Introduction to
Perl Programming

H4311S B.00
Module 1

What Is Perl?

» Perl — Practical Extraction and Reporting Language.
 Perl has similarities with the C programming language.
» Perl has similarities with shell scripting.

» Perl is a linear programming language, not a cyclic processor like sed
and awk.

» Perl has built in commands and functions.
» Perl uses modules to extend its capabilities.

 Extensive documentation is available on the
Comprehensive Perl Archive Network (CPAN).

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

Parts of a Perl Program

1. #! /opt/perl5/bin/perl

2. # Q@(#) Version A.00

3. # SRevision: 1.25

4. #

5. # This program prints a greeting then exits.
6. #

7. print “Hello, world.\n”; # tradition

8. print “Welcome to Perl programming.\n”;

9

10.ex1t;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

Creating a Perl Program

* Plan the flow of the program.

Use a text editor to create a program file.

Specify in the first line that Perl will be the interpreter.

Add a line for version control.

Use comments to document the program.

Execute the program:
Make it executable: chmod +x prog.pl
or
Execute as input to Perl: perl prog.pl

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 4

Perl Statements

H4311S B.00
Module 2

Format of Perl Statements

» A simple statement consists of
- a command or subroutine call
- an assignment
- a terminating semicolon
* A compound statement consists of
- a condition
- a block
» A block consists of
— a pair of braces
— a set of simple statements

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

Statements — Example

1 #! /opt/perl5/bin/perl

2 #

3 # Q(#) statements.pl: Version 1.0

4 # This program demonstrates Perl statements
5 #

6 svarl = “I'm in the outer block.”;

7 print “Svarl\n”;

8 {

9 my $varl = “I'm in the inner block.”;
10 print “$varl\n”;

11}

12 print “Svarl\n”;
13 exit;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

Variables

» Perl does not have data types.
« Perl will store data in
— scalar variables
— lists
— arrays
- hashes
» Perl will convert data to the proper type for the statement.
» Scalar variables
- start with $ followed by alpha followed by an alphanumeric
- allow underscores
- store a single value that may contain white space

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 4

Scalar Variables

« Assigning scalar variables:
scost = 50000;
smargin = 0.15;
Sproduct = “car”;

« Using scalar variables:
Sprice = Scost + (Scost * Smargin);
$desc = “A red car with lots of extras. Only S$price
dollars”;
print (“The cost is: %, Scost);

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 5

Commands

 Built-in commands for
- variable manipulation
— input and output
- program flow
- management of processes, users, groups
— network information
- IPC and sockets

* User-defined subroutines

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

Evaluation and Assighment

* Has the format
operandl operator operandZ

Operand1 can be a literal or a variable in some expressions.
Operand1 must be a variable if the operator is an assignment.

Operand2 can be a literal, a variable, or the return value of a function
call.

The operator can be any one of the operators in the list of operators.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 7

Operators

* list operators, parentheses, braces, quotes, — () {}’ ™
e array and hash index — [] {}

» dereference and method calls — ->

* increment, decrement — -- ++

e unary operators —+ - ! ~

» arithmetic operators — + * / % -

 bitoperators— & | *
e relational — gt > < eqg
* logical — && ||

e cOmma — ,
* logical — and or xor

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 8

Managing Data

H4311S B.00
Module 3

Standard File Descriptors

» Three file descriptors are opened automatically:
- STDIN the standard input device (the keyboard)
- STDOUT the standard output device (the monitor)
- STDERR the standard error device (the monitor)

« Some commands will use them as the defaults:
- <> isthe same as <STDIN>

print “This is a line of output.\n”
print STDOUT “This is a line of output.\n”
« STDERR must be specified explicitly

- print STDERR “This is an error!\n”

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

Opening Files

open (filehandle, “mode filename”);
close filehandle;

» Filehandle is any name you want to use.
* Mode can be the following:
omitted or < input (reading)
> output (writing)
>> append (writing)
+> input and output truncate the file if it exists.
+< input and output do not truncate the file.
» Filename in quotes is the pathname of the file:
filename alone is a file.
| filename is a command that reads from the pipe.
filename | is a command that writes to the pipe.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

Reading and Writing Files

Reading Writing
e Svar = <FILEHANDLE> e print
* read e printf
e getc e write
* seek e formats
e tell e syswrite

e cof

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 4

print and printf

e print outputs a list of items that may be enclosed in parentheses.

\

rint “The value of var is Svar, “.\n”;
14 14

\ \

print ($var+7, is more than %, Svar-7, “.\n”);
« printf outputs a formatted string.
- printf(“format string”, positional parameter);

- The format string contains literals and field specifiers that
will be replaced by the positional parameters.

printf “The value of var is %s.\n“, Svar;
printf “%d is more than %d.\n"“, Svar+7, Svar-7;

» Substitutions and evaluations will be done before the data is
output.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 5

write and Formats

« write sends output to the filehandle specified using its associated

Filehandles start with a format name that matches the filehandle name
The default file handle is STDOUT.

