
Appendix A An introduction to
 Oberon-2

A.1 Overview of Oberon-2
A.2 Reserved words and syntax
A.3 Data handling
A.4 Simple data types
A.5 Sequence control
A.6 Conditional branching
A.7 Bounded iteration
A.8 Conditional iteration
A.9 Structured data types

A.1 Overview of Oberon-2
The programming language we use for the examples throughout the book is
Oberon-2. Oberon-2 was designed by Niklaus Wirth, well known as the
designer of many programming languages, in particular Pascal, one of
Oberon-2's predecessors. Oberon-2 is an object-oriented programming
language and has features which allow us to use the important software
engineering principles of abstraction, data hiding (which is central to data
abstraction and object-oriented design), problem decomposition and
modularisation. Also important for teaching, Oberon-2 has a very simple
syntax, and is a small language, even though the concepts it implements are
central to advanced software engineering.

We will work through the basic features of Oberon-2 in this appendix, using
simple programs to illustrate each new idea. The more complex features
which allow abstraction, data hiding and modularisation are dealt with in
detail in the main body of the book. The treatment of Oberon-2 here is
particularly suitable for those who have little or no experience of
programming. It is suggested that beginners read this appendix
immediately after Chapter 2.

We will assume that you have a computer, a Oberon-2 compiler and you
know how to type in, compile and run a program. The examples in the
book are implemented in POW! Oberon-2 for Windows, on a PC. Those of
you using other Oberon-2 compilers may find that the ProgMain procedure
is not required, and you can simply leave it out of the examples.

We start straight away with the problem of displaying a simple message on
the terminal screen – displaying messages or results in some way or another
is very important, since there is little point in writing a program to calculate
the answer to life, if there is no way of finding out the result!

MODULE First;
 (* Display an important message on the terminal. *)
IMPORT Out;

INTRODUCTION TO OBERON-2 24

PROCEDURE ProgMain*;
BEGIN
 Out.Ln;
 Out.String("Hello Oberon-2 World!");
 Out.Ln
END ProgMain;
END First.

This program (when compiled, linked and run) gives the following output:

Hello Oberon-2 World!

Now we know what the program does, let's look inside to see how the
internal workings display a message. Each line in the program has a
particular meaning and use, so we will examine each in turn.

The program commences with the line

MODULE First;

which states the name of our program or module – First. In Oberon-2 all
programs consist of one or more modules; this program is quite simple and
so has only one module.

Next we have a piece of text enclosed by (* and *). This is a comment:
comments are used to describe what a program does, or how it does it, to a
human reader. They are ignored by the compiler, and play no part in the
program itself – they are simply a means of conveying information to the
reader. The use of comments is obligatory to all rational programmers. Just
bear in mind that any reader of your program is unlikely to be psychic and
may not be able to work out what your program is meant to do solely from
the code. Additionally, as you write programs to solve more complex
problems, you will find that you need the comments as much as anyone
else, to remind you how your own code works. Oberon-2 allows comments
to be placed in just about any position inside a program, and to extend over
multiple lines. Some examples of commented code are given below.

Out.String(" the total is "); (* Print message. *)
(* Calculate the new value for total. *)
total := total + 1;

We are also allowed to nest comments inside each other. This can be useful
if we want to place comment brackets around a section of code to prevent it
being executed. For example,

number := 5;
(* By-pass reading in of number
Out.String("enter a number : ");
In.Int(number); (* Get number from user. *) *)
square := number * number;

In this program fragment, the Out.String and In.Int statements are
commented out and will not be executed when the program is run.

INTRODUCTION TO OBERON-2 25

Now we come to a feature of Oberon-2 which is very important for software
engineering – the import statement. The line

IMPORT Out;

is an example of an import statement. Oberon-2 is a language which is
designed to allow existing problem solutions to aid in the solving of new
problems. One way of doing this with library modules. Library modules can
be thought of as a lending library, from which a program can borrow ready-
made problem solutions (usually called procedures) by using import
statements. These solutions are really sets of Oberon-2 instructions, which
perform a specific task or tasks.

A typical Oberon-2 program will contain imports from several library
modules. The import statement in First is a request to the standard
library Out. The import statement must come near the top of the program
text, so that the required procedures are imported before any attempt is
made to use them. Every implementation of Oberon-2 provides a set of
standard library modules, which contain procedures for solving some very
common problems, such as getting data into a program, printing out results
and performing mathematical calculations. In addition, the programmer
can create his or her own libraries of procedures, which can be reused in
many different programs.

A single Oberon-2 program can be divided up into several, separate
modules which are eventually joined together to make a single executable
program. One module has a special role as the main module of the
program, and will be executed first. Since the main module itself can
contain several procedures, one needs to be designated the main procedure,
which will be executed first. The main or first procedure in a program is
always called ProgMain, and the line:

PROCEDURE ProgMain*;

indicates its start. The rest of the statements, up to the line

END ProgMain;

are the body of procedure ProgMain, and these are the statements which
will be run when the main module is executed. We will look at the meaning
of the * later.

We have now reached the line consisting only of the word BEGIN.
Although this seems a small and inconsequential statement it is in fact
rather important, since it marks the start of the main workings of the main
procedure ProgMain – the part which does the job of printing out the
message using the imported procedures from library Module Out. The
statements in the procedure body are executed sequentially when the
program is run.

The first statement inside the procedure body, Out.Ln, is a use of the
procedure, Ln, imported from library module Out. Ln sends a newline
command to the terminal screen, causing the cursor to move down from its
current position to the beginning of the next line. Notice that we must
preface each use of the procedure Ln by the name of the library module

INTRODUCTION TO OBERON-2 26

from which it comes. This is true for every procedure borrowed from every
library. You may consider this to be a waste of typing, but the reason for it
is to prevent the compiler being confused by name clashes. For example,
module Out contains an Ln command which sends a newline to the
terminal, but another module, Printer say, might also contain an Ln
command to send a newline to an attached printer, and both these libraries
might be imported into the same program. These two Ln procedures will
be very different from each other, so we prefix the library module name
onto the procedure name (separated by a full stop) so that the compiler
knows which one we are referring

The next statement uses procedure String (also imported from Out).
Out.String displays a string of characters on the terminal screen, where
the string is indicated by enclosing the characters to be displayed in either
double or single quotes. Further examples of valid Out.String
statements are:

Out.String(" Hello ");
Out.String("54000 black space ships.");
Out.String(" ");
Out.String('Answer "Yes" or "No" ');

The module First uses only Out.Ln and Out.String to produce the
output shown earlier.

Examining program First, you should see that all the statements except
BEGIN, the last Out.Ln, END First, and the comment, are terminated by
a semicolon. This is not done simply to increase the amount of typing
needed to write a program, but because semicolons are required by Oberon-
2 to separate one statement or language block from another. The
semicolons are therefore used as statement separators. It is difficult at first to
understand when a semicolon is needed, but the general rule is that a
semicolon is not needed before the first statement in a sequence or after the
last statement in a sequence. Thus the word BEGIN and the last Out.Ln do
not have semicolons after them. The rules of Oberon-2 do allow an extra
semicolon to be inserted after the last statement of a sequence; this has the
effect of inserting an extra, empty statement. Try leaving out each of the
semicolons in turn in the First module, and seeing when the compiler
complains.

Having statement separators allows us to place several statements on one
line, such as:

Out.Ln; Out.String("Hello");
Out.Ln; Out.String("Oberon-2 World");

However, this is not generally considered to be good programming style.
In fact, rather than putting several statements on one line, you should
consider leaving blanks lines at strategic positions in your programs, to
make them easier to read and understand.

You may still be wondering why the END First and the comment do not
have semicolons at the end of them. The comment has its own delimiters,
(* and *); once the compiler recognises the first (* it ignores everything

INTRODUCTION TO OBERON-2 27

until it sees the corresponding *). The END First statement is the last
statement of the module body, and also the last statement in the entire
module. The syntax of Oberon-2 dictates that it must have the name of the
module after it, and it must be terminated by a full stop. This full stop
indicates the end of the entire module.

Before we go any further into the details of Oberon-2 let's take a quick look
at how program First is laid out on the page. Note the way some lines are
indented, and some blank lines have been left in the text of the program.
The indentation is to highlight the structure of the program and make it
easier to read. If we write First without any indentation:

MODULE First;
(* Display an important message on the terminal. *)
IMPORT Out;
PROCEDURE ProgMain*;
BEGIN
Out.Ln;
Out.String("Hello Oberon-2 World!");
Out.Ln
END ProgMain;
END First.
it isn't so easy to understand. You should always indent your programs to
display their structure, and leave blank lines where necessary to divide up
the program into logical parts. Try to use the styles of indentation and
layout that we have used throughout this chapter, and which are given in
detail in Appendix E. Indentation styles tend to vary very little between
programmers (except in the size of the indent), and you will see very similar
styles in other books on Oberon-2 (and, indeed, most other programming
languages).

Exercises
1. Alter module First so that it displays your name on the screen.

