
>>> a
array([0. , 5.2, 0. , 9.2, 0.])
>>> a[0:3] = np.array([10, 9, 8])
>>> a
array([10. , 9. , 8. , 9.2, 0.])

Vectors of identical numbers It is easy to create vectors with identical values, such as all zeros or ones.

>> a = np.zeros(4)
>> a
array([0., 0., 0., 0.])
>> b = np.ones(4)
>> b
array([1., 1., 1., 1.])

Number ranges A vector that contains a range of numbers can be constructed using the arange function.

>> a = np.arange(5, 10)
>> a
array([5, 6, 7, 8, 9])

Note that you specify the start and stop values, and that the range does not include the stop value.

Type help(np.arange) to learn more about this.

Concatenating vectors You can concatenate two vectors using the concatenate function.

>> a = np.arange(1,4)
>> b = np.arange(6,8)
>> c = np.concatenate((a,b))
>> c
array([1, 2, 3, 6, 7])

Random vectors To create a random vector you can use the function np.random.rand.

>>> np.random.rand(4)
array([0.45522641, 0.36673742, 0.11908726, 0.25607802])

This will generate random decimal numbers between 0 and 1 with a uniform distribution. There are also
functions that can generate random integers, and random numbers with other probability distributions—you
can use the help and documentation to learn more.

Element-wise vector operations You can use the operators +, -, *, /, and ** to perform element-wise
addition, subtraction, multiplication, division, and exponentiation of vectors.

>> a = np.array([1, 2, 3, 4, 5])
>> a*2
array([2, 4, 6, 8, 10])
>> 2+a
array([3, 4, 5, 6, 7])
>> a/3
array([0.33333333, 0.66666667, 1. , 1.33333333, 1.66666667])

This also applies for when both operands are vectors.

15

Module 2. Functions, vectors, and testing

>> b = np.array([5, 4, 3, 2, 1])
>> a+b
array([6, 6, 6, 6, 6])
>> a-b
array([-4, -2, 0, 2, 4])
>> a*b
array([5, 8, 9, 8, 5])
>> a/b
array([0.2, 0.5, 1. , 2. , 5.])

Mathematical functions such as np.sin, np.cos, and np.sqrt also work element-wise on vectors.

Hint
Note that the mathematical functions in the math module, such as math.sin do not work on NumPy arrays.
You must use the corresponding functions in the NumPy module, such as np.sin.

Vector operations There are many additional functions that can operate on vectors, for example to compute
the minimum, maximum, sum, average, and number of elements.

>> a = np.array([1, 2, 3, 4, 5])
>> min(a)
1
>> max(a)
5
>> sum(a)
15
>> np.mean(a)
3.0
>> np.size(a)
5

The dot product between two vectors can be computed simply as

>> a = np.array([1, 2, 3])
>> b = np.array([3, 2, 1])
>> np.dot(a,b)
10

Comparison operators and logical indexing It is possible to compare two vectors element-wise

>> a = np.array([1.1, 2.2, 3.3, 4.4])
>> b = np.array([3.1, 2.2, 1.3, 0.4])
>> a > b
array([False, False, True, True], dtype=bool)

This gives a vector of boolean (True/False) values. This vector can be used for logical indexing, i.e. to extract
a new vector containing the elements of the original vector for which the index is true.

>> a[a > b]
array([3.3, 4.4])

Multiple vectors of boolean values can also be combined using the logical vector operators & (and) and | (or).

>> a = np.array([1.1, 2.2, 3.3, 4.4])
>> b = np.array([3.1, 2.2, 1.3, 0.4])
>> (a > b) | (a < 2)
array([True, False, True, True], dtype=bool)

16

Module 2. Functions, vectors, and testing

You can also directly create a vector of boolean values similar to how you have created other vectors with
identical values

>> a = np.zeros(4, dtype=bool)
>> a
array([False, False, False, False], dtype=bool)
>> b = np.ones(4, dtype=bool)
>> b
array([True, True, True, True], dtype=bool)

Error messages When working with vectors, certain operations are not mathematically well-defined, such
as trying to access an element beyond the bounds of the vector, or trying to compute the element-wise product
of two vectors of different length. This will result in an error message, which in some cases can be difficult to
decipher.

>> a = np.array([2, 3, 4])
>> b = np.array([1, 2, 3, 4])
>> a[3]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: index 3 is out of bounds for axis 0 with size 3
>> a * b
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operands could not be broadcast together with shapes (3,) (4,)

17

Module 2. Functions, vectors, and testing

NumPy arrays are mutable You should be aware that NumPy arrays we use to store vectors behave a bit
differently than the variables we have used so far. When a variable stores a NumPy array, it actually stores
only a reference to the data in the array. Two variables might store a reference to the same data, which means
that if the data is modified through one variable, it will affect the data in the other variable also: They are said
to be mutable.

To illustrate this, consider the following examples. In the first example, it should come as no surprise that the
variable b will contain the value 1 even though the variable a is subsequently modified.

>>> a = 1 # a gets the value 1
>>> b = a # b gets the value of a which is 1
>>> a = 99 # a gets the value 99 (this doesn't affect b)
>>> a
99
>>> b
1

This is no different for NumPy arrays, when the whole array is assigned a new value

>>> a = np.array([1, 2, 3]) # a points to the vector [1, 2, 3]
>>> b = a # b points to the same data as a
>>> a = np.array([4, 5, 6]) # a points to a new vector [4, 5, 6] (doesn't affect b)
>>> a
array([4, 5, 6])
>>> b
array([1, 2, 3])

However, if two variables reference the same data, modifying the data will affect both variables.

>>> a = np.array([1, 2, 3]) # a points to the vector [1, 2, 3]
>>> b = a # b points to the same data as a
>>> c = np.copy(a) # c points to a new vector (copy of a)
>>> a[0] = 99 # The first element of the data pointed to by a (and b) is

modified, affecting a and b (but not c)
>>> a
array([99, 2, 3])
>>> b
array([99, 2, 3])
>>> c
array([1, 2, 3])

As the example also illustrates, one way to avoid this behaviour is to use the np.copy function.

18

Module 2. Functions, vectors, and testing

Exercise 2B Initializing and indexing vectors

Use the appropriate vector initialization functions and operators to create the following vectors:

1. v1 = [3, 7, 1] (Hint: Use direct assignment)

2. v2 = [0, 0, 0, 0, 0, 0] (Hint: Use np.zeros)

3. v3 = [1, 1, 1]

4. v4 = [1, 2, 3, 4]

5. v5 = [1, 2, 3, 4, 5, 10, 11, 12, 13, 14]

Use appropriate methods to access the vectors to answer the following questions:

1. Access the first element of the v1 vector.

2. Access the second element of the v4 vector.

3. What happens if you try to access the fourth element of vector v3.

4. How can you change vector v4 to store 10 as the fifth element?

5. How can you change the vector v5 so that it becomes equal to [3, 7, 1]?

2B

19

Module 2. Functions, vectors, and testing

Exercise 2C Vector operations

Create the vectors v1 = [1, 2, 3, 4, 5], v2 = [3, 4, 5, 6, 7], and v3 = [1, 1, 1, 1]. Create a script that outputs the
following:

1. The dot product of v1 and v2.
v1 · v2 = 1 · 3 + 2 · 4 + 3 · 6 + 4 · 7 + 5 · 8 = 85.

2. Element-wise multiplication of v1 and v2.
[1 · 3, 2 · 4, 3 · 6, 4 · 7, 5 · 8] = [3, 8, 15, 24, 35].

3. The sine function applied to each element in v1.
sin(v1) = [0.8415, 0.9093, 0.1411,−0.7568,−0.9589].

4. The length of v1 which is 5.

5. The dot product of v1 and v3.
(Hint: What happens when you try to compute this?)

2C

20

Module 2. Functions, vectors, and testing

Exercise 2D Logical vector indexing

Create the vectors v1 = [4, 2, 1, 2, 5] and v2 = [−1, 4, 5,−3, 6]. Use logical indexing to compute a new vector v3
containing the following:

1. The elements of v1 that are less than 3. (v3 = [2, 1, 2])

2. The elements of v2 that are negative. (v3 = [−1,−3])

3. The elements of v2 that are greater than 0. (v3 = [4, 5, 6]).

4. The elements of v1 that are greater than 100. There are none, so what happens?

5. The elements of v1 that are greater than the corresponding element in v2. (v3 = [4, 2])

6. The elements of v2 that are not equal to 5. (v3 = [−1, 4,−3, 6])

7. The elements of v1 that are greater than the average of the elements in v1. (v3 = [4, 5])

Solution to selected questions

v1 = np.array([4, 2, 1, 2, 5])
v2 = np.array([-1, 4, 5, -3, 6])

1. v3 = v1[v1 < 3]

3. v3 = v2[v2 > 0]

5. v3 = v1[v1 > v2]

7. v3 = v1[v1 > np.mean(v1)]

2D

21

Module 2. Functions, vectors, and testing

Exercise 2E Modifying vectors

Consider the vector v = [4, 7,−2, 9, 3,−6,−4, 1]. Which Python command will do the following:

1. Set all negative values to zero. (v = [4, 7, 0, 9, 3, 0, 0, 1])

2. Change the sign of all values. (v = [−4,−7, 2,−9,−3, 6, 4,−1])

3. Set all values that are less than the average to zeros. v = [4, 7, 0, 9, 3, 0, 0, 0]

4. Set all negative values to positive. (v = [4, 7, 2, 9, 3, 6, 4, 1])

5. Multiply all positive values by two. (v = [8, 14,−2, 18, 6,−6,−4, 2])

6. Raise all values to the power of 2, but keep their original sign. (v = [16, 49,−4, 81, 9,−36,−16, 1])

Solution to selected questions

1. v[v < 0] = 0

3. v[v < np.mean(v)] = 0

5. v[v > 0] = v[v > 0] * 2

2E

22

Module 2. Functions, vectors, and testing

Testing

A very important part of programming is to test if the code functions correctly. Even if your code is very
simple, it can be quite difficult to completely understand how it will function in all possible cicumstances. For
that reason it is important to have a structured approach to testing your code.

Using assertions

A common way to make sure your code behaves as it should is to use socalled assertions. These are statements
that check a condition (a boolean expression) which you know must be true when the program executes. For
example, if you have a variable called speed which you know must be a positive number, you can add the
following assertion statement

assert speed > 0

When your program executes the assertion statement it will stop if the condition is not true and print out an
error message. This allows you to go back and examine the code to find out what happened and fix the bug.

Writing assertion statements is one of the fastest and most efficient methods to testing your code and avoiding
bugs.

Unit tests

A unit test is a piece of code that tests a unit of software (such as a single function) to check if it satisfies some
requirement. For example, it can check for a given input that the output is as expected. Every time you write
a function, we recommend that you write a unit test.

As an example, consider the following function which attempts to compute the final velocity, vf , (of some
object) given the initial velocity, vi, acceleration a, and travelled distance, d, which is governed by the following
mathematical formula

vf =
√
v2
i + 2 · a · d (2.3)

def compute_velocity(velocity_initial, acceleration, distance):
Compute final velocity
velocity_final = math.sqrt(velocity_initial + 2*acceleration*distance)
return velocity_final

There is a bug in the code, but maybe we don’t see it immediatly. However, when we write our unit test we
will easily spot the bug. Some reasonable unit tests for the above function could be the following:

Unit test of compute_velocity
assert compute_velocity(0, 0, 0) == 0
No accelleration: Final velocity = initial velocity
assert compute_velocity(10, 0, 0) == 10
assert compute_velocity(5, 0, 5) == 5
No travelled distance: Final velocity = initial velocity
assert compute_velocity(10, 7, 0) == 10
Positive acceleration and distance: Final velocity is greater than initial velocity
assert compute_velocity(0, 1, 5) > 0
assert compute_velocity(5, 2, 5) > 5

Try running the unit tests. Can you find the bug?

Unit tests and CodeJudge

When you submit a solution to an assignment on CodeJudge, a number of unit tests will automatically be run
on your code to check that it works correctly. In the real world, when you are faced with the challenge of writing
a program to solve a real problem, you will not have access to a nice set of pre-defined unit tests. Therefore it

23

Module 2. Functions, vectors, and testing

is important that you learn how to test your code yourself. Here is how you should think about working with
CodeJudge in this course.

• Only submit a solution to CodeJudge once you have tested it thoroughly (using unit tests).

• Don’t use the unit tests on CodeJudge as the only tests of your code, because in real life you will not have
access to any predefined test cases. Learning to program also means learning to test.

• Always aim at testing your code well enough to expect it to pass all tests on CodeJudge in your first
submission.

• Don’t keep resubmitting to CodeJudge in a trial-and-error process until you pass all the tests. If you don’t
pass the tests on CodeJudge in your first attempt, you have clearly not tested your solution well enough,
and you should go back and reconsider your approach to testing.

24

Module 2. Functions, vectors, and testing

Assignment 2F Projection

The projection of a vector b onto a vector a is a vector p which contains the vector component of b in the
direction of a.

b

ap

The projection can be computed using the following formula

p = a · b
‖a‖2 a, (2.4)

where ‖a‖ denotes the magnitude of the vector a (and similar for b). The magnitude of the vector can be
computed using Pythagoras’ formula.

Problem definition

Create a function named computeProjection that computes the projection of the vector b = [1, 1, . . .] onto
the vector a which is taken as an input to the function. The output must be the projection p. Note that b is
a vector with all elements equal to one and with the same dimensions as a, and that the function should work
for vectors of any dimensionality.

Solution template

import math
import numpy as np
def computeProjection(a):

#insert your code
return projection

Hint
Remember that you must import the modules your function needs before defining your function. For example,
if you need the math and numpy modules, you should write the import statements as shown above. In the rest
of the exercises we will not explicitly show the import statements in the solution templates.

Input
a Input vector a.
Output
projection Projection vector p.

