
162 CHAPTER 21. A SIMPLE GRAPHICAL DICE ROLLER

Chapter 22

What Can wxPython Do?

wxPython is a stable, mature graphical library. As such, it has widgets
for nearly everything you plan on creating. Generally speaking, if you
can’t do it with wxPython, you’ll probably have to create a custom
GUI, such as used in video games.

I won’t cover everything wxPython can do for you; looking through
the demonstration code that comes with wxPython will show you all
the current widgets included in the toolkit. The demonstration also
shows the source code in an interactive environment; you can test
different ideas within the demonstration code and see what happens
to the resulting GUI.

Figure 22.0.1 shows a sample program from the wxGlade website
as a demonstration of how the development of GUIs are made with
wxPython.

The main group of objects you will be using are the core widgets
and controls (the top left window in Figure 22.0.1). These are what you
will use to build your GUI. This category includes things like buttons,
check boxes, radio buttons, list boxes, menus, labels, and text boxes.
As before, the wxPython demo shows how to use these items.

The bottom left window in the figure is the Properties dialog. Here
is where you change the settings for whatever widget you are working
with at the moment. In this example, we are looking at the properties
for the highlighted checkbox shown in the “canvas” window on the
right (called “wxGlade: preferences” here). This canvas window is the

163

164 CHAPTER 22. WHAT CAN WXPYTHON DO?

Figure 22.0.1:

visible part of the GUI you are building, i.e. this is where you actually
create the user interface by adding widgets from the main wxGlade
window.

Above the canvas is the “Tree” window. This is a visual hierarchy
of your GUI, where you can “attach” new widgets to existing widgets.
In the example, you can see that the “frame_tool_win” widget is
highlighted, which is the checkbox widget in the canvas window. You’ll
also notice that this checkbox is nested within the “sizer_3” widget.
The sizer widget is simply a container for a number of related objects,
in this case the checkboxes. You’ll note there is another sizer widget
visible as well as a notebook widget; the notebook acts as a container
for the sizer widgets.

wxPython has several standard, built-in frames and dialogs. Frames
include a multiple document interface (having files of the same type
contained within the parent window, rather than separate windows)
and a wizard class for making simple user walk-throughs. Included
dialogs range from simple “About” boxes and file selections to color
pickers and print dialogs. Simple modifications to the source code

165

makes them plug & play-ready for your application.
There are a number of different tools shown in the wxPython demo.

Most of them you will probably never use, but it’s nice to know wx-
Python includes them and there is some source code for you to work
with.

One thing I’ve noticed, however, is that the sample demonstrations
don’t always show how to best to use the widgets. For example, the
wizard demo certainly displays a simple wizard with previous/next
buttons. But it doesn’t have any functionality, such as accepting in-
put from the user for file names or dynamically changing the data
displayed. This makes it extremely difficult to make your applications
work well if you are coding off the beaten path, such as writing your
program without the help of wxGlade or incorporating many different
widgets into a program.

If you really want to learn wxPython, you pretty much have to
either keep messing with the sample programs to figure out how they
work and how to modify them to your needs, or look for a book about
wxPython. Unfortunately, there are very few books on the subject
and they can be hard to find. The Amazon website is probably your
best bet. Alternatively, you can move to Qt, which has very extensive
documentation since it is marketed towards commercial developers.

166 CHAPTER 22. WHAT CAN WXPYTHON DO?

Part III

Web Programming &
Game Development

167

Chapter 23

Developing for the Web

23.1 Choose Your Poison
When it comes to making web pages with Python, there are a variety
of routes you can go. It depends on what you want to accomplish.
There are full-stack frameworks, like Django, that include everything,
including the kitchen sink, to build a dynamic web site from scratch.
Django is written as a cohesive framework, using the same concepts
throughout the entire framework so you only have to learn one way of
dealing with everything.

On the other hand, TurboGears is another full-stack framework
that uses best-of-breed components to accomplish its mission. Essen-
tially, the developers looked around the Internet for the best compo-
nents to include in the TurboGears project, such as an XML templat-
ing engine and a text templating engine, and then wrote the binding
scripts to move data from one component to the other. This means
you have to learn the idiosyncrasies of each component, even though
TurboGears tries to make everything play nice.

Another popular framework is Zope. Guido van Rossum, the cre-
ator of the Python language, used to work at Zope before he moved
over to Google. Zope is another all-in-one web framework like Django.
Zope is also the foundation of the Plone content management system
(CMS). One problem with Zope is that a number of disparate projects
have developed from the original Zope code base; while they share the

169

170 CHAPTER 23. DEVELOPING FOR THE WEB

same philosophies and source code, it can be difficult to figure out
what you want to use and how to make it all work.