2. Write a program which prints your name in a diamond pattern, as
shown : Claire

 Claire Claire

 Claire

3. Find all the syntax errors in the following program:

 MODULE Test;
 (* Print a test message
 PROCEDURE ProgMain*;
 Out.Ln
 Out.String("Testing, testing);
 END ProgMain;
 END Test

 Once you thing that you have found all the errors, type the program in

exactly as it is, and use the Oberon-2 compiler to check if your were

INTRODUCTION TO OBERON-2 28

right. Each time the compiler finds an error, correct it and recompile the
program, until you have removed them all.

4. Which of the following are valid strings:

 "abc"
 "12 23 "34" 78"
 " forty-two!
 "'hello', she said"
 "please enter a number
 'a dark, stormy night'

 You can check if you're right by substituting each one for the string in

the original First program.

5. What output does the following program produce?

 MODULE Message;
 (* demo output program
 PROCEDURE ProgMain*;
 BEGIN
 Out.String("Oberon-2 is a descendent of Pascal");
 END; That's all *)
 END Message.

6. Write a program that prints out your initials in large block letters. Use a
6 by 6 grid for each letter, and print out 6 strings. Each string should
consist of a row of asterisks interspersed with blanks.

A.2 Reserved words and syntax
We haven't yet explained why some of the words in First are in upper
case, or why they are arranged in a certain way in the program. All the
uppercase words are reserved words which have special meanings to Oberon-
2. For example,

Reserved word Description

MODULE Indicates the start of a module.

BEGIN Indicates the start of a procedure body.

END Indicates the end of a module or a procedure.

IMPORT Used to borrow procedures from a library module.

The reserved words of Oberon-2 are always written in uppercase. Unlike
English, Oberon-2 is case-sensitive, so words like

INTRODUCTION TO OBERON-2 29

 BEGIN, begin, Begin

are taken as different words in Oberon-2, although they all have the same
meaning in English. Appendix C gives all the reserved words of Oberon-2,
which you have to avoid using as names for items in your own programs.

Just as English has rules of syntax which tell us how to construct correct
sentences, so each programming language has its own syntax, which
governs how we construct statements and programs. If we don't use the
syntax correctly our statements and programs will not make any sense to
the compiler, and will not therefore be executable.

The syntax of Oberon-2 insists on a certain ordering of parts inside a
module or program. Thus, a program always commences with a MODULE
statement, this is followed by any IMPORTs required, then any declarations
of data items (which we will meet later in this appendix), the ProgMain
procedure if it is the main program module, any other procedures, and
finally the END statement.

Exercises
1. Which of the following are reserved words of Oberon-2?

 STOP end ELSIF CHAR CH OR
 case False TRUE

2. Do you think the following program is correct Oberon-2? If not, why

not? How would you alter it to make it correct? Type in your corrected
version and see if you are right.

 MODULE Test;
 PROCEDURE ProgMain*;
 IMPORT Out;
 BEGIN
 Out.String("This is a test program.")
 END
 END Test.

A.3 Data handling
Most programs need data, which is manipulated by the statements in the
module body to produce results of one form or another. This data comes in
many forms, from weather pictures transmitted as a sequence of digits by
an orbiting satellite, to a piece of text typed in by a user. Oberon-2 insists
that we declare any data before we use it. Declaring data means that we
state, usually at the top of a module or the main procedure, all the data
items we are going to use in the module or procedure body. Each data item
is declared by giving it a unique name by which it can be referred to in the
program and stating what sort of data item it is. For example, if it is an
array of real numbers or a character or an integer etc.

INTRODUCTION TO OBERON-2 30

A.3.1 Constants
Let's consider how we might write a program which calculates the number
of working hours in a typical week, and prints out the result. We will
assume that a working day runs from 9am to 5pm, so that the number of
working hours in a day is eight. Here is one way of using declared data in
such a program:

MODULE Hours;
(* Calculate and display the number of working hours in
a week. *)

IMPORT Out;
PROCEDURE ProgMain*;
CONST
 WorkingDays = 5; (* Working days in week. *)
 DailyWorkHours = 8; (* Working hours in day. *)
 WeeklyWorkHours = WorkingDays * DailyWorkHours;
 (* Number of working hours per week. *)

BEGIN
 Out.String("Number of working hours in a week is: ");
 Out.Int(WeeklyWorkHours, 3);
 Out.Ln
END ProgMain;
END Hours.

This program illustrates the simplest form of data in Oberon-2, constants.
Constants are data items which have a fixed value, for example, the integer
42 is a constant. WorkingHours declares three constants, using the
reserved word CONST, in the declaration section of ProgMain. Each data
item is given a name and this name is then used to refer to the data item
throughout ProgMain. The program uses procedures imported from Out
to print out the number of working hours in a week. Procedure Out.Int
displays an integer number on the terminal: it must be given the integer
number to display (WeeklyWorkHours in this example) and the minimum
field width (number of spaces) in which to print this number (three spaces
in this case).

We could have produced the same result as the above program without
using declared constants:

MODULE Hours2;
(* Calculate and display the number of working hours in
a week. *)
IMPORT Out;
PROCEDURE ProgMain*;
BEGIN
 Out.String("Number of working hours in a week is: ");
 Out.Int(40, 3);
 Out.Ln

INTRODUCTION TO OBERON-2 31

END ProgMain;
END Hours2.

Comparing this to the earlier version you should agree that the first
program is far easier to understand. Out.Int(40, 3) could mean
anything, but Out.Int(WeeklyWorkHours, 3) is much clearer. It
would be even better to have declared the field width as a constant too,
perhaps called FieldWidth, so that the Out.Int statement would look
like this:

Out.Int(WeeklyWorkHours, FieldWidth);

This is also a good reason for choosing meaningful names for modules,
procedures and data items.

The three constants used in WorkingHours are quite straightforward:
WorkingDays and DailyWorkHours are given the values 5 and 8
respectively; WeeklyWorkHours is a constant expression, since it contains
only constants, and will have the value 40. Here are some further examples
of valid Oberon-2 constants and constant expressions:

pi = 3.1416;
FirstLetter = "A";
Greeting = "Good Morning";
TwoPi = 2.0 * pi;

A.3.2 Variables
Declaring constants in our programs is useful, but doesn't allow us to use
data items whose values can change. For example, if we wish to write a
program to read in a character from the terminal keyboard, we need to
declare a data item in which to store the character. We need a data item
whose value is allowed to change because we cannot know in advance
which character the user of the program will type at the terminal, so we
cannot set up the data item to be a constant.

Data items whose values are allowed to change are called variables; they
are declared using the Oberon-2 reserved word VAR. Here is an example of
how we might use a variable in a program which reads a single character
from the terminal keyboard and prints it out again:

MODULE ReadChar;
(* Read character from the keyboard, and write out
again. *)
IMPORT In, Out;
VAR
 ch : CHAR; (* the variable to read the character
 into *)
PROCEDURE ProgMain*;
BEGIN
 Out.String("Type a character and press return.. ");
 In.Char(ch);

INTRODUCTION TO OBERON-2 32

 Out.Ln;
 Out.String("You typed the character .. ");
 Out.Char(ch);
 Out.Ln
END ProgMain;
END ReadChar.

This program contains a declaration of one variable data item called ch.
The value of ch becomes the character typed on the keyboard, which is read
in by the procedure Read (Read reads a single character; Out.Char
displays a single character). The CHAR after ch declares what class of data
objects ch belongs to – the class of a data object is more usually called its
type. Type CHAR means that ch is a character (rather than an integer or a
real number etc.) and can therefore take the value of any valid character,
such as "!" or "g". Most implementations of Oberon-2 use a set of characters
called the ASCII character set. They are defined in Appendix B. The ASCII
character set includes all the characters you would expect (upper and
lowercase letters, digits, punctuation), and a few unusual ones.

The other thing to note about this program is that we are importing from
another library, called In, which contains the procedures for reading data
items into our programs. In this instance we use the procedure for reading
in characters, In.Char.

The type of a data item is essential because it tells us two very important
things about the item:

• The range of values which the data item can assume. For example, if we
are using the ASCII character set there are 128 possible characters for a
data item of type CHAR.

• The operations which can be performed on or with the data item. For
example, addition and subtraction are valid operations for integer
numbers, but not for characters.

Oberon-2 provides us with some ready-made classes or types for our data
items which already have their range of values and operations defined.
These ready-made types are as follows:

Type name Meaning

CHAR Characters, for example, a, !, F.

INTEGER Integer numbers, for example, 0, 56, 23100, -4567

REAL Real numbers, for example, 2.13, 0.0, -32.009, 2.3E2.

INTRODUCTION TO OBERON-2 33

A.3.3 Identifiers
The names which we use when declaring constants and variables, such as
ch and WorkingDays, are called identifiers. We also use identifiers for the
names of procedures and modules, such as In, Out, First and
Out.String. Oberon-2 places certain restrictions on the characters we
can use in identifiers, and the way in which those characters are arranged.
The Oberon-2 system you are using may have to place restrictions on the
length of module names (since each module is stored as a file on the
computer, and the operating system may restrict the length of filenames).
Here are some valid identifiers:

ReadChar newWord STOP2
count20 dailyPayRate taxcode

The following identifiers are illegal for the reasons given:

BEGIN This is a Oberon-2 reserved word and reserved words cannot
 be used as identifiers.

day temp Spaces are not allowed in identifiers.

night-temp Illegal character "-".