Example

Consider the vectors a = [2,−1] and b = [1, 1]. The projection of b on a can be computed as

projection = a · b
‖a‖2 a = 2 · 1 + (−1) · 1

22 + (−1)2 [2,−1] = [0.4,−0.2]. (2.5)

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

25

Module 2. Functions, vectors, and testing

Test code Expected output
import numpy as np
print(computeProjection(np.array([2, -1])))

[0.4 -0.2]

Hand in on CodeJudge

The assignment must be handed in on CodeJudge.

2F

26

Module 2. Functions, vectors, and testing

Assignment 2G Box area

Two rectangular boxes are defined by the coordinates of their lower left and upper right corners as seen below.

x1,y1

x2,y2

x4,y4

x3,y3

x

y

The area of the two boxes are given by

A1 = (x2 − x1)(y2 − y1), A2 = (x4 − x3)(y4 − y3). (2.6)

The area of the intersection between the two boxes is given by

Ao = max[0,min(x2, x4)−max(x1, x3)] ·max[0,min(y2, y4)−max(y1, y3)]. (2.7)

Problem definition

Create a function named boxArea that takes as input the coordinates defining the two boxes as a vector
[x1, x2, x3, x4, y1, y2, y3, y4] as well as a string area that specifies what to compute (written exactly as below).
The function must return the computed area.

area Area to compute
Box1 Area of the first box.
Box2 Area of the second box.
Intersection Area of the overlap between the boxes.
Union The sum of the areas of the two boxes minus the area of the overlap.

Solution template

def boxArea(boxCorners, area):
Insert your code here...
Use an if-elif statement to choose between the different areas to compute.
if area == "Box1":

Insert code to compute area of box one
A = ...

elif area == "Box2":
Insert code to compute area of box two
A = ...

elif area == "Intersection":
Insert code to compute area of intersection
A = ...

elif area == "Union":
Insert code to compute area of union
A = ...

return A

27

Module 2. Functions, vectors, and testing

Input
boxCorners Corners of the boxes (vector of length 8).
area Which area to compute (string).
Output
A The computed area (number).

Example

Consider the following coordinates: x1 = 5, x2 = 20, x3 = 14, x4 = 25, y1 = 12, y2 = 23, y3 = 5, y4 = 17. The in-
put boxCorners would be the vector [5, 20, 14, 25, 12, 23, 5, 17]. If the input string area is equal to intersection
the area of the overlap must be computed: Ao = max[0,min(20, 25) − max(5, 14)] · max[0,min(23, 17) −
max(12, 5)] = max[0, 20− 14] ·max[0, 17− 12] = 6 · 5 = 30.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(boxArea(np.array([5,20,14,25,12,23,5,17]), "Intersection"))

30

Hand in on CodeJudge

The assignment must be handed in on CodeJudge.

2G

28

Module 2. Functions, vectors, and testing

Optional challenge 2H Sudoku row

Sudoku is a number puzzle where the objective is to fill a 9-by-9 grid with numbers between 1 and 9 so that
each row, each column, and each 3-by-3 block contains all the numbers from 1 through 9. Sudokus are difficult
to solve, but when a row misses only a single number, it is a simple yet tedious task to fill in the blank.

49 1 5 7 2 3 8

Problem definition

Create a function named fillSudokuRow that takes as an input a Sudoku row with one missing entry (marked
by a value of zero), and returns the row with the entry filled in correctly so that all numbers from 1 to 9 appear
once in the row.

Hint
There is a quick and simple way to solve this exercise, using only the techniques you have learned in this module.

Solution template

def fillSudokuRow(sudokuRow):
Insert your code here
return sudokuRow

Input
sudokuRow Sudoku row with one missing entry set to zero (vector)
Output
sudokuRow Sudoku row with missing entry filled in (vector)

Example

In the Sudoku row
[9, 4, 0, 1, 5, 7, 2, 3, 8]

the third value is marked as missing, and should be filled in. Since the number 6 does not appear in the row,
the missing value should be replaced with 6. Thus your program should output the following Sudoku row,

[9, 4, 6, 1, 5, 7, 2, 3, 8].

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(fillSudokuRow(np.array([9, 4, 0, 1, 5, 7, 2, 3, 8])))

[9 4 6 1 5 7 2 3 8]

Hand in on CodeJudge

In order to validate you can either upload a file containing your implementation of the function or directly copy
the code into codejudge.

2H

29

Module 2. Functions, vectors, and testing

30

Selection statements
Aims and objectives

After working through this exercise you should be able to:

• Use selection and branching statements:

– Use an if-statement to execute some code only if some condition is true.

– Use an if. . . else-statement to execute different code depending on a condition.

– Use nested if-statements and if. . . elif. . . else-statements to execute different parts of the code de-
pending on multiple conditions.

• Use the basic comparison operators to:

– Check if two variables or values are (not) equal.

– Check if one numeric variable or value is greater than, greater than or equal, less than, or less than
or eqaul to another numeric variable or value.

• Use the basic logical operators including conjunction (and), disjuction (or), and negation (not).

• Use logical and comparison operators to define conditions for selection and brancing statements, in which
you:

– Compare numeric variables, text strings, and logical values.

– Combine multiple comparisons using (and) and (or).

Suggested preparation
Downey, “Think Python: How to Think Like a Computer Scientist”, Chapter 5.1–5.7.

Video: If-statements

31

Module 3. Selection statements

Using selection statements

Selection statements are sometimes referred to as code branching, because you branch your program into
execution of different sequences of code based on one or more conditions. The most simple selection statement
is the if-statement, which will run one or more lines of code if the condition is true, or otherwise do nothing
(not run the lines of code).

if condition:
print('Condition is true')

In the example above, the line of code which prints out Condition is true will only be printed if the variable
condition evaluates to true. Usually, in place of the condition you would write some expression which
evaluates to True/False, e.g., a comparison statement such as x > 0. To explicitly write the values true and
false, you simply write True or False. Notice that even though the condition is not a True/False value—
for example if it is a number or a string—Python will try to interpret the condition as a True/False value if
possible. This can be a source of potential problems, so it is recommended to only use True/False expressions
as conditions.

If you wish to run one branch of code if a condition is true and another branch if it is not true, you can use an
if. . . else-statement.

if condition:
Do something if condition is true
print('Condition is true')

else:
Do something else if condition is false
print('Condition is false')

To improve the readability of your code, you should always use parantheses when combining more than two
statements as a condition. For instance, it is not so easy to read the following code if-statement:

if height<10 and width>20 or width>10 and height<20

Adding parentheses makes the expression easier to read:

if (height<10 and width>20) or (width>10 and height<20)

32

Module 3. Selection statements

Exercise 3A True or false

Does each of the following bits of code print out Condition is true or Condition is false? Answer by
looking at the code, and verify your answers with Python.

1. if math.pi < 3:
print('Condition is true')

else:
print('Condition is false')

2. x = 10
if x < 5:

print('Condition is true')
else:

print('Condition is false')

3. x = 5
if math.pi > 3 and x == 5:

print('Condition is true')
else:

print('Condition is false')

4. if math.pi < 3 or 5 == 5:
print('Condition is true')

else:
print('Condition is false')

Try also the following values as conditions. These values are not True/False, but you can see if and how they
are converted to True/False values when used as conditions.

5. 0 (the number zero)

6. 44 (some non-zero number)

7. "" (an empty string)

8. "hello" (some non-empty string)

9. "false" (the string false)

10. np.array([0, 1]) (a vector—do its values matter?)

3A

33

Module 3. Selection statements

Exercise 3B Logical expressions

Evaluate the the following logical expressions (note that all the expressions have the value true or false). Evaluate
the expressions on paper or in your mind first, and then write Python code that evaluates the expression to
verify your answers.

1. 9 > 3 · 3.

2. 9 ≥ 3 · 3.

3. (6 + 3) is equal to 32.

4. 12
5 is greater than 17

5 .

5. Either (2 is greater than 3) or (32 is not equal to 9).

6. 323 is not equal to (17 times 19).

7. The cosine of (3 times π) is a negative number.

Solution to selected questions

1. 9 > 3*3

3. 6+3 == 3**2

5. (2 > 3) or (3**2 != 9)

7. math.cos(3*math.pi) < 0

3B

34

Module 3. Selection statements

Comparison pitfalls

When comparing variables there are some common pitfalls to be aware of.

Intervals In mathematical notation, we often write intervals as for example 0.5 ≤ x ≤ 1.5. If you want to
check if a variable x is in the interval between 0.5 and 1.5, you might be tempted to write something like
if 0.5 <= x <= 1.5. However, this will not work as you might expect. The correct way to check if a
variable is within an interval is to check the upper and lower boundary separately and combine them,
such as if (0.5 <= x) and (x <= 1.5)

Comparing vectors When you compare two vectors of equal length in Python, the == operator compares
the vectors element by element and returns a vector with the results of the comparisons. If you want to
check if all elements in two vectors are equal, you can use the all function. Alternatively you can use the
np.array_equal function (see the help to learn more about this). If the vectors compared with the ==
do not have the same length, the comparison will return False.

Comparing decimal numbers Decimal numbers are represented on the computer with limited precision.
Therefore, some comparisons which analytically should be true, migth be false because of round-off errors.
For example, the expression math.sqrt(2)**2 == 2 evaluates to false because the square root of two is
not accurately represented in the computer. The expression 50.0**50.0 + 1 == 50.0**50.0 evaluates
to true, because the number 5050 is so big compared to the +1 that it is rounded off. Instead of checking
if two decimal numbers are equal, it can be more safe to check if their absolute difference is less than some
small number (relative to their magnitude).

Comparing strings Sometimes, when you compare two strings, your wish to be insensitive to the case, e.g.,
such that the strings Hello and hello are considered equal. One way to achieve this is to first convert
the strings to lower (or upper) case before they are compared. You can use the notation str.lower()
where str is a string to convert a string to lower case.

35

Module 3. Selection statements

Assignment 3C Angle between lines

A line through the origin can be represented by a unit vector pointing in the direction of the line. The angle
between two such lines can be computed as

]v1, v2 = cos−1(v1 · v2), (3.1)

i.e. as the inverse cosine (also known as arccos) of the dot product of v1 and v2 which are unit vectors representing
the two lines. If v1 is a unit vector representing a line, −v1 will also be a unit vector representing the same line.
When computing the angle between two lines, there are thus two correct answers: The acute angle θ and the
obtuse angle ϕ.

θ

v2

v1

θ

ϕ
v2

−v1

Problem definition

Write a function that takes as input two unit vectors v1 and v2 representing two lines, and computes the acute
angle between the lines measured in radians, θ ∈

[
0, π2

]
.

Solution template

def acuteAngle(v1, v2):
Insert your code here
return theta

Input
v1 Unit vector determining v1
v2 Unit vector determining v2

Output
theta The acute angle between the lines, θ ∈

[
0, π2

]
.

Example

Consider two lines represented by the following unit vectors: v1 =
[
− 4

5 ,
3
5
]
and v2 =

[20
29 ,

21
29
]
. The angle between

the lines are given by

]v1, v2 = cos−1(v1 · v2) = cos−1 (− 4
5 ·

20
29 + 3

5 ·
21
29
)

= cos−1 (− 17
145
)

= 1.688 radians (3.2)

Since this angle is obtuse (it is greater than π
2) we determine the acute angle to be θ = π − 1.688 = 1.453.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(acuteAngle(np.array([-4.0/5.0, 3.0/5.0]), np.array([20.0/29.0, 21.0/29.0])))

1.453284681363451

36

Module 3. Selection statements

Hand in on CodeJudge

The assignment must be handed in on CodeJudge.

3C

37

Module 3. Selection statements

Assignment 3D Piecewise function

On the surface of the earth the graviational pull is approximately g0 = 9.82 [m/s2]. If you move up towards
space the gravitational pull declines with the height, h, above the ground according to the equation

gheight(h) = g0 ·
R2

(R+ h)2 (3.3)

where R = 6.371 · 106 [m] is the average radius of the earth. Similarly if you dig yourself into the ground there
is less mass of the earth underneath you and the graviational pull is weaker and declines as a function of the
depth, d, of the hole you are digging:

gdepth(d) = g0

(
1− d

R

)
(3.4)

This is a rough approximation as the earth is not a ball; nor is the density of the earth constant. For more
details, visit the wikipedia page: en.wikipedia.org/wiki/Gravity_of_Earth. These two equations can be
combined to describe the graviational pull at some distance, x = R+ h = R− d, from the center of the earth.

gdistance(x) =


g0 ·

R2

x2 if R ≤ x

g0 ·
x

R
if 0 ≤ x < R

(3.5)

Problem definition

Write a function that, given the distance x to the center of the earth, computes the graviational pull of the
earth.

Solution template
def gravitationalPull(x):

Insert your code here
return g

Input
d Distance to the center of the earth
Output
g The gravitational pull.

Example

Suppose we are given x = 1.78 ·106 [m] as input to the function. Since 1.78 ·106 < 6.371 ·106, inserting 1.78 ·106

into equation 3.5 yields

gdistance(1.78 · 106) = g0 ·
1.78 · 106

R
= 9.82 · 1.78 · 106

6.371 · 106 = 2.7436 [m/s2] (3.6)

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(gravitationalPull(1.78e6))

2.7436195259770835

38

en.wikipedia.org/wiki/Gravity_of_Earth

Module 3. Selection statements

Hand in on CodeJudge

The assignment must be handed in on CodeJudge.

Discussion and futher analysis

What will happen if you give a vector of distances as input to your function? Probably it will not work, because
the function expects a single number as input. How could you write the function such that it outputs a vector
of gravitational pull when given a vector of distances as input? Think about how this could be implemented
using vector indexing operations.

