L’informatique pas à pas

L’informatique pas à pas document de formation
LE MICRO-ORDINATEUR
1.1. LA CARTE MÈRE
La carte mère (Mainboard ou Motherboard) est l'un des principaux composants du PC. Elle se présente sous la forme d'un circuit imprimé sur lequel sont présents divers composants. En fait, son rôle est de lier tous les composants du PC, de la mémoire aux cartes d'extensions. La carte mère détermine le type de tous les autres composants. Ses slots détermineront le format des cartes d'extension (ISA, EISA, PCI, AGP,..). Ses emplacements mémoires détermineront le type de barrettes à utiliser (SIM 8 bit, SIMM 32 bit,..). Enfin, le socle du processeur déterminera le processeur à utiliser. La fréquence de la carte mère sera déterminante pour l'achat d'un processeur.
1.1.1. Le format
Il existe différents formats de cartes mères : AT, ATX et NLX Chacun de ceux-ci apporte leurs lots de spécialités, d'avantages ou encore de défauts. Le but de ces divers formats est de permettre un montage aisé des différents composants. Il permet aussi une meilleure circulation d'air afin de refroidir certains composants.
Désormais, ces composants sont intégrés sur la carte mère. De nouveaux connecteurs, tels que les ports USB sont aussi intégrés. Certains constructeurs n'hésitent pas à proposer en option une carte graphique ou une carte son intégrée à la carte mère. Si actuellement les cartes au format ATX sont les plus vendues, il convient de surveiller le format NLX. Ce dernier permet en effet une évolutivité plus aisée.
Le format AT - Baby-AT : Ce format fut très utilisé pour les cartes mères à base de 386, 486 et Pentium. Si ce format est sûrement le plus connu, il ne correspond désormais plus aux besoins actuels. En effet, la disposition des différents compo-sants n'en permet pas un accès aisé. De plus, la circulation d'air y est très moyenne, ce qui en rend l'usage assez peu adapté aux processeurs actuels, poussés à des fréquences élevées. Ce format est désormais remplacé par le format ATX.
Le format ATX : Désormais, les prises sérielles, parallèle, clavier, souris ainsi que USB, sont intégrés à la carte mère. Leur position a été normalisée afin de faciliter la construction de boîtiers adéquats. Enfin, les connecteurs du contrôleur IDE et floppy sont placés plus près de ces périphériques, évitant ainsi l'usage de longs câbles.
Le connecteur d'alimentation à été totalement revu. Il est composé d'un seul connecteur, il est impossible de l'insérer à l'envers. Il fournit aussi en standard une tension de 3,3V, ce qui évite l'usage d'un régulateur de tension, point faible d'une carte mère.
Ces cartes sont moins coûteuses à fabriquer que les cartes AT. En effet, la suppression du régulateur de tension, des connecteurs externes ainsi que des ventilateurs additionnels diminuent le coût global. Ces cartes sont disponibles en deux formats : ATX (9.6 par 12") ou mini ATX (7.55 par 10.3").
Le format NLX :
Nouveau format proposé par Intel. Cette fois, tout est normalisé jusqu'à l'emplacement de la moindre vis.
La carte mère n'est plus qu'une carte fille. Dans le cas d'une tour en NLX, un module prend place au fond du boîtier, et reçoit les cartes d'extension et la carte mère. Ce module comporte les connecteurs de disques et disquettes. La carte mère contiendra le processeur, la RAM, le chipset et toutes les entrées/sorties.
Avantage du format : plus besoin de retirer les cartes d'extension pour changer de carte mère. Il n'existe pas beaucoup de cartes à ce format et très peu de boîtiers pour les supporter
1.1.2. La fréquence
Une carte mère doit absolument pouvoir fournir une fréquence supportée par le processeur choisi. Jusqu'au 486, ces deux composants avaient la même fréquence, sauf dans le cas des processeurs à fréquence multipliée où la carte mère reste à la fréquence de base (par ex. 33 Mhz pour un 486 DX2 66Mhz). Cette fréquence était donnée par un oscillateur appelé aussi quartz. Attention, souvent la fréquence indiquée sur celui-ci est à diviser par deux.