20stop An identifier is not allowed to start with a digit.

The valid characters for identifiers are: alphabetic, "a"– "z" and "A"– "Z", and
numeric, "0"– "9" (although a numeric character cannot be the first character
in an identifier). Most Oberon-2 implementations do not place any
restrictions on the length of identifiers for procedure names and variables,
but you should be sensible about how long (or how short) you make them.

As Oberon-2 is a case-sensitive language it is customary for programmers to
take advantage of this by using both uppercase and lowercase characters in
identifiers, to make their programs more readable. Here are some of the
most commonly used ways of writing different kinds of identifiers:

• Module names, procedure and function names usually start with a
capital letter, and every new word within the identifier starts with a
capital letter. For example,

 ReadWord
 WriteTable

• Variables can either be entirely in lowercase or can start with a

lowercase letter and have each word within the identifier starting with a
capital letter. For example,

 newword
 dailyPayRate

 We use the latter method for variables in all our program examples.

• Constants are often entirely in uppercase, or can be defined in the same
way as library and procedure names. For example,

 MAXSIZE

INTRODUCTION TO OBERON-2 34

 FieldWidth

 We have chosen to use the latter method in our program examples.

See Appendix D for a more detailed description of the rules you should
following when deciding upon identifier names.

A.3.4 Expressions and assignments
So far we have only described how to declare constant values and
expressions, read a data value into a variable and write things out. This
doesn't allow us to do more complex operations or calculations with data.
Consider the task of creating a short program to read in a number from the
user and print out its square and its cube.

The algorithm for this problem is given below:

Ask user to enter a number
Read in the number
Square the number
Print out the square
Cube the number
Print out the cube

Here is the Oberon-2 solution:

MODULE SqrCube;
(* This program reads in an integer number typed by the
user, and prints out its square and cube. *)
IMPORT In, Out;
PROCEDURE ProgMain*;
CONST
 FieldWidth = 6; (* Width of number display. *)

VAR
 number, square, cube : INTEGER;
BEGIN
 (* Get the number from the user. *)
 Out.String("Enter a number: ");
 In.Int(number);
 Out.Ln;

 (* Calculate the square and cube. *)
 square := number * number;
 cube := square * number;

 (* Display the results. *)
 Out.String("The square is: ");
 Out.Int(square, FieldWidth);
 Out.Ln;

INTRODUCTION TO OBERON-2 35

 Out.String("The cube is: ");
 Out.Int(cube, FieldWidth);
 Out.Ln
END ProgMain;
END SqrCube.

The following two lines,

square := number * number;
cube := square * number;

are examples of assignment statements. The right hand sides of these
assignment statements are expressions. Note that the calculation of the
cube uses the previously calculated square, which saves a multiplication.
The := can be read as becomes or takes the value of, thus square takes the
value of number*number, and cube takes the value of square*number.
Other examples of valid assignments and expressions are:

circumference := 2.0 * pi * radius;
answer := 6 * 7;
total := 0;
total := total + 1;

The final one of these calculates total+1, and assigns this value back to
total itself, thus increasing the value of total by 1.

Exercises
1. Which of the following identifiers are invalid, and why?

 helloworld 11temp REAL
 PrintList last item sports-car
 USER END "help"
 !stop input a

A.4 Simple data types
We have already said that Oberon-2 provides several ready-made data
types, so we will now look at them in more detail.

A.4.1 Type INTEGER
Oberon-2's type INTEGER consists of integer numbers which may be
positive, negative or zero. It does not include numbers with decimal points.
The range of integers that can be used is restricted by the particular
computer on which you are running Oberon-2. A 16-bit computer will
typically provide a range of -32768 to +32767.

We can do all the expected operations on data items of type INTEGER:

+ addition

- subtraction and negation

INTRODUCTION TO OBERON-2 36

* multiplication

DIV integer division

MOD modulus/remainder

The operations +, - and * are straightforward, they act on integers to
produce integer results, but why do we have DIV instead of the more
obvious / operator? DIV is integer division and it always gives an integer
result. The statement

x := y DIV z;

assigns to x the truncated result of dividing y by z. Consider the result of
5/2, which is 2.5. This is a real number and cannot be assigned to a variable
of type INTEGER (we will meet type REAL later). However 5 DIV 2
produces an integer result, 2, which can be assigned to a variable of type
INTEGER. It should also be remembered that division by zero is undefined
on a computer (because computers have considerable trouble with the
concept of infinity) and any attempt to do this will cause a program to fail
as soon as the computer tries to execute the division.

The other strange operation for type INTEGER is called MOD, which is short
for modulus.

x := y MOD z;

This gives the (integer) remainder of y divided by z. Here are some
examples of DIV and MOD,

4 DIV 2 = 2
10 DIV 3 = 3
10 MOD 3 = 1
4 MOD 2 = 0
2 MOD 5 = 2

Let's consider a small problem where we might need to use integer data.
Let us take the problem of calculating a person's annual income tax bill.
First we must define the problem more clearly.

We want to calculate a tax payer's yearly tax bill, given his yearly income
and the number of children he has. Assume that one third of the income
(less any allowances) must be paid as tax. There is a personal allowance of
£6000, and an allowance of £1000 per child. An initial algorithm for solving
this problem will be:

Get annual income from user
Get number of children from user
Calculate total amount of allowances
Calculate total amount of taxable income
Calculate tax payable
Display tax payable

INTRODUCTION TO OBERON-2 37

Get annual income and Get number of children are quite straightforward,
consisting simply of displaying appropriate messages and reading in
numbers. The three calculations are also simple:

Calculate total amount of allowances:

total allowances = (£1000 * number of children) + £6000

 Calculate total amount of taxable income:

taxable income = income - total allowances

Calculate tax payable:

tax payable = 1/3 * taxable income

We can put all this together in a Oberon-2 program:

MODULE Taxes;
(* Program to calculate amount of tax payable per year
by a tax payer, given his yearly income and the number
of children he has. The program calculates the tax
payable to be one third of the annual income after any
allowances have been deducted. There is a personal
allowance of £6000 and an allowance of £1000 per child.
*)
IMPORT In, Out;
PROCEDURE ProgMain*;
CONST
 ChildAllowance = 1000; (* Allowance per child. *)
 PersonalAllowance = 6000;
 FieldWidth = 6; (* Number display width. *)
VAR
 income : INTEGER; (* Total yearly income. *)
 numberOfChildren : INTEGER;
 totalAllowances : INTEGER; (* Personal + children. *)
 taxableIncome : INTEGER; (* Income - allowances. *)
 taxPayable : INTEGER; (* Total tax payable. *)
BEGIN
 (* Get income and number of children from user. *)
 Out.String("Enter total yearly income (Eg 12500): ");
 In.Int(income);
 Out.Ln;
 Out.String("Enter number of children: ");
 In.Int(numberOfChildren);
 Out.Ln;

INTRODUCTION TO OBERON-2 38

 (* Calculate total allowances. *)
 totalAllowances := (numberOfChildren *
 ChildAllowance) + PersonalAllowance;
 (* Calculate taxable income. *)
 taxableIncome := income - totalAllowances;

 (* Calculate tax payable. *)
 taxPayable := taxableIncome DIV 3;
 (* Tell user tax payable. *);
 Out.Ln;
 Out.String("Tax payable is: ");
 Out.Int(taxPayable, FieldWidth)
END ProgMain;
END Taxes.

Note the use of DIV to obtain an integer result, and how the algorithm
description provides some of the comments for the final implementation in
Oberon-2.

Note the use of parentheses (round brackets) in the assignment,

totalAllowances := (numberOfChildren * ChildAllowance)

 + PersonalAllowance;

to show how the expression on the right-hand side should be evaluated.

You should always use parentheses to indicate the order in which parts of
an expression should be evaluated. The parts of an expression within the
innermost parentheses are always evaluated first. So, in the above example,
(numberOfChildren * ChildAllowance) is evaluated first, and the
result is added to PersonalAllowance, which is exactly what is required.

Without parentheses it can be difficult to determine the result of an
expression. For example, what is the result of the following expression?

2 * 3* 4 + 5

If we evaluate it from left to right we get

2 * 3 = 6
6 * 4 = 24
24 + 5 = 29

But if we add brackets as follows:

2 * ((3 * 4) + 5)

the result is as follows (remember that the innermost parentheses are
evaluated first):

3 * 4 = 12
12 + 5 = 17

INTRODUCTION TO OBERON-2 39

2 * 17 = 34

a completely different result!

Most programming languages, including Oberon-2 have a default order of
precedence for operators. Thus, if you leave the following expression
without parentheses:

2 * 3 + 4 * 5

Oberon-2 gives precedence to the multiplication operators, so we obtain the
result

6 + 20 = 26

However, since operator precedence varies from language to language you
should never write expressions which rely upon it — always use
parentheses to state the precedence of operators that you require in your
expression, in a clear, unambiguous fashion. That way you will ensure that
your expression are always evaluated in the order you want, rather than the
order the compiler wants!

