
Game Developers Need Lua AiR
Static Analysis of Lua Using Interface Models

Paul Klint1, Loren Roosendaal2, and Riemer van Rozen3

1 Centrum Wiskunde & Informatica!
2 IC3D Media

3 Amsterdam University of Applied Sciences!

Abstract. Game development businesses often choose Lua for
separating scripted game logic from reusable engine code. Lua can eas-
ily be embedded, has simple interfaces, and offers a powerful and extensi-
ble scripting language. Using Lua, developers can create prototypes and
scripts at early development stages. However, when larger quantities of
engine code and script are available, developers encounter maintainability
and quality problems. First, the available automated solutions for inter-
operability do not take domain-specific optimizations into account. Main-
taining a coupling by hand between the Lua interpreter and the engine
code, usually in C++, is labour intensive and error-prone. Second, assess-
ing the quality of Lua scripts is hard due to a lack of tools that support
static analysis. Lua scripts for dynamic analysis only report warnings and
errors at run-time and are limited to code coverage. A common solution
to the first problem is developing an Interface Definition Language (IDL)
from which ”glue code”, interoperability code between interfaces, is gener-
ated automatically. We address quality problems by proposing a method
to complement techniques for Lua analysis. We introduce Lua AiR (Lua
Analysis in Rascal), a framework for static analysis of Lua script in its
embedded context, using IDL models and Rascal.

1 Introduction

Game developers use script languages to develop and maintain game logic sep-
arately from game engine libraries. Lua is a script language [1] in the form of
an ANSI C library1 developed by Ierusalimschy, de Figuieredo and Celes. Dur-
ing its evolution [2] Lua has gradually matured and has remained light-weight.
Moreover, it is an embeddable, minimalistic yet extensible, general purpose,
dynamically typed script language. Its language design trade-offs, displayed in
Table 1, have shaped the co-development of the embedding API and script fea-
tures [3]. Lua is popular in game development. Using Lua, developers can quickly
create prototypes. However, using Lua also comes at a cost. In later development
stages, when larger quantities of engine library code and game script are avail-
able, developers encounter maintainability and quality problems.

! This work is part of the EQuA project. http://www.equaproject.nl/
1 http://www.lua.org/

M. Herrlich, R. Malaka, and M. Masuch (Eds.): ICEC 2012, LNCS 7522, pp. 530–535, 2012.
c© IFIP International Federation for Information Processing 2012

http://www.equaproject.nl/
http://www.lua.org/

Game Developers Need Lua AiR 531

Table 1. Lua Design Trade-offs

Lua feature Trade-off Mitigating argument
Light-weight Large responsibility to its users Well-defined responsibilities
Dynamic typing Lack of static type checking Flexibility of use
Maintainable C Lack of pure speed Embedded in efficient C
General-purpose Lack of domain-specific features Extensible script language
Simple High use of few APIs Low learning curve
Embeddable Need for interoperability code This code can be generated

First, using a standard generator for the coupling between Lua and the game
libraries sacrifices speed, and maintaining a hand-written coupling with domain-
specific optimizations is labour intensive and error-prone. Second, assessing the
quality of Lua scripts is hard due to a lack of tools that support source level
static analysis, which entails computing information about scripts before run-
time. The commonly used Lua scripts for dynamic analysis only report warnings
and errors at run-time, and are limited to code coverage. Static analyses do
exist, but are mainly applied to intermediate representations in Single Static
Assignment (SSA) forms for run-time optimization, e.g. LuaJIT2 and the run-
time specializations of Williams et al. [4].

Both problems increase with scale and special measures are necessary for en-
suring maintainability and code quality. A common solution to the first problem
is to develop an Interface Definition Language (IDL) from which optimized ”glue
code”, interoperability code between interfaces, is generated automatically. How-
ever, code quality problems remain to be addressed. Quality problems are not
unique to Lua. Blow [5] expresses increased complexity and lack of development
tools and White et al. [6] describe the need for better script notation. Ramsey
and Assis [7] express the need of the Lua community for machine-checkable APIs
including types, whole-program and modular static analysis and static type in-
ference. Providing practical methods for static analysis of Lua is hard because
static analysis algorithms are subject to a trade-off between speed and precision
and developers require exact and immediate feedback during development.