Sur les cartes mères, il est possible de modifier la fréquence par Jumper.

1.1.3. Le voltage
Une carte mère est disponible dans divers voltages. C'est en fait le type de processeur qui détermine ce choix. Jusqu'à récemment, tous les processeurs étaient à un voltage de 5 V. Suite à des problèmes de dégagement thermique et d'économie d'énergie, il a été décidé de les passer à 3,3 V.
1.1.4. La pile ou l'accumulateur STD 3,3V CPU classiques Intel et Cyrix/IBM 6x86 à 3,3V VRE 3,53V CPU classiques Intel et Cyrix/IBM 6x86 à 3,53V 2,8/3,3V Intel MMX et Cyrix/IBM 6x86L
2,9/3,3V AMD K6 PR2-166 & 200 et Cyrix/IBM 6x86MX 3,2/3,3V AMD K6 PR2-233
Le BIOS exigeant d'être sous tension en permanence, la carte mère intègre, pour les plus anciennes, une pile.
Sur les cartes mères plus récentes, on trouvera un accumulateur généralement situé à coté de la prise clavier. Il se présente sous la forme d'un cylindre de couleur bleu vif. Cet accumulateur a une durée de vie théoriquement illimitée (mais dure en général trois ans). En effet, pour assurer une plus grande longévité, il serait nécessaire de le décharger complètement de temps en temps, ce qui est bien sûr dangereux pour le BIOS. Une fois l'accumulateur hors service, il est possible de le changer bien qu'il soit soudé. De nombreux constructeurs ont prévu un connecteur pour une pile en cas de panne.
La nouvelle génération de cartes mères possède une pile plate au lithium. 1.1.5. Montage et fixation
La carte mère doit être vissée dans le fond du boîtier, mais elle ne doit en aucun cas être en contact avec les parties métalliques de celui-ci. A cet effet, on utilise des pièces d'écartement en plastique. La position des trous pour ces taquets est standardisée, quelle que soit la taille de la carte mère. De plus, la carte mère devrait être maintenue en place par un maximum de vis. Sous celles-ci, placez une rondelle isolante. En effet, les trous prévus à cet effet sont déjà entourés d'un revêtement isolant, mais parfois la tête de la vis peut dépasser.
1.1.6. Paramétrage
La première étape, lors de l'acquisition d'une nouvelle carte mère, est de la paramétrer en fonction des composants (processeurs, mémoire cache, .. ). A cet effet, vous disposez de jumpers sorte de connecteurs que l'on peut ponter. S'ils sont reliés par un pont, on dit que le jumper est FERME (closed) alors qu'en position libre, il est OUVERT (Open). La documentation de la carte mère vous donnera la position et la configuration des jumpers. Ils sont généralement nommés J suivi de leur numéro (J1, J12,..). Parfois des SWICTHS sont proposés, leur fonctionnement est très semblable.
1.1.7. ACPI et OnNow
Les standards ACPI (Advanced Configuration and Power Interface) et OnNow poursuivent un but commun : permettre au PC de revenir à la vie instantanément et réduire le bruit lorsqu'il n'est pas utilisé. De plus, l'ACPI permet de réduire la consommation électrique. Considéré comme une évolution de l'APM (Advanced Power Management), l'ACPI permet un meilleur contrôle de l'énergie par le système d'exploitation. Cette remarque n'est valable que pour les OS compatibles (Windows 98).
Auparavant, la gestion de l'énergie était assurée par les fonctions implémentées dans le BIOS. Cela présentait deux inconvénients principaux : les fonctions différaient d'un fabricant de carte mère à un autre et il était nécessaire de se rendre dans le Bios pour modifier les réglages.
L'ACPI permet désormais une gestion standardisée d'un PC à l'autre. D'autre part, son paramétrage au travers du système d'exploitation est accessible à tous. En réalité, la norme ACPI est très complète et évidemment très complexe.
Grâce à cette norme, il est possible, entre autres, de laisser un PC en stand-by pendant de longues périodes avec une consommation électrique et un bruit insignifiant. Il pourra être "réveillé" via un modem, par un appel téléphonique ou même par la réception de données au travers d'une carte réseau.