If you change your function so that it works correctly with vector input and output, you can try out making a
plot of the function using the following code:

import numpy as np
import matplotlib.pyplot as plt
x = np.arange(0, 10e6, 1e4)
plt.plot(x, gravitationalPull(x))
plt.show()

Figure 3.1: A plot of the gravitational pull from the center of the earth to a distance of 10 000.

3D

39

Module 3. Selection statements

Assignment 3E Acidity

“In chemistry, pH is a measure of the acidity or basicity of an aqueous solution. Solutions with a pH less than
7 are said to be acidic and solutions with a pH greater than 7 are basic or alkaline. Pure water has a pH very
close to 7.” [Wikipedia] The acidity of a solution can be categorized according to the following scale:

pH Category
0–2 Strongly acidic
3–5 Weakly acidic
6–8 Neutral
9–11 Weakly basic
12–14 Strongly basic

Problem definition

Create a function that converts a pH value to the corresponding category. If the pH is between two categories,
it must be assigned to the strongest (acidic or basic) category of the two. If the pH is a number outside the
scale the string pH out of range must be returned.

Solution template

def pH2Category(pH):
Insert your code here
return category

Input
pH pH value (real scalar).
Output
category Acidity category (string).

Example

The pH of lemon juice is 2.3. Since this is between the Strongly acidic and Weakly acidic categories, it must be
assigned to Strongly acidic. Thus, the string Strongly acidic should be the output of the function.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
print(pH2Category(2.3)) Strongly acidic

Hand in on CodeJudge

This assignment must be handed in on CodeJudge.

3E

40

Module 3. Selection statements

Optional challenge 3F Football goal tracker

In the 2013–2014 Premier League season was the first seasonuse Hawk-Eye system for tracking the ball to detect
whether a goal has been scored. The system uses a number of high-performance cameras to track the ball from
different angles.

We might imagine a simple version of the system that, once the ball is kicked, tracks whether or not the ball
would pass the goalline if it continued in a straight line. Suppose the system is already able to compute the
point where the ball is kicked and the direction vector of the kick.

The standard measurement of a football field is 105 [m] × 68 [m] and the goal is 7.32 [m] wide. Suppose the
ball is shot from a point p = [x, y] on the field and goes in a straight line in some direction given by a vector
v = [vx, vy]. (The magnitude of the vector indicates the speed of the ball, which we will not use in this exercise.)

p = [x, y]

v

u

`

0 105
0

68

37.66
30.34

Figure 3.2: A football field.

Problem definition

Create a function that tells whether or not the ball will pass the goalline (in either of the two goals) if it
continues from the initial position in a straight line along the direction vector.

Solution template

def computePassesGoalLine(point, directionVector):
Insert your code here
return score

Input
point The (x, y) coordinates of the initial position of where the football is kicked from (vector).
directionVector The vector describing the direction in which the football is kicked.
Output
score A boolean telling whether or not the ball will pass the goalline.

Example

Assume that the position of the ball is given by the point p = [x, y] = [30, 20] and the direction is given by the
vector v = [vx, vy] = [10, 2].

Firstly, we note that since the x-component of the direction vector is positive, in this case the ball can only pass
the goal line in the goal on the right. The goal posts of the goal on the right are at the positions [105, 30.34]
and [105, 37.66].

41

Module 3. Selection statements

The ball will cross x-coordinate xgoal = 105 at the right at position p+ αv where α is a number denoting how
far we should travel along v. Since we must have x+ αvx = 105 we can compute α as

α = xgoal − x
vx

= 105− 30
10 = 7.5. (3.7)

The y-coordinate where the ball passes the goal line is then given by

ygoal = y + αvy = 20 + 7.5 · 2 = 35. (3.8)

Then the condition to see if the ball ends up in the goal is equivalent to testing if

30.34 < ygoal < 37.66, (3.9)

which is true for ygoal = 35 so the return value score should be set True.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(computePassesGoalLine(np.array([30, 20]), np.array([10, 2])))

True

Hand in on CodeJudge

This challenge can be be handed in on CodeJudge.

3F

42

Looping
Aims and objectives

After working through this exercise you should be able to:

• Use loop statements to repeatedly execute code.

– Use while loops to execute code repeatedly as long as a condition is true.

– Use for loops to execute code repeatedly for a fixed sequence of iterations.

• Use a break statement to terminate the execution of a loop, if some condition is true.

• Use nested loops, i.e., a loop inside another loop.

• Use vectorized computations.

– Determine whether a loop can be vectorized and describe why some loops can not be vectorized.

– Convert code using a loop into a vectorized computation and the other way around.

• Create functions that accept multiple inputs.

• Display formatted output.

Suggested preparation
Downey, “Think Python: How to Think Like a Computer Scientist”, Chapter 4.2 + 7.

Video: Loops
Video: Using the debugger

43

Module 4. Looping

For- and while-loops

If you want to run one or more lines of code multiple times, you can use a loop. Sometimes you know in advance
how many times you would like the loop to run—in that case you most often use a for-loop. Other times, you
want to run the loop an unknown number of times, stopping only when some criterion is met dependeing on
the computations inside the loop—in that case you most often use a while-loop.

For-loop In the for-loop you specify in advance how many times you would like to loop to run. For example,
the following loop will print out the numbers 0 to 3 on the screen:

for i in range(4):
print(i)

Hint
Make sure to read the documentation for the range function to understand what it does.

In effect, this corresponds to the code

i = 0
print(i)
i = 1
print(i)
i = 2
print(i)
i = 3
print(i)

The range you loop over does not have to be a fixed constant: It could also depend on other variables. For
example, the following code will print out the numbers from minNumber to maxNumber on the screen:

minNumber = 10
maxNumber = 19
for i in range(minNumber, maxNumber+1):

print(i)

While-loop In the while-loop you must specify a condition (a True/False expression) and the loop will
continue to repeat as long as the condition is True. For example, the following while-loop will iteratively sum
up the numbers 1, 1

2 ,
1
3 ,

1
4 , . . . one by one and print out the sum, as long as sum is less than 3. Thus it will print

out 1, 1.5, 1.8333, 2.0833, . . . etc.:

theSum = 0
i = 1
while(theSum < 3):

theSum = theSum + 1.0 / i
print(theSum)
i = i + 1

The while-loop first examines the condition, and since it is True it runs the body of the loop once. Then it
examines the condition again, and since it is still True it runs the body of the loop again. It continues doing
this until the condition is False, at which point it stops looping and continues to run the code following the
loop. In the example above there is no more code after the loop, so it simply stops. Of course, the condition
(in the example theSum < 3) must somehow depend on something which is computed inside the loop, so that
it changes as the loop runs.

Try running the while-loop in Python. Does it work as you would expect? If you expected that the loop would
print out some numbers which are all less than 3, you might be surprised that it actually prints out the numbers
1, 1.5, 1.8333, 2.0833, 2.2833, 2.45, 2.5929, 2.7179, 2.829, 2.929, 3.0199. The last number printed is greater than 3,

44

Module 4. Looping

because the loop will always be run once more as long as theSum < 3. After the second-to-last iteration, theSum
is equal to 2.929 (still less than 3) and thus the body of the loop is once run again, increasing theSum to 3.0199
and printing it out. After this iteration, theSum is greater than 3, and the loop stops.

For-loop or while-loop? Even though both for-loops and while-loop are quite similar, there is an important
semantic difference between the two types of loops:

While-loops are most often used to run for an indefinite number of iterations, i.e. in the case when the number
of iterations is not known in advance. For example, to read each line from a file, until there are no more
lines, or to run some iterative algorithm until a convergence criteria is satisfied.

For-loops are most often used when there is a known number of iterations, for example to process each element
in a list, where the length of the list is known.

Breaking a loop It is possible to stop a loop (both for- and while-loops) prematurely using a break statement.
Usually the break statement will be inside an if statement, so that the loop will stop running if some condition
is satisified. For example, the following while-loop breaks if theSum is greater or equal to 3, before printing out
the value. Thus, it will only print out the numbers that are less than 3.

theSum = 0
i = 1
while(True):

theSum = theSum + 1.0 / i
if (theSum >= 3):

break
print(theSum)
i = i + 1

In general, it is not recommended to use break statements if they can be avoided, because they often lead to
code that is more difficult to read and understand. For example, the code above can be rewritten as:

theSum = 1
i = 1
while(theSum < 3):

print(theSum)
i = i + 1
theSum = theSum + 1.0 / i

Which version do you find most easy to read?

Loop pitfalls

When using for-loops and while-loops, there are some common pitfalls to be aware of:

Return statement in the loop Be careful that you do not accidentally put a return statement inside a loop.
If you do that, the loop will only run once, and the return when it reaches the return statement.

Off-by-one error Especially when using a while loop, make sure to double check that your loop does not run
one time too much or one time too little, which is a very common mistake to make.

Infinite loop In a while-loop, if the condition never becomes false, the loop will run forever. If this happens,
the computer program will be stuck in an infinite loop, and you have to manually stop the program.

45

Module 4. Looping

Loops and vectorized computation

Loops generally serve to remove code redundancy, and they improve code readability if used properly. In general,
if the same code needs to be run multiple times, it is desirable to use a loop rather than having multiple identical
or almost-identical statements.

Although loops are powerful when used the right way, be aware that they can sometimes be computationally
inefficient. This is particularly true for nested loops (loops inside loops). It is therefore important that you do
not use loops blindly: Use them when you have to and/or when there is a gain in terms of code readability and
reduction of redundancy.

When working with vectors you have learned how you can operate on multiple elements at the same time. Often
a computation which can be written using a loop can also be written using operations on one or more vectors.
Doing repeated computation using vectors rather than loops is often referred to as vectorization of the code. In
general, you shoul use vectorization (instead of loops) if it is possible and if it leads to better code. Often but
not always, vectorization leads to code that is more intuitive and easier to understand, and usually vectorization
is more efficient than looping.

For example, the following code operates on a vector x containing the numbers −2,−1, 0, 1, 2. It uses a loop
to set all the negative numbers equal to zeros and multiply all the positive numbers by two, producing as an
output a vector with the numbers 0, 0, 0, 2, 4:

x = np.array([-2, -1, 0, 1, 2])
for i in range(5):

if(x[i] < 0):
x[i] = 0

else:
x[i] = x[i] * 2

Using vectorized computation, the same result could have been achieved more efficiently and in a more intuitive
way with the following code:

x = np.array([-2, -1, 0, 1, 2])
x[x < 0] = 0
x = x * 2

Use the following guidelines when you need to choose between for-loops, while-loops, and vectorization:

• Vectorize for efficiency when it is appropriate.

• When you cannot vectorize and you know how many times you need to loop, use a for-loop.

• When you cannot vectorize and you do not know how many times your loop should run, use a while-loop.

46

Module 4. Looping

Displaying formatted output

To display strings or results of expressions on the screen, you can use the print function. Very often we need
to display more complicated formatted output on the screen. To do this, you can use the str.format function.
For example the code

x = math.pi
print("The cos of {:f} is {:f}".format(x, math.cos(x)))

will print out

The cosine of 3.141593 is -1.000000.

The placeholder {:f} denotes that a decimal number will be inserted in the string. See the Python documen-
tation to learn more about the syntax.

47

Module 4. Looping

Exercise 4A Repeated printing

1. Write a script that prints I love programming! 10 times.

2. Write a script that uses a for-loop to print a sequence of numbers, x1 to x10, where x1 = 2 and the
subsequent numbers are computed as xi = 2 · xi−1. Check that your program prints the sequence
2 4 8 16 32 64 128 256 512 1024.

3. Write a script uses a for loop to print out the following:
The square root of 1 is 1.0000
The square root of 2 is 1.4142
The square root of 3 is 1.7321
...
The square root of 10 is 3.1623
Make sure that the square roots are printed with four decimals.

4. Write a script that uses a loop to print
The train will leave at 13:36 tomorrow
The train will leave at 13:56 tomorrow
The train will leave at 14:16 tomorrow
...
The train will leave at 17:16 tomorrow
You may assume that trains leave every 20 minutes.

4A

48

Module 4. Looping

Exercise 4B Power series approximation

Many important mathematical functions and constants can be represented as power series. For example,
π = 3.14 . . . can be represented by the infinite series

π = 4 · (1
1 −

1
3 + 1

5 −
1
7 +− · · ·). (4.1)

Since we cannot write a computer program to evaluate the infinitely many terms, we might approximate π by
truncating the series, i.e., summing only terms 0 through N ,

π ≈ 4 ·
N∑
n=0

(−1)n

2n+ 1 . (4.2)

Write a script that approximates π by evaluating Eq. (4.2) with N = 100.

1. Write the script using a for-loop.

2. Write the script using vectorized computation.

Solution

With N = 100 the approximation is π ≈ 3.1515.

Discussion and futher analysis

• Which implementation (using a loop or vectorized code) do you think is easiest to understand and imple-
ment?

• Try running your code with N = 1 000 000 or maybe N = 10 000 000 (it might take some time). Is there
a significant speed difference between the two implementations?

4B

49

Module 4. Looping

Exercise 4C Square roots

The square root of any positive number can be found by a simple iterative procedure that takes an initial guess
and refines it. To find the square root of a such that x =

√
a, you start by initializing x to a

2 . Then you

repeatedly update x by replacing it by x+a
x

2 . As x is updated it will be a better and better approximation of
the square root of a.

Problem definition

Write a program that approximates the square root as described above. How many updates are required to get
the first five significant digits correct when approximating

√
2?

Solution

After three updates the result is correct to more than five significant digits.

4C

50

Module 4. Looping

Assignment 4D Fermentation rate

When a nutrient solution is seeded with yeast, the yeast will grow and ferment sugar into alcohol and carbon
dioxide. You are conducting a series of experiments to determine the rate of fermentation, r, and have measure-
ments of the fermentation rate measured in gram

liter·day for a large number of identical experiments. To get a precise
estimate of the fermentation rate, you want to compute the average of all the measured rates; however, you
notice that some of the measurements are clearly erroneous. You decide to exclude all invalid measurements,
which you define as measurements that are outside the range ` < r < u.