We address script quality problems by proposing a method to complement
analysis techniques of Lua. We describe an approach in collaboration with IC3D
Media that uses the Rascal Meta-Programming Language3 [8]. IC3D Media is
a Dutch SME located in Breda, active in games for entertainment and training.
We introduce Lua Analysis in Rascal (Lua AiR), a framework for static analysis
of Lua script in its embedded context, using IDL models.

2 Static Analysis of Lua

We can think of scripts as having many run-time states reachable via possibly
many execution paths. Running every program path is infeasible, but abstracting

2 http://luajit.org/
3 http://www.rascal-mpl.org/

http://luajit.org/
http://www.rascal-mpl.org/

532 P. Klint, L. Roosendaal, and R. van Rozen

Table 2. Static Analysis: Features and Tools

Tools
LDT Lua Inspect Lua Checker Lua for IDEA Lua AiR

tool characterization Eclipse IDE SciTE/VIM
plug-in,
HTML output

command-line
simplifier &
checker tools

IntelliJIDEA
plug-in

Meta-
Framework,
Eclipse IDE

based on Metalua Metalua lex/yacc, Lua Kahlua Rascal MPL
affiliation Eclipse, Sierra

Wireless
David Manura Google Jon Akhtar HvA, CWI,

EQuA project

F
e
a
tu

r
e
s

1 globals & locals (definition and use) yes yes strict declare
before use

yes yes

2 var use must be undefined no yes yes (locals) yes (locals) yes
3 var use may be undefined no no no, disallowed no not yet
4 link a definition to its uses highlight all yes no yes yes (no color)
5 link a use to its definitions occurrences yes no yes yes (no color)
4 definition must be unused no yes no yes not yet
5 definition may be unused no no no no not yet
6 duplicate local declaration no yes, mask(ed) yes no yes
7 assignment discards expression no no no yes ”unbal-

anced no. exps”
yes

8 assignment implicitly deletes var no yes, value nil no ”unbalanced” yes
9 operator applies coercion to operand no no no no limited

10 constant folding no ”infer value” no no limited
11 dead code detection no not working no no no
12 type inference no ”infer value” no (todo) ”infer nullity” no
13 function signature inference no not working no no, call sites

show definition
static IDL

from specific execution states enables us to reason about software properties and
to compute them timely. Static analysis refers to the extraction of information
about states and behavior from a software application without executing it.

Table 2 enumerates static analysis features applicable to Lua and compares
existing analysis tools. Features include distinguishing between global and local
variables (1) and relating declarations to uses (4), possibly using syntax high-
lighting. Many of these features (1-6) can be approximated by data flow analysis
techniques [9] such as reaching definitions, which computes for each program
point which assignments can reach it. Others features require no flow analysis
(7, 8) or require more advanced inference techniques (9-13). Figure 1 illustrates
features described in Table 2 using comments and references (fn), where (a)
illustrates features 1, 2, 4, 7, 8 and 9 and (b) shows features 1-3.

1 function f (c) --(f1) assign function to f
2 a = 1 --(f1) creates global a
3 local b = true --(f1) creates local b
4 a , b = b , a --(f4) swap a and b
5 a , b = 1 ,2 ,3 --(f7) discards 3
6 a , b = c --(f8) implicitly deletes b
7 p r i n t (b) --(f2) nil , undeclared b
8 end -- close scope
9 f (”4”) --(f4) call f,bind c to "4"

10 p r i n t (a) --(f4) 4, read global a
11 d = 2 . . a --(f9) coerces 2 to string
12 d = d / ”12” --(f9) coerces 12 to number
13 p r i n t (c , d) --(f2) nil 2, undeclared c

(a) Sequential Assignments

1 function h i t (s e l f , damage)
2 i f s e l f . h ea l th < damage then
3 isDown = true --(f1) assign global
4 else
5 p r i n t (hae l th) --(f2) must be undefined
6 end
7 s e l f . h ea l th = s e l f . h ea l th − damage
8 p r i n t (isDown) --(f3) may be nil or true
9 re tu rn s e l f