Le processeur est un composant électronique qui n'est autre que le "cœur pensant" de tout ordinateur. Il est composé de plusieurs éléments dont, entre autres, les registres (mémoire interne).
Dans le monde des PC, les principaux fabricants sont : INTEL, IBM, CYRIX, AMD, NEXGEN (désormais racheté par AMD), CENTAUR et TEXAS INSTRUMENT. Sur les autres systèmes, il y a aussi : MOTOROLA (principalement Macintosh), ARM, ATT, DEC, HP, MIPS et SUN&TI. Dans le domaine des compatibles, Intel a été et reste le pionnier.
Cette société américaine a fixé un standard (80x86) sur lequel repose la totalité des logiciels PC.

1.2.1. Le support
La mise en place d'un processeur doit se faire avec de grandes précautions. Veillez à bien superposer le détrompeur du processeur (un coin tronqué ou un point de couleur) sur celui du support. Sur les machines antérieures au Pentium, le support LIF (Low Insertion Force) était couramment utilisé. Ce dernier n'est en fait qu'une base perforée où le processeur devait être inséré de force. Il fallait éviter à tout prix de plier les broches qui pouvaient casser. On pouvait alors soit utiliser un extracteur ou faire levier doucement avec un tournevis.
Désormais utilisé, le support ZIF (Zero Insertion Force) est constitué d'un socle plastique généralement de couleur bleue ou blanche et d'un levier. Lorsque ce dernier est levé, le processeur n'est plus maintenu et peut être extrait sans effort, d'où son nom.
Différentes versions sont disponibles :
ZIF 1 Utilisé sur les cartes mères 486, il possédait 168 ou 169 broches et était peu courant.
ZIF 2 Utilisé sur les cartes mères 486, il possédait 239 broches et était aussi peu répandu. ZIF 3 Support typique des processeurs 486, comptant 237 broches. ZIF 4 Support utilisé par les premiers Pentium (60 et 66 Mhz).
ZIF 5 Support utilisé par les Pentium de la série P54C, jusqu'à 166Mhz. Il possède 320 broches.
ZIF 6 Utilisé sur les cartes mères 486, il possédait 235 broches et était rare.
Il s'agit d'une extension du ZIF5, destiné aux machines de plus de 166Mhz. Une ZIF 7 broche a été rajoutée pour le support de l'Overdrive P55CT. C'est le support stan¬dard pour les processeurs AMD K6 et Cyrix/IBM 6x86MX.
ZIF 8 Support destiné au Pentium Pro
Slot Connecteur destiné à accueillir la carte processeur du Pentium II. Il ne peut pas One fonctionner sur des cartes mères d'une fréquence supérieure à 66Mhz.
Slot Support en cours d'étude destiné à accueillir le futur Intel Deschutes. Il sera Two utilisable sur des cartes mères d'une fréquence d'horloge de 100Mhz.
1.2.2. La famille
Intel a fixé une norme nommée 80x86, le x représentant la famille. On parle ainsi de 386, 486,... Un nombre élevé signifie un processeur de conception récente et donc plus puissant. Cette dénomination a été reprise par ses concurrents. Aux États-Unis, une appellation composée seulement de nombres ne peut être protégée, c'est pour cette raison que les processeurs de la génération 5 d'Intel se nomment PENTIUM (Pro) et non 586 (686). Ces indications sont clairement indiquées sur la surface du processeur. En fait, la puissance a été augmentée grâce à un jeu d'instructions plus évolué et à une technologie plus poussée.
1.2.3. Le voltage
Jusqu'au Intel 486DX2, les processeurs avaient toujours un voltage de 5V. Mais pour les 486DX4 et les Pentiums dès 75Mhz, cette valeur est descendue à 3,3V, voire 3,1V.
Ce choix a été poussé par deux raisons :
- il était nécessaire de diminuer l'important dégagement de chaleur lié à des fréquences élevées,
- on réduit ainsi la consommation d'énergie.
Le principal problème posé par la réduction de tension est l'augmentation de la sensibilité aux parasites. Ainsi certains constructeurs dotent leurs processeurs d'une double tension. Celle du cœur du CPU, consommant environ 90 % de l'énergie, est abaissée au maximum, alors que celle des ports I/O plus sensible aux perturba-tions, est augmentée.