Problem definition

Write a program that computes and returns the mean fermentation rate, taking only the valid measurements
into account.

Solution template
def fermentationRate(measuredRate, lowerBound, upperBound):

Insert your code here
return averageRate

Input
measuredRate Measured fermentation rates (list)
lowerBound Lower bound for valid measurements, ` (scalar)
upperBound Upper bound for valid measurements, u (scalar)
Output
averageRate Average fermentation rate of valid measurements (scalar)

Example

Consider the following measured fermentation rates

20.1 19.3 1.1 18.2 19.7 121.1 20.3 20.0

Setting the lower and upper bound to ` = 15 and u = 25 the measured rates of 1.1 and 121.1 are invalid, and
the remaining 6 measurements are valid. Thus, the mean can be computed as

20.1 + 19.3 + 18.2 + 19.7 + 20.3 + 20.0
6 = 19.6

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(fermentationRate(np.array([20.1, 19.3, 1.1, 18.2, 19.7, 121.1, 20.3, 20.0]), 15, 25))

19.6

Hand in on CodeJudge

The assignment must be handed in on CodeJudge.

Discussion and futher analysis

This problem can either be solved using a loop or using vectorized computation. How did you solve the problem,
and why?

4D

51

Module 4. Looping

Assignment 4E Bacteria growth

It has been discovered that a population of bacteria grows according to the following law: If there are nt bacteria
at time t then one hour later at time t+ 1 there will be

nt+1 =
(

1 + α ·
[
1− nt

K

])
· nt

where α is a positive number that controls the growth rate and K is a positive number that defines the capacity,
i.e., the maximum number of bacteria in the population.

Problem definition

Write a program that simulates the bacteria growth hour by hour and stops when the number of bacteria exceeds
some fixed number, N . Your program must return the time t at which the population first exceeds N . Even
though the actual number of bacteria is really a whole number (integer) your program must work with nt as a
decimal number (real), i.e., you should not round the numbers.

Solution template

def bacteriaGrowth(n0, alpha, K, N):
Insert your code here
return tN

Input
n0 Initial number of bacteria (scalar)
alpha Growth rate (scalar)
K Capacity (scalar)
N Final population size (scalar, n0<N<K)
Output
tN Time t at which population size exceeds N (scalar)

Example

Starting with n0 = 100 bacteria and setting α = 0.4 and K = 1000, let us find out when the population exceeds
N = 500. Running the simulation, we get the following sequence of population sizes

n0 n1 n2 n3 n4 n5 n6 n7 n8

100 136 183 242.8 316.3 402.9 499.1 599.1 695.2

Thus, the populations first exceeds N = 500 at time tN = 7, the program should return 7.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
print(bacteriaGrowth(100.0, 0.4, 1000.0, 500.0)) 7

Hand in on CodeJudge

The assignment must be handed in on CodeJudge.

4E

52

Module 4. Looping

Assignment 4F Removing incomplete experiments

You are working on a data set from a series of experiments, each of which consists of three parts. The experiments
have been performed in a randomized order. Each experiment has been assigned an experiment-number and
a part-number, which are joined into one decimal number called an id-number. The id-number is formed by
separating the experiment-number and part-number by a decimal point. For example, the experiment number
17 part 3 has been assigned the id-number 17.3. Note, that you can compute the experiment-number from the
id-number by rounding down to the nearest integer.

You notice that due to errors, for some of the experiments all three parts have not been completed. For further
analysis, you need to exclude all experiments where one or more parts are not available. You can safely assume
that if there are 3 id-numbers with the same experiment-number, the experiment is complete.

Problem definition

Create a function that takes as an input a vector of id-numbers and returns a vector of id-numbers where all
incomplete experiments have been removed. The id-numbers that are not removed must remain in the same
order as in the original vector.

Solution template

def removeIncomplete(id):
Insert your code here
return idComplete

Input
id Id-numbers (vector of decimal numbers)
Output
idComplete Id-numbers of complete experiments (vector of decimal numbers)

Example

Consider the following id-numbers:

1.3 2.2 2.3 4.2 5.1 3.2 5.3 3.3 2.1 1.1 5.2 3.1

In experiment 1, part 2 is missing, and in experiment 4, parts 1 and 3 are missing. Thus, experiment 1 and 4
are incomplete. After removing the incomplete experiments, the result should be:

2.2 2.3 5.1 3.2 5.3 3.3 2.1 5.2 3.1

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(removeIncomplete(np.array([1.3, 2.2, 2.3, 4.2, 5.1,

3.2, 5.3, 3.3, 2.1, 1.1, 5.2, 3.1])))

[2.2 2.3 5.1 3.2 5.3 3.3 2.1 5.2 3.1]

Hand in on CodeJudge

This assignment must be handed in on CodeJudge.

4F

53

Module 4. Looping

Optional challenge 4G Cluster analysis

Using an image sensor on a satellite, you can measure the reflectance at the ground level in a narrow band of the
near-infrared frequency spectrum. It is known that this reflectance is highly sensitive to the type of vegetation;
however, there is some measurement noise and the overall magnitude of the reflectance also varies with the time
of day, sensor drift, etc. You want to create an automated system that can distinguish between two types of
vegetation, trees and grass, which are known to have relatively high and low reflectance respectively.

To distinguish between trees and grass, you decide to use cluster analysis. “Cluster analysis or clustering is the
task of grouping a set of objects in such a way that objects in the same group (called a cluster) are more similar
(in some sense or another) to each other than to those in other groups (clusters).” [Wikipedia] In particular,
you will use the following algorithm (called k-means) to cluster the reflectance data into two groups.

The clustering algorithm

Given a set of N measurements, (r1, r2, . . . , rN), we will initially assign the odd-numbered measurements to
class 1 and the even numbered measurements to class 2. Then the following two steps are repeated:

• Update step: Compute the mean value (average) of the measurements within each cluster.

• Assignment step: Assign each measurement to the cluster with the closest mean value. In case of a tie,
assign the measurement to cluster 1.

Repeat the above steps until the cluster assignments do not change. It can not be determined in advance how
many steps will be needed before the clustering assignment stabilizes.

Problem definition

Create a function that takes as an input a vector of reflectance measurements and returns a vector of cluster
assignments computed using the algorithm described above.

Solution template

def clusterAnalysis(reflectance):
Insert your code here
return clusterAssignments

Input
reflectance Reflectance measurements (list of decimal numbers)
Output
clusterAssignments Final cluster assignments (list of numbers, 1 or 2)

Example

Consider the following set of reflectance measurements where the color and style of the number indicates the
initial cluster assignment,

1.7 1.6 1.3 1.3 2.8 1.4 2.8 2.6 1.6 2.7.

In the update step, the two mean values can be computed as

m1 = 1.7 + 1.3 + 2.8 + 2.8 + 1.6
5 = 2.04, m2 = 1.6 + 1.3 + 1.4 + 2.6 + 2.7

5 = 1.92. (4.3)

In the assignment step, each measurement is reassigned to cluster with the closest mean,

1.7 1.6 1.3 1.3 2.8 1.4 2.8 2.6 1.6 2.7.

54

Module 4. Looping

In the next update step, the two mean values can be computed as

m1 = 2.8 + 2.8 + 2.6 + 2.7
4 = 2.725, m2 = 1.7 + 1.6 + 1.3 + 1.3 + 1.4 + 1.6

6 = 1.483. (4.4)

In the next assignment step, each measurement is again reassigned to cluster with the closest mean,

1.7 1.6 1.3 1.3 2.8 1.4 2.8 2.6 1.6 2.7.

Since this assignment is identical to the previous assignment, the algorithm stops. The output of the algorithm
is a vector of cluster assignments, which in this example should be

2 2 2 2 1 2 1 1 2 1

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(clusterAnalysis(np.array([1.7, 1.6, 1.3, 1.3, 2.8, 1.4,

2.8, 2.6, 1.6, 2.7])))

[2 2 2 2 1 2 1 1 2 1]

Hand in on CodeJudge

This challenge can be be handed in on CodeJudge.

4G

55

Module 4. Looping

56

Computer programs
Aims and objectives

After working through this exercise you should be able to:

• Create computer programs which:

– Combines a script and multiple functions.

– Interacts with the user by reading user-input from the keyboard and printing output to the screen.

• Use a loop to error-check user input.

• Structure a complex program by putting independent functionality into separate functions.

• Document your code:

– Write clear and useful comments in your code.

– Use comments to document user-defined functions.

Suggested preparation
Downey, “Think Python: How to Think Like a Computer Scientist”, Chapter 4.1 + 4.4–4.10.

Video: Creating an interactive menu

57

Module 5. Computer programs

Writing useful comments

Comments are important but often neglected. This typically happens because you are short of time. Neglecting
to write comments can lead to problems if others are to read and understand your code, or if you have a long
period of absence from the code yourself. Some rules of thumb that you should try to follow when writing
comments:

• Write a minimal but sufficient amount of comments. Code without comments is generally bad, but too
many comments is almost as bad, because excessive comments reduce code readability.

• Write the comments above the line of code it refers to. Comments should generally be short. A single
comment should generally never be more than 1-2 lines long.

• The comments should clarify your intention with the code—not explain what the code does, which should
be obvious from reading the code itself.

• A long piece of code should be partitioned into blocks where each block consists of one or more statements.
Provide a short comment for each block as it makes it easier to understand the flow of the code.

• Particularly tricky statements should have a dedicated comment (i) when the purpose of the code is not
obvious, or (ii) when it implements particularly complex functionality.

• When you declare a function, use comments to describe:

– The purpose of the function and how it should be used.

– The input arguments which it requires and how they should be used.

– The output the function returns.

– When and by who the function was created and/or modified.

58

Module 5. Computer programs

Assignment 5A Temperature conversion

Temperature can be measured in degrees Fahrenheit, degrees Celsius, or Kelvin. We can convert between
different units of temperature according to the following equations

Celsius Fahrenheit Kelvin
Celsius — F = 1.8 · C + 32 K = C + 273.15

Fahrenheit C = F − 32
1.8 — K = F + 459.67

1.8
Kelvin C = K − 273.15 F = 1.8 ·K − 459.67 —

where C is the temperature in degrees Celsius, F is the temperature in degrees Fahrenheit, and K is the
temperature in Kelvin.

Problem definition

Implement a function that converts temperatures between the three different units of measurement. The function
must take three inputs: A decimal number T, which specifies the temperature and two strings, unitFrom and
unitTo which specify the units to convert from and to. The strings must take one of the values Celsius,
Fahrenheit, or Kelvin.

Solution template
def convertTemperature(T, unitFrom, unitTo):

Insert your code here
return T

Input
T The input temperature (decimal number)
unitFrom The unit of temperature of the input (string, Celsius, Fahrenheit, or Kelvin)
unitTo The unit of temperature of the output (string, Celsius, Fahrenheit, or Kelvin)
Output
T The converted temperature (decimal number)

Example

If the input temperature T is 50 and unitFrom is the string Fahrenheit and unitTo is the string Celsius,
we need to convert 50 degrees Fahrenheit to degrees Celsius. The converted temperature can be computed as
follows:

C = F − 32
1.8 = 50− 32

1.8 = 10. (5.1)

Thus, the output temperature T should be set to 10.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
print(convertTemperature(50.0, "Fahrenheit", "Celsius")) 10.0

Discussion and futher analysis

Take some time to reflect on and discuss the way that you have commented your code. Do you follow all the
suggestions given in section 5.2?

59

Module 5. Computer programs

5A

60

Module 5. Computer programs

Input from the user

Until now, we have written the values of every variable directly into our scripts. If we wanted computations done
for different values, we simply changed the values in the scripts. As we have written the scripts and functions
ourselves, it is fairly easy to know exactly what to change.

Often, however, we want our code to be useful for users not familiar with the implementation details. To
accomplish this, we need a way to receive values as inputs from the user, while the program is running. The
input function will pause the program until the user has typed something on the keyboard and pressed enter.
(Note: In Pyton 2.x the function is called raw_input). Whatever the user typed will then be returned by the
function and can be stored in a variable. The program then continues and can use the variable in the further
computations.

In order to prompt the user what to input, the function can be given a string as argument. The following code
will prompt the user to enter a string (her name) which will be stored in the variable name

name = input("Please enter your name: ")

The following will prompt the user to enter a number (the lenght in meters). The string which the user types
is converted from a string to a number using the function float and stored in the variable len

len = float(input("Enter the length in meters: "))

If you use this approach, you should be prepared to handle the error that might occur if the user does not type
in a number. The following code shows one way to handle this. It will display an error message if the user does
not input a number, and then prompt the user to try again. It uses a while-loop to repeatedly prompt the user
until she types in a valid number, at which point it uses a break-statement to break out of the while-loop.

while True:
try:

len = float(input("Enter the length in meters: "))
break

except ValueError:
print("Not valid number. Please try again.")

Look through the above code line by line, to see if you understand how it works. Especially, you should
understand how the code uses the try: and except ValueError: construction to check whether the string
which the user typed was correctly converted to a valid number. Once you understand the code, it will be easy
to modify it: Maybe you would like to make further checks, for example to ensure that the number is within
some specific range.

Handling numeric input in a function

If you need to get numeric input from the user multiple times in a computer program, it is a good idea to write
a function that does the job for you. It can be as simple as the following, which simply loops until the user has
typed in a valid number.

