
Introduction to
Perl Programming

H4311S B.00
Module 1

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

What Is Perl?

• Perl — Practical Extraction and Reporting Language.
• Perl has similarities with the C programming language.
• Perl has similarities with shell scripting.
• Perl is a linear programming language, not a cyclic processor like sed

and awk.
• Perl has built in commands and functions.
• Perl uses modules to extend its capabilities.
• Extensive documentation is available on the

Comprehensive Perl Archive Network (CPAN).

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Parts of a Perl Program

1. #! /opt/perl5/bin/perl

2. # @(#) Version A.00

3. # $Revision: 1.2$

4. #

5. # This program prints a greeting then exits.

6. #

7. print “Hello, world.\n”; # tradition

8. print “Welcome to Perl programming.\n”;

9.

10.exit;

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Creating a Perl Program

• Plan the flow of the program.
• Use a text editor to create a program file.
• Specify in the first line that Perl will be the interpreter.
• Add a line for version control.
• Use comments to document the program.
• Execute the program:

Make it executable: chmod +x prog.pl
or

Execute as input to Perl: perl prog.pl

Perl Statements

H4311S B.00
Module 2

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Format of Perl Statements

• A simple statement consists of
– a command or subroutine call
– an assignment
– a terminating semicolon

• A compound statement consists of
– a condition
– a block

• A block consists of
– a pair of braces
– a set of simple statements

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Statements — Example

1 #! /opt/perl5/bin/perl

2 #

3 # @(#) statements.pl: Version 1.0

4 # This program demonstrates Perl statements

5 #

6 $var1 = “I’m in the outer block.”;

7 print “$var1\n”;

8 {

9 my $var1 = “I’m in the inner block.”;

10 print “$var1\n”;

11 }

12 print “$var1\n”;

13 exit;

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Variables

• Perl does not have data types.
• Perl will store data in

– scalar variables
– lists
– arrays
– hashes

• Perl will convert data to the proper type for the statement.
• Scalar variables

– start with $ followed by alpha followed by an alphanumeric
– allow underscores
– store a single value that may contain white space

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Scalar Variables

• Assigning scalar variables:
$cost = 50000;
$margin = 0.15;
$product = “car”;

• Using scalar variables:
$price = $cost + ($cost * $margin);
$desc = “A red car with lots of extras. Only $price
dollars”;
print (“The cost is: “, $cost);

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Commands

• Built-in commands for
– variable manipulation
– input and output
– program flow
– management of processes, users, groups
– network information
– IPC and sockets

• User-defined subroutines

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Evaluation and Assignment

• Has the format
operand1 operator operand2

• Operand1 can be a literal or a variable in some expressions.
• Operand1 must be a variable if the operator is an assignment.
• Operand2 can be a literal, a variable, or the return value of a function

call.
• The operator can be any one of the operators in the list of operators.

8H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Operators

• list operators, parentheses, braces, quotes, — (){}’ “

• array and hash index — [] {}

• dereference and method calls — ->

• increment, decrement — -- ++

• unary operators — + - ! ~

• arithmetic operators — + * / % -

• bit operators — & | ^

• relational — gt > < eq

• logical — && ||

• comma — ,

• logical — and or xor

Managing Data

H4311S B.00
Module 3

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Standard File Descriptors

• Three file descriptors are opened automatically:
– STDIN the standard input device (the keyboard)
– STDOUT the standard output device (the monitor)
– STDERR the standard error device (the monitor)

• Some commands will use them as the defaults:
– <> is the same as <STDIN>
print “This is a line of output.\n”

print STDOUT “This is a line of output.\n”

• STDERR must be specified explicitly
– print STDERR “This is an error!\n”

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Opening Files

open (filehandle, “mode filename”);
close filehandle;

• Filehandle is any name you want to use.
• Mode can be the following:

omitted or < input (reading)
> output (writing)
>> append (writing)
+> input and output truncate the file if it exists.
+< input and output do not truncate the file.

• Filename in quotes is the pathname of the file:
filename alone is a file.
| filename is a command that reads from the pipe.
filename | is a command that writes to the pipe.

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Reading and Writing Files

Reading
• $var = <FILEHANDLE>
• read

• getc

• seek

• tell

• eof

Writing
• print

• printf

• write

• formats

• syswrite

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

print and printf
• print outputs a list of items that may be enclosed in parentheses.
print “The value of var is “, $var, “.\n”;

print($var+7, “ is more than “, $var-7, “.\n”);

• printf outputs a formatted string.
– printf(“format string”, positional parameter);
– The format string contains literals and field specifiers that

will be replaced by the positional parameters.
printf “The value of var is %s.\n“, $var;

printf “%d is more than %d.\n“, $var+7, $var-7;

• Substitutions and evaluations will be done before the data is
output.