The select function allows the default filehandle to be changed.
The format name is assigned to default filehandles using the $~ special
variable.

The default format can be changed by assigning a format name to the
special variable:

select NEWDEFAULT;
S~ = “NEWFORMAT”;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

Formats

1. format SALARYFORM =
2. Employee Salary

Q<< @>>>>>>>

Sname , $salary

Sname = “M Mouse”;
$Ssalary = 1000;

4
5
6. .
7. S~ = “SALARYFORM”;
8
9
10.write;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 7

Looping and Branching

H4311S B.00
Module 4

What Is True? False?

* In Perl, particular values are considered FALSE

— Numeric: 0, 0.0

- String: ', “0”

— Other: undef, null
« Everything else is TRUE!

- 1, “hello”, 3.1415926, -32, 0x0003152BF0, “0.0%, ...
« Commands

— return value of zero or null is FALSE

* e.g. int(“0.0”)
— return value of non-zero or non null is TRUE

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

{ {
block; block;
} }
elsif (condition)
{
block;
}
e if (condition)
{
block; .
} else
else {
{ block;
block; }
}

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

unless

e unless (condition) e unless (condition)
{ {
block; block;
} }
else
{
block;
}

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 4

while Loop

while (condition)

{
block;

executes if condition is true

will execute O or more times

stops executing when (condition) is false

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 5

until Loop

until (condition)

{
block;

will execute O or more times

executes if condition is false

stops execution when condition is true

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

for Loop

e for (initializer; condition; iterator)

{
block

}
« initializer can be any valid Perl expression, but is usually a single
assignment statement
« condition is a relational or conditional expression to evaluate

« iterator is executed at the end of each block i.e. just before the next
iteration
e for (S1 = 0; S$1i < 10; Si++)

{
print $i;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 7

foreach Loop

foreach Svalue (list)

{
block;

» executes the command block once for each element of the list
» stops execution when no more elements are in the list

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 8

Lists, Arrays, and Hashes

H4311S B.00
Module 5

A list is an ordered set of values enclosed in parentheses.

A list has no name.

Each element in the list can be accessed by an index.

The index is enclosed in square brackets.

The members of a list can be literals, scalars, or other lists.
A list can be used as an rvalue or an lvalue.

(1, 2, 3, 4, SvarX) — a list
(Svl, $Sv2) = <STDIN> — a list as an Ivalue
(Sv1l, Sv2, $v3) = (1, 2, 3) — a list as an rvalue

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

Working with Lists

1. (1, 2, 3)

2. (1..10)

3. (a..z,A..72)

4. (1, 2, (a, b, c), 5, (3, 4))

5. (Sitem, S$cost) = (“lunch”, 10.00)

6. (Sitem, Scost) = (Sdescription, Sprice, Spart number)
7. (Sanimal) = gw(cat dog fish bird)

8. Sanimal = gw(cat dog fish bird)

9. Sanimal = (“cat”, “dog”, “fish”, “bird”) [0]

10. S$sz = (stat(inventory.db)) [7]

11. Sword = (“cat”, “dog”, “fish”, “bird”) [rand(3)]

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

List Related Commands

* join join list elements together into a single string

split create a list by splitting up a string

e reverse reverse a list

sort sort a list

* map perform activity for each element of a list

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 4

* An array is a list with a name.
« The name must start with @.

» The name starts with a letter followed by alphanumeric and
underscore.

* An array can be populated from a list
darrayname = (list);

« Array elements are accessed using an index.
Selement = Sarrayname[index];

 index can be any expression that evaluates to a number.

» Aslice is an array that is a subset of a larger array.
Garray slice = (@arrayl[index list];

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Working with Arrays

1. @animals = (“cat”, “dog”, “fish”, “bird”)
2. Sanimals|[1]

3. Sanimals[-1]

4. (@numbers = (1..10)

5. (@nums = (@numbers

6. (Smy pet, Syour pet) = (animals

7. ($my pet, @rest of the animals) = (@animals
8. (Syour pet, (@rest of the animals) = (@rest of the animals
9. print (@animals)

10. Sarray size = (@animals

11. Sanimals[5] = “lizard”

12. @slice = @animals[1l, 3]
13. @slice = @animals[0..2]

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

Array Related Commands

* POp remove and return last array element
e push append a list to an array
e shift remove and return first array element

unshift prepend a list to an array

splice insert a list into an array

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 7

* A hash is a named list that contains key-value pairs

* The key is frequently a string
 The name starts with a %.

» The first character is a letter, followed by alphanumeric or underscore.

« Hashes may be populated from a list

$hash
or
$hash

(keyl, wvaluel, key2, wvalueZ2,..);

(keyl => valuel, key2 => value2,..);

» Access a value by specifying its key
Shash{key2};

H4311S B.00

© 2003 Hewlett-Packard Development Company, L.P.