61

Module 5. Computer programs

def inputNumber(prompt):
INPUTNUMBER Prompts user to input a number
#
Usage: num = inputNumber(prompt) Displays prompt and asks user to input a
number. Repeats until user inputs a valid number.
#
Author: Mikkel N. Schmidt, mnsc@dtu.dk, 2015

while True:
try:

num = float(input(prompt))
break

except ValueError:
pass

return num

62

Module 5. Computer programs

Exercise 5B Interactive temperature calculator

Write a script, that interacts with the user to convert a temperature from one unit to another. Make use of the
function you implemented in assignment 5A. The program flow must be as follows:

1. The user is prompted to input a temperature (a decimal number).

2. The user is prompted to input the unit of the temperature (a string).

3. The user is prompted to input the unit of the temperature (a string) to convert to.

4. The program displays the converted temperature.

A session where the user interacts with the program might look as follows. The input given by the user is
highlighted with red (the text should not be colored in your program.)

Please input a temperature: 50
Please input the unit of temperature (Celsius, Fahrenheit, or Kelvin): Fahrenheit
Please input the unit to convert to (Celsius, Fahrenheit, or Kelvin): Celsius
50 Fahrenheit = 10 Celsius

Discussion and futher analysis

How could you modify the code so that it:

• Is insensitive to the case of the input, i.e., allows the user to type for example fahrenheit, FAHRENHEIT,
or faHrenHeiT?

• Also allows the user to just type C, F, or K?

• Gives suitable error messages and prompts the user to try again, if she does not input a number for the
temperature or a correct string for the units?

5B

63

Module 5. Computer programs

Exercise 5C A simple menu

In interactive computer programs it is sometimes useful to ask the user to choose between different options by
displaying a simple menu. The following function, which uses the function inputNumber discussed previously,
displays a menu and returns the number of the chosen menu item.

import numpy as np
from inputNumber import inputNumber

def displayMenu(options):
DISPLAYMENU Displays a menu of options, ask the user to choose an item
and returns the number of the menu item chosen.
#
Usage: choice = displayMenu(options)
#
Input options Menu options (array of strings)
Output choice Chosen option (integer)
#
Author: Mikkel N. Schmidt, mnsc@dtu.dk, 2015

Display menu options
for i in range(len(options)):

print("{:d}. {:s}".format(i+1, options[i]))

Get a valid menu choice
choice = 0
while not(np.any(choice == np.arange(len(options))+1)):

choice = inputNumber("Please choose a menu item: ")

return choice

Examine the function to figure out how it works, and try it out (you can simply copy-paste it into Python).
Remember that it uses the inputNumber function discussed previously, so you need to have that in place also.

Discussion and futher analysis

How could you modify the code so that it:

• Numbers the menu items beginning with zero rather than one?

• Numbers the menu items using letters rather than numbers?

5C

64

Module 5. Computer programs

Creating an interactive program main script

Let us consider a simple interactive program that does the following: When the program is run, it displays a
menu with three options:

1. Enter name

2. Display greeting

3. Quit

If the user presses 1, she is asked to enter her name. After entering her name, the three menu options are
shown again, and the program continues. If she presses 2, a greeting (including her name) is displayed. In the
case that she has not yet entered her name, an error message is displayed instead. After the greeting or error
message is displayed, the menu options are shown again, and the program continues. Finally, if the uses presses
3, the program stops. The program is illustrated in the following flowchart.

Start

Display menu options

Ask user to enter name

Save name in variable Display greeting Display error message

End1

2

3

yes

no

Error: Name is empty

What is your name?

Hello Ada Lovelace

Menu item
chosen

Ask user to choose
a menu item

1. Enter name
2. Display greeting
3. Quit

Is name
empty?

This interactive program can be implemented in many different ways: Since the program is supposed to run
until the user chooses to quit, a common approach is to use an infinite loop to first display the menu options
and then, inside the loop, use an if-statement to carry out the different tasks depending on the chosen menu
option. If the option to quit the program is chosen, a break statement is used to break out of the infinite loop.
A simple minimal implementation of the program is given in the following script.

• Read the script and see if you can understand how it works.

• Try to match up the flowchart with the script. Make sure you understand how the infinite while-loop
and the if-statements inside the loop work.

• Run the program (copy-paste it into Python) and try it out.

65

Module 5. Computer programs

Import libraries
import numpy as np
from displayMenu import *

Define menu items
menuItems = np.array(["Enter name", "Display greeting", "Quit"])

Define empty name variable
name = ""

Start
while True:

Display menu options and ask user to choose a menu item
choice = displayMenu(menuItems)

Menu item chosen
--
1. Enter name
if choice == 1:

Ask user to input name and save it in variable
name = input("Please enter your name: ")

--
2. Display greeting
elif choice == 2:

Is name empty?
if name == "":

Display error message
print("Error: Name is empty")

else:
Display greeting
print("Hello {:s}".format(name))

--
3. Quit
elif choice == 3:

End
break

66

Module 5. Computer programs

Computer simulation with random numbers

In many situations it is very expensive or time-consuming to perform physical experiments. Instead, computer
simulations can be used to approximate the results of real experiments. A simple way of setting up a simulation
is as follows:

1. Define the possible inputs to the system.

2. Generate the inputs randomly from a probability distribution.

3. Perform some computation on the input, producing an output.

Once the simulation is set up, it is easy to run it a large number of times and aggregate the outputs. Such
simulations are often referred to as Monte Carlo experiments.

As you have already seen, Python has functions for generating random numbers. For example, to create a
random vector of length 4 you can use the function np.random.rand as follows

>> np.random.rand(4)
array([0.45522641, 0.36673742, 0.11908726, 0.25607802])

If you run the code multiple times you will get different numbers as output.

More accurately we refer to such generated numbers as pseudo-random, since they are in fact not random
but a deterministic sequence of number that only appear to be random. Although this does not reflect the
unpredictable randomness of real random events, the sequence is generated such that it matches the statistical
behaviour of real random numbers.

The random number generator can be initialized to a seed state, such that will always generate the same sequence
of “random” numbers. The seed, which is a non-negative integer, can be set using the np.random.seed function
as follows,

>> np.random.seed(0)
>> np.random.rand(4)
array([0.5488135 , 0.71518937, 0.60276338, 0.54488318])

If you run this code multiple times (each time resetting the seed to zero) you will get the same numbers as
output.

When writing code which relies on pseudo-random numbers, it is often very useful to know the random seed
(and thus the sequence of random numbers) that is used. Otherwise, testing and debugging the code or trying
to reproduce results of a simulation will be difficult. It is therefore best if individual functions do not themselves
use the random number generator in an undefined manner, but rather rely on recieving the random numbers
they need as inputs when the function is called.

The random numbers generated above are all uniformly distributed between zero and one. To get a random
number within an interval, say between ` and u, you can simply make the transformation

r∗ = (u− `) · r + `. (5.2)

If r is a random number between 0 and 1, r∗ will be a be between ` and u.

Python also has a function which directly generates uniform random numbers on an interval. For example, to
generate four random numbers on the interval [8, 9], you can write

>> np.random.uniform(8, 9, 4)
array([8.94737059, 8.73085581, 8.25394164, 8.21331198])

67

Module 5. Computer programs

Exercise 5D Random numbers

We want to generate uniformly distributed random numbers, where the mean of the distribution given by µ
and the width of the distribution is given by R. Thus, the uniform random number must be on the interval[
µ− R

2 , µ+ R
2
]
. Although the mean of the distribution is equal to µ, if you generate, say, ten random numbers

from this distribution it is not guaranteed that the empirical mean (the average) of the generated numbers will
be equal to µ. In this exercise, we will investigate this futher.

Problem definition

Implement a function randomSequence that returns a sequence of N random numbers on the range described
above, where µ, R and N are given as parameters to the function.

Write a script that does the following:

1. Use the function randomSequence to generate a vector of random numbers.

2. Calculate the empirical mean of the returned vector.

Solution template

def randomSequence(mu, R, N):
Insert your code here
return r

Input
mu Mean of distribution (scalar decimal number)
R Range of distribution (scalar decimal number)
N Number of random draws (integer)
Output
r Random numbers (vector of decimal numbers)

Example

With µ = 5, R = 3 and N = 6 the function will return a vector of 6 numbers in the interval [3.5, 6.5]. The
function could for example return the numbers

4.1270, 3.9134, 5.6324, 6.0975, 3.2785, 5.5469 (5.3)

The mean value of the random numbers in the returned list can be found as

4.1270 + 3.9134 + 5.6324 + 6.0975 + 3.2785 + 5.5469
6 = 4.7660 (5.4)

which is slightly lower than the mean value used to generate the numbers.

Discussion and futher analysis

Keep the mean and range parameters fixed and discuss the following:

• How does the empirical mean relate to the theoretical mean for different values of N (like 10, 100, 1000)?

• How does the empirical means compare for multiple runs with the same N?

• How could you empirically estimate the range?

5D

68

Module 5. Computer programs

Assignment 5E Monte Carlo estimation

The Monte Carlo method is a technique that can be used to approximate the distribution of random outcomes.
This is done by recording the outcomes of running the same simulation multiple times. In this way, the method
resembles repeated playing the same gambling game at a casino.

The Monte Carlo method is very useful, especially to approximate solutions to problems that are analytically
difficult. In this assignment, we will use the Monte Carlo method in a simple scenario, to numerically estimate
the area of a shape.

Consider a circle with radius 1, centered on (0, 0).

By generating N random points uniformly on the the circumscribing square and counting how many points n
that fall within the circle, we can estimate the area of the circle by multiplying the area of the square by the
fraction of points inside the circle

Acircle ≈ Asquare ·
n

N
, (5.5)

where in this case Asquare = 4. To test if a point (x, y) is inside the circle, we can simply check if it magnitude
of the vector from the center of the circle to (x, y) is less than one.

Problem definition

Write a function that estimates the area of a circle by Monte Carlo simulation. As input the function must
receive two vectors containing the coordinates of the randomly drawn points. The function must return the
estimated value of the area as output.

To test your function, you can use the function implemented in exercise 5D to generate a vector for the random
x-values and a vector for the random y-values.

Solution template

def circleAreaMC(xvals, yvals):
return A

Input
xvals The x-coordinates of points (list of decimal numbers)
yvals The y-coordinates of points (list of decimal numbers)
Output
A Estimated value for the area of the circle (scalar decimal number)

Example

If we have randomly have drawn the following N = 5 points

(−0.1, 0.3) , (0.7,−0.1) , (0.8, 0.9) , (0.5, 0.6) , (−0.4,−0.3) (5.6)

four of the points lies within the circle, and the area would be estimated as A ≈ 4 · 4
5 = 3.2.

Example test case

69

Module 5. Computer programs

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(circleAreaMC(np.array([-0.1, 0.7, 0.8, 0.5, -0.4]), np.array([0.3, -0.1, 0.9, 0.6, -0.3])))

3.2

Hand in on CodeJudge

The assignment must be handed in on CodeJudge.

Discussion and futher analysis

• Try calling your function for different number of points (like 10, 1 000, and 1 000 000).

• Try calling your function multiple times with the same number of points.

• Try running the following code to plot an image of a circle along with your points.

import matplotlib.pyplot as plt
import numpy as np
p = np.arange(0, 2*np.pi, 0.01)
plt.plot(np.sin(p), np.cos(p))
plt.plot(xvals, yvals, 'o')
plt.show()

5E

70

Module 5. Computer programs

Optional challenge 5F Thermodynamic simulation

Consider a physical experiment with two connected closed chambers of equal volume. The right chamber is
initially empty, while the left contains N identical gas particles. We open a small hole between the chambers,
such that the gas particles can move between the two chambers.

After some time, we expect that the system will reach an equilibrium, where the number of gas particles in the
left chamber NL is the same as the number of gas particles in the right chamber NR. In this challenge we will
use the Monte Carlo method to simulate the behaviour of the gas as it approaches this equilibrium.

The evolution of the system is considered as a series of time-steps, beginning at t = 1. At each time-step exactly
one particle will pass through the hole, and we assume that the particles do not interact. The probability that
a particle will move from the left to the right chamber is pLR = NL/N , and the probability of a particle will
move from the right to the left chamber is pRL = 1− pLR = (N −NL)/N .

The simulation will iteratively proceed as follows:

1. Get a random number r from the interval 0 ≤ r ≤ 1.

2. If r ≤ pLR, move one particle from the left to the right chamber. Otherwise move one particle from the
right to the left chamber.

3. Repeat step 1 and 2 until NL = NR. Report back, how many time-steps it took to reach this equilibrium.

Problem definition

Write a function that performs the Monte Carlo simulation as described in the above algorithm. As input to
the function, you have the number of particles (which must be an even number in order for an equilibrium to
exist) and a vector of N random numbers between 0 and 1. The function must use the first random number in
the vector as r at time t = 1, the second random number at time t = 2 etc. If the function runs out of random
numbers before an equilibrium is reached, it must return the value t = 0 to indicate this.

Solution template

def thermoEquilibrium(N, r):
Insert your code here
return t

Input
N Initial number of gas particles in the left chamber (even integer number)
r Sequence of random numbers (vector of decimal numbers between 0 and 1)
Output
t Time-steps used to reach equilibrium (integer number)

Return zero if equilibrium is not reached.

Example

Consider the simple case where there are only N = 2 particles. At t = 1 a particle will move from left to right
(i.e., with probability pLR = 2

2 = 1). When one particle moves to the right chamber, there will be exactly one
particle in each chamber, and equilibrium has been reached. The number of time-steps to reach equilibrium is
thus 1.

71

Module 5. Computer programs

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(thermoEquilibrium(2.0, np.array([0.16, 0.04, 0.72,

0.09, 0.17, 0.60, 0.26, 0.65, 0.69, 0.74, 0.45, 0.61,
0.23, 0.37, 0.15, 0.83, 0.61, 1.00, 0.08, 0.44])))

1

Hand in on CodeJudge

This challenge can be handed in on CodeJudge.

Discussion and futher analysis

Test your function for different numbers of N (remember that N must be even in order for a equilibrium state
to exist.)

• Does the number of time steps to reach equilibrium depend on the number of gas particles?

• Experiment with a large numbers of particles. Will the system always reach equilibrium?