A.4.2 Type REAL
Many applications require real numbers, and Oberon-2 provides type REAL
for such situations. Some examples of valid REAL numbers in Oberon-2 are:

 0.0032

 -5.6

 8.

 897.0

Note that there must always be at least one digit before the decimal point,
but there don't have to be any digits after the decimal point.

Oberon-2 also allows us to represent real numbers using exponential
notation. This can be very useful for representing very large or very small
numbers. Here are some examples of exponential notation:

 32.124E2 which is 3212.4

 1E10 which is 10000000000.0

 12.2E1 which is 122.0

 2.3E-6 which is 0.0000023

Most of the operations available for REAL are the same as those for
INTEGER except for the division operator which returns a real result:

+ addition

- subtraction and negation

INTRODUCTION TO OBERON-2 40

* multiplication

/ real division, this gives a REAL result.

Modules In and Out respectively provide procedures for reading in and
printing out real numbers, and there is also a module Float which contains
mathematical functions such as sin, cos etc.

We need to use real numbers in many mathematical problems, for example,
consider writing a program which will calculate the circumference and area
of a circle when given its radius. The algorithm for this problem is quite
simple:

Get the radius from the user
Calculate the circumference
Print out the result
Calculate the area
Print out the result

In Oberon-2:

MODULE Circles;
(* Given the radius of a circle, calculate its
circumference & area. *)

IMPORT In, Out;
PROCEDURE ProgMain*;
CONST
 FieldWidth = 6; (* Number display width. *)
 Pi = 3.1416;
VAR
 radius, circumference, area : REAL;

BEGIN
 (* Ask user to enter radius. *)
 Out.String("Enter radius of circle: ");
 In.Real(radius);
 Out.Ln;
 (* Calculate and display circumference. *)
 circumference := 2.0 * Pi * radius;
 Out.String("The circumference is: ");
 Out.Real(circumference, FieldWidth);
 Out.Ln;
 (* Calculate and display area. *)
 area := Pi * radius * radius;
 Out.String("The area is: ");
 Out.Real(area, FieldWidth);
END ProgMain;
END Circles.

INTRODUCTION TO OBERON-2 41

Precision
We have to be very careful when using numbers (particularly real numbers,
very large numbers, and very small numbers) on a computer, because their
precision depends on the number of significant digits to which the
computer can store them. When using a 32-bit word, seven significant
digits is normal. This means that two numbers which differ in only the
eighth significant digit will be indistinguishable to the computer. For
example,

 2000000.0 + 0.00000001

will give the result

 2000000.0

You should never expect calculations done on a computer to be exact – and
in complex calculations expect errors that are caused by rounding errors,
which are accumulating at every stage of the calculation. When accuracy is
needed you may have to increase the word length for the arithmetic and use
type LONGREAL In addition, always carefully consider the order in which
calculations are made. Errors can be cancelled out or compounded by
choosing the appropriate order of operations.

A.4.3 Type CHAR
Oberon-2's type CHAR allows our programs to use character data.
Characters are not stored as such inside the computer: instead each
character is assigned a number, called its ordinal value, which is used to
represent it inside the computer. Each character has a different ordinal
value. Most implementations of Oberon-2 use a standard set of ordinal
values called the ASCII set. Many different programming languages and
computers represent characters using the ASCII representation. Appendix
B contains the ASCII representations of the 128 characters of type CHAR,
giving their ordinal values in decimal, octal (base 8) and hexadecimal (base
16).

If you look at the ASCII table you will see that the different characters are
grouped together in sensible blocks, so that all the digits are together, as are
the lowercase alphabet and the uppercase alphabet. Because of this,
Oberon-2 allows us to use the relational operators to do direct comparisons
between the characters within each grouping, thus

 "A" < "B" < "C" < < "Z"

 "a" < "b" < "c" < < "z"

 "0" < "1" < "2" < < "9".

It is sometimes useful to know the ordinal value of a character, so Oberon-2
provides an operation, ORD, for doing this.

 ORD("x") = 120

 ORD("A") = 65

INTRODUCTION TO OBERON-2 42

The ordinal values range from 0 to 127, one for each of the 128 characters,
and ORD returns the values as INTEGER numbers. But remember, not all of
these characters are printable, especially those with the lower ordinal
values. We can also go in the opposite direction, starting with an ordinal
value and obtaining the corresponding character, using an operation called
CHR. For example,

CHR(120) = "x",
CHR(65) = "A".

CHR and ORD are mutually inverse, so

CHR(ORD(120)) = "x",
ORD(CHR("x")) = 120.

We can use ordinal values to write a program which reads a lowercase
letter, and writes it out again in uppercase. How can we do this? If we look
at the ASCII table, we can see that for each letter the ordinal value of the
lowercase letter is 32 higher than that of the corresponding uppercase letter.
For example, "A" has ordinal value 65, and "a" has ordinal value 92. Thus
the assignment,

upperCh := CHR(ORD(lowerCh) - 32);

where upperCh and lowerCh are of type CHAR, and lowerCh is a
lowercase letter, will assign the corresponding uppercase letter to
upperCh. Here is the algorithm:

Read a character
Convert to uppercase character
Display uppercase character

The complete program is very short:

MODULE ToUpper;
(* Read in a lower case letter and print it out again in
uppercase.*)

IMPORT In, Out;
PROCEDURE ProgMain*;
VAR
 lowerCh, upperCh : CHAR;
BEGIN
 (* Read in character. *)
 Out.String("Enter a lowercase letter: ");
 In.Char(lowerCh);
 Out.Ln;
 (* Find corresponding uppercase character. *)
 upperCh := CHR(ORD(lowerCh) - 32);
 (* Write out resulting character. *)
 Out.String("The character in uppercase is: ");
 Out.Char(upperCh);

INTRODUCTION TO OBERON-2 43

 Out.Ln
END ProgMain;
END ToUpper.

You will probably have noticed that this program can't cope with invalid
input. What happens if the user enters a space or a question mark instead
of a lowercase letter? (Hint: look at the ASCII table in Appendix B.)

A.4.4 Relationships between types and type compatibility
Oberon-2 has a number of built-in types for representing numbers. Along
with INTEGER and REAL, which we have already met, there are also
SHORTINT, LONGINT, and LONGREAL.

All variables must be declared to be of a particular type so that the compiler
knows how much to space to allocate them in the computer’s memory. The
amount of memory allocated to each variable of a particular type can differ
between implementations of Oberon-2. On my system an INTEGER is stored
in 2 bytes, a SHORTINT in 1 byte, and a LONGINT in 4 bytes. Thus a variable
of type SHORTINT cannot hold such large integers as a variable of type
INTEGER, which in turn cannot hold such large integers as a variable of
type LONGINT. Similarly, LONGREAL variables are stored in more memory
than REAL variable, and so a LONGREAL variable can store a real number to
more precision (more significant digits) than a REAL variable. For most of
what you do you are likely to need only INTEGER and REAL, but it is worth
understanding how to use the other types in your programs.

You can find out the ranges of the integer types (that is, the minimum and
maximum values that a variable of the type can have) on your particular
implementation of Oberon-2 by using the built-in MIN and MAX functions.
MIN and MAX expect to be given a type name, and will return the minimum
(or maximum) value of that type. You can find out the value by printing it
out, for example,

Out.Int(MIN(INTEGER), 1);

will print out (on my computer) -32768. (Note that the second parameter
given to Out.Int, the 1, is the fieldwidth in which the number will be
printed. If the value needs more than the fieldwidth given, it will be printed
anyway).

I have run MIN and MAX for each of the integer types on my version of
Oberon-2, and I get the following values:

 minimum value maximum value

INTEGER -32768 32767

SHORTINT -128 127

LONGINT -2147483648 2147483647

The built-in numeric types of Oberon-2 are related to each other in the
following way:

INTRODUCTION TO OBERON-2 44

SHORTINT is a subset of INTEGER

INTEGER is a subset of LONGINT

LONGINT is a subset of REAL

REAL is a subset of LONGREAL

This is sometimes called “type inclusion”, and affects the way in which we
can use variables of different numeric types together in an expression.

Since the “smaller” types are included within the “larger” types, a data item
belonging to a “smaller” type may be assigned to a variable of a “larger”
type at any time. For example, assume that we have the following variables:

VAR
 s : SHORTINT;
 i : INTEGER;
 l : LONGINT;

then the following assignments are acceptable:

 i := s;
 l := i;
 l := s;

However, if you need to assign a data item of a “larger” type to a variable
belonging to a “smaller” type, you must convert the “larger” type’s data
item into the “smaller” type using a special, built-in type conversion
function called SHORT.

Without using SHORT the following assignments will all give “incompatible
assignment” compilation errors:

 i := l;
 s := i;
 s := l;

We use the SHORT function to allow such assignments in the following way:

i := SHORT(l);

turns LONGINT data item l into an INTEGER, and assigns it to i, which is
itself an INTEGER.

s := SHORT(i);

turns INTEGER data item i into a SHORTINT, and assigns it to s, which is
itself a SHORTINT.