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

write and Formats

• write sends output to the filehandle specified using its associated
• Filehandles start with a format name that matches the filehandle name
• The default file handle is STDOUT.
• The select function allows the default filehandle to be changed.
• The format name is assigned to default filehandles using the $~ special

variable.
• The default format can be changed by assigning a format name to the

special variable:
select NEWDEFAULT;

$~ = “NEWFORMAT”;

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Formats

1. format SALARYFORM =

2. Employee Salary

3. ========================

4. @<<<<<<<<<< @>>>>>>>

5. $name , $salary

6. .

7. $~ = “SALARYFORM”;

8. $name = “M Mouse”;

9. $salary = 1000;

10.write;

Looping and Branching

H4311S B.00
Module 4

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

What Is True? False?

• In Perl, particular values are considered FALSE
– Numeric: 0, 0.0
– String: “”, “0”
– Other: undef, null

• Everything else is TRUE!
– 1, “hello”, 3.1415926, -32, 0x0003152BF0, “0.0”, …

• Commands
– return value of zero or null is FALSE

• e.g. int(“0.0”)
– return value of non-zero or non null is TRUE

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

if

• if (condition)
{

block;
}

• if (condition)
{

block;
}
else
{

block;
}

• if (condition)
{

block;
}
elsif (condition)
{

block;
}
.
.
.
else
{

block;
}

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

unless
• unless (condition)
{

block;
}

• unless (condition)
{

block;
}
else
{

block;
}

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

while Loop

• while (condition)
{

block;
}

• executes if condition is true
• will execute 0 or more times
• stops executing when (condition) is false

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

until Loop

• until (condition)
{

block;
}

• will execute 0 or more times
• executes if condition is false
• stops execution when condition is true

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

for Loop

• for (initializer; condition; iterator)
{

block
}

• initializer can be any valid Perl expression, but is usually a single
assignment statement

• condition is a relational or conditional expression to evaluate
• iterator is executed at the end of each block i.e. just before the next

iteration
• for ($i = 0; $i < 10; $i++)

{
print $i;

}

8H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

foreach Loop

foreach $value (list)
{

block;
}

• executes the command block once for each element of the list
• stops execution when no more elements are in the list

Lists, Arrays, and Hashes

H4311S B.00
Module 5

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Lists

• A list is an ordered set of values enclosed in parentheses.
• A list has no name.
• Each element in the list can be accessed by an index.
• The index is enclosed in square brackets.
• The members of a list can be literals, scalars, or other lists.
• A list can be used as an rvalue or an lvalue.

(1, 2, 3, 4, $varX) – a list
($v1, $v2) = <STDIN> – a list as an lvalue
($v1, $v2, $v3) = (1, 2, 3) – a list as an rvalue

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Working with Lists

1. (1, 2, 3)

2. (1..10)

3. (a..z,A..Z)

4. (1, 2, (a, b, c), 5, (3, 4))

5. ($item, $cost) = (“lunch”, 10.00)

6. ($item, $cost) = ($description, $price, $part_number)

7. ($animal) = qw(cat dog fish bird)

8. $animal = qw(cat dog fish bird)

9. $animal = (“cat”, “dog”, “fish”, “bird”)[0]

10. $sz = (stat(inventory.db))[7]

11. $word = (“cat”, “dog”, “fish”, “bird”)[rand(3)]

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

List Related Commands

• join join list elements together into a single string

• split create a list by splitting up a string

• reverse reverse a list

• sort sort a list

• map perform activity for each element of a list

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Arrays

• An array is a list with a name.
• The name must start with @.
• The name starts with a letter followed by alphanumeric and

underscore.
• An array can be populated from a list
@arrayname = (list);

• Array elements are accessed using an index.
$element = $arrayname[index];

• index can be any expression that evaluates to a number.
• A slice is an array that is a subset of a larger array.
@array_slice = @array[index list];

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Working with Arrays

1. @animals = (“cat”, “dog”, “fish”, “bird”)

2. $animals[1]

3. $animals[-1]

4. @numbers = (1..10)

5. @nums = @numbers

6. ($my_pet, $your_pet) = @animals

7. ($my_pet, @rest_of_the_animals) = @animals

8. ($your_pet, @rest_of_the_animals) = @rest_of_the_animals

9. print (@animals)

10. $array_size = @animals

11. $animals[5] = “lizard”

12. @slice = @animals[1, 3]

13. @slice = @animals[0..2]

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Array Related Commands

• pop remove and return last array element

• push append a list to an array

• shift remove and return first array element

• unshift prepend a list to an array

• splice insert a list into an array

8H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Hashes

• A hash is a named list that contains key-value pairs
• The key is frequently a string
• The name starts with a %.
• The first character is a letter, followed by alphanumeric or underscore.
• Hashes may be populated from a list
%hash = (key1, value1, key2, value2,…);

or
%hash = (key1 => value1, key2 => value2,…);

• Access a value by specifying its key
$hash{key2};

9H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Working with Hashes

1. %animals=(cat,persian,dog,collie,bird,eagle);

2. %animals= (

cat => persian,

dog => collie,

bird=> eagle

);