5F

72

Files and matrices
Aims and objectives

After working through this exercise you should be able to:

• Use basic file system commands from within the programming language:

– Show and list the contents of the current working directory.

– Change the working directory.

• Read and write data files, including:

– Data variables in Python’s npz format.

– Numeric data or text in plain text files.

– Tabular data (numbers and text) in comma-separated-values (CSV) file.

• Initialize a matrix and perform basic matrix operations:

– Indexing to extract or modify elements, rows, columns, and sub-matrices.

– Determine the dimensions of the matrix.

– Elementwise operations such as addition and multiplication.

– Matrix operations including matrix-vector and matrix-matrix products.

– Operations that work on matrices, such as computing the sum, mean, maximum, and minimum of
each row, each column, or of all elements.

– Concatenate matrices row- and columns-wise.

• Describe how to read data from at least one of the following formats using an external library or toolbox:

– Spreadsheets in Microsoft Excel (xls) format.

– Audio in Waveform Audio (wav) format.

– Images in Joint Photographics Expert Group (jpeg) or Portable Network Graphics (png) file format.

– Structured data in JavaScript Object Notation (json) or Extensible Markup Language (xml) format.

Suggested preparation
Downey, “Think Python: How to Think Like a Computer Scientist”, Chapter 8 + 14.1–14.5.

73

Module 6. Files and matrices

Files and directories

The current working directory is the directory in which Python will look for files, if not explicitly given a full
path. When you create a program which loads or saves data in a data file, it is important to know what the
current working directory is and how to change it.

To display the current working directory, you can type

>> import os
>> os.getcwd()
'/Users/alice'

If your are working in a project called MyProject stored in your documents folder it will probably be in a path
similar to /home/alice/MyProject if you are using GNU/Linux, /Users/alice/Documents/MyProject if you
are using OS X, or C://Users/alice/My Documents/MyProject if you are using Windows. To change the
working directory to this folder, run the command

>>> os.chdir('/Users/alice/Documents/MyProject')
>>> os.getcwd()
'/Users/alice/Documents/MyProject'

To list the content of the current working directory type

>>> os.listdir(os.getcwd())
['data', 'myproject.txt']

As you can see, in this example there are two files in the working dir: One is a subdirectory named data and
the other is a text-file named myproject.txt.

Loading and saving variables in files

There are several ways to save variables in files. One widely used is using the NumPy function save to store a
single variable in a so-called npy-files or savez to store multiple variables in an npz-file. You can either use the
absolute path or a path relative to the current working directory when loading or saving files.

The following example will create two variables, x and y and save them in a file saved.npz. Then it will delete
the variables from the workspace. Finally, it will load the variables back into Python and display the contents
of x.

>>> x = np.arange(1,10)
>>> y = np.sin(x)
>>> np.savez("saved.npz", x=x, y=y)
>>> del x
>>> del y
>>> tmp = np.load("saved.npz")
>>> x = tmp["x"]
>>> y = tmp["y"]
>>> x
array([1, 2, 3, 4, 5, 6, 7, 8, 9])

74

Module 6. Files and matrices

Hint
When you load the file saved.npz you store a NpzFile object in the variable tmp. This object has a files
variable that contains a list of the variables stored in the npz-file. If you didn’t save the files with the x=x and
y=y the variables would have been named arr_0 and arr_1.

>>> np.savez("saved.npz", x=x, y=y)
>>> tmp = np.load("saved.npz")
>>> tmp.files
['y', 'x']
>>> np.savez("saved.npz", x, y)
>>> tmp = np.load("saved.npz")
>>> tmp.files
['arr_1', 'arr_0']

It is good practice to name your variables when saving them in an npz-file.

75

Module 6. Files and matrices

Exercise 6A Loading and saving variables

For this exercise download the file smooth.npz. This file contains two variables named x and y. Do the following:

1. Change the current working directory to the place where you have saved the file.

2. List the content of the working directory to verify that the file is there.

3. Load the file into Python such that the two variables are called x and y.

4. Plot the content of the variable x and y. It should look roughly like an inverted U-shape.

Hint
You can plot the variables using the command plt.plot(xx, yy). Remember to first import the
matplotlib.pyplot module using import matplotlib.pyplot as plt and to call plt.show() to display
the plot..

5. Change y such that it contains 1 minus the original value of y.

6. Save x and the new y in a new file.

7. Restart your Python editor and make sure that you can then load and plot the data in the new file.

6A

76

Module 6. Files and matrices

Working with matrices

A matrix is a collection of data (numbers) organized in a two-dimensional grid. For example the following
matrix, A, contains the numbers from 1 to 6 organized on a 2-by-3 grid:

A =
[

1 2 3
4 5 6

]
. (6.1)

The matrix above is said to have two rows and three columns.

Creating matrices To create a matrix in Python, you can use the np.array from the NumPy library to
convert a list (in square brackets) where each element is a list (again in square brackets) with the numbers that
go into each row of the matrix. For example, the matrix A above can be created as follows:
>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> A
array([[1, 2, 3],

[4, 5, 6]])

Converting between vectors and matrices It is sometimes useful to convert between a vector and a
matrix. A vector can be converted into a matrix using the np.reshape-function, and a matrix can be converted
into a vector by reshaping it with the dimension set to -1.
>>> a = np.arange(1, 7)
>>> a
array([1, 2, 3, 4, 5, 6])
>>> A = np.reshape(a, [2, 3])
>>> A
array([[1, 2, 3],

[4, 5, 6]])
>>> b = np.reshape(A, -1)
>>> b
array([1, 2, 3, 4, 5, 6])

Hint
Note, that when converting between matrices and vectors in this way, Python operates on the matrix in a
row-by-row manner. If you wish to work column-by-column you may need to transpose the matrix.

Accessing elements Accessing elements in a matrix works in much the same way as for a vector. The
elements in a matrix can be accessed using square brackets. For example to access the element in the second
row at the third column, you may write
>>> A[1, 2]
6

You can also use this notation to change an element in a matrix.

A whole row or column can be accessed in a similar way, by replacing the row or column index by a colon.
>>> A[0, :]
array([1, 2, 3])
>>> A[:, 1]
array([2, 5])

You can use the colon operator as an index to extract a sub-matrix. For example, to get the sub-matrix
consisting of all rows for columns 2 to 3, you may write:
>>> A[:, 1:3]
array([[2, 3],

[5, 6]])

77

Module 6. Files and matrices

Concatenating matrices You can concatenate two matrices with compatible dimensionality using the
vstack and hstack functions.

If we define the following matrices

B =
[

7 8
9 10

]
, C =

 11 12 13
14 15 16
17 18 19

 , (6.2)

we may write
>>> AB = np.hstack((A, B))
>>> AB
array([[1, 2, 3, 7, 8],

[4, 5, 6, 9, 10]])
>>> AC = np.vstack((A, C))
>>> AC
array([[1, 2, 3],

[4, 5, 6],
[11, 12, 13],
[14, 15, 16],
[17, 18, 19]])

Matrix operations You can use all the same element-wise operations on matrices that you have used on
vectors. In addition you might be interested in computing other properties of a matrix, such as the row- or
columns-wise minimum, maximum, sum, and average. To do this, you can use the functions np.amin, np.
amax, np.sum, and np.mean, and specify whether the function should be applied for each row or column as
demonstrated below. Furthermore, the shape function will tell you the dimensions of the matrix.
>>> np.amin(A, axis=0)
array([1, 2, 3])
>>> np.amin(A, axis=1)
array([1, 4])
>>> np.sum(A, axis=0)
array([5, 7, 9])
>>> np.sum(A, axis=1)
array([6, 15])
>>> A.shape
(2, 3)

Matrix multiplication Matrix-matrix and matrix-vector multiplication can be performed using the dot
function. For example, the matrix vector product[

1 2 3
4 5 6

]
·

 3
2
1

 =
[

10
28

]
, (6.3)

can be computed as
>>> A = np.array([[1, 2, 3], [4, 5, 6]])
>>> b = np.array([3, 2, 1])
>>> np.dot(A, b)
array([10, 28])

Matrix transposition You can transpose a matrix using the t function as follows:
>>> A.T
array([[1, 4],

[2, 5],
[3, 6]])

78

Module 6. Files and matrices

Assignment 6B Production cost

You want to compare the cost of producing some different items. To produce each item, a number of different
resources are required. For each item you know how many units of each type of resource is required. This
information is given as a matrix, where each column corresponds to an item and each row corresponds to a
resource. The values in the matrix denote how many units of the resource is required for the item. Furhtermore,
you know the cost of each resource, which is given as a vector.

Problem definition

Create a function that computes the cost of each item and returns it as a vector. Find an elegant and simple
way to write the code using what you have learned about matrix and vector operations.

Solution template

def computeItemCost(resourceItemMatrix, resourceCost):
Insert your code here
return itemCost

Input
resourceItemMatrix A matrix describing how many units of each resource is required for each item.
resourceCost Vector of the cost of each resource.
Output
itemCost Vector of the cost of each item.

Example

Say that the number of resources required for each item is given by the following matrix,

Resource 1:
Resource 2:
Resource 3:

A B C 6 3 0
17 11 9
4 2 12

, (6.4)

which shows that it requires 6 units of resource 1, 17 units of resource 2, and 4 units of resource 3 to produce
one item A, and similar for item B and item C.

Further, let us assume that the cost of each resource is given by the vector,[
101.25, 84.00, 75.50

]
, (6.5)

The cost of producing item A is then

6 · 101.25 + 17 · 84.00 + 4 · 75.5 = 2337.5 (6.6)

Similarly the cost of item B and item C can be computed as 1378.75 and 1662.00. Thus, the final result should
be the vector

[2337.50, 1378.50, 1662.00] (6.7)

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(computeItemCost(np.array([[6,3,0],[17,11,9],[4,2,12]]),

np.array([101.25,84.00,75.50])))

[2337.5 1378.75 1662.]

79

Module 6. Files and matrices

Hand in on CodeJudge

This exercise must be handed on CodeJudge.

6B

80

Module 6. Files and matrices

Assignment 6C Moving average

When recording any type of noisy data, that be audio signals or stock prices, noise is often reduced by smoothen-
ing the data. One algorithm of smoothing a signal is the n-sample symmetric weighted moving average. Let us
say we are given a signal as a vector y with values yi for i ∈ (1, . . . , N). Then, a five-sample symmetric weighted
moving average, ŷ, can be computed by

ŷi = yi−2 + 2 · yi−1 + 3 · yi + 2 · yi+1 + yi+2

9 , (6.8)

i.e., as a weighted average of the surrounding datapoints. To compute the first two and last two smoothened
signal values, we must make some assumption about the signal outside its bounds: We will assume that yi is
zero for i < 1 and i > N . The algorithm is illustrated below. The figure shows a noisy measurement of a sine
wave function and a five-sample symmetric weighted moving average.

0 0.5 1 1.5 2 2.5 3 3.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

x

y

Sine function

Data

Smoothened data

Problem definition

Create a function that takes a signal vector as input and computes the five-sample weighted moving average of
the signal.

Solution template

def movingAvg(y):
Insert your code here
return ysmooth

Input
y Input signal (vector)
Output
ysmooth Five-sample moving average smoothing of input signal (vector)

Example

If your signal file consists of a vector

y = [0.8, 0.9, 0.7, 0.6, 0.3, 0.4] (6.9)

We can solve the smoothing problem by making use of a matrix: We first construct a matrix where each row is

81

Module 6. Files and matrices

a shifted and scaled version of the signal as illustrated below:

1 · 0.8 0.9
2 · 0.8
3 ·
2 ·
1 ·


0.7 0.6 0.3 0.4 0 0
0.9 0.7 0.6 0.3 0.4 0
0.8 0.9 0.7 0.6 0.3 0.4
0 0.8 0.9 0.7 0.6 0.3
0 0 0.8 0.9 0.7 0.6

 0.4
0.3 0.4

=


0.7 0.6 0.3 0.4 0 0
1.8 1.4 1.2 0.6 0.8 0
2.4 2.7 2.1 1.8 0.9 1.2
0 1.6 1.8 1.4 1.2 0.6
0 0 0.8 0.9 0.7 0.6

 . (6.10)

In the first row, y is shifted left twice; in the second row y is shifted left once and multiplied by two; in the
third row y is multiplied by three; etc. Summing each column and dividing by 9 yields the final result

ŷ = [0.54444, 0.7, 0.68889, 0.56667, 0.4, 0.26667]. (6.11)

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(movingAvg(np.array([0.8, 0.9, 0.7, 0.6, 0.3, 0.4])))

[0.54444444 0.7 0.68888889 0.56666667 0.4
0.26666667]

Hand in on CodeJudge

In order to validate you can either upload a file containing your implementation of the function or directly copy
the code into codejudge.

Discussion and futher analysis

Try loading the variables x and y from the data file smooth.npz which contains the noisy sine function data used
to generate the figure above. You should then be able to reproduce the plot in the figure using the following
code:

import matplotlib.pyplot as plt
plt.plot(x, np.sin(x), "k")
plt.plot(x, y, "g.")
plt.plot(x, movingAvg(y), "r.-")
plt.show()

6C

82

Module 6. Files and matrices

Reading text files

There are several ways to read text from a plain text-file. One is to use the readlines function. The following
example will read all the characters of the file small_text.txt into the variable smalltxt.

>>> filein = open("small_text.txt", "r") # Opens the file for reading
>>> lines = filein.readlines() # Reads all lines into an array
>>> smalltxt = "".join(lines) # Joins the lines into one big string

This will load all the text in the file into a single string variable.

83

Module 6. Files and matrices

Assignment 6D Frequency of letters

A simple way to analyze a text document is to examine how often the different letters in the alphabet occur in
the text. As you will see in a later assignment, this can be used for example to detect the language in which
the text is written. In this assignment we will create a function that takes the filename of a text file as input
and computes the frequency of the letters in the text. In order to simplify the problem we will convert the text
to lower case and only consider the characters from a to z.