To convert a LONGINT to a SHORTINT we must use the SHORT function
twice, for example,

s := SHORT(SHORT(l));

INTRODUCTION TO OBERON-2 45

SHORT(l) returns the value of l as an INTEGER. Then we apply SHORT to
this INTEGER value, and obtain a SHORTINT value which can be assigned
to s.

In general, SHORT(x) returns the value of x as the next smaller type, which
is why it must be used twice to move from a LONGINT to a SHORTINT.

x : INTEGER SHORT(x) gives a SHORTINT

x : LONGINT SHORT(x) gives an INTEGER

x : LONGREAL SHORT(x) gives a REAL

You must be very careful when using SHORT. If you use it to try and assign
a value to a variable which is outside the minimum and maximum range of
values that the variable you are assigning to can hold, then your program
will crash with a runtime error. For example, given the following, where l
is a LONGINT variable, and i is an INTEGER variable,

 l := 32768;
 i := SHORT(l);

The assignment of 32768 to l is perfectly acceptable, since this value is well
within the range of values that a LONGINT variable can hold. However, the
second assignment will cause a runtime error because it is impossible for
the system to store the value 32768 in an INTEGER variable (the maximum
allowed INTEGER is 32767). So only use SHORT when you are sure that the
value you are trying to convert will fit into a variable of the type you are
converting it to.

If you need to convert from a LONGREAL value to a REAL value you can use
the SHORT function to do so. However, if the LONGREAL has more
significant digits than can be held in a REAL variable, then the LONGREAL
value will be truncated to fit.

If you need to mix integer and real numbers in your programs then you
must also follow certain rules. SHORTINT, INTEGER and LONGINT variables
can all be directly assigned to a REAL or LONGREAL variable. Thus, given
the following variable declarations:

VAR
 s : SHORTINT;
 i : INTEGER;
 l : LONGINT;
 r : REAL;

the following assignments are all allowed:

r := s;
r := i;
r := l;

However, we cannot directly assign a REAL (or LONGREAL) number to any
type of integer variable. This is quite obvious when you consider that
integers are always whole numbers, but reals are not. If you need to assign

INTRODUCTION TO OBERON-2 46

a REAL number to an integer variable you must use another built-in
function called ENTIER. The ENTIER function, when given a real value, will
truncate it, chopping off everything to the right of the decimal point, and
returning the remaining integer value. In fact ENTIER returns the truncated
real number as a LONGINT.

So, to assign the contents of the REAL variable r to the LONGINT variable l,
we must do the following:

l := ENTIER(r);

If, for example, r contained the value 2.031, then ENTIER(r) would give
the value 2. If r contained the value 2.95, then ENTIER(r) would also give
the value 2 — remember that ENTIER does not round the real number it is
given, it simply truncates it.

Mixed type arithmetic always requires great care. Do not be afraid to print
out intermediate values produced by your program, so that you can check
they are of the correct size.

Exercises
1. Given the following types declarations and assignments:

 VAR
 x, y, z : INTEGER;

 x := 15;
 y := 3;
 z := 2;
 what are the values of the following expressions?

 x DIV y x MOD z y DIV z y MOD x
 x MOD y x DIV z z DIV y Z MOD x

2. Write a program which asks the user for two integer numbers and
calculates first number MOD second number and first number DIV
second number, and prints out the results. Try to make your program
as user-friendly as possible, so that the user is told exactly what to enter,
and can understand what the outputs mean.

3. Write a program, using real numbers, to,
(i) Calculate 1.0 / 3.0
(ii) Multiply the calculation in (i) by 3.0, and subtract 1.0 from the

result.

(iii) Display the final result using Out.Real with a field width of 15.

 Is the result equal to 0? If not, why not? try the same calculation on a
hand-held calculator. Do the results differ? What does this suggest?

4. Write a program, ToLower, which asks the user to enter an uppercase
letter, and prints out its lowercase equivalent.

INTRODUCTION TO OBERON-2 47

A.5 Sequence control
Our Oberon-2 programs have so far only used direct sequencing, where
statements are executed in the order in which they appear. In the earlier
section on algorithm design we discussed some other methods of sequence
control:

Conditional branching if x then do y

 otherwise do z

Bounded iteration do y exactly n times

Unbounded iteration 1. while x do y

 2. do y until x.

Oberon-2 provides constructs which match these forms of sequence control.
We will look at how these constructs are implemented in Oberon-2 in the
following sections.

A.6 Conditional branching
This is done with the IF statement, which is of the form:

IF condition 1 THEN
 statement sequence 1
ELSE
 statement sequence 2
END;

Where statement sequence 1 is evaluated only if its associated Boolean
expression, condition 1, is TRUE, otherwise statement sequence 2 following
ELSE is executed.

You can have as many different branches as you need in an IF statement, so
you can have multiple-way choices in your programs. The more general
form of the IF statement is therefore:

IF condition 1 THEN
 statement sequence 1
ELSIF condition 2 THEN
 statement sequence 2
ELSIF condition 3 THEN
 statement sequence 3
- - - -
ELSIF condition n - 1 THEN
 statement sequence n - 1
ELSE
 statement sequence n

INTRODUCTION TO OBERON-2 48

END;

A statement sequence is only executed if its associated Boolean condition is
TRUE. Note that at most one statement sequence will be executed.

You do not have to have an ELSE at the end of an IF statement if you have
no need of it. In most cases the ELSE acts as a catch-all, performing some
set of actions if none of the other branches of the IF statement have been
executed. However, in some cases this is not required. It is therefore
perfectly acceptable to have an IF statement of the form:

IF temperature >= 85 THEN
 Out.String("Unusually hot.");
 Out.Ln;
END;

You will find several more examples of IF statements in the programs in the
remainder of this Appendix.

A.6.1 Boolean expressions and type BOOLEAN
The conditions we use in IF statements are called Boolean expressions – the
value of a Boolean expression is either true or false, there are no other
possibilities. The Boolean value of an expression is its truth value – whether
it is true or whether it is false. For example,

3 > 2 has Boolean value true

1 = 1 has Boolean value true

10 > 12 has Boolean value false

7 <= 3 has Boolean value false.

The operators used here are called relational operators, some of which we
met briefly in the section on type CHAR. Here is a full list:

Symbol Meaning

< less than

> greater than

<= less than or equal to

>= greater than or equal to

= equals

not equal to.

The result of a relational operator is always a Boolean value. Oberon-2
allows the use of Boolean values by providing type BOOLEAN which has

INTRODUCTION TO OBERON-2 49

two possible values, TRUE and FALSE. A variable of type BOOLEAN can
therefore only be TRUE or FALSE. There are also three operators for
BOOLEAN: & (Boolean AND), OR, and ~ (Boolean negation or NOT), which
can be used on BOOLEAN variables and expressions. We can define these
operations with a truth table:

x y ~ x x & y x OR y

TRUE TRUE FALSE TRUE TRUE

TRUE FALSE FALSE FALSE TRUE

FALSE TRUE TRUE FALSE TRUE

FALSE FALSE TRUE FALSE FALSE

Here are some examples of BOOLEAN expressions and operators in use:

In.Int(x);
In.Int(y);

IF x >= y THEN
 max := x;
ELSE
 max := y;
END;

noBugs := TRUE;
programWorks := FALSE;
IF programWorks & noBugs THEN
 programmerHappy := TRUE;
ELSE
 programmerHappy := FALSE;
END;

summer := (temperature >= 75) & sunny;
IF summer THEN
 Out.String("Time for a holiday!");
END;

In the above code fragments noBugs, programWorks, programmerHappy
and summer are all BOOLEAN variables.

A common mistake made when using BOOLEAN variables is to assume that
a statement such as:

Out.String(programmerHappy);

will print out either TRUE or FALSE, depending on the Boolean value of the
given variable, in this case programmerHappy. This does not work – TRUE

INTRODUCTION TO OBERON-2 50

and FALSE are simply names for some internal representation of type
BOOLEAN. Out.String expects to be given a string of characters between
quotes, such as "hello !", which it will write out on the terminal, or a
variable of type ARRAY OF CHAR, which we will meet later. The variable
programmerHappy is neither a string of characters between quote marks
nor of type ARRAY OF CHAR , so Out.String cannot print it. If you want
to print out the Boolean value of an expression or variable you must write
the code to do so yourself, for example:

IF programmerHappy THEN
 Out.String("TRUE");
ELSE
 Out.String("FALSE");
END;

You must remember that the string of characters represented by "TRUE" is
not the same as the Boolean value TRUE. Try experimenting to see what
error messages your compiler gives when you give Out.String something
unexpected to display.