3. $animals{“fish”} = “shark”;

4. %new_animals = %animals;

10H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Hash Related Commands

• exists check if a key is in the hash

• keys list all of the keys in the hash

• values list all of the values in the hash

• delete delete a key-value pair or pairs

• each list the next key-value pair

Looping and Branching
Controls

H4311S B.00
Module 6

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Modifiers

• Any statement may be augmented with a modifier:
– statement modifier (condition);
– if, unless, while, until and foreach

• The condition is evaluated before executing the statement
• if and unless cause the statement to be executed once, or not at all,

depending on the condition.
• while, and until cause the statement to be executed 0 or more

times, depending on the condition
• Exception: if the statement is a do statement modified with while or
until, the condition is checked after the statement is executed. Thus
a do statement will be executed at least once with while and until.

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Using “Short-Circuit” Statements

• Perl will not evaluate the right hand side of a logical operator if it would
not change the true / false result:

– For logical and, and && if the left side is false, the result is false
no matter what the right side is

– For logical or, and ||, if the left side is true, the result is true no
matter what the right side is

• The result of a command can be considered true or false.
• Consequently, two commands can be connected with or or and, and

the second command will be executed conditionally:
– open FH, “< $fname” or die “Could not open $fname”
– ($name) and print “Name is $name\n”;

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Modifying Execution of a Loop

• next — ends the current execution of the loop and resumes
executing at the condition.

• last — ends the current execution of the loop and resumes
execution after the current block.

• redo — ends execution of the current loop and resumes
execution after the condition.

• Instead of the default, you can specify a label:
next LABEL;
last LABEL;
redo LABEL:

• If LABEL is omitted, next, last and redo use the current block.

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Labels

• A label provides a name by which a block of code can be referenced.
• Labels can be used by redo, last, next, and goto.
• A label consists of an alpha or underscore, followed by one or more

alphanumeric or underscore characters.
• A label is terminated by a colon.
• A label is case sensitive.

Pattern Matching

H4311S B.00
Module 7

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Pattern Matching

• Pattern Matching is part of the Perl language, not an add-on
• Pattern Matching uses Binding Operators, Regular Expressions (REs),

Commands, and Command Modifiers
• Binding operators associate a string “topic” to a RE “pattern”
“Sail Away” =~ m/^Sail \w+/i;

• REs express patterns using literals, and special characters
• Commands specify how the pattern is used against the bound topic:
m// (match), s/// (substitute), tr/// or y/// (transliterate)

• Command Modifiers change command behaviour
i (ignore case), g (global), s (squash)

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Uses for Pattern Matching

• Verify a string/topic matches a pattern — returns true or false.
if ($line =~ /^root:/) # m assumed: m/^root:/

• Save whether, or what, the RE pattern matched in the topic.
$matched = $line =~ m/RE/; # matched = 1/0

@matches = $line =~ m/RE/g; # saves matches

• Perform substitution or translation on the string
$line =~ s/RE/string/g;

$line =~ tr/string1/string2/;

• Extract parts of the topic without changing it:$name, $host,
$domain) = ‘phil@sailing.hp.com’ =~
/(\w+)@(\w+)\.(.*)/;

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Binding with the m// Command

• Binding (=~) associates a string “topic” with a Regular Expression
“pattern”

• The m match command indicates whether or not the topic matches
– a 0 (no match) or 1 (match) is returned if binding in scalar context
– a () (no match) or (1)(match) is returned if binding in list context
$a = “Abe Lincoln” =~ m/Wash/; # $a is 0

@arr = “Abe Lincoln” =~ m/Lincoln/; # @arr is (1)

• The m is assumed if missing
@arr = “Abe Lincoln” =~ /Wash/;# @arr is ()

• Topic and binding may be omitted: if so, $_ is bound
$_ = “Abe Lincoln”;

$a = /Lincoln/; # $a is 1

$character = (/Lincoln/) ? “honest” : “cagey”;

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

What Is a Regular Expression?

• A Regular Expression (RE) is
– a pattern of what to look for in a string, usually delimited with /
– interpolated before processing, just like a double-quoted string
– used with m// and s/// commands, as well as with Perl functions

(e.g. split)
• Regular Expressions can contain any mix of

– literal characters
/root/, /42/, /# Done!/

– special characters (“metacharacters”)
/^root/, /[a-zA-Z]+/, /(0x)?[0-9a-fA-F]+/

– metasymbols
/\d/, /\w+\s\d+/

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Literal Matching

• Most characters in an RE are matched to themselves:
yes: / matches “yes: 45”, and “ayes: 36”

• Some characters have special meaning:
\ | () [{ ^ $. * + ?