1.2.4. La fréquence
En dehors de la famille du processeur, la fréquence est un élément déterminant de la vitesse de ce composant. Celle-ci est exprimée en Mégahertz (Mhz), soit en million de cycles à la seconde. Il convient de savoir qu'une opération effectuée par l'utilisateur peut correspondre à de nombreux cycles pour le processeur. Mais, plus la fréquence est élevée, plus le processeur réagira vite.
1.2.5. Le coprocesseur (ou FPU)
Jusqu'au 386, toutes les instructions étaient prises en charge par le processeur. On trouvait alors un coprocesseur externe. D'apparence semblable au processeur, son rôle est de prendre en charge toutes les instructions dites à virgule flottante (floating point). Il décharge ainsi le processeur de ce type d'instruction, augmentant la vitesse générale du PC. Lorsqu'il est externe, il doit tourner à la même fréquence que le processeur. Son nom finit toujours par un 7 ainsi un 386 40Mhz utilisera un coprocesseur
387 40Mhz. Il est intégré maintenant dans les tous les processeurs à partir du 486DX. 1.2.6. La température
Les processeurs doivent toujours être parfaitement ventilés et refroidis, en particulier ceux ayant une fréquence supérieure à 50 Mhz. S'il surchauffe, il peut endommager la carte-mère ou s'arrêter de façon intermittente, provoquant un plantage général du système. Dans le pire des cas, le processeur peut carrément se fendre. Il existe deux procédés pour atteindre ce but :
- un radiateur passif, qui n'est qu'une plaque métallique avec de nombreuses ailettes, servant à diffuser la chaleur. Ce système, économique et silencieux, n'est efficace qu'avec des machines offrant une bonne circulation d'air. Ainsi, il est déconseillé de laisser le boîtier d'un PC ouvert, cela peut empêcher une circulation d'air forcée et provoquer une surchauffe.
- un ventilateur alimenté électriquement, qui peut soit utiliser un connecteur électrique, soit se brancher directement sur la carte mère. En ce cas, il sera souvent possible d'adapter sa vitesse de rotation en fonction de la température dégagée par le processeur.
Ces deux systèmes sont collés ou fixés au moyen de pattes sur le processeur. Afin d'obtenir les meilleurs résultats possibles il est conseillé d'ajouter de la pâte thermique entre le CPU et le système de refroidissement. Cela aura pour effet d'augmenter la surface de contact entre ces deux éléments.
1.2.8. Les processeurs AMD
1.2.9. Les processeurs CYRIX
Cyrix commercialisé une nouvelle architecture basée sur le processeur Cyrix GX. Ce dernier intègre les fonctions graphiques et audio, l'interface PCI et le contrôleur de mémoire. Ainsi, les coûts de fabrication sont très nettement réduits. Malheureusement les performances sont aussi plus faibles que celle d'une machine Intel disposant d'un processeur Pentium à fréquence équivalente.
Le processeur est assisté dans cette démarche par un chip compagnon nommé Cx5510, qui s'occupera des interfaces pour les mémoires de masse. Une telle machine ne dispose plus de mémoire graphique ou de cache Level 2, tout est unifié.
1.3. ARCHITECTURE INTERNE
La conception du PC est dite modulaire, c'est-à-dire quelle repose sur le principe du puzzle. En effet, l'utilisateur va choisir ses composants en fonction de ses besoins. La carte graphique ne sera pas la même si l'utilisateur désire faire de la bureautique ou de la C.A.O. A cet effet, un PC dispose de slots d'extensions où seront insérées des cartes (comme par exemple une carte graphique).
L'évolution de la puissance des PC a poussé les constructeurs à développer des architectures internes toujours plus rapides. C'est la raison pour laquelle les slots d'extension ne sont pas tous du même type. Ce composant sera toujours choisi avec soin car il a un rôle primordial sur la
vitesse d'un PC.
1.3.1. Les Bus
Un bus est un ensemble de lignes électriques permettant la transmission de signaux entre les différents composants de l'ordinateur. Le bus relie la carte mère du P.C., qui contient le processeur et ses circuits, à la mémoire et aux cartes d'extensions engagées dans les connecteurs.