A.6.2 An alternative to IF – the CASE statement
The CASE statement is another form of conditional branch, which is
generally thought to be more elegant than the IF statement in some
situations. Here is an example of a CASE statement:

CASE programmerHappy OF
 0 : Out.String("FALSE"); |
 1 : Out.String("TRUE")
END;

This has exactly the same effect as the previous IF statement. A CASE
statement can also have a trailing ELSE, which acts exactly like the ELSE of
an IF statement, being a catch-all for cases which don't meet any of the
given conditions:

CASE day OF
 1 : Out.String("Monday")|
 2 : Out.String("Tuesday")|
 3 : Out.String("Wednesday")|
 4 : Out.String("Thursday")|
 5 : Out.String("Friday")|
 6 : Out.String("Saturday");
 Out.Ln;
 Out.String("Don't get up today!")|
 7 : Out.String("Sunday");
 Out.Ln;
 Out.String("Mow the lawn.");

ELSE
 Out.String("Invalid day number.");

INTRODUCTION TO OBERON-2 51

 Out.Ln;
END;

The ELSE statement will be entered if day is not 1, 2, 3, 4, 5, 6, or 7. The
general form of a CASE statement is given below:

CASE expression OF
 case-label-1 : statement-sequence-1; |
 case-label-2 : statement-sequence-2; |
 case-label-3 : statement-sequence-3;
ELSE
 statement-sequence;
END;

The vertical bar separates each choice in the CASE, and is needed because
the statement sequence associated with each choice can be one statement or
many statements.

The case labels must be of type INTEGER or CHAR, or expressions which
evaluate to either of these two types, so the following CASE statement is
illegal:

CASE price OF
 <= 20 : canBuy := TRUE; |
 > 20 : canBuy := FALSE;
END;

If more than one label applies to a particular case, then the labels can be
separated by commas, that is

CASE character OF
 "Y", "y" : Out.String("Yes") |
 "N", "n" : Out.String("No");

ELSE
 Out.String("Invalid character");
END;

The main difference between the CASE and the IF concerns the ELSE
clause. In an IF statement, if the ELSE clause is missing and all the choices
in the IF fail, control simply falls through to the statement which comes
after the end of the IF statement. However, in a CASE statement without an
ELSE clause, if all the choices in the CASE fail when the code is run, the
program itself will fail immediately.

Exercises
1. Given the following Boolean variables:

 IsRaining := TRUE;
 Cold := FALSE;

INTRODUCTION TO OBERON-2 52

 what is the value of each of the following Boolean expressions?
(i) IsRaining & Cold

(ii) (~IsRaining) OR Cold

(iii) Cold & (6 < 4)

2. Write the following IF statements:
(a) Assign a value of TRUE to positive, if the value of n lies

between 1 and Max inclusive; otherwise assign a value of FALSE.

(b) Assign a value of TRUE to uppercase if ch is an uppercase letter;
otherwise assign a value of FALSE.

(c) Assign a value of TRUE to divisor if M is a divisor of N (ie. goes
into N an exact number of times); otherwise assign a value of
FALSE.

(d) If item is non-zero, then multiply product by item, and save
the result in product; otherwise skip the multiplication. In either
case print out the value of product.

3. Write a program that will read in a character value and a real number.
Depending on what is read, certain information will be printed. If the
character is an "S" and, for example, the number is 500.50 then the
program will print out:

 Send money! I need £500.50

 If the character is a "T" then the program will print out:

 The temperature last night was 500.50 degrees.

 If any other character is read in the program will print out:

 Sorry!

4. Write a program which reads an exam mark typed in by the user, in the
range 0 to 100 (inclusive) and prints out the equivalent grade as an
uppercase letter. Grades are assigned as follows:

 Exam score Grade

 Below 45 F

 45 - 49 D

 50 - 59 C

 60 - 69 B

 70 - 100 A

5. Write a program which uses a CASE statement to print out a message
indicating whether nextCh (of type CHAR) is an operator symbol (+ -
* / # < > & ~), an Oberon-2 punctuation symbol (; . () |), a
digit, a letter or something else. The character nextCh, which is to be
classified, should be entered by the user in response to an appropriate
message from the program.

6. Rewrite your program from 4. using an IF statement.

A.7 Bounded iteration

INTRODUCTION TO OBERON-2 53

This type of iteration takes the form do x exactly y times. It is particularly
useful when an algorithm needs to do a task or tasks a fixed number of
times. You will also find bounded iteration is useful when using arrays
(another means of storing data, which will be discussed later).

A.7.1 The FOR loop
We will use bounded iteration to display a message on the terminal a fixed
number of times. The Oberon-2 form of bounded iteration is called the FOR
loop. FOR loops often appear at first glance to be rather confusing
constructs. Here is a FOR loop which will display the message "hello" five
times:

FOR count := 1 TO 5 DO
 Out.String("hello");
 Out.Ln;
END;

The confusing part is at the top of the loop, where we have

FOR count := 1 TO 5 DO

You may well be wondering what count is for. Count will have been
declared as a variable of type INTEGER , and it is called the control variable
of the FOR loop. Each time round the loop count will be automatically
incremented by 1.

The body of the loop is executed for each value of count, from 1 up to and
including 5. Note that the control variable doesn't have to be called count,
it can be called anything you like, so long as it is declared as a variable of
type INTEGER.

The general form of a FOR loop is slightly more complicated:

FOR controlVariable := expression1 TO expression2
 BY constantExpression DO
 statement sequence
END;

Expression1 is the starting value for controlVariable, and
expression2 is the limit. ConstantExpression is the increment or
decrement, to be applied to controlVariable each time round the loop;
if constantExpression is positive it is an increment, if negative it is a
decrement. If BY constantExpression is missing then an increment of
1 is assumed. Note that the control variable must be INTEGER, not REAL.
The control variable is incremented (or decremented) automatically each
time round the loop until its value passes that of the limit (expression-2).

The control variable can be referred to inside the FOR loop, for example:

 FOR c := 2 TO 10 BY 2 DO
 Out.Int(c,2);
 Out.Ln
END;

INTRODUCTION TO OBERON-2 54

will print out:

 2 4 6 8 10

But you should never assign a value to the control variable inside the loop.
In particular remember that you must not increment or decrement the
control variable by an explicit statement within the loop. The incrementing
or decrementing is done automatically when the FOR loop is run.

Exercises
1. Write a program to find the largest, smallest and average value in a

collection of n integer numbers, where the value of n will be the first
item read in.

A.8 Conditional iteration
Oberon-2 provides constructs which mirror both while x do y and do y until
x. These are called WHILE loops and REPEAT loops respectively.

A.8.1 The WHILE loop
Consider the problem of reading in a string of characters one at a time, until
some end of text character is read. We have already seen an algorithm for
this problem:

Read a character
While character isn't "." do
 Process character
 Read next character
Endwhile

We can now write this in Oberon-2, using a WHILE loop:

In.Char(ch);
WHILE ch # "." DO
 (* Here we would process ch in some way. *)
 In.Char(ch);
END;

The END statement corresponds to the Endwhile statement in our algorithm.
The Oberon-2 WHILE tests the condition at the top of the loop, before the
statements in the body of the loop are executed. In our example, if the first
character typed is "." the test ch # "." will fail on the first attempt and the
body of the loop will never be executed, causing control to move to the
statement following the end of the loop. Here is a complete program which
counts the occurrences of a given letter in a string of characters typed in at
the terminal. The user must enter both the letter to be counted and the text.
The algorithm will be as follows:

Read letter to count
Set count to zero

INTRODUCTION TO OBERON-2 55

Read text, adding one to count each time letter occurs
Display count

This can be refined further to produce a more detailed algorithm:

Ask user what letter to count
Ask user to enter text, terminated by a full stop
Set letterCount to zero
Read a character
While character isn't "." do
 If character = letter then
 Add one to letterCount
 Endif
 Read next character
Endwhile
Display letterCount

Writing this in Oberon-2 we obtain the following program:

MODULE Letters;
(* Count the occurrences of a given letter (entered by
the user) in a string of characters, which is typed in
at the terminal by the user. The character string must
be terminated by a full stop. A letter must be an
alphabetic character "a".."z" or "A".."Z". *)

IMPORT In, Out;
PROCEDURE ProgMain*;
CONST
 FullStop = "."; (* Terminates input string. *)
 FieldWidth = 3; (* Number display width. *)
VAR
 letter : CHAR; (* Letter to be counted. *)
 ch : CHAR; (* Character read in. *)
 letterCount : INTEGER; (* Occurrences of letter. *)
BEGIN
 (* Ask user to enter letter to be counted. *)
 Out.Ln;
 Out.String("Enter letter to be counted ('a'..'z' or
'A'..'Z'): ");
 In.Char(letter);
 Out.Char(letter);
 Out.Ln;
 IF ((letter >= "a") & (letter <= "z")) OR
 ((letter >= "A") & (letter <= "Z")) THEN
 (* We have a valid letter. *)
 letterCount := 0;
 (* Ask user to enter text. *)

INTRODUCTION TO OBERON-2 56

 Out.String("Enter text, ending with a full stop.");
 Out.Ln;

 (* Read in characters and count occurrences. *)
 In.Char(ch);
 WHILE ch # FullStop DO
 IF ch = letter THEN
 (* Add one to letterCount. *)
 letterCount := letterCount + 1;
 END;
 (* Read next character. *)
 In.Char(ch);
 END;
 (* Display total occurrences of letter. *)
 Out.Ln;
 Out.String("The number of occurrences is: ");
 Out.Int(letterCount, FieldWidth);
 Out.Ln;

 ELSE (* Not a valid character. *)
 (* Display an error message and finish. *)
 Out.Ln;
 Out.String("Not a valid character.");
 Out.Ln;
 END; (* IF *)
END ProgMain;
END Letters.