Working with Hashes

1. %animals=(cat,persian,dog,collie,bird,eagle);
2. %animals= (
cat => persian,
dog => collie,
bird=> eagle
)

3. Sanimals{“fish”} = “shark”;

4 . %new_animals = %animals;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 9

Hash Related Commands

exists check if a key is in the hash

keys list all of the keys in the hash

values list all of the values in the hash

delete delete a key-value pair or pairs

each list the next key-value pair

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 10

Looping and Branching
Controls

H4311S B.00
Module 6

Modifiers

» Any statement may be augmented with a modifier:

- statement modifier (condition):;
- if,unless, while, until and foreach

» The condition is evaluated before executing the statement

« 1f and unless cause the statement to be executed once, or not at all,
depending on the condition.

« while, and until cause the statement to be executed 0 or more
times, depending on the condition

« Exception: if the statement is a do statement modified with while or
until, the condition is checked after the statement is executed. Thus
a do statement will be executed at least once with while and until.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

Using “Short-Circuit” Statements

 Perl will not evaluate the right hand side of a logical operator if it would
not change the true / false result:

- Forlogical and, and s« if the left side is false, theresultis false
no matter what the right side is

- Forlogical or, and | |, if the left side is true, the result is true no
matter what the right side is

* The result of a command can be considered true or false.

» Consequently, two commands can be connected with or or and, and
the second command will be executed conditionally:

- open FH, “< S$fname” or die “Could not open S$fname”

- ($name) and print “Name is S$name\n”;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

Modifying Execution of a Loop

 next — ends the current execution of the loop and resumes
executing at the condition.

 last — ends the current execution of the loop and resumes
execution after the current block.

 redo — ends execution of the current loop and resumes
execution after the condition.

» Instead of the default, you can specify a label:
next LABEL;

last LABEL;
redo LABEL:

 |f LAREL is omitted, next, 1ast and redo use the current block.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 4

A label provides a name by which a block of code can be referenced.
Labels can be used by redo, last, next, and goto.

A label consists of an alpha or underscore, followed by one or more
alphanumeric or underscore characters.

A label is terminated by a colon.

A label is case sensitive.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Pattern Matching

H4311S B.00
Module 7

Pattern Matching

« Pattern Matching is part of the Perl language, not an add-on

« Pattern Matching uses Binding Operators, Regular Expressions (REs),
Commands, and Command Modifiers

» Binding operators associate a string “topic” to a RE “pattern”
“Sail Away” =~ m/"Sail \w+/i;

* REs express patterns using literals, and special characters

« Commands specify how the pattern is used against the bound topic:
m// (match), s/// (substitute), tr/// or y/// (transliterate)

« Command Modifiers change command behaviour
i (ignore case), g (global), s (squash)

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

Uses for Pattern Matching

 Verify a string/topic matches a pattern — returns true or false.
if ($line =~ /"“root:/) # m assumed: m/"“root:/

« Save whether, or what, the RE pattern matched in the topic.
Smatched = $line =~ m/RE/; # matched = 1/0
@matches = S$line =~ m/RE/g; # saves matches

» Perform substitution or translation on the string

$line =~ s/RE/string/g;
$line =~ tr/stringl/string2/;

» Extract parts of the topic without changing it:Sname, S$host,
$domain) = ‘phil@sailing.hp.com’ =~

/ (\w+) @ (\w+) \. (.%)/;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Binding with the m// Command

» Binding (=~) associates a string “topic” with a Regular Expression
“‘pattern”

 The m match command indicates whether or not the topic matches
- a 0 (no match) or 1 (match) is returned if binding in scalar context
- a () (nomatch) or (1) (match) is returned if binding in /ist context

Sa = “Abe Lincoln” =~ m/Wash/; # Sa is O
@arr = “Abe Lincoln” =~ m/Lincoln/; # Qarr is (1)
* The mis assumed if missing
@arr = “Abe Lincoln” =~ /Wash/;# Qarr is ()
« Topic and binding may be omitted: if so, $ is bound
S = “Abe Lincoln”;

Sa = /Lincoln/; # Sa is 1

Scharacter = (/Lincoln/) ? “honest” : “cagey”;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 4

What Is a Regular Expression?

» A Regular Expression (RE) is
- a pattern of what to look for in a string, usually delimited with /

- interpolated before processing, just like a double-quoted string

- used withm// and s/// commands, as well as with Perl functions
(e.g. split)

* Regular Expressions can contain any mix of

— literal characters
/root/, /42/, /# Done!/
- special characters (“metacharacters”)
/~root/, /[a-zA-Z]1+/, /(0x)?2[0-9a-fA-F]+/

- metasymbols

/\d/, /\w+\s\d+/

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 5

Literal Matching

* Most characters in an RE are matched to themselves:
yes: / matches “yes: 45”,and “ayes: 36”
« Some characters have special meaning:
A Y G B R O T s
» Precede special characters with backslash (\) to match them literally

/hp.com/ matches “hp.com” and “hpicom”
/hp\.com/ matches “hp.com”, but not “hpicom”

* The delimiter is special, but may be changed:

m/\/usr\/tmp/ # matches /usr/tmp
m#/usr/tmp# # same, but easier to read

Note: the m is required when specifying a different delimiter than /

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

Special Characters

« ~,$ Anchors to the start, end of a line (or string)

[]

{}
()

Matches one of the specified group of characters
Matches any single character (except newline)

Treat next character as literal; also, start metasymbol
sequence

Separates alternatives
Matches O or more of the preceding RE element
Matches 1 or more of the preceding RE element

Matches 0 or 1 of the preceding RE element; also, create a
minimal match for the preceding quantifier

Used to specify quantifiers
Used to capture sub-expressions

H4311S B.00

© 2003 Hewlett-Packard Development Company, L.P.