• Precede special characters with backslash (\) to match them literally
/hp.com/ matches “hp.com” and “hpicom”
/hp\.com/ matches “hp.com”, but not “hpicom”

• The delimiter is special, but may be changed:
m/\/usr\/tmp/ # matches /usr/tmp
m#/usr/tmp# # same, but easier to read

Note: the m is required when specifying a different delimiter than /

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Special Characters

• ^,$ Anchors to the start, end of a line (or string)
• [] Matches one of the specified group of characters
• . Matches any single character (except newline)
• \ Treat next character as literal; also, start metasymbol

sequence
• | Separates alternatives
• * Matches 0 or more of the preceding RE element
• + Matches 1 or more of the preceding RE element
• ? Matches 0 or 1 of the preceding RE element; also, create a

minimal match for the preceding quantifier
• {} Used to specify quantifiers
• () Used to capture sub-expressions

8H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Metasymbols

• A metasymbol is a character sequence with a special meaning
– The sequence is not matched literally
– The first character is \

• Specifying a specific, perhaps non-printable, character:
\a, \n, \r, \t, \f, \e, \007, \x07, \cx

• Specifying one of a certain type of character:
\d,\D, \w,\W, \s,\S, \l, \u

• Specifying an assertion / anchor / boundary:
\b, \B, \A, \Z, \z, \G

• Start / End specified case of letters
\L, \U, \E

9H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Match a Single Character from a Group

• Use a period (.) to match any single character (except newline)
/c.t/ matches “cat”, “c t”, “c.t”, “boycott”

• Use metasymbols to match pre-defined lists of characters
– \d (digit) \s (white space) \w (word character)
– \D (non-digit) \S (non-white) \W (non-word)

• Use [,], - and ^ to specify a list of alternative characters
– order doesn’t matter (except for readability!)
– ranges are specified using –
[abcde], [ebdca], [a-e] # equivalent

– ^, when first, means “except for”; when not first, it means itself
[^0-9], [a-z\-0-9], [ABC^,_]

– Backslash and metasymbols may also be used: [\t]

10H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Character Matching Quiz

• Given the following list:
a, abcd, ab9Cd, aBC, Abc, Abc1, Abc12a, .0901, Abcf, abc, abc2 ,
bbbb, ABc, Abc3, bbabb, 99.99, 123

• Construct an RE, which matches words that:
1. contain "abc“
2. contain a number
3. contain digits higher than 2
4. has a b or B followed by a digit followed by a c
5. has a 1 , 2 followed by a lower case letter

11H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Anchors

• ^ anchors the pattern to the start of the string or a newline.
• $ anchors the pattern to the end of a string or a newline.
• \b anchors to a word boundary.
• \B anchors to a non-word boundary.
• \A anchors to the start of a string.
• \Z anchors to the end of a string or a newline at the end.
• \z anchors to the end of a string.
• \G anchors to where the previous m/RE/g finished.

/^root/ matches “root” and “rooter”, but not “chroot”
/root$/ matches “root” and “chroot”, but not “rooter”
/^root$/ matches only “root”

12H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Quantifiers { }
• Quantifiers specify how many times a pattern should occur:

– {1,6} at least once but no more than six
– {3,3} or {3} exactly 3 times
– {3,} a minimum of three times

• * match the preceding character 0 or more times
/do*r/ matches dr dor door dooor….

• + match the preceding character 1 or more times
/do+r/ matches dor door dooor….

• ? match the preceding character 0 or 1 times
/do?r/ matches dr dor

• Default is maximal match; follow with ? for a minimal match:
*?, +?, ?? {}? Makes the match minimal.

13H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Anchors and Quantifiers — Examples

• $string = “This is a string that has words, sentences, and
punctuation. It also has a newline embedded.
So there it is. \nStrings like being, bekeeeping and bookkeeping are
sometimes included.”

• Create a regular expression to locate:
1. A line starting with capital S up to a word boundary.
2. Repeat with a minimal match to return just the word.
3. Match words with strings of 2 or more letter e’s.
4. Match words that have only one letter e.

14H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Saving Matched Data

1. Bind in a list context, and use the /g modifier
$str = “This is too risky.”;

@arr = $str =~ /.is/g;
@arr gets (“his”, “ is”, “ris”)

2. Place parentheses around or within the pattern, and bind in a list
context
@arr = $str =~ /(.is)/; # @arr gets (“his”)

@arr = $str =~ /((.)is)/; # @arr gets (“his”, “h”);

3. In scalar or list context, use parentheses to capture, and
backreferences to refer to them
“Abraham Lincoln” =~ /((\w+) (\w+))/;
$1 = “Abraham Lincoln”
$2 = “Abraham”
$3 = “Lincoln”

15H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Modifying Strings with s///
• Bind with the s substitute command to change the topic string
$topic =~ s/pattern/replacement/

• The operation counts the number of substitutions made
$str = “This is risky.”;

$res = $str =~ s/.is/at/; # $res is 1

print “$str\n”; # prints “Tat is risky.”

• Use /g to replace globally
$str = “This is risky.”;

@res = $str =~ s/.is/at/g; # @res is (3)

print “$str\n”; # prints “Tatat atky.”