Note that we have added some error checking to make sure that the user
only enters a valid character to be counted. This is done by an IF statement
which controls entry to the main body of the program, so that the text is
only requested and read if the user has given a valid character to count, that
is, a letter. If the character given is invalid the ELSE clause will be entered,
and an error message is printed out.

A.8.2 The REPEAT loop
This type of loop is most useful when some task has to be performed at least
once. If we return to one of our earlier programs, SqrCube, which read in
an integer and printed out its square and its cube, we can modify this
program so that it can be used for more than one number in each execution.
To do this we will alter the algorithm first. The initial algorithm for the
program was:

Ask user to enter a number
Read in the number
Square the number
Print out the square
Cube the number

INTRODUCTION TO OBERON-2 57

Print out the cube

Now we want an iterative construct which can go around this whole
algorithm, so that the user is asked repeatedly to enter a number. This also
suggests that we need to consider how the user is to stop the program, so
that it doesn't keep asking for numbers until the next power cut. One way
would be to ask the user each time round the iteration if another number is
to be entered, and stop the iteration if the response is no. If we use a do-
loop for the iteration we need a condition to test at the end of the loop.

Do the following
 Ask user to enter a number
 Read in the number
 Square the number
 Print out the square
 Cube the number
 Print out the cube
 Ask if user wants to enter another number
 Read in the response typed
Until the response is negative

Remember, the body of a do-loop is executed at least once, because the test
for stopping the iteration is at the bottom of the loop. This is the opposite
situation to a while loop, where the test is at the top, so that the body of the
loop need not be executed at all.

This algorithm can now be written in Oberon-2, using the equivalent of do y
until x – the REPEAT loop, which is of the form:

REPEAT
 (* Statements go here. *)
UNTIL condition;

where condition is a Boolean variable or expression.

Here is the program, incorporating such a loop:

MODULE SqrCube2;
(* Reads positive integers from the terminal and
displays their squares
and cubes. *)
IMPORT In, Out;
PROCEDURE ProgMain*;
 VAR
 number, square, cube : INTEGER;
 response : CHAR;
BEGIN
 number := 0;

 REPEAT
 (* Get the number from the user. *)

INTRODUCTION TO OBERON-2 58

 Out.String("Enter a number: ");
 In.Int(number);

 (* Calculate the square and cube. *)
 square := number * number;
 cube := square * number;
 (* Display the results. *)
 Out.String("The square is: ");
 Out.Int(square, FieldWidth);
 Out.Ln;
 Out.String("The cube is: ");
 Out.Int(cube, FieldWidth);
 Out.Ln;

 (* Find out if user wants to stop. *)
 Out.String("Enter another number? (y/n): ");
 In.Char(response);
 UNTIL (response = "n") OR (response = "N");

END ProgMain;
END SqrCube2.

If you examine the code closely you will see that the iteration (and the
program) will finish when the user types "n", and continue if any other
character (not just a "y") is typed. The answer "n" causes Boolean variable
stop to be set to TRUE, so the condition on the UNTIL is now true, stopping
the iteration and exiting the REPEAT loop.

A.8.3 The LOOP
There is yet another loop in Oberon-2 which can provide unbounded
iteration – this is called the LOOP statement. A LOOP statement looks like
this:

LOOP
 statement-sequence
 IF condition THEN
 EXIT;
 END;
 statement-sequence
END;

When the condition to the IF statement is true, the EXIT statement will be
executed, which causes control to leave the LOOP and move to the next
statement after the end of the LOOP. The LOOP construct is useful in
situations where you want to exit from the middle of a loop rather than
from the top or the bottom. Alternatively, it can be used to produce an
infinite loop by leaving out the EXIT statement. Of course, one usually
wants to avoid programs with infinite loops which never terminate, but
some programming situations, such as multi-programming, do need non-

INTRODUCTION TO OBERON-2 59

exiting loops. However, in most cases loops are better written using WHILE
or REPEAT loops. Here is an example where use of LOOP is relatively valid:

LOOP
 Out.String("Enter number to square: ");
 In.Int(number);
 Out.Ln;

 IF number = 0 THEN
 EXIT;
 END;

 (* Process number. *)
 number := number * number;
 Out.String("The square is: ");
 Out.Int(number, 6);
 Out.Ln;
END;

However, in general you should avoid using the LOOP construct.

Exercises
1. Write a program, using a REPEAT loop, that will find the product (ie. a *

b * c * d *) of a collection of integers typed in by the user. The user
should be prompted to enter each integer on a separate line, terminating
the data entry by typing the value 0. Echo the user's inputs on the
screen.

2. Rewrite the above program using a WHILE loop instead of a REPEAT
loop.

3. Write a program that converts Celsius temperatures to Fahrenheit, and
Fahrenheit temperatures to Celsius. The conversion from Celsius to
Fahrenheit is achieved by the following equation:

 F = 1.8C + 32

 where C is the given temperature in Celsius, and F is the temperature in
Fahrenheit. Of course, the equation can easily be rearranged to convert
from Fahrenheit to Celsius.

 The program should request an integer temperature from the user, and
then ask:

 (C) Convert Celsius to Fahrenheit

 (F) Convert Fahrenheit to Celsius

 (Q) Quit?

 The program reads the user's response and converts appropriately,
giving the result with a suitable message. The program should continue
accepting temperatures and converting them until the user responds
with a "Q". The program should accept uppercase or lowercase letters,
and should use a WHILE loop or REPEAT loop as you prefer.

INTRODUCTION TO OBERON-2 60

A.9 Structured data types
We have so far shown how to declare single data items of a particular type,
but many situations need to use groups of data items. For example, if we
want to read in a word typed at the terminal, we would really like to be able
to store the characters as one data item, rather than putting each character
into a separate variable. If we have to store the characters of a word in
separate variables the problems are two-fold. Firstly we need as many
variables as there are characters in the word, so this might mean anything
from one to twenty variables (or more), and secondly we must declare all
twenty variables, even though most of the time we will only be using five or
ten, because we don't know beforehand how large each word will be.

Similarly, if we need to read in a list of daytime temperatures and perform
several operations on this list, we would like to have a way of storing these
temperatures all together, so that we can refer to them collectively by one
name, and still access each one individually when needed.

A.9.1 The ARRAY type
An array is a list of data items:

 7.0, 2.5, 12.31, 6.3, 0.05

All the data items in an array must have the same type, so they must be all
REAL or all CHAR etc. We need to be able to refer to each item in an array
individually – this is done by indexing the array with a suitable range of
numbers:

 0 1 2 3 4 Index

 7.0 2.5 1.31 6.3 0.05 Array

The data item at index 0 is 7.0, the data item at index 3 is 6.3, and so on.

Here is a declaration of an array variable in Oberon-2, which could be used
for storing a list of temperatures:

VAR
 temperatures : ARRAY 20 OF REAL;

This array holds 20 real numbers, which will be indexed 0, 1, 2,.. 19. So the
first number is at index 0, the second is at index 1 and so on. This is an
example of a one-dimensional array.

The general form of a one-dimensional array variable declaration is:

name : ARRAY size OF DataType;

DataType is the type of items which can be stored in the array. An array
can only store items of one type, the type defined in its declaration.

INTRODUCTION TO OBERON-2 61

Two-dimensional and multi-dimensional arrays are declared in a similar
way:

name : ARRAY size1, size2, size3 OF Datatype;

where size1, size2, etc are the sizes of the successive dimensions of a N
dimensional array (note, the maximum value of N may be dependent on the
particular Oberon-2 system you are using). For example:

board : ARRAY 8, 8 OF BlackOrWhite;

gives an 8 x 8 two dimensional array of black or white values which could
be used to represent a chess board.

We will use the declaration of temperatures for the following examples.
How can we assign a value to an array location? This can be done with an
assignment statement:

temperatures[0] := 65.3;
temperatures[1] := 62.7;

and so on. The square brackets indicate the index (that is, the location) at
which the value should be stored. We can also use a variable (of the correct
type) to refer to a location in the array:

VAR
 position : INTEGER;

BEGIN
 position := 5;
 temperatures[position] := 75.0;

END;

This assigns the value 75.0 to location 5 in the array (so it will be the sixth
temperature in the array). Note that if an index is given that is not in the
defined range (0 through to 19 inclusive, in this case), the program will fail
when it is run, as soon as an attempt is made to refer to an invalid array
location.

We can now use an array in a program which reads in up to twenty
temperatures and prints out their average. We need to consider how the
user can indicate that he has entered all the temperatures he wants
averaged – we could ask the user to enter the number of temperatures he is
going to give, before he starts typing them in, which would allow us to use
a FOR loop.