Metasymbols

A metasymbol is a character sequence with a special meaning

- The sequence is not matched literally
- The first character is \

Specifying a specific, perhaps non-printable, character:
\a, \n, \r, \t, \f, \e, \007, \x07, \cx
Specifying one of a certain type of character:
\d,\D, \w,\W, \s,\S, \1, \u
Specifying an assertion / anchor / boundary:
\b, \B, \A&, \Z, \z, \G
Start / End specified case of letters
\L, \U, \E

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 8

Match a Single Character from a Group

» Use a period (.) to match any single character (except newline)
/c.t/ matches “cat”, “c t”, “c.t”, “boycott”
* Use metasymbols to match pre-defined lists of characters
- \d (digit) \ s (white space) \w (word character)
- \D (non-digit) \S (non-white) \W (non-word)
« Use [,], - and ~ to specify a list of alternative characters
- order doesn’t matter (except for readability!)
- ranges are specified using —
[abcde], [ebdcal, [a-e] # equivalent
- ~, when first, means “except for”; when not first, it means itself
[~0-9], [a-z\-0-9], [ABC",]
- Backslash and metasymbols may also be used: [\t]

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Character Matching Quiz

» Given the following list:
a, abcd, ab9Cd, aBC, Abc, Abc1, Abc12a, .0901, Abcf, abc, abc2 ,
bbbb, ABc, Abc3, bbabb, 99.99, 123

* Construct an RE, which matches words that:
1. contain "abc”
2. contain a number
3. contain digits higher than 2
4. has a b or B followed by a digit followed by a c
5. hasa1,2followed by a lower case letter

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 10

Anchors

« ~ anchors the pattern to the start of the string or a newline.

« $ anchors the pattern to the end of a string or a newline.

« \b anchors to a word boundary.

« \B anchors to a non-word boundary.

« \A anchors to the start of a string.

« \Z anchors to the end of a string or a newline at the end.

« \z anchors to the end of a string.

* \G anchors to where the previous m/RE/ g finished.
/~root/ matches “root” and “rooter”, but not “chroot”
/root$/ matches “root” and “chroot”, but not “rooter”
/~root$/ matches only “root”

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 11

Quantifiers { }

* Quantifiers specify how many times a pattern should occur:

- {1,6} at least once but no more than six
- {3,3} or {3} exactly 3 times
- {3,} a minimum of three times

« * match the preceding character 0 or more times
/do*r/ matches dr dor door dooor....

« + match the preceding character 1 or more times
/do+r/ matches dor door dooor....

« ? match the preceding character 0 or 1 times
/do?r/ matches dr dor

« Default is maximal match; follow with ? for a minimal match:
*2 +?2, 2?2 {}? Makes the match minimal.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 12

Anchors and Quantifiers — Examples

« Sstring = “Thisis a string that has words, sentences, and

punctuation. It also has a newline embedded.
So there it is. \nStrings like being, bekeeeping and bookkeeping are

sometimes included.”

» Create a regular expression to locate:
1. A line starting with capital S up to a word boundary.
2. Repeat with a minimal match to return just the word.
3. Match words with strings of 2 or more letter e’s.
4. Match words that have only one letter e.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 13

Saving Matched Data

1. Bind in a list context, and use the /g modifier
$Sstr = “This is too risky.”;

Qarr = $str =~ /.is/g;
Qarr gets (“his”,

\

is”, Y“ris”)

2. Place parentheses around or within the pattern, and bind in a list

context
@arr = S$str =~ /(.is)/; # G@arr gets (“his”)
@arr = S$Sstr =~ /((.)is)/; # @Qarr gets (“his”, “h”);

3. In scalar or list context, use parentheses to capture, and
backreferences to refer to them

“Abraham Lincoln” =~ /((\w+) (\w+))/;
$1 = “Abraham Lincoln”

¥ $2 = “Abraham”

$S3 = “Lincoln”

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 14

Modifying Strings with s///

« Bind with the s substitute command to change the topic string
Stopic =~ s/pattern/replacement/
» The operation counts the number of substitutions made
$str = “This is risky.”;
Sres = S$str =~ s/.is/at/; # Sres is 1
print “$str\n”; # prints “Tat is risky.”
« Use /g to replace globally
$str = “This is risky.”;
@res = S$str =~ s/.is/at/g; # Qres 1is (3)
print “$str\n”; # prints “Tatat atky.”