Il y a 3 types de bus :

- Le bus de données,
- Le bus d'adresse,
- Le bus de contrôle.
Le Bus de Donnée
Ce n'est rien d'autre qu'un groupe de lignes bidirectionnelles sur lesquelles se font les échanges de don-nées (Data) entre le processeur et son environnement (RAM, Interface, etc...).
Le bus de données véhicule les informations de ou vers la mémoire ou encore de ou vers une unité d'entrée/sortie.
Un bus est caractérisé par le nombre et la disposition de ces lignes. Le nombre de lignes du bus de données dépend du type de microprocesseur :
8088 et 8086 8 lignes
80286 et 80386 Sx 16 lignes
80386 Dx et 80486 32 lignes
80586 - 80686 - Pentium 64 lignes
Le Bus d'Adresse
Il est constitué d'un ensemble de lignes directionnelles, donnant au processeur les moyens de sélectionner une position de la mémoire ou un registre en place sur l'une ou l'autre des cartes d'interfaces connectées sur la carte mère.
Le Bus de Contrôle
Le bus de contrôles transmet un certain nombre de signaux de synchronisation qui assurent au micro-processeur et aux différents périphériques en ligne un fonctionnement harmonieux.
C'est le maître d'œuvre, assurant la coordination d'une suite de signaux transmis au processeur.
Un bus est également caractérisé par sa fréquence de fonctionnement. 1.3.2. Les connecteurs d'extension
Un bus doit non seulement permettre aux éléments figurant sur la carte mère de communiquer entre eux, mais également d'ajouter des éléments supplémentaires à l'aide de cartes d'extensions. A cet effet, il comporte un certain nombre de connecteurs. Ces connecteurs étant standardisés, on peut reconnaître immédiatement un bus en les observant.
L'architecture ISA (Industry Standard Architecture) a été inventée en 1981 par IBM pour son IBM 8088. Cette première version était de 8 bits et basée sur une fréquence de 4,77Mhz. Elle est composée d'un seul connecteur de couleur noir. Ce slot permet l'accès à 8 lignes de données et à 20 lignes d'adresses.
La seconde génération de 80286 pouvant adresser un bus de 16 bits, un connecteur ISA 16 bits fut créé. Ce dernier se différencie du 8 bits par l'adjonction d'un second connecteur court de couleur noire. Le nombre de lignes de données est ainsi passé à 16 Le bus opérant au début à 8 Mhz, puis standardisé à 8,33 Mhz, le transfert des données nécessite deux cycles. Ce débit est bien entendu théorique, il varie en fonction de la carte utilisée. Actuellement le slot ISA est encore utilisé. Cela est principalement dû à deux raisons, d'une part son faible prix de production, d'autre part sa compatibilité. En effet, ce slot n'ayant plus été modifié depuis longtemps, il permet l'utilisation d'anciens com-posants. Par contre, son principal défaut est d'être resté à 8 Mhz, ce qui provoque un véritable d'étranglement pour le transfert de données.
Le bus ISA n'est pas un bus autoconfigurant, ce qui oblige l'utilisateur à configurer manuellement cha-que nouveau composant.

L'architecture EISA
Le bus EISA (Extended Industry Standard Architecture) est présentée comme une suite au bus ISA. Il est aussi basée sur une fréquence de 8 Mhz (8.33 pour être précis), mais utilise un bus 32 bits. De cette façon, un débit théorique de 33,32 Mo/seconde a pu être atteint. L'apparence d'un slot EISA est la même qu'un slot ISA 16 bits, si ce n'est qu'il est plus haut. Il reste intégralement compatible ISA (8 et 16 bits) grâce à l'usage de détrompeur. Si une carte EISA est insérée, elle s'enfoncera plus profondément, étant ainsi connectée avec plus de contacts.
Dans une architecture EISA, les cartes sont automatiquement paramétrées par le système. Ces réglages concernent en particulier l'adresse et les IRQ. Pour ce faire, chaque carte est livrée avec un fichier de configuration (*. CFG) qui doit être donné au BIOS. Ce fichier contient une sorte de driver qui permet ainsi au BIOS de savoir comment gérer la carte.