16H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

More on Capturing and Backreferences

• Two forms of backreferences are available:
– $1, $2, $3, ... persist until the next pattern match (m// or s//)

completes
– \1, \2, \3, ... persist only during the current binding

• In subsequent statements, use $N
• In substitutions and matching patterns, use \N
“jub-jub” =~ m/(\w+)-\1/; # matches
“dim-sum” =~ m/\(\w+)-\1/; # doesn’t match

• In substitution replacements, use either $N or \N:
$name = “Abraham Lincoln”;
$name =~ s/(\w+) (\w+)/\2, $1/;# mixed $N and \N
print “$name\n”; # prints “Lincoln, Abraham”
print “$1\n”; # prints “Abraham”

17H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Backreferences — Examples

1. Given an array — @pal1 = (noon, naan, pip, pie, nine);

Create a regular expression that will identify the four character
palindromes.

Create a regular expression that will identify the three character
palindromes.

2. Given an array — @pal2 = (“wing on wing”, “dollar for
dollar”,”at the ball”)

Create a regular expression that will identify the three word
palindromes.

3. Given a string — $string = “root console Mar 22 16:45”

Display this as: Mar 22 16:45 ---> root on device console

18H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Modifying Strings with tr/// or y///
• tr/// and y/// are identical commands, that transliterate (also called

translate) specified characters in the topic into others
$topic =~ tr/searchlist/replacementlist/

• No pattern is used, despite use of the binding operator
• The last character of replacementlist is replicated until replacementlist is

the same length as searchlist
• The binding operator returns a count of characters replaced
$topic = “cats catch critters”;
$res = $topic =~ y/cat/dog/; # $res is 10
print “$topic\n”; # prints dogs dogch driggers

• Different from global substitution:
$topic = “cats catch critters”;
$res = $topic =~ s/cat/dog/g; # $res is 2
print “$topic\n”; # prints dogs dogch critters

19H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Command Modifiers

• m and s patterns
i Ignore case.
x Ignore white space.
s Let the dot match a newline.
m Let anchors match a

newline.
o Compile pattern only once.

• m only
g (list) find all matches
g (scalar) save position
cg Do not reset search position

after a failed match.

• s only
g global replace
e evaluate right side

• tr and y
c Complement the search list.
d Delete specified characters.
s Squash duplicate

characters.

20H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Command Modifiers — Examples

1. $string1 = “On day one we go to London”;

2. $string1 =~ s/on/ON/;

3. $string1 =~ s/on/ON/g;

4. $string1 =~ s/o n #comment/ON/xg;

5. $string2 = “oooaa eeee”;

6. $string2 =~ tr/oa e//s;

7. $string3 = “dogs”;

8. $string3 =~ tr/dog/cat/;

9. $string3 =~ tr/cs//d;

Module Subroutines

H4311S B.00
Module 8

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Creating and Calling a Subroutine

sub mysub {
my ($arg1, $arg2, @other_args) = @_; # args
my ($tmp, $retval, @atmp); # “local” vars

… # subroutine implementation code
return $retval; # return with an answer

}

$result = mysub (a, b, c, d, e);
$result = mysub a, b, c, d, e;
$result = &mysub(a, b, c, d, e);

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Scope of Variables

• By default, variables in Perl have global scope
• The my and local list operators create variables of limited scope:

– Variables “hide” previous variables with the same name
– Variables may be initialized when created
– Variables “disappear” when the current block completes

• The my list operator creates variables with static scope
– Variables are accessible by code located within the current block

• The local list operator creates variables with dynamic scope
– Variables are also accessible by any code called from within the

current block

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Example: Comparing my and local
sub print_ab {

print “ $a, $b\n”; # prints 5, 7
}
sub scope_demo {

local $a = 5;
my $b = 5;
print “ $a, $b\n”; # prints 5, 5
print_ab;

}
$a = $b = 7;
scope_demo;
print “$a, $b\n”; # prints 7, 7

$a
$b

$a
$b

5
5

7
7

global

limited

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Subroutine Aliasing (Pass by Reference)

sub swap {
my $tmp = $_[0];
$_[0] = $_[1];
$_[1] = $tmp;

}
. . .

($a, $b) = (24, 7);
print “$a, $b\n”; # prints 24, 7
swap $a, $b;
print “$a, $b\n”; # prints 7, 24

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Prototypes

• Prototypes may be used to specify the number and type of arguments a
subroutine expects

• Prototypes are necessary when using forward declarations
• Use of prototypes is optional
• Example
sub mysub ($$@); # forward declaration

. . .
mysub 1, $i, @items; # use

. . .
sub mysub ($$@) { # subroutine defined

. . .
}

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Preserving Arrays in a Subroutine Call

sub mysub {
my ($aref1, $aref2, $v) = @_;
my @a = @$aref1;
my @b = @$aref2;

. . .
}

mysub \@arr1, \@arr2, $var;

Special Variables

H4311S B.00
Module 9

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Special Variables — Record Handling

$_ $ARG Input value

$. $INPUT_LINE_NUMBER $NR The line number in the current file handle.
Reset by close.