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 15

More on Capturing and Backreferences

Two forms of backreferences are available:
- %1, $2, $3, ... persist until the next pattern match (m// or s/ /)
completes
- \1,\2,\3, ... persist only during the current binding
 In subsequent statements, use $N

* In substitutions and matching patterns, use \N
“Jub-jub” =~ m/ (\w+)-\1/; # matches
“dim-sum” =~ m/\ (\w+)-\1/; # doesn’t match

* In substitution replacements, use either $N or \N:

Sname = “Abraham Lincoln”;

Sname =~ s/ (\w+) (\w+)/\2, $1/;# mixed SN and \N
print “$name\n”; # prints “Lincoln, Abraham”
print “S$1\n”; # prints “Abraham”

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 16

Backreferences — Examples

1. Given an array — @pall = (noon, naan, pip, pie, nine);

Create a regular expression that will identify the four character
palindromes.

Create a regular expression that will identify the three character
palindromes.

2. Given an array — @pal2 = (“wing on wing”, “dollar for
dollar”,”at the ball”)

Create a regular expression that will identify the three word
palindromes.

3. Givenastring— $string = “root console Mar 22 16:45”

Display this as: Mar 22 16:45 ---> root on device console

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 17

« tr/// and y/// are identical commands, that transliterate (also called

translate) specified characters in the topic into others
Stopic =~ tr/searchlist/replacementlist/

* No pattern is used, despite use of the binding operator

» The last character of replacementlist is replicated until replacementlist is
the same length as searchlist

» The binding operator returns a count of characters replaced
Stopic = “cats catch critters”;

Sres = Stopic =~ y/cat/dog/; # Sres is 10
print “Stopic\n”; # prints dogs dogch driggers

 Different from global substitution:
Stopic = “cats catch critters”;

Sres = Stopic =~ s/cat/dog/g; # Sres is 2
print “Stopic\n”; # prints dogs dogch critters

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 18

Command Modifiers

 m and s patterns « s only
i Ignore case. g global replace
x lgnore white space. e evaluate right side
s Let the dot match a newline.
m Letanchors match a e trand y
newline. c Complement the search list.
o Compile pattern only once. d Delete specified characters.
s Squash duplicate
« m only characters.

g (list) find all matches

g (scalar) save position

cg Do not reset search position
after a failed match.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 19

Command Modifiers — Examples

1.
2.
3.
4.
5.
6.
7.
8.
9.

$stringl
$stringl
$stringl
$stringl
$string?
$string?
Sstring3
Sstring3
Sstring3

= “On day one we go to London”;

=~ s/on/ON/;

=~ s/on/ON/g;

=~ s/o n #comment/ON/xg;
= “oooaa eeee”;

=~ tr/oa e//s;

= “dogs”;

=~ tr/dog/cat/;

=~ tr/cs//d;

H4311S B.00

© 2003 Hewlett-Packard Development Company, L.P.

20

Module Subroutines

H4311S B.00
Module 8

Creating and Calling a Subroutine

sub mysub {
my (Sargl, S$arg2, @other args) = @ ; # args
my (Stmp, Sretval, @atmp); # “local” wvars
. # subroutine implementation code

return Sretval; # return with an answer

Sresult = mysub (a, b, ¢, d, e);
Sresult = mysub a, b, ¢, d, e;

Sresult = &mysub(a, b, c, d, e);

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Scope of Variables

« By default, variables in Perl have global scope
« Themy and local list operators create variables of limited scope:
- Variables “hide” previous variables with the same name
- Variables may be initialized when created
- Variables “disappear” when the current block completes
* The my list operator creates variables with static scope
- Variables are accessible by code located within the current block
 The 1local list operator creates variables with dynamic scope

- Variables are also accessible by any code called from within the
current block

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

Example: Comparing my and local

sub print ab {

print ™ s$a, Sb\n”; # prints 5, 7
} limited
sub scope demo {
_ $a 5
local $a = 5; 5
my Sb = 5; <b
print Y $a, Sb\n”; # prints 5,
global
print ab;
Sa| /

}

Sa = $b = 7; Sb| /
scope demo;

print “S$a, $b\n”; # prints 7, 7

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

sub swap {

my $tmp = $ [0];
$ [0] =S [1]1;
$ [1] = Stmp;

(Sa, Sb) = (24, 7);

print “a, SSb\n”; # prints 24, 7
swap Sa, Sb;

print “a, SSb\n”; # prints 7, 24

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Prototypes

» Prototypes may be used to specify the number and type of arguments a
subroutine expects

* Prototypes are necessary when using forward declarations
» Use of prototypes is optional
« Example

sub mysub ($5Q); # forward declaration
mysub 1, $i, @items; # use
sub mysub ($35Q) ({ # subroutine defined

}

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

sub mysub {
my (Sarefl, Saref2, Sv) = @ ;
my @da = @Sarefl;
my @b = @Saref?2;

mysub \Qarrl, \Qarr2, Svar;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 7

Special Variables

H4311S B.00
Module 9

Special Variables — Record Handling D

x
invent

$ $ARG Input value

$. $INPUT_LINE_NUMBER $NR The line number in the current file handle.
Reset by close.