10 end
11 un i t = { hea l th=10} --create a test unit
12 un i t = h i t (unit , 4) --call hit , bind unit, 4
13 un i t = h i t (unit , 8) --call hit , bind unit, 8

(b) Event Handler

Fig. 1. Lua Script demonstrating potential errors that static analysis can find

Game Developers Need Lua AiR 533

Lua AiR

Game

Lua Script

Parser Implode Reduce /
Expand

Checker

CF
Analyzer

RD
Analyzer

Lua C
Binding

Engine
Libraries

Lua
Library

Logos 3D
Tooling

1 2 3

4

56

b c

CFGMessagesIDE IDL
Model

d

a

Lua Script

Fig. 2. Lua AiR Model Transformations

Koneki Lua Development Tools (LDT)4 is an Eclipse plug-in that provides
remote debugging and rudimentary static analysis for highlighting and refactor-
ing. Lua Inspect5 is an experimental static analysis tool that infers values, but
incorrectly for conditional assignments. Lua Checker6 is a basic command-line
tool that checks local variable declarations against their uses. Lua for IDEA7

enriches call sites with API structure (e.g. for World of Warcraft). LDT and Lua
Inspect are based on Metalua [10], a Lua extension for static meta-programming.

2.1 Lua AiR Framework

This section explains the approach of the Lua AiR framework. IC3D Media
has developed two languages for interoperability between Lua and their Logos3D
game engine called Interface Definition Language (IDL) and Interface Generator
Language (IGL). IDL defines function signatures and data types. IGL defines
the generator format of the mapping between engine functionality defined in
IDL models and Lua. Unlike other approaches shown in Table 2, we utilize
information from the embedded context in our analysis. Functions and data
structures exposed to Lua, and managed by the Logos3D engine, are statically
defined and strongly typed. Sharing function signatures and data types modeled
in IDL between the embedded environment and Lua enables checking function
call site arguments against formal parameter types. Furthermore, it reduces the
need for type inference and saves computation time in inter-procedural analysis.
Additionally, code documentation can be shared between script proxies and the
embedded context.

Lua AiR is a Rascal meta-program that implements the analysis as a pipeline,
as illustrated by Figure 2. Rascal generates a specialized Eclipse IDE for Lua
editing, highlighting, and static analysis. The analysis consists of the following
model transformations. 1) The Lua script under analysis is fed into the parser
generated by Rascal from our Lua Grammar (130 LOC). This produces a parse

4 http://www.eclipse.org/koneki/ldt/
5 https://github.com/davidm/lua-inspect
6 http://code.google.com/p/lua-checker/
7 https://bitbucket.org/sylvanaar2/lua-for-idea/wiki/Home

http://www.eclipse.org/koneki/ldt/
https://github.com/davidm/lua-inspect
http://code.google.com/p/lua-checker/
https://bitbucket.org/sylvanaar2/lua-for-idea/wiki/Home

534 P. Klint, L. Roosendaal, and R. van Rozen

Separation of Concerns

Game
Script

Engine Libraries World Events
Behaviors

Storylines

Levels
Content Description

Phase 1 Phase 2 Phase 3

Fig. 3. Increased Complexity requires Separating Concerns

tree (a), depicted as a triangle. 2) The implode function matches the nodes of
this tree to an Algebraic Data Type (ADT) that represents our Abstract Syntax
Tree (AST) (b). This model transformation relies on compatible names and types
between the Lua grammar and the ADT. 3) Reduce and Expand rewrite the AST
to simplify the analysis (c). 4) The Checker provides static type checking and
annotates the AST with scope information (d). 5) Given this AST, the Control
Flow (CF) Analyzer generates a Control Flow Graph (CFG). 6) The Reaching
Definitions (RD) Analyzer uses the CFG and performs fixed-point computation
over generate and kill sets to generate the reaching definitions. Finally, the tool
displays a log and the view in the IDE is updated by annotating the parse tree
with results. The meta-program currently comprises approximately 3 KLOC.

3 Discussion and Future Work

This section discusses problems and describes opportunities for future work.

Empirical Validation. We believe that providing developers with better tools
will improve code quality, but we have no proof yet this assumption is correct.
Our approach can be validated by verifying if programmers can improve code
quality by using our framework.