In the interest of full-disclosure, a military command I worked
at was trying to develop an in-house CMS for intelligence resources
and they had decided on Zope as the foundation. Unfortunately, the
amount of custom code that was required to make Zope work as in-
tended ultimately killed the project. On the plus side, the work our
programmers had done with the Zope programmers ultimately pro-
duced the current version of Zope, called BlueBream. Having looked at
the underlying code for Zope, it’s not intuitive, in my opinion. While
it is written in Python, much of the “working code” is not Python-
centric, as I recall. Zope uses a lot of custom calls and special syntax
to function, so even by knowing Python, you will still have to take
some time getting up to speed with the “Zope way.”

Alternatives to these all-in-one frameworks abound. CherryPy is
a minimalist web framework that simply produces web applications,
but it doesn’t include HTML form filling, templating, or database
functionality. You can include a variety of helper frameworks but,
obviously, you will have to know how each of the components work
individually so you can transfer the data between them. It’s kind of
like hand-making your own version of TurboGears.

23.2 Karrigell Web Framework

For purposes of this book, I will use a simple framework that combines
a good amount of functionality for learning purposes. Karrigell has
been around for many years but I don’t think it gets the notice it
should. The thing that drew me to it originally is that it allows the
developer to choose how to write the underlying program. There are
seven different ways you can make your source code, and you can mix-
and-match as desired. All of the following items are explained more
at Karrigell script styles.

1. Python scripts: these are scripts that run just like ordinary
Python programs, except that print statements go to the client
browser window instead of the console. You will need to write
the HTML code for anything that will be visible by the user.

23.2. KARRIGELL WEB FRAMEWORK 171

2. Karrigell Services: these are Python scripts that can handle mul-
tiple URLs, allowing a complete service with different HTML
pages can be created with just one script. These are also the
recommended way of developing with Karrigell.

3. Python Inside HTML: as the name says, these are HTML docu-
ments that include Python code blocks. These are functionally
the same as PHP, Microsoft Active Server Pages, or Java Server
Pages sites. This is good if you are coming from another web
framework; you can still “write” like you are used to, only chang-
ing the functioning code from PHP, for example, to Python.

4. HTML Inside Python: just the opposite of the above, you are
embedding your HTML within the rest of the Python code. This
is most useful if you are writing a lot of HTML output. Rather
than having to use a number of print statements, you can simply
use regular Python quotes to output what you want; Karrigell
will understand what you want and add the print statements at
run-time.

5. HTMLTags: this is a Python module that defines a class for
all valid HTML tags. When you print out the desired tag in
the HTMLTag short-hand, Karrigell automatically outputs the
correct HTML.

6. Template Engine Integration: if you desire, you can use a variety
of templating engines. Template engines are much like program-
ming languages, in that they allow for variables, functions, text
replacement, etc. for the purpose of processing plain text. Es-
sentially, they can create dynamic web pages by pulling data
from a database or a template source file. XSLT is an example
of a template model for processing XML files.

7. Karrigell Templates: this is a built-in template engine intended
for use with Karrigell services and Python scripts. It is different
from other template engines by not including many of the typical
programatic controls, as these are handled by Python directly.
It also supports inclusion of other templates, if desired.

172 CHAPTER 23. DEVELOPING FOR THE WEB

23.2.1 Python Scripts
Since you have to manually write all the HTML output, you obviously
need to know something about HTML. For example, to make a simple
table, you would have to print out each HTML line in your Python
script, as shown below:

Listing 23.1: Karrigell Python->HTML Table
print "<TABLE>"
print "<TR>"
print "<TD>Name</TD>"
print "<TD>Address</TD>"
print "</TR>"
print "</TABLE>"

#Or you can use Python ’ s mult i�l i n e syntax

print """<TABLE>
<TR>

<TD>Name</TD>
<TD>Address</TD>

</TR>
</TABLE>"""

23.2.2 Karrigell Services
These are Python scripts that Karrigell maps to separate URLs; ba-
sically, each script becomes a new website. This is the ideal way of
writing web apps for Karrigell since access to user values is straight-
forward and application logic is in one location.

Essentially, each function is defined at the module level to be
mapped to a URL; arguments can be passed from one script to an-
other as “?” arguments in the URL. For example, the script named
foo.ks contains the function bar() and is located at the URL foo.ks/bar.
Listing 23.2 provides some clarification:

Listing 23.2: Karrigell Services as URLs
#A web l i n k i s g i ven

23.2. KARRIGELL WEB FRAMEWORK 173

<a hr e f =" s c r i p t . ks / foo ?bar=300">

#or a web form i s submi t ted
<form act i on=" s c r i p t . ks / foo ">
<input name = "bar">
<input type = "submit" value = "ok">

#The a s s o c i a t e d s c r i p t i s s imple
def f oo (bar) :

print bar

#To jump from one func t i on to another , s p e c i f y the func t i on name
#in the l i n k or form ac t ion
def index () :

print "<a� hr e f �=� ’ f oo ?name=bar ’>go� to � foo "
def f oo (name) :

print "<img� s r c=� ’ . . / p i c . jpg ’>"
print name

23.2.3 Python Inside HTML
As mentioned previously, embedding Python within HTML is much
like developing with PHP or other languages. In this case, the Python
code is separated from the HTML with special tags: <% and %>.
Everything between those special tags is normal Python code, so you
can import modules, create classes and instances, work with the file
system, etc. Listing 23.3 provides an example:

Listing 23.3: Embedding Python in HTML
The cur rent date i s
<% import datetime
pr in t datetime . date . today () . s t r f t ime ("%d:%m:%y")
%>

23.2.4 HTML Inside Python
Embedding HTML in Python code is easier than the opposite way,
since you don’t have to deal with print statements all the time. Listing

174 CHAPTER 23. DEVELOPING FOR THE WEB

23.4 shows the two main ways of embedding HTML:

Listing 23.4: Embedding HTML in Python
#For s imple HTML, s imply use quo tes and no p r i n t s ta tement
import os
currentDi r = os . getcwd ()
"Current� d i r e c t o r y � i s �"+currentDi r+""

#For longer HTML b lock s , use Python t r i p l e quo tes
the_Pythons={ ’ l ead ’ : ’Graham�Chapman ’ ,

’ o l d e s t ’ : ’ John� Cleese ’ ,
’ American ’ : ’ Terry� Gi l l i am ’ ,

’ music ’ : ’ Er i c � I d l e ’ ,
’ b ra in s ’ : ’ Terry�Jones ’ ,
’ w r i t e r ’ : ’ Michael� Pal in ’ }

"""
<t a b l e border=1>
<t r backgroundco lor=green>
<td>One o f the b e s t comedy groups ever</td>
</tr>
</tab l e >
<tab l e >
"""
for item in the_Pythons . keys () :

"<tr><td>%s</td><td>%s</td></tr>"
%(item , the_Pythons [item])
"</tab le>"

23.2.5 HTMLTags
HTMLTags is a Python module that defines all valid HTML tags,
allowing you to generate HTML with Python, rather than simply em-
bedding it. All HTML tags must be written in uppercase to be recog-
nized.

Here is the obligatory example:

Listing 23.5: Generating HTML via HTMLTags
head = HEAD()

23.2. KARRIGELL WEB FRAMEWORK 175

head <= LINK(r e l=" S ty l e sh e e t " , h r e f=" . . / doc . c s s ")
head <= TITLE(’ Record� c o l l e c t i o n ’)+ s t y l e s h e e t

body = BODY()
body <= H1(’My� record � c o l l e c t i o n ’)

t ab l e = TABLE(Class=" content ")
t ab l e <= TR(TH(’ T i t l e ’)+TH(’ Ar t i s t ’))
for r e c in r e co rd s :

tab le<=TR(TD(rec . t i t l e , Class=" t i t l e ")+TD(rec . a r t i s t , Class=" Ar t i s t ")
body <= tab l e

print HTML(head+body)

23.2.6 Template engine integration
There isn’t much I can say about template engines, other than Kar-
rigell Templates (KT) is a built-in engine that uses Python for most of
the processing operations. However, you can use KT to include other
templates and specify translation strings, which are then passed to the
Karrigell translation engine. To use other engines, you simply use the
syntax necessary to add it to the associated Python script, just like a
normal program.

23.2.7 Karrigell Templates
Karrigell Templates are designed for use with Karrigell Services and
Python scripts. An example of KT is in Listing 23.6.

Listing 23.6: Karrigell Template
<html>
<head>
<l ink rel=" s t y l e s h e e t " href=" $ th i s . ba s eu r l / c s s /my. c s s ">
<t i t l e>MyApp $data . t i t l e</ t i t l e>
</head>
<body>
@[$data . bodytmpl]
<hr>

176 CHAPTER 23. DEVELOPING FOR THE WEB

<i>_[Powered by Ka r r i g e l l]</ i>
<p />
</body>
</html>

The body contains the special tag @[$data.bodytmpl], which is
actually a call to another template, which simply contains the HTML
line <h1>Welcome to $data.who home page!<h1>.

If setup in Karrigell correctly (I haven’t shown the entire process),
when the template is called, it identifies what language the user’s
browser is set to and provides a different output based on the language,
as shown in Listing 23.7.

Listing 23.7: HTML Output of Karrigell Template
<!��Browser s e t to Eng l i sh��>
<html>
<head>
<l ink rel=" s t y l e s h e e t " href="/ c s s /my. c s s ">
<t i t l e>MyApp � home</ t i t l e>
</head>
<body>
<h1>Welcome to my home page !</h1>
<hr>
<i>Powered by Ka r r i g e l l</ i>
<p />
</body>
</html>

<!��Browser s e t to French��>
<html>
<head>
<l ink rel=" s t y l e s h e e t " href="/ c s s /my. c s s ">
<t i t l e>MyApp � home</ t i t l e>
</head>
<body>
<h1>Welcome to my home page !</h1>
<hr>
<i>MotorisÃ© par Ka r r i g e l l</ i>