$/ $INPUT_RECORD_SEPARATOR $RS Input record separator

$\ %OUTPUT_RECORD_SEPARATOR $ORS Output record separator

$, $OUTPUT_FIELD SEPARATOR $OFS | Output field separator
$” $LIST _SEPARATOR Separator for the elements of a list
$; $SUBSCRIPT_SEPARATOR $SUBSEP | Default separator for simulated multi-

dimensional arrays.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

Special Variables — Formats

$% $FORMAT_ PAGE_NUMBER Current page number in the output channel

$= $FORMAT LINES _PER PAGE Number of lines per output page

$- $FORMAT LINES LEFT Number of lines left on the current page

$~ $FORMAT_NAME Name of current format

$n $FORMAT _TOP_NAME Top of page format (could be the header)
H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Special Variables — Regular Expressions

$n The positional subexpression found in last match
$& $SMATCH String matched by last pattern match
$ $PREMATCH The string preceding the last pattern matched
$ $POSTMATCH The string following the last pattern matched
$+ SLAST _PAREN_MATCH The last match as a subexpression.
H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Special Variables — Process Information

O

x
invent

$$ $PROCESS ID $PID Process ID of the Perl program
$< $REAL_USER_ID $UID UID of the process
$> $EFFECTIVE_USER ID $EUID | Effective UID of the process
$(%REAL_GROUP_ID $GID | GID of the process
$) $EFFECTIVE_GROUP_ID $EGID | Effective GID of the process
$0 $PROGRAM_NAME File name of the Perl script
H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 5

Special Variables — Arrays and Hashes D

x
invent

@ARGV Array of command line arguments passed to the script

@INC Array of directories to search for scripts referenced by do, require, and use
%INC Hash of file names included by do or require functions

%ENV Hash of the current environment

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

Advanced Data Structures

H4311S B.00
Module 10

What Is Possible

records
- simple
- complex

anonymous arrays and hashes

multidimensional arrays
— arrays of arrays

— arrays of hashes

- hashes of hashes

- hashes of arrays

linked lists

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

References

* Array and hash element values must be scalars

» References refer to a block of memory belonging to a scalar, array, or
hash (or code)

 All references are scalars; what they refer to need not be

$sref | SCALAR(0x4002abcd) | ————
. $temp |[warm
AN =

$aref | ARRAY(0x4002ef02)
W‘

scalar values

hot
cold

- O

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

Creating References

« Use \ to create a reference to that variable’s memory:
Ssref = \Svar;
Saref = \Qarr;
Shref = \%hsh;
» The value of the variable indicates the data type, and memory location:
print $sref; # prints “SCALAR (0x400labcd)”
print Saref; # prints “ARRAY (0x400a0010)”
print Shref; # prints “HASH(0x400e00aa)”
* Anonymous references can be created to arrays and hashes:
$anon array = [valuel, value2, value3];

$anon hash = {keyl, valuel, key2, value2};

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 4

Using References

« SCALAR References
Svar = “warm”; Ssref = \$var;
print $sref; print SSsref;
 ARRAY References
@temps = (hot, cold); S$aref = \Qtemps;
print S$aref; print @Saref;
print $Saref[l]; print Saref->[1];
« HASH References
$book = (Title => “Lord of the Rings”,
Author => “JRR Tolkien”); Shref \%book;
print Shref; print %$Shref;
print $Shref{Title}; print Shref->{Title};

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 5

Anonymous References

Reference to Named Variable: 'Sb\"’fk of memory:

@seasons 0x4001abcO
@seasons = (winter, spring, summer, fall);///9, winter
1

Saref = \@seasons;

- spring
print “summer”:
aref| ARRAY(0x4001abcO
print “$seasons[2]\n”; v ()| 2 summer
print “$Saref[2]\n”; 3| fall

print “Saref->[2]\n";

No variable directly associated
with this block of memory:

Anonymous Reference:

0x4008def0

Saref = [winter, spring, summer, fall 1; winter

print “summer”: 11 spring
print “$Saref[2]\n”; Saref| ARRAY(0x4008def0) 2 | summer
print “Saref->[2]\n"; 3 [fall

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

 Arecord is a list of related items.
 The items have a name and a value.

« Simple records are usually hashes, occasionally arrays, with scalar data
values

« Complex records contain arrays and hashes

* Arecord is often implemented as an anonymous hash, using the hash
constructor — {...}.