Improved Precision. Our analysis is context insensitive with respect to indi-
vidual program states and execution paths and lacks type inference. Our analyis
can be improved by using context sensitive techniques based generating and
evaluating logical constraints [8, 9].

Tool Integration. Our framework cannot be used yet by existing tools. We
plan to create a Query API to interface with other tools.

DLSs. Lua lacks the domain-specific notation which non-programmer game de-
velopers need to model software artefacts. A separation of concerns, as shown in
Figure 3, is necessary to tackle challenges resulting from increased complexity in
game development. Games can be modeled using sets of complementary light-
weight little languages, one for each concern, as demonstrated by Palmer [11]
and advocated by Furtado [12]. We observe that Lua AiR can be extended to
support DLSs for higher level game concerns such as world events, character
behavior and mission design, using IDL bindings to check if models conform to
the interfaces of their library foundations.

Game Developers Need Lua AiR 535

4 Conclusion

In this paper we related Lua script quality problems to a lack of tools that sup-
port its static analysis. We evaluated the features of available tools and proposed
a method to complement techniques for analysing Lua. We introduced Lua AiR,
a framework for static analysis of Lua script in its embedded context, using IDL
models and Rascal. Its main goal is to provide the immediate script analysis
developers need to improve code quality. Preliminary results show that Lua AiR
can provide additional information about Lua scripts. In future case studies we
plan to use Lua AiR to analyse existing game code on a larger scale.

Acknowledgements. We thank the reviewers for their constructive comments.

References

1. Ierusalimschy, R.: Programming in Lua, 2nd edn (2006), Lua.org
2. Ierusalimschy, R., de Figueiredo, L.H., Celes, W.: The Evolution of Lua. In: Pro-

ceedings of the Third ACM SIGPLAN Conference on History of Programming
Languages, HOPL III, pp. 2–1–2–26. ACM, New York (2007)

3. Ierusalimschy, R., De Figueiredo, L.H., Celes, W.: Passing a Language through the
Eye of a Needle. Commun. ACM 54(7), 38–43 (2011)

4. Williams, K., McCandless, J., Gregg, D.: Dynamic Interpretation for Dynamic
Scripting Languages. In: Proceedings of the 8th Annual IEEE/ACM International
Symposium on Code Generation and Optimization, CGO 2010, pp. 278–287. ACM,
New York (2010)

5. Blow, J.: Game Development: Harder Than You Think. ACM Queue 1, 28–37
(2004)

6. White, W., Koch, C., Gehrke, J., Demers, A.: Better Scripts, Better Games. Com-
mun. ACM 52, 42–47 (2009)

7. Ramsey, N., Assis, F.: Almost Good Enough to Scale: A Lua Mail Handler and
Spam Filter (presentation slides). In: Lua Workshop (2008)

8. Klint, P., van der Storm, T., Vinju, J.: RASCAL: A Domain Specific Language for
Source Code Analysis and Manipulation. In: Proceedings of the 2009 Ninth IEEE
International Working Conference on Source Code Analysis and Manipulation,
SCAM 2009, pp. 168–177. IEEE Computer Society, Washington, DC (2009)

9. Nielson, F., Nielson, H.R., Hankin, C.: Principles of Program Analysis. Springer-
Verlag New York, Inc., Secaucus (1999)

10. Fleutot, F., Tratt, L.: Contrasting Compile-Time Meta-Programming in Metalua
and Converge. In: Workshop on Dynamic Languages and Applications (July 2007)

11. Palmer, J.D.: Ficticious: MicroLanguages for Interactive Fiction. In: Proceedings of
the ACM International Conference Companion on Object Oriented Programming
Systems Languages and Applications Companion, SPLASH 2010, pp. 61–68. ACM,
New York (2010)

12. Furtado, A.W.B., Santos, A.L.M., Ramalho, G.L.: SharpLudus Revisited: from
ad hoc and Monolithic Digital Game DSLs to Effectively Customized DSM Ap-
proaches. In: DSM 2011. SPLASH 2011 Workshops, pp. 57–62. ACM, New York
(2011)

Lua.org

	 Game Developers Need Lua AiR
	Introduction
	Static Analysis of Lua
	Lua AiR Framework

	Discussion and Future Work
	Conclusion