$/ $INPUT_RECORD_SEPARATOR $RS Input record separator

$\ %OUTPUT_RECORD_SEPARATOR $ORS Output record separator

$, $OUTPUT_FIELD_SEPARATOR $OFS Output field separator

$” $LIST_SEPARATOR Separator for the elements of a list

$; $SUBSCRIPT_SEPARATOR $SUBSEP Default separator for simulated multi-
dimensional arrays.

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Special Variables — Formats

$% $FORMAT_PAGE_NUMBER Current page number in the output channel

$= $FORMAT_LINES_PER_PAGE Number of lines per output page

$- $FORMAT_LINES_LEFT Number of lines left on the current page

$~ $FORMAT_NAME Name of current format

$^ $FORMAT_TOP_NAME Top of page format (could be the header)

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Special Variables — Regular Expressions

$n The positional subexpression found in last match

$& $MATCH String matched by last pattern match

$` $PREMATCH The string preceding the last pattern matched

$’ $POSTMATCH The string following the last pattern matched

$+ $LAST_PAREN_MATCH The last match as a subexpression.

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Special Variables — Process Information

$$ $PROCESS_ID $PID Process ID of the Perl program

$< $REAL_USER_ID $UID UID of the process

$> $EFFECTIVE_USER_ID $EUID Effective UID of the process

$(%REAL_GROUP_ID $GID GID of the process

$) $EFFECTIVE_GROUP_ID $EGID Effective GID of the process

$0 $PROGRAM_NAME File name of the Perl script

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

@ARGV Array of command line arguments passed to the script

@INC Array of directories to search for scripts referenced by do, require, and use

%INC Hash of file names included by do or require functions

%ENV Hash of the current environment

Special Variables — Arrays and Hashes

Advanced Data Structures

H4311S B.00
Module 10

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

What Is Possible

• records
– simple
– complex

• anonymous arrays and hashes
• multidimensional arrays

– arrays of arrays
– arrays of hashes
– hashes of hashes
– hashes of arrays

• linked lists

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

References

• Array and hash element values must be scalars
• References refer to a block of memory belonging to a scalar, array, or

hash (or code)
• All references are scalars; what they refer to need not be

$sref

$aref

0
1

warm

hot
cold

SCALAR(0x4002abcd)

ARRAY(0x4002ef02)

$temp

@temps

scalar values

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Creating References

• Use \ to create a reference to that variable’s memory:
$sref = \$var;

$aref = \@arr;

$href = \%hsh;

• The value of the variable indicates the data type, and memory location:
print $sref; # prints “SCALAR(0x4001abcd)”

print $aref; # prints “ARRAY(0x400a0010)”

print $href; # prints “HASH(0x400e00aa)”

• Anonymous references can be created to arrays and hashes:
$anon_array = [value1, value2, value3];

$anon_hash = {key1, value1, key2, value2};

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Using References

• SCALAR References
$var = “warm”; $sref = \$var;

print $sref; print $$sref;

• ARRAY References
@temps = (hot, cold); $aref = \@temps;

print $aref; print @$aref;

print $$aref[1]; print $aref->[1];

• HASH References
%book = (Title => “Lord of the Rings”,

Author => “JRR Tolkien”); $href \%book;

print $href; print %$href;

print $$href{Title}; print $href->{Title};

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Anonymous References

winter
spring
summer
fall

0
1
2
3

0x4001abc0@seasons
@seasons = (winter, spring, summer, fall);
$aref = \@seasons;

ARRAY(0x4008def0)$aref

winter
spring
summer
fall

0
1
2
3

0x4008def0
$aref = [winter, spring, summer, fall];

print “summer”:
print “$seasons[2]\n”;
print “$$aref[2]\n”;
print “$aref->[2]\n”;

print “summer”:
print “$$aref[2]\n”;
print “$aref->[2]\n”;

Reference to Named Variable:

Anonymous Reference:
No variable directly associated
with this block of memory:

Variable associated with
this block of memory:

ARRAY(0x4001abc0)$aref

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Records

• A record is a list of related items.
• The items have a name and a value.
• Simple records are usually hashes, occasionally arrays, with scalar data

values
• Complex records contain arrays and hashes
• A record is often implemented as an anonymous hash, using the hash

constructor — {…}.
• Records are often stored in arrays or hashes, i.e. references to the

records are stored.