» Records are often stored in arrays or hashes, i.e. references to the
records are stored.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 7

Simple Record

* Hash implementation

$book = (Title => “Lord of the Rings”,
Author => “JRR Tolkien”);

* Hash reference implementation

Sbook = { Title => “Lord of the Rings”,
Author => “JRR Tolkien” };

- Access with $Sbook{Title} or Sbook->{Title}
* Array implementation
dbook = (“Lord of the Rings”, “JRR Tolkien”);
* Array reference implementation
Sbook = [“Lord of the Rings”, “JRR Tolkien”];
- Access with $Sbook[0] or S$book->[0]

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 8

Complex Records — Example

* Hash reference implementation

Sboat = {
“Manu” => “Beneteau”,
“Model” => 311,
“Year” => 2000,
“Color” => “white”,
“Features” => [“furling jib”, “hot water”],
“Options” => { “Ymain” => “in mast furling”,

“keel” => “bulb”}
I
* Access data using :
- $boat->{“Manu”}; SSboat{“Features”}[0];

- $Sboat{™Model”}; S$Sboat{“Options”}{“main”};

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 9

Example: Array of Records

e Slibrary[1l] = getbook(); #create a book
e print $library[l]{Title}; #print the title

sub getbook{
my (Stitle, Sauthor);
print “Enter a title: %;
chomp (S$title = <STDIN>) ;
print “Enter the author: “;
chomp (Sauthor = <STDIN>);
#return a reference

return {Title=>$title, Author=>$Sauthor};

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 10

Arrays of Arrays

Multidimensional arrays are created as arrays of references.

@array = ([one, two, three],
[dog, cat, bird],

[golden, tiger, canary]):;

is (one, two, three)

is (dog, cat, bird)

is (golden, tiger, canary)
[2] is bird

* This could also be done using an anonymous array constructor instead
of a list.

* Sarray|[0]
* Sarray[1l]
* Sarray[2]
1]

e Sarray]|

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 11

Arrays of Hashes

e (@dogs = (
{ “dog” => “lab”,
“name” => “rover” ,
“size” => “big” },
{ “dog” => “spaniel”,
“name” => “bowser” ,
“size” => “medium” })
e Sdogs[0]{“dog”} refersto lab.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 12

Hashes of Hashes

e 3pets =(dogs => {mine => obedient,
yours => untrained},
cats => {mine => independent,
yours => undisciplined},
hamsters=> {mine = >perfect,
yours => unmotivated});

e Spets{cats}{mine} refersto independent.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 13

Hashes of Arrays

e %animals = (
dogs => [spaniel, poodle, lab],
cats => [persian, tabby],
birds => [canary, duck, goose, turkey]);

e Sanimals{dogs}[1l] ispoodle

e Sanimals{cats}[0] ispersian

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 14

Linked List

sub make node{
print “Enter record: %;
chomp (Svalue = <STDIN>) ;

my S$node = {“wvalue” => S$value, “next” => Snext};

return Snode;

if (defined Shead) {

$last node = find last node(Shead); #see notes
$last node{next} = make node();

J

else(

Shead = make node () ;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 15

The CGI Protocol

H4311S B.00
Module 11

The CGI Protocol Defined

Common Gateway Interface is
— a protocol, not a programming language

Can be implemented using any language
— UNIX shells, C, C++, Visual Basic, Java, but especially Perl

Works cross-platform
— UNIX, Linux, NT

A protocol is an accepted method of doing something
— a set of conventions governing the treatment and especially
the formatting of data

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

CGI’s Role

« CGl is the glue that holds the web together.
— Typically sandwiched between HTML forms

A client completes a form to provide needed information to the program
running on the server.

« The CGI script is executed on the server in real time.
* Results are relayed back to the client.

* A cheap disclaimer....
— We will keep HTML as simple as possible.

 The module, cgi .pm will be deferred until the next unit in this course.
— This let’s us get a better look at the data flow.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

Creating a Form

print “Content-Type: text/html\n\n”;
print
<FORM ACTION=“http://www.servername.com/cgi-
bin/task.cgi”
METHOD=POST>
Select task:
<SELECT NAME=%“task”>
<OPTION VALUE=“check daemons”>check daemons
<OPTION VALUE=“kill old users”>kill old users
</SELECT>
<INPUT TYPE="submit” VALUE="submit task”>

\ .
14

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Text Area and Radio Buttons on a Form

O

x
invent

print “Content-Type: text/html\n\n”;

print ‘<FORM ACTION=“http://www.servername.com/cgi-
bin/task.cgi” METHOD=GET>

First Name: <INPUT TYPE="TEXT" NAME="firstname"
SIZE="25">

Last Name : <INPUT TYPE="TEXT" NAME="lastname"
SIZE="25">

<INPUT TYPE=“radio” NAME="“job title” VALUE=%“S”>Sysadmin
<INPUT TYPE=“radio” NAME=“jOb_title” VALUE=“"N"”>Netadmin
<INPUT TYPE=“radio” NAME=“jOb_title”
VALUE=“W"”>Webmaster

<INPUT TYPE=%“submit” VALUE=“submit”>

\ .
14

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Security

Security is naturally a concern.

The ISP or webmaster will determine if and where CGl scripts will be
allowed to run.