First, we must read in the text file and convert it to lower case. Then we should count the number of times
each of the letters a to z occur. Here it might be a good idea to create a string or vector with all the letters
in the alphabet: Using that, we can make a loop over the letters in order to count how many times they each
occur in the text. Finally, based on the occurence counts we can compute the frequency.

Problem definition

Create a function that takes a text file as input and returns a vector of size 26 with the frequency in percent of
each character a, b, . . . z (not sensitive to case.) The frequency must be computed as the number of occurences
divided by the total number of characters from a to z that occur, multiplied by one hundred. All other letters
such as ø and ä as well as all symbols must be ignored.

Solution template

def letterFrequency(filename):
Insert your code here
return freq

Input
filename A string that is the filename of a plain text file in the current working directory.
Output
freq A vector of length 26 containing the frequency of occurrence of each of the 26 letters from a to z.

Example

In the file small_text.txt is a small example. Counting the number of occurences of each of the letters yields
the result shown below (second row). Dividing each number by the total number of occurences and multiplying
with 100 yields the frequency (last row).

Letter a b c d e f g h i j k l m
Occurrences 105 29 32 59 160 26 25 87 93 1 15 44 14
Frequency (%) 8.10 2.24 2.47 4.55 12.35 2.01 1.93 6.71 7.18 0.08 1.16 3.40 1.08
Letter n o p q r s t u v w x y z
Occurrences 87 102 19 1 78 70 142 37 12 38 0 20 0
Frequency (%) 6.71 7.87 1.47 0.08 6.02 5.40 10.96 2.85 0.93 2.93 0.00 1.54 0.00

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

84

Module 6. Files and matrices

Test code Expected output
import numpy as np
print(letterFrequency("small_text.txt"))

[8.10185185 2.23765432 2.4691358 4.55246914
12.34567901

2.00617284 1.92901235 6.71296296 7.17592593
0.07716049

1.15740741 3.39506173 1.08024691 6.71296296
7.87037037

1.46604938 0.07716049 6.01851852 5.40123457
10.95679012

2.85493827 0.92592593 2.93209877 0.
1.54320988 0.]

Hand in on CodeJudge

This exercise must be handed on CodeJudge.

6D

85

Module 6. Files and matrices

Working with CSV files

Comma-separated values (CSV) or character-separated values is a fileformat that stores data (numbers and
text) in a plain-text form. The values in a CSV file are delimited by some separator character that is often a
comma or a semicolon. It is a widely used data format, which is used by many different programs.

There are several possibilites when working with CSV files in Python. We will use a DataFrame object from
the Pandas module to store the content of a CSV file. This is a flexible data type that you can use in a way
that resembles the way you use a spreadsheet or an Excel file.

Hint
The DataFrame object is part of the Pandas module. To import Pandas write import pandas as pd similar
to how you have imported the Numpy module.

For the following examples we will use the topscorers_small.csv file that contains the 5 topscorers from the
2013–2014 season of the Champions League. You can open the file in a text editor to see that it simply 6 lines
of values (strings and numbers) separated by commas. The first line in the file contains the titles of the data
columns in the file. Make sure you have the file in the current working directory when trying out the following.

To load a CSV file into a DataFrame use the pd.read_csv function.

>>> topscorers = pd.read_csv("topscorers_small.csv")
>>> topscorers

Player Team Goals MinutesPlayed
0 Cristiano Ronaldo Real Madrid 17 993
1 Zlatan Ibrahimovic Paris Saint-Germain 10 670
2 Diego Costa Atletico Madrid 8 580
3 Lionel Messi Barcelona 8 630
4 Sergio Aguero Manchester City 6 429

To retrieve the names of the columns write topscorers.columns to get the columns attribute.

>>> topscorers.columns
Index([u'Player', u'Team', u'Goals', u'MinutesPlayed'], dtype='object')
>>> topscorers.columns[1]
'Team'

It is easy to use the names to directly index that column of the DataFrame.

>>> topscorers.Goals
0 17
1 10
2 8
3 8
4 6
Name: Goals, dtype: int64
>>> np.array(topscorers.Goals)
array([17, 10, 8, 8, 6])

86

Module 6. Files and matrices

Hint
When working with DataFrame objects functions such as topscorers.columns or topscorers.Goals does
not return a numpy array. However it is possible to convert a DataFrame object or part of a DataFrame object
to a NumPy array. For example, the entire DataFrame can easily be converted into an array:

>>> np.array(topscorers)
array([['Cristiano Ronaldo', ' Real Madrid', 17, 993],

['Zlatan Ibrahimovic', ' Paris Saint-Germain', 10, 670],
['Diego Costa', ' Atletico Madrid', 8, 580],
['Lionel Messi', ' Barcelona', 8, 630],
['Sergio Aguero', ' Manchester City', 6, 429]], dtype=object)

That way you can get a vector that can be used for the usual kinds of computations. If for instance you want
the number of minutes played per goal scored you can type
>>> np.array(topscorers.MinutesPlayed) / np.array(topscorers.Goals)
array([58.41176471, 67. , 72.5 , 78.75 , 71.5])

To get the names of the players, you can write
>>> topscorers.Player
0 Cristiano Ronaldo
1 Zlatan Ibrahimovic
2 Diego Costa
3 Lionel Messi
4 Sergio Aguero
Name: Player, dtype: object

It is also possible to access individual elements of the DataFrame.
>>> topscorers.Goals[3]
8
>>> topscorers.Player[3]
'Lionel Messi'

You can also retrieve columns or rows of the DataFrame without using the column names directly. Instead use
the iloc member and then index the DataFrame as you would a NumPy array. Note that it is not directly a
NumPy array that is returned. In order to get a NumPy array, use the np.array function as usual.
>>> topscorers.iloc[:,3]
0 993
1 670
2 580
3 630
4 429
Name: MinutesPlayed, dtype: int64
>>> topscorers.iloc[2,:]
Player Diego Costa
Team Atletico Madrid
Goals 8
MinutesPlayed 580
Name: 2, dtype: object
>>> np.array(topscorers.iloc[:,3])
array([993, 670, 580, 630, 429])
>>> np.array(topscorers.iloc[2,:])
array(['Diego Costa', ' Atletico Madrid', 8, 580], dtype=object)

This is, for instance, useful when you want to perform some operation on each of the columns in the DataFrame.

87

Module 6. Files and matrices

Assignment 6E Language detection

Different languages use the different letters with different frequencies and this can be used to determine in
which language a text is written. In this exercise you should use the function created in the previous exercise
to compute the frequencies of letters in a text. Given this vector of frequencies you can compute the squared
error between the frequencies in the text and the (average) frequencies in the language.

E` =
26∑
i=1

(F ti − F `i)2 (6.12)

where F ti is the frequency of letter i in the text and F `i is the frequency of letter i in the language. The language
which has the lowest squared error is the one that best matches the text in terms of the letter frequency.

The frequencies of the letters in fifteen different languages are given in the file letter_frequencies.csv.1 A
snapshot of a part the file is given below.

Problem definition

Create a function that takes as input a vector of frequencies of occurrences of letters in a text. The function
must read the file letter_frequencies.csv, compute the squared error for each language, and return a vector
of squared errors for the fifteen languages.

Solution template

def computeLanguageError(freq):
Insert your code here
return E

Input
freq A vector of size 26 containing the frequency of the letters a–z in a text.
Output
se A vector of length 15 containing the squared error between the input vector and each of the

15 languages in the CSV file

Example

Let the vector in the following table be the input vector and the CSV file as the letter_frequencies.csv
from CampusNet. This should give the following squared error for the first 10 languages:

English French German Spanish Portuguese Esperanto Italian Turkish Swedish Polish
9.04 108.24 99.55 121.02 165.54 164.75 128.56 211.07 89.98 190.64

Example test case
1Source: http://en.wikipedia.org/wiki/Letter_frequency

88

http://en.wikipedia.org/wiki/Letter_frequency

Module 6. Files and matrices

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
import numpy as np
print(computeLanguageError(np.array([8.101852, 2.237654,

2.469136, 4.552469, 12.345679, 2.006173, 1.929012,
6.712963, 7.175926, 0.077160, 1.157407, 3.395062,
1.080247, 6.712963, 7.870370, 1.466049, 0.077160,
6.018519, 5.401235, 10.956790, 2.854938, 0.925926,
2.932099, 0.000000, 1.543210, 0.000000])))

[9.03927 108.23630662 99.54527245 121.0194921
165.54454939

164.74825044 128.56084094 211.07248403 89.98061244
190.64402388

93.79889711 112.93292492 192.24702032 173.1080387
134.53866161]

Hand in on CodeJudge

This exercise must be handed on CodeJudge.

Discussion and futher analysis

This method of only using the letter frequencies to determine a language is not very efficient, specially when
the text of which you are trying to identify the language of is only a few words.

The method can be extended to use bigrams or trigrams giving a quite robust method of identifying the
language of a text that is actually used in practice. Bigrams are two adjacent characters in a word instead of
single characters. The two most frequent bigrams in english are ‘th’ and ‘he’.

6E

89

Module 6. Files and matrices

Exercise 6F Advanced file types

Choose one of the filetypes

1. Spreadsheets in Microsoft Excel (xls) format.

2. Audio in Waveform Audio (wav) format.

3. Images in Joint Photographics Expert Group (jpeg) or Portable Network Graphics (png) file format.

4. Structured data in JavaScript Object Notation (json) or Extensible Markup Language (xml) format.

Download the file of the appropriate type from CampusNet. Look through the documentation or search online
for a function or external library that can read the file.

Read the file into Python such that you can work with the data in the file.

6F

90

Plotting and strings
Aims and objectives

After working through this exercise you should be able to:

• Visualize numeric data by generating graphical plots including:

– Scatter plots.

– Line graphs.

– Histograms.

• Create plots that visualize multiple data series.

• Add a title, axis labels, grid lines, and a data legend to a plot.

• Customize properties of the graph including:

– Axis limits.

– Line styles, markers, and colors.

• Manipulate strings

– Concatenate strings and extract substrings

– Find, replace, and separate strings

Suggested preparation
Pyplot tutorial: http://matplotlib.org/users/pyplot_tutorial.html
Downey, “Think Python: How to Think Like a Computer Scientist”, Chapter 2.8.

91

http://matplotlib.org/users/pyplot_tutorial.html

Module 7. Plotting and strings

Working with plots

Data acquisition and data analysis play important roles in engineering and science. Typically the result of an
experiment is a set of data: A possibly large set of numbers that need interpretation. It is often desirable to
visialize data sets in the form of graphical plots. Visualization often makes it easier for you to get a good sense
of how the data behaves, and to discover patterns and trends in the data. A visual representation of data also
makes it easier for you to communicate your results to an audience.

Line graphs

Creating graphical plots in Python is quite easy. Try copying the following code into a script and running it,
to make a line graph of four data points.

import numpy as np # Import NumPy
import matplotlib.pyplot as plt # Import the matplotlib.pyplot module
x = (1, 3, 4, 5) # Make some data, x- and y-values
y = (2, 3, 3, 4)
plt.plot(x, y) # Plot line graph of x and y
plt.title("Simple line graph") # Set the title of the graph
plt.xlabel("x-values") # Set the x-axis label
plt.ylabel("y-values") # Set the y-axis label
plt.xlim([0, 6]) # Set the limits of the x-axis
plt.ylim([0, 5]) # Set the limits of the y-axis
plt.show()

0 1 2 3 4 5 6
x-values

0

1

2

3

4

5

y-
va

lu
es

Simple line graph

Closely examining the code above will give you a good idea of how to make graphical plots: Make sure that
you understand each step above. The first two arguments of the plt.plot command are the x- and y-values of
the points that will be drawn. The plt.xlabel and plt.ylabel commands specify the axis labels, and the
plt.title command sets the title of the plot. The plt.xlim and plt.ylim commands specify the upper and
lower limits of the x- and y-axis.
We use the matplotlib module to create plots, and it must therefore be loaded together with the numpy module.
All plotting functions will be applied to the same figure, until the show command is called, after which Python
will begin on a new blank figure.

Scatter plots

In addition to line graphs, you can also use a similar approach to make scatter plots, in which each data point
(x- and y-coordinate) is displayed as a symbol without connecting lines.

import numpy as np # Import NumPy
import matplotlib.pyplot as plt # Import the matplotlib.pyplot module
x = (1, 3, 4, 5) # Make some data, x- and y-values
y = (2, 3, 3, 4)
plt.plot(x, y, "b*") # Scatter plot with blue stars

92

Module 7. Plotting and strings

plt.title("Simple scatter plot") # Set the title of the graph
plt.xlabel("x-values") # Set the x-axis label
plt.ylabel("y-values") # Set the y-axis label
plt.xlim([0, 6]) # Set the limits of the x-axis
plt.ylim([0, 5]) # Set the limits of the y-axis
plt.show()

0 1 2 3 4 5 6
x-values

0

1

2

3

4

5

y-
va

lu
es

Simple line graph

The third argument "b*" specify how the points should be drawn—in this case as blue stars. Type help(plt.
plot) to read about the different markers and colors that can be used. It is also possible to draw point markers
and connecting lines at the same time using a single command—see how in the documentation.

93

Module 7. Plotting and strings

Exercise 7A Cassiopeia graph

Replicate the following figure, where the points are shown as blue stars connected by red solid lines. Make sure
the points are connected in the same way as in the plot, that the axes have the correct range, and that the title
and labels are correct. As seen below, you must also add a grid in the background, which makes it easier to
read off the values of the points.

Hint
A grid is added by calling plt.grid().

4 3 2 1 0 1 2 3 4

relative x value from center star

3

2

1

0

1

2

3

re
la

ti
v
e
 y

 v
a
lu

e
 f

ro
m

 c
e
n
te

r
st

a
r

Sketch of the Cassiopeia star constalation

7A

94

Module 7. Plotting and strings

Exercise 7B Scatter plot

Create two different vectors, x and y, each containing 2000 random numbers, uniformly distributed between -10
and 10.