8H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Simple Record

• Hash implementation
%book = (Title => “Lord of the Rings”,

Author => “JRR Tolkien”);

• Hash reference implementation
$book = { Title => “Lord of the Rings”,

Author => “JRR Tolkien” };

– Access with $$book{Title} or $book->{Title}
• Array implementation
@book = (“Lord of the Rings”, “JRR Tolkien”);

• Array reference implementation
$book = [“Lord of the Rings”, “JRR Tolkien”];

– Access with $$book[0] or $book->[0]

9H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Complex Records — Example

• Hash reference implementation
$boat = {

“Manu” => “Beneteau”,
“Model” => 311,
“Year” => 2000,
“Color” => “white”,
“Features” => [“furling jib”, “hot water”],
“Options” => { “main” => “in mast furling”,

“keel” => “bulb”}
};

• Access data using :
– $boat->{“Manu”}; $$boat{“Features”}[0];

– $$boat{“Model”}; $$boat{“Options”}{“main”};

10H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Example: Array of Records

• $library[1] = getbook(); #create a book

• print $library[1]{Title}; #print the title

sub getbook{

my ($title, $author);

print “Enter a title: “;

chomp ($title = <STDIN>);

print “Enter the author: “;

chomp ($author = <STDIN>);

#return a reference

return {Title=>$title, Author=>$author};

}

11H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Arrays of Arrays

• Multidimensional arrays are created as arrays of references.
@array = ([one, two, three],

[dog, cat, bird],

[golden, tiger, canary]);

• $array[0] is (one, two, three)
• $array[1] is (dog, cat, bird)
• $array[2] is (golden, tiger, canary)
• $array[1][2] is bird
• This could also be done using an anonymous array constructor instead

of a list.

12H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Arrays of Hashes

• @dogs = (

{ “dog” => “lab”,

“name” => “rover” ,

“size” => “big” },

{ “dog” => “spaniel”,

“name” => “bowser” ,

“size” => “medium” })

• $dogs[0]{“dog”} refers to lab.

13H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Hashes of Hashes

• %pets =(dogs => {mine => obedient,

yours => untrained},

cats => {mine => independent,

yours => undisciplined},

hamsters=> {mine = >perfect,

yours => unmotivated});

• $pets{cats}{mine} refers to independent.

14H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Hashes of Arrays

• %animals = (
dogs => [spaniel, poodle, lab],
cats => [persian, tabby],
birds => [canary, duck, goose, turkey]);

• $animals{dogs}[1] is poodle
• $animals{cats}[0] is persian

15H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Linked List

sub make_node{

print “Enter record: “;

chomp ($value = <STDIN>);

my $node = {“value” => $value, “next” => $next};

return $node;

}

. . .

if (defined $head){

$last_node = find_last_node($head); #see notes

$last_node{next} = make_node();

}

else{

$head = make_node();

}

The CGI Protocol

H4311S B.00
Module 11

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

The CGI Protocol Defined

• Common Gateway Interface is
– a protocol, not a programming language

• Can be implemented using any language
– UNIX shells, C, C++, Visual Basic, Java, but especially Perl

• Works cross-platform
– UNIX, Linux, NT

• A protocol is an accepted method of doing something
– a set of conventions governing the treatment and especially

the formatting of data

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

CGI’s Role

• CGI is the glue that holds the web together.
– Typically sandwiched between HTML forms

• A client completes a form to provide needed information to the program
running on the server.

• The CGI script is executed on the server in real time.
• Results are relayed back to the client.
• A cheap disclaimer….

– We will keep HTML as simple as possible.
• The module, cgi.pm will be deferred until the next unit in this course.

– This let’s us get a better look at the data flow.

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Creating a Form

print “Content-Type: text/html\n\n”;
print ‘
<FORM ACTION=“http://www.servername.com/cgi-
bin/task.cgi”

METHOD=POST>
Select task:
<SELECT NAME=“task”>
<OPTION VALUE=“check_daemons”>check daemons
<OPTION VALUE=“kill_old_users”>kill old users
</SELECT>
<INPUT TYPE=“submit” VALUE=“submit task”>
‘;

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Text Area and Radio Buttons on a Form

print “Content-Type: text/html\n\n”;
print ‘<FORM ACTION=“http://www.servername.com/cgi-
bin/task.cgi” METHOD=GET>
First Name: <INPUT TYPE="TEXT" NAME="firstname"
SIZE="25">

Last Name : <INPUT TYPE="TEXT" NAME="lastname"
SIZE="25">

<INPUT TYPE=“radio” NAME=“job_title” VALUE=“S”>Sysadmin
<INPUT TYPE=“radio” NAME=“job_title” VALUE=“N”>Netadmin
<INPUT TYPE=“radio” NAME=“job_title”
VALUE=“W”>Webmaster
<INPUT TYPE=“submit” VALUE=“submit”>
‘;

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Security

• Security is naturally a concern.
• The ISP or webmaster will determine if and where CGI scripts will be

allowed to run.
• Three levels:

– /opt/apache/cgi-bin (more secure)
– allow users to maintain their own directory for CGI scripts (less

secure)
– any directory, – the program name must end in .cgi (insecure)

• If user’s are allowed to maintain their own CGI scripts a configuration
change will be made to allow public_html
– this path is appended to ~user.