Three levels:
— /opt/apache/cgi-bin (more secure)
— allow users to maintain their own directory for CGI scripts (less

secure)
— any directory, — the program name must end in . cgi (insecure)

If user’s are allowed to maintain their own CGl scripts a configuration
change will be made to allow public html
— this path is appended to ~user.
For example, the script called by
http://r208wl00/~instr/prog.cgi
will be /home/instr/public html/prog.cgi

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 6

The Issue of Pathnames

 Path names are not the same as URLSs.
— Structurally they look similar.
— URLs may have path names embedded, which makes them
look like path names.

* UNIX path names (either absolute or relative) are literal.
— You know your starting place (you can see it).

» CGI pathnames are composites.
— They have “roots” defined by the webmaster in configuration

files.
— Check httpd.confin /opt/apache/conf/httpd.conf

— Look for DocumentRoot, UserDir, ScriptAlias,
ServerRoot.

» Test to verify your discoveries.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 7

CGI Programs as a Security Issue

» CGI programmers also have security responsibilities.
» CGI programs are tempting targets.

» Adopt a defensive mindset.
— remember, just because you're paranoid doesn’'t mean
someone isn’t really out to get you.

« |dentify lines in your code that grant access to the server.

« Scrutinize them and test rigorously for
— valid (expected) data, or ranges
— origin (Is this data provided from where | expect?)
— Path names require extra vigilance. Don’t allow double dots
(. .) as this could be an attempt to get to
../ ../etc/passwd or the like.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 8

Environmental Variables in Programs

* Variables live in $ENV hash

DOCUMENT ROOT — Absolute path of the server’s root directory
GATEWAY INTERFACE — The version of CGl the server's running
HTTP ACCEPT — A list of supported MIME types

HTTP USER AGENT — Name/version of browser

QUERY STRING — String resulting from form data

REMOTE ADDRESS — IP address of user’s system

REMOTE HOST — Host name of user’s system

REQUEST METHOD — METHOD of HTML form (GET or POST)
SCRIPT NAME — Current program'’s relative pathname
SERVER ADMIN — Email address of server administrator
SERVER NAME — Domain name or |IP address of server
SERVER PORT — Port the request was sent to (80 default)
SERVER PROTOCOL — Name and version of request protocol

SERVER SOFTWARE — Name and version of server software

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 9

Debugging CGI Scripts

Debugging Perl scripts is easy — use perl -w or perl -corperl -d.

Debugging CGl scripts is difficult.
— distractions that are side effects of the client-server architecture
(name lookups, connectivity issues, cross-platform issues, etc)

Development environment for testing
— ideally under your control

Some things to look for:
— The HTTP header line (print “Content-Type:
text/html\n\n”;)
— Try running the script with per1 -c before browser invocation.
— To let you see what happens before the “500 Server Error” add:
#!/usr/bin/perl
Sl = 1;
print “Content-Type: text/plain\n\n”;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 10

Perl Modules

H4311S B.00
Module 12

What Is a Module?

A module is
» Perl script that another programmer wants to share
located at CPAN web sites

a combination of C source and header files, configuration files,
documentation, and scripts

accessed as a zipped tar file
available for web, networking, windows, X11, etc.

can be improved on and resubmitted

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 2

Building and Installing Modules

Go to the web site and copy the file to the local server.
DECOMPRESS
- Use the proper unzip utility to restore the tar file.
UNPACK
— Untar the file.
BUILD
- Make the unpacked module directory your current directory.
- Execute perl Makefile.PL
- Execute make

— Execute make test

INSTALL
- Execute make install

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 3

A socket can be a port at an IP address that receives data.

A socket can be a port at which a local application receives data.
A server “listens” at a port.

A client is a program that sends information to or requests information
from a server at a specific port.

There are two different types of messages, streams and datagrams.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Sockets — Example

SERVER CLIENT

1. Use I0::Socket; 1. Use I0::Socket;
2. $sock=I0::Socket::INET ->new 2. Ssock=I0::Socket::INET ->new
3. (LocalPort => 12345, 3. (PeerAddr => ‘hostname’,
4. Type => SOCK STREAM, 4. PeerPort => 12345,
5. Reuse => 1, 5. ype => SOCK STREAM,
6. Listen = 5) or die “message”; 6. Proto => ‘tcp’,) or die “message”;
7. while (Sclient = S$sock->accept) { 7. while (more to send) {
8. Sline = <Sclient>; 8. Sline = data to send;
9. print $line; 9. print S$sock $line;

} }
10. close ($sock); 10. close ($sock);

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 5

« The CGI module is a standard module.

« The CGI module generates the web pages dynamically.
* <STDIN> and <STDOUT> now use the web browser.

« The screen is created by printing the HTML commands to the
browser.

 The CGI methods produce HTML code dynamically.

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

CGI — Example

use CGI;
Spage = new CGI;
print $page —-> header(),
- $page -> start html (),
- Spage center ($page -> hl (“Hello World”)),
- $page start form(),
- Spage —-> textarea/(
—-name => ‘My Text Area’,
-rows => 10,
—-columns => 40),
- $page -> end form(),
- $page -> end html () ;

H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P. 7