Make a scatter plot of the points x, y for which the following two conditions are met:

max(|x|, |y|) > 5 and
√
x2 + y2 < 10 (7.1)

The points that do not satisfy these conditions must be ignored (not plotted). The plotted points must be
drawn with blue circles. The result should look like a fuzzy circle with a square hole.

7B

95

Module 7. Plotting and strings

Exercise 7C Histograms

A histogram is a plot type used in statistics to show frequencies (how many times elements within given intervals
appear in a vector). Each interval is shown as a bin, with the height representing the number of elements falling
within the interval.

We will use a histogram to graphically show the distribution of heads and tails in a sequence of N independent
fair coin tosses. For each toss the probability of seeing a head is equal to the probability of seeing a tail,
PH = PT = 1

2 . The following code will create a random sequence x that simulates the results of 10 coin tosses.
In x, seeing a head is represented by False while seeing a tail is represented by True.
import numpy as np
x = np.random.rand(10) < 0.5

In the histogram, the x-axis must contain two bins. The height of the first bin represents the number of heads
NH seen in the sequence, while the height of the second represents the number of tails NT .

This can be shown as a histogram with two bins by the command:
plt.hist(x, 2)

If x = [0, 1, 0, 0, 1], we have seen 3 heads and 2 tails, resulting in the histogram showed in the following
figure:

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Problem definition

1. Simulate sequences of fair coin tosses and plot histograms for N = 10, N = 100 and N = 1000. Remember
to set title and labels for your histogram appropriately.

• From which of the histograms can you best see that PH = PT = 1
2?

• How would you change the code to generate a sequence of tosses with an unfair coin, where PH = 0.7
and PT = 0.3?

2. Write a script that simulates a sequence of N throws of a fair six-sided die and plots the distribution of
the outcomes in a histogram with 6 bins. Run your code for N = 10, N = 100 and N = 1000 throws.

Hint
You can get the sequence of outcomes (with even probabilities) using the command np.ceil(6 * np.
random.rand(N)).

• How large must N be, before the histogram clearly shows that the probability of each outcome is
identical (equal to 1

6).

• Compared to the coin-toss example, why do we in general need a longer sequence of dice throws to
approximate the underlying probability distribution in the histogram?

7C

96

Module 7. Plotting and strings

Exercise 7D Radiocarbon dating

Carbon is a naturally occurring mineral in living organisms. A small part of the carbon will be of the radioactive
isotope carbon 14. While and organism is alive, the carbon within its tissue will continuously be replenished
from the various nutrients it ingests. When the organism dies, the carbon content is no longer replenished, and
the carbon 14 isotopes within the tissue will slowly decay, such that only the stable carbon 12 remains. The
half-life of carbon 14 is approximately t1/2 = 5700 years, meaning that every 5700 years the amount of carbon
14 in the dead organic material will be halved.

Archaeologists use measurements of carbon 14 to estimate how long time ago an organism died. This can be
estimated as follows,

t = − 1
λ
· ln
(
N

N0

)
, (7.2)

where t is the estimated time in years since the organism died, N is the amount of remaining carbon 14, N0
is the amount of carbon 14 when the organism was alive (this can for instance be estimated from knowing the
content of living samples of the same type of organism) and λ is the decay rate which can be computed from
the half-life as λ = ln(2)

t1/2
.

Problem definition

Create a plot that shows the exponential decay of carbon 14 in organic material. The plot must show the age
of the organic material on the y-axis and the corresponding percentage of remaining carbon 14 on the x-axis
(such that N0 = 100 and 0 ≤ N ≤ 100). Use a lineplot to illustrate this by creating a list of x-values and a list
of the corresponding y-values. The more points you use, the smoother the curve will look. With 1000 points,
you will get a plot as shown in the following figure. Give your plot a meaningful title and labels for the axis.

0 20 40 60 80 100

Percent of Carbon-14 remaining

0

10000

20000

30000

40000

50000

60000

A
g
e
 o

f
m

a
te

ri
a
l

Carbon-14 decay

• A tusk of a woolly mammoth discovered in Siberia is analysed. The ratio between carbon 12 and 14 is
found to only be one tenth of the ratio measured from ivory of recently deceased (present day) elephants.
Look at your plot to verify that the mammoth is around 19,000 years old.

• Carbon 14 measurements are considered unreliable for estimating organic material older than 50,000 years.
Look at your plot and consider why this is so.

7D

97

Module 7. Plotting and strings

Exercise 7E Temperature in the UK

Download the UKTemperature.csv dataset. This dataset contains yearly temperature information for the United
Kingdom, for the years 1912 to 2012 in comma-separated values (CSV) format.1 Each row contains temperature
data for a particular year. For each year there are 14 values:

Column Attribute
1 Year
2–13 Jan, Feb, etc.: Mean temperature for each month
14 Average: Yearly mean temperature

All temperatures are measured in degrees Celsius.

Problem definition

Make a line graph with the year on the x-axis and the yearly mean temperature on the y-axis. Set the range of
the x-axis to begin at 1920 and end at 2010. Your plot should look like the one in the following figure. Make
sure to set appropriate labels and title.

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Year

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

M
e
a
n
 t

e
m

p
e
ra

tu
re

 (
d
e
g
re

e
 C

e
ls

iu
s)

Mean temperature in the UK

For each year, calculate the average of the mean temperatures of the 12 months and show this as another line
in the same plot, but in a different color. Make sure to use appropriate labels and title.

Add a legend to the plot, to inform the reader about the difference between the two timeseries. In order to
show legends in a plot, each timeseries must be given a label (name), when it is plotted. The legend command
can then be used to show legends with these names. Try to run the following code to see how it works, and
read the documentation to learn more about making legend, for example to control where the legend is placed.

x = np.arange(1,20)
y1 = x
y2 = x**2
plt.plot(x, y1, label="Series 1")
plt.plot(x, y2, label="Series 2")
plt.legend(loc="upper left")

Your plot should look like the following:

1Based on data from the UK’s National Weather Service http://www.metoffice.gov.uk

98

http://www.metoffice.gov.uk

Module 7. Plotting and strings

1920 1930 1940 1950 1960 1970 1980 1990 2000 2010

Year

7.0

7.5

8.0

8.5

9.0

9.5

10.0

10.5

M
e
a
n
 t

e
m

p
e
ra

tu
re

 (
d
e
g
re

e
 C

e
ls

iu
s)

Mean temperature in the UK

Annual mean

Monthly mean

• Why is the mean temperature for the entire year not exactly equal to the 12 months average?

• Does it make sense that the annual mean in general seems to be higher than the mean of the 12 months?

7E

99

Module 7. Plotting and strings

Exercise 7F Saving and printing plots

Continue working with a plot you have made in one of the previous exercises. Save the plot in a file without
using the graphical user interface.

Hint
You can use the plt.savefig function to save a plot into a file. Use the documentation to see how this works.

Once you have saved the plot in a file, make sure that you can insert it in your favorite word processing system,
such as LaTeX or Microsoft Word.

7F

100

Module 7. Plotting and strings

Working with strings

You have already used strings for many different purposes, such as getting input into your program from the
user or from a file, and outputting information to the user either on the screen or by saving it in a file. The
following is a short introduction to working with strings in Python where we will go through some of the most
important basic string operations.

Concatenating strings

To concatenate means to put together, one after another. To concatenate strings (without any separating
characters inbetween) you ca use the plus operator.

>>> str1 = "This"
>>> str2 = "is"
>>> str3 = "easy"
>>> str1 + str2 + str3
'Thisiseasy'

If you would like to concatenate the strings by separating them with a character such as a space or a dash, you
can use the the join method.

>>> " ".join((str1, str2, str3))
'This is easy'
>>> "-".join((str1, str2, str3))
'This-is-easy'

Extracting substrings

To extract a substring or perhaps a single character from a string, you can index the string just like a vector.

>>> str = "This-is-easy"
>>> str[5]
'i'
>>> str[5:10]
'is-ea'

Find and replace in strings

If you want to find out if/where a substring occurs inside a longer string, you can use the find method.

>>> str = "This-is-easy"
>>> str.find("is")
2

The find method returns the index of the first match. If you want to find all the substring matches, you can
for example use a loop repeatedly search for the next match until you have found all the matches.

>>> index = 0
>>> while True:
... index = str.find("is", index)
... if index==-1:
... break
... print(index);
... index += 1
2
5

If the substring does not match anywhere find returns -1.

101

Module 7. Plotting and strings

>>> str.find("not there")
-1

To replace all occurences of a substring within a string you can use the replace method.

>>> str.replace("is", "eta")
'Theta-eta-easy'

Splitting strings into tokens

Sometimes you need to split a string into substrings separated by some character (such as space, comma, dash
etc.) You could of course use the methods we just described to find and extract the substrings, but since this
is a somewhat common task there is also a special function called split that is much easier to use:

>>> str = "This-is-easy"
>>> tokens = str.split("-")
>>> tokens
['This', 'is', 'easy']
>>> tokens[1]
'is'

Vectors of strings

If you need to handle multiple strings, you can create a list or “vector” of strings and work with it in a way
similar to how you work with vectors of numbers.

>>> my_strings = np.array(["This is one string", "Here is another", "This is the third"])
>>> my_strings
array(['This is one string', 'Here is another', 'This is the third'],

dtype='<U18')
>>> my_strings[2]
'This is the third'

102

Module 7. Plotting and strings

Assignment 7G The NATO alphabet

The NATO alphabet is useful for spelling words over a noisy telephone connection.

A B C D E F G H I
Alpha Bravo Charlie Delta Echo Foxtrot Golf Hotel India

J K L M N O P Q R
Juliet Kilo Lima Mike November Oscar Papa Quebec Romeo
S T U V W X Y Z

Sierra Tango Uniform Victor Whiskey Xray Yankee Zulu

Problem definition

Create a function that spells out a word (written in plain text) in the NATO alphabet. The function should
accept input in upper, lower, or mixed case, and should output the NATO “code words” exactly as written
above, separated by dashes. You can assume that the input string contains only letters from a-z (A-Z).

Solution template

def textToNato(plainText):
Insert your code here
return natoText

Input
plainText Input word in plain text (string)
Output
natoText Output in dash-separated NATO alphabet (string)

Example

For example, given the input hello, the function should return the string Hotel-Echo-Lima-Lima-Oscar.

Example test case

Remember to thoroughly test your code before handing it in. You can test your solution on the example above
by running the following test code and checking that the output is as expected.

Test code Expected output
print(textToNato("hello")) Hotel-Echo-Lima-Lima-Oscar

Hand in on CodeJudge

In order to validate you can either upload a file containing your implementation of the function or directly copy
the code into codejudge.

Discussion and futher analysis

How could you create a function that does the reverse, i.e., converts a word written in the NATO alphabet
(as output by your function) back into plain text? If you are up for the task, create such a function and test
thoroughly that it works correctly by converting words first to the NATO alphabet and then back and checking
that the result is identical to the original input.

7G

103

	Introduction to programming
	Aims and objectives
	Installation
	The integrated development environment interface
	Exercise 1A: Getting to know the interface
	Exercise 1B: Simple arithmetic operations
	Exercise 1C: Help on functions
	Exercise 1D: Mathematical functions
	Exercise 1E: Scripts
	Assignment 1F: Hello CodeJudge!
	Assignment 1G: The cosine rule
	Assignment 1H: The quadratic formula

	Functions, vectors, and testing
	Aims and objectives
	Functions and scope
	Assignment 2A: Taylor series
	Working with vectors
	Exercise 2B: Initializing and indexing vectors
	Exercise 2C: Vector operations
	Exercise 2D: Logical vector indexing
	Exercise 2E: Modifying vectors
	Testing
	Assignment 2F: Projection
	Assignment 2G: Box area
	Optional challenge 2H: Sudoku row

	Selection statements
	Aims and objectives
	Using selection statements
	Exercise 3A: True or false
	Exercise 3B: Logical expressions
	Comparison pitfalls
	Assignment 3C: Angle between lines
	Assignment 3D: Piecewise function
	Assignment 3E: Acidity
	Optional challenge 3F: Football goal tracker

	Looping
	Aims and objectives
	For- and while-loops
	Loop pitfalls
	Loops and vectorized computation
	Displaying formatted output
	Exercise 4A: Repeated printing
	Exercise 4B: Power series approximation
	Exercise 4C: Square roots
	Assignment 4D: Fermentation rate
	Assignment 4E: Bacteria growth
	Assignment 4F: Removing incomplete experiments
	Optional challenge 4G: Cluster analysis

	Computer programs
	Aims and objectives
	Writing useful comments
	Assignment 5A: Temperature conversion
	Input from the user
	Exercise 5B: Interactive temperature calculator
	Exercise 5C: A simple menu
	Creating an interactive program main script
	Computer simulation with random numbers
	Exercise 5D: Random numbers
	Assignment 5E: Monte Carlo estimation
	Optional challenge 5F: Thermodynamic simulation

	Files and matrices
	Aims and objectives
	Files and directories
	Loading and saving variables in files
	Exercise 6A: Loading and saving variables
	Working with matrices
	Assignment 6B: Production cost
	Assignment 6C: Moving average
	Reading text files
	Assignment 6D: Frequency of letters
	Working with CSV files
	Assignment 6E: Language detection
	Exercise 6F: Advanced file types

	Plotting and strings
	Aims and objectives
	Working with plots
	Exercise 7A: Cassiopeia graph
	Exercise 7B: Scatter plot
	Exercise 7C: Histograms
	Exercise 7D: Radiocarbon dating
	Exercise 7E: Temperature in the UK
	Exercise 7F: Saving and printing plots
	Working with strings
	Assignment 7G: The NATO alphabet