For example, the script called by
http://r208w100/~instr/prog.cgi

will be /home/instr/public_html/prog.cgi

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

The Issue of Pathnames

• Path names are not the same as URLs.
– Structurally they look similar.
– URLs may have path names embedded, which makes them

look like path names.
• UNIX path names (either absolute or relative) are literal.

– You know your starting place (you can see it).
• CGI pathnames are composites.

– They have “roots” defined by the webmaster in configuration
files.

– Check httpd.conf in /opt/apache/conf/httpd.conf
– Look for DocumentRoot, UserDir, ScriptAlias,
ServerRoot.

• Test to verify your discoveries.

8H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

CGI Programs as a Security Issue

• CGI programmers also have security responsibilities.
• CGI programs are tempting targets.
• Adopt a defensive mindset.

– remember, just because you’re paranoid doesn’t mean
someone isn’t really out to get you.

• Identify lines in your code that grant access to the server.
• Scrutinize them and test rigorously for

– valid (expected) data, or ranges
– origin (Is this data provided from where I expect?)
– Path names require extra vigilance. Don’t allow double dots

(..) as this could be an attempt to get to
../../etc/passwd or the like.

9H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Environmental Variables in Programs

• Variables live in %ENV hash
DOCUMENT_ROOT — Absolute path of the server’s root directory
GATEWAY_INTERFACE — The version of CGI the server’s running
HTTP_ACCEPT — A list of supported MIME types
HTTP_USER_AGENT — Name/version of browser
QUERY_STRING — String resulting from form data
REMOTE_ADDRESS — IP address of user’s system
REMOTE_HOST — Host name of user’s system
REQUEST_METHOD — METHOD of HTML form (GET or POST)
SCRIPT_NAME — Current program’s relative pathname
SERVER_ADMIN — Email address of server administrator
SERVER_NAME — Domain name or IP address of server
SERVER_PORT — Port the request was sent to (80 default)
SERVER_PROTOCOL — Name and version of request protocol
SERVER_SOFTWARE — Name and version of server software

10H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Debugging CGI Scripts

• Debugging Perl scripts is easy — use perl -w or perl -c or perl -d.
• Debugging CGI scripts is difficult.

– distractions that are side effects of the client-server architecture
(name lookups, connectivity issues, cross-platform issues, etc)

• Development environment for testing
– ideally under your control

• Some things to look for:
– The HTTP header line (print “Content-Type:

text/html\n\n”;)
– Try running the script with perl -c before browser invocation.
– To let you see what happens before the “500 Server Error” add:

#!/usr/bin/perl
$| = 1;
print “Content-Type: text/plain\n\n”;

Perl Modules

H4311S B.00
Module 12

2H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

What Is a Module?

A module is
• Perl script that another programmer wants to share
• located at CPAN web sites
• a combination of C source and header files, configuration files,

documentation, and scripts
• accessed as a zipped tar file
• available for web, networking, windows, X11, etc.
• can be improved on and resubmitted

3H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Building and Installing Modules

• Go to the web site and copy the file to the local server.
• DECOMPRESS

– Use the proper unzip utility to restore the tar file.
• UNPACK

– Untar the file.
• BUILD

– Make the unpacked module directory your current directory.
– Execute perl Makefile.PL
– Execute make
– Execute make test

• INSTALL
– Execute make install

4H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Sockets

• A socket can be a port at an IP address that receives data.
• A socket can be a port at which a local application receives data.
• A server “listens” at a port.
• A client is a program that sends information to or requests information

from a server at a specific port.
• There are two different types of messages, streams and datagrams.

5H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

Sockets — Example

SERVER
1. Use IO::Socket;

2. $sock=IO::Socket::INET ->new

3. (LocalPort => 12345,

4. Type => SOCK_STREAM,

5. Reuse => 1,

6. Listen = 5) or die “message”;

7. while ($client = $sock->accept){

8. $line = <$client>;

9. print $line;
}

10. close ($sock);

CLIENT
1. Use IO::Socket;

2. $sock=IO::Socket::INET ->new

3. (PeerAddr => ‘hostname’,

4. PeerPort => 12345,

5. ype => SOCK_STREAM,

6. Proto => ‘tcp’,) or die “message”;

7. while (more_to_send){

8. $line = data_to_send;

9. print $sock $line;
}

10. close ($sock);

6H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

CGI

• The CGI module is a standard module.
• The CGI module generates the web pages dynamically.
• <STDIN> and <STDOUT> now use the web browser.
• The screen is created by printing the HTML commands to the

browser.
• The CGI methods produce HTML code dynamically.

7H4311S B.00 © 2003 Hewlett-Packard Development Company, L.P.

CGI — Example

use CGI;

$page = new CGI;

print $page -> header(),

– $page -> start_html(),

– $page center($page -> h1(“Hello World”)),

– $page start_form(),

– $page -> textarea(

-name => ‘My Text Area’,

-rows => 10,

-columns => 40),

– $page -> end_form(),

– $page -> end_html();