Ask user how many temperatures he wants to enter
Store in number
Set index to 1
(* Read in the temperatures. *)
Do the following number times
 Read in a temperature

INTRODUCTION TO OBERON-2 62

 Store in array at position index
 Add 1 to index
Enddo

Set total to 0
Set index to 1

(* Total the temperatures. *)
Do the following number times
 Get value stored in array at position index and add
 to total
 Add 1 to index
Enddo
Calculate average
Print out average

In Oberon-2 we get the following program:

MODULE Average;
(* Find the average of up to twenty temperatures. *)
IMPORT In, Out;
PROCEDURE ProgMain*;
CONST
 FieldWidth = 4; (* Number display width. *)
VAR
 c : Integer; (* loop control variable. *)
 number : INTEGER; (* Number of temperatures. *)
 temp : REAL; (* Temperature read in. *)
 total : REAL; (* Total of all temperatures. *)
 average : REAL; (* Average temperature. *)
 temperatures : ARRAY 20 OF REAL; (* Temp. list *)

BEGIN
 (* Ask user how many temperatures he will enter. *)
 Out.String("How many temps to average (up to 20)? ");
 In.Int(number);
 (* Check that it's a valid number of temperatures. *)
 IF (number <= 20) & (number > 0)THEN
 (* Read in the temperatures. *)
 Out.String("Enter temperatures, one per line:");
 Out.Ln;
 FOR c := 0 TO number-1 DO
 In.Real(temp);
 Out.Ln; (* Space out input for user. *)
 temperatures[c] := temp;
 END;
 (* Average temperatures. *)

INTRODUCTION TO OBERON-2 63

 Out.String("Calculating average....");
 Out.Ln;
 total := 0.0;
 FOR c := 0 TO number-1 DO
 total := total + temperatures[c];
 END;
 average := total / number;
 (* Print out the result. *)
 Out.String("The average temperature is: ");
 Out.Real(average, FieldWidth);
 ELSE
 (* User entered invalid number of temperatures. *)
 Out.String("Invalid number of temperatures.");
 Out.Ln;
 END;
 END ProgMain;
 END Average.

There are several points to note in this program. Firstly, in transferring
from the algorithm to Oberon-2 we find that a separate variable for the
index is not needed – we can use the loop control variable c to index the
array of temperatures.

Secondly, note how we have used a FOR loop to step through the array, one
location at a time. Working through arrays is a common use of FOR loops,
and is one of the reasons why FOR loops have explicit control variables (so
that the control variable can be used for the array index).

A.9.2 Character arrays
Arrays of characters are very widely used, so we will take a more detailed
look at them. We will consider the problem of reading in a word and
storing it as a single data item – this is an obvious case for using an array of
characters. A possible definition for a word is:

VAR
 word : ARRAY 25 OF CHAR;

which allows us words of up to 25 characters.

Before we go any further, it is worth mentioning that Oberon-2 regards
strings as arrays of characters, where the lower bound of the array index is
zero, and the upper bound is n-1 for a string of n characters. The following
code fragments will produce exactly the same output:

Out.String("Hello");

CONST
 Greeting = "Hello";

INTRODUCTION TO OBERON-2 64

BEGIN
 Out.String(Greeting);

VAR
 greeting : ARRAY 5 OF CHAR;
BEGIN
 greeting := "Hello";
 Out.String(greeting);

The length of a string of characters is the same as or less than the size of the
array. Since a string may be shorter than the array in which it is stored we
need some means of indicating where in the array the string ends. To do
this we store a special character in the unused part of the array. This
character is called null, and its special attribute is that it is not printable or
displayable in any way whatsoever. Since we can't display the null
character we can only refer to it by its ordinal value in the ASCII table, 0.
Thus CHR(0) is the null character.

Let's look at what happens to array variable greeting when different length
strings are assigned to it.

greeting := "Hello";

H e l l o

greeting := "Hi"

H i CHR(0) CHR(0) CHR(0)

greeting := "Salutations";

S a l u t

The Pow! compiler will complain if you try to assign a string constant to a
character array which is too small to hold it.

greeting := "";

CHR(0) CHR(0) CHR(0) CHR(0) CHR(0)

This last example is called a null string, which is indicated by the two quote
marks without any gap between them. It is a completely empty string, and
will have no effect on the output when displayed using Out.String.

A.9.3 Array type declarations

INTRODUCTION TO OBERON-2 65

Instead of just using arrays directly in variable declarations (as shown in the
previous examples), we can declare new array types, in the TYPE
declaration section of our programs. The following type declaration,
declares a new, user-defined type, TemperatureList, which is an array
type:

TYPE
 TemperatureList = ARRAY 31 OF REAL;

Now we can declare variables of this new type,

VAR
 dayTemps, nightTemps : TemperatureList;

This type declaration can help to clarify a program if a meaningful name is
chosen for the type. It is also required if you are going to need multiple
variables of your array type, as shown above.

Let's try and design a program which draws a simple bar chart of some
given input data. The user must first state how many bars there are to be in
the chart, and then enter the size of each bar. The program should then
display the bar chart sideways (because this makes it much easier than
displaying a vertical bar chart) with the size printed at the end of each bar.
So, a typical input might look like this:

5 12 23 9 3 10

and the corresponding output should look like this:

*****5
************12
***********************23
*********9
***3
**********10

We need to use several of the concepts we have met in this chapter, such as
arrays, FOR loops and IF statements. First we need to design the algorithm:

Get number of bars from user - store in barCount
Do the following barCount times
 Read a bar size.
 Store in bar chart array
Enddo

(* Print out bar chart. *)
Do the following barCount times
 Get a bar size from bar chart array
 Do the following bar size times
 Print a "*"
 Enddo
 Print bar size

INTRODUCTION TO OBERON-2 66

 Move to next line
Enddo

Now here it is in Oberon-2:

MODULE Chart;
(* Displays a horizontal bar chart, given the number of
bars to display and the size of each bar (as positive
integers). *)
IMPORT In, Out;
PROCEDURE ProgMain*;
CONST
 FieldWidth = 3; (* Number of spaces to print out a
number. *)
 MaxChart = 24; (* Max number of bars allowed in
chart. *)
TYPE
 BarChart = ARRAY 20 OF INTEGER;
VAR
 barCount : INTEGER; (* Number of bars. *)
 barSize : INTEGER; (* Size of current bar. *)
 chart : BarChart; (* The bar chart array. *)
 c, d : INTEGER; (* Loop indexes. *)

BEGIN
 (* Get number of bars from user. *)
 Out.String("Enter number of bars (up to 20): ");
 In.Int(barCount);
 Out.Ln;

 (* In. in bar sizes. *)
 FOR c := 0 TO barCount-1 DO
 Out.String("Enter bar size: ");
 In.Int(barSize);
 Out.Ln;
 chart[c] := barSize;
 END;

 (* Print out bar chart. *)
 FOR c := 0 TO barCount-1 DO
 barSize := chart[c];
 FOR d := 1 TO barSize DO
 Out.Char("*")
 END;
 Out.Int(barSize, FieldWidth);
 Out.Ln;
 END;

INTRODUCTION TO OBERON-2 67

END ProgMain;
END Chart.

To print out the bar chart we have used one FOR loop to print each bar in
turn that is

FOR c := 0 TO barCount-1 DO

END;

We have used another FOR loop to print the asterisks for each individual
bar that is

FOR d := 0 TO barSize-1 DO
 Out.Char("*");
END;

Using one loop or one sequence control structure within another is often
called nesting. Since all control structures just contain statement sequences
we can have a WHILE loop inside an IF statement or a REPEAT loop inside a
CASE statement. If you look back at some of the programs demonstrating
sequence control you will see some more examples of nesting.

A.9.4 Records
Arrays provide us with a means of grouping data items of the same type.
However, consider the situation where we want to store all the details about
each employee in a small computer company. The information to be stored
for each employee consists of:

Name – String

Position – String

Salary – Real number

Payroll reference – Positive integer.

We can declare these data items as separate variables:

VAR
 name : ARRAY 20 OF CHAR;
 position : ARRAY 20 OF CHAR;
 salary : REAL;
 payrollRef : INTEGER;

but it would be preferable to place them all together under one name, as we
did with the array of temperatures. Unfortunately, we cannot use an array
because of the restriction that all data items in an array must be of the same
type. However, Oberon-2 provides us with another do-it-yourself data type
called the RECORD.

In Chapter 2, we used records in the car pool reservation system, where the
details of each car in the car pool were stored as records containing several

INTRODUCTION TO OBERON-2 68

pieces of information about the car. Similarly, a Oberon-2 RECORD consists
of a group of named slots, each of which can hold a data item. When a
RECORD is declared we also declare the name and type of each slot.

TYPE
 EmployeeRecord =
 RECORD
 name : ARRAY 20 OF CHAR;
 position : ARRAY 20 OF CHAR;
 salary : REAL;
 payrollRef : INTEGER;
 END;
VAR
 employee1, employee2 : EmployeeRecord;

Now we have declared a RECORD, we need a means of accessing each slot.
In the car pool example of Chapter 2, we defined our own operations for
accessing each slot in a record, but, luckily Oberon-2 provides the
operations for us, although the syntax looks slightly strange at first:

variableName.slotName

For example,

employee1.salary

refers to slot salary in record variable employee1, and

employee2.salary

refers to slot salary in record variable employee2.

We can use the assignment statement to put a value into a record field, or
use a field in an expression (provided it is of the correct type). For example:

bonus := 500.0;
employee1.salary := employee1.salary + bonus;
Out.String(employee1.name);
Out.Ln;
Out.Real(employee1.salary, 8);

where the record type and its variables are as defined above, and bonus is
of type REAL.