Cette architecture est désormais relativement peu répandue, son principal défaut étant son prix élevé. Mais, elle revient au goût du jour avec son implantation dans de nombreuses cartes mères Pentium, parallèlement au PCI. Son coût la réserve pour des machines haut de gamme, tels que les serveurs de réseau.
L'architecture VLB
L'architecture VLB (Vesa Local Bus) est une évolution du bus ISA.
Il permet des débits nettement améliorés en utilisant la même fréquence que la carte mère. De plus, il est 32 bits. Ces fonctionnalités lui permettent ainsi d'obtenir des débits théoriques de l'ordre de 120 à 148 Mo/s, en fonction de la fréquence utilisée. Techniquement parlant, le VLB détourne le bus local du processeur pour son propre usage, ce bus étant bien entendu à la fréquence de la carte mère. Ce procédé, qui à l'avantage d'être extrêmement économique, présente certaines limitations. Le bus local processeur n'étant pas dimensionné à cet effet, il est impossible de mettre plus de 3 cartes VLB dans un PC.
Une carte de type VLB ne supporte généralement pas les fréquences supérieures à 40 Mhz. En fait, le VLB est une solution provisoire, mais qui permet d'obtenir des gains de performance importants pour un surcoût minimum. On l'utilisera de préférence pour la carte graphique et la carte contrôleur. Ce type de slot est facilement reconnaissable, il s'agit en effet d'un slot ISA 16 bits auquel on a ajouté un troisième connecteur de couleur brune, doté de 112 contacts. Ce type de connecteur est totalement compatible avec les cartes ISA 8 et 16bits.
L'architecture PCI
Le PCI (Peripheral Componement Interconnect) utilise un procédé comparable au VLB. En effet, il utilise aussi le bus système, mais l'adjonction d'un contrôleur propriétaire lui permet d'outrepasser la limite de 3 slots. Un slot PCI est à la fréquence de base de 33 Mhz et existe en version 32 et 64 bits. Cela lui permet d'atteindre des débits théoriques de l'ordre de 132 Mo/s dans le premier cas et 264 Mo/s dans le second.
Les interruptions utilisées par le bus PCI (#A à #D) sont propres au PCI, donc non équivalentes aux IRQ. Si certaines cartes le requièrent, elles peuvent êtres mappées sur les IRQ du système, généralement de 9 à 12. Dans le cas d'une carte mère possédant plus de 4 slots PCI ou 4 slots et des ports USB, ces IRQ mappées seront partagées.
Le schéma ci-dessous vous montre les différents bus dans une architecture PCI :
L'architecture AGP
Intel a présenté en juillet 1996 les spécifications de l'Accelerated Graphic Port (AGP). A cette époque, la demande en graphisme 3D dépassait souvent les capacités des machines standard. L'architecture PCI avait atteint ses limites au niveau du débit autorisé pour les cartes graphiques. Intel a donc proposé un nouveau bus dédié à de telles cartes.
Le principal problème est le goulot d'étranglement dût aux faibles performances du bus entre le CPU et la mémoire, et entre le CPU et la carte graphique. La mémoire graphique est extrêmement couteuse par rapport à la mémoire vive d'un PC. Le graphisme 3D en est un gros consommateur, il est alors judicieux de lui donner accès à cette mémoire vive. A la différence de l'architecture UMA (Unified Memory Architecture) qui monopolise la mémoire, l'AGP peut à tout moment rendre au système la portion qu'il utilise. A cet effet, il utilise un procédé appelé Dynamic Memory Allocation Le système reste alors "propriétaire" de la mémoire vive, et ne prête que ce pour lequel il n'a bas de besoin immédiatement. Ainsi, pas besoin de doubler sa mémoire pour éviter un quelconque ralentissement.
La gestion de ce bus est assurée par un chipset compatible AGP. Le processeur n'est alors plus requis pour les différentes transactions. Cela permet de gagner en rapidité, tant au niveau du débit que de la charge du CPU. Le contrôleur graphique utilise ainsi un accès dédié à hautes performances qui lui offre un accès direct à la mémoire.