
INTRODUCTION TO PYTHON

For Scientists and Engineers

By: Sandeep Nagar

www.bookmuft.com

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

2

Introduction to Python: For Scientists

and Engineers

Dr. Sandeep Nagar

Tuesday 8th March, 2016

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

2

Contents

1 Introduction to pythonic way of life 11

1.1 Introduction . 11

1.2 History . 12

1.3 Python and Engineering . 12

1.4 Modular programming . 13

1.5 summary . 14

2 Introduction to basics of python 15

2.1 Introduction to python as an interpreted language 15

2.2 Installation . 17

2.3 Python as a calculator . 17

2.4 Modules . 18

2.4.1 Using a module . 19

2.5 Summary . 19

3 Data types 21

3.1 Introduction to Various types of data 21

3.2 Logical . 21

3.3 Numeric . 22

3.3.1 Integer . 22

3.3.2 Floating point numbers 24

3.3.3 complex Numbers . 25

3.4 Sequences . 26

3.4.1 String . 26

3

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

3.4.2 list and tuples . 27

3.5 Set and Frozen Set . 28

3.6 Mappings . 28

3.7 Null object . 29

3.8 Summary . 29

4 Operators 31

4.1 Introduction . 31

4.2 Concept of variables . 32

4.2.1 Rules of naming variables 33

4.3 Assignment Operator . 34

4.4 Arithmetic operators . 35

4.5 Changing and defining data type 37

4.6 Order of usage . 37

4.7 Logical operators . 37

4.8 Membership Operator . 38

4.9 Identity Operator . 39

4.10 Bitwise operators . 40

4.10.1 Using bitwise operations 41

4.11 Summary . 42

5 Arrays 43

5.1 Introduction . 43

5.2 Numpy . 44

5.3 ndarray . 45

5.4 Automatic creation of arrays 47

5.4.1 zeros . 47

5.4.2 ones . 48

5.4.3 ones like . 48

5.4.4 empty . 48

5.4.5 empty like . 49

5.4.6 eye . 49

5.4.7 identity . 50

5.4.8 full . 50

5.4.9 full like . 50

5.4.10 random . 51

5.4.11 diagonal . 53

5.5 Numerical ranges . 54

5.5.1 arange . 54

5.5.2 linspace . 55

4

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

5.5.3 logspace . 55
5.5.4 meshgrid . 56
5.5.5 mgrid and ogrid . 57
5.5.6 tile . 58

5.6 Broadcasting . 59
5.7 Indexing . 60
5.8 Slicing . 61
5.9 Copies and views . 63
5.10 Masking . 64

5.10.1 Fancy indexing . 64
5.10.2 Indexing with Boolean arrays 65

5.11 Arrays are not matrices . 65
5.12 Some basic operations . 69

5.12.1 sum . 69
5.12.2 Minimum and maximum 70
5.12.3 Statistics: mean median and standard deviation . . . 71
5.12.4 sort . 71
5.12.5 Rounding off . 72

5.13 asarray and asmatrix . 73
5.14 Summary . 73

6 Plotting 75
6.1 Introduction . 75
6.2 Matplotlib . 76

6.2.1 Build Dependencies 77
6.2.2 pylab versus pyplot . 77

6.3 Plotting basic plots . 78
6.3.1 Plotting more than one graph on same axes 80
6.3.2 Various features of a plot 80

6.4 Setting up to properties . 85
6.5 Histograms . 86
6.6 Bar charts . 87
6.7 Error Bar Charts . 89
6.8 Scatter plot . 91
6.9 Pie Chart . 92
6.10 Polar Plots . 93
6.11 Decorating plots with text, arrows and annotations 94
6.12 Subplots . 96
6.13 Saving plot to a file . 97
6.14 Displaying plots on web application servers 98

5

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

6.15 Working with matplotlib in object mode 100

6.16 Logarithmic plots . 102

6.17 Two plots on same figure with atleast one axis different . . . 104

6.18 Contour plots . 105

6.19 3D plotting in matplotlib . 107

6.19.1 Line and scatter plots 107

6.19.2 Wiremesh and Surface plots 109

6.19.3 Contour plots in 3D 111

6.19.4 Quiver plots . 112

6.20 Other libraries for plotting data 113

6.20.1 Plotly . 114

6.21 Summary . 115

7 File I/O 117

7.1 Introduction . 117

7.2 Reading input from keyboard 117

7.2.1 input and raw input 117

7.3 file object . 118

7.4 file object’s attributes . 119

7.5 Reading and writing to files 120

7.6 Buffering . 121

7.7 Summary . 122

8 Functions and Loops 123

8.1 Introduction . 123

8.2 Defining functions . 123

8.2.1 Function name . 124

8.2.2 Descriptive string . 124

8.2.3 Indented block of statements 124

8.2.4 return statement . 125

8.3 Multi-input multi-output functions 126

8.4 Local and Global variables . 126

8.5 Concept of loops . 126

8.6 for loop . 127

8.7 if-else loop . 129

8.8 while loop . 130

8.9 Infinite loops . 132

8.10 while-else . 132

8.11 Summary . 133

6

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

9 Numerical Computing formalism 135
9.1 Introduction . 135
9.2 Physical problems . 136
9.3 Defining a model . 136
9.4 Python Packages . 139
9.5 Summary . 139

7

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

License information
License type:
Attribution-NonCommercial-ShareAlike 4.0 Inter-
national License
Present book is presented under Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International
license under which:
You are free to:
Share — copy and redistribute the material in any medium
or format Adapt — remix, transform, and build upon the
material
More information at http://creativecommons.org/

licenses/by-nc-sa/4.0/

8

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Dedicated to two beautiful ladies in
my life, Rashmi and Aliya

9

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

10

1
Introduction to pythonic way of life

1.1 Introduction

Python emerged as a leader
amongst well established and opti-
mized languages like C, C++, Java
for very simple reasons. Fabrica-
tion of python incorporates the phi-
losophy that complex tasks can be
done in simple ways. We tend to
think that complex problems needs
complex pathways to produce com-
plex solutions. Python was fabri-
cated with exactly opposite philos-
ophy. Python was made to have an extremely flat learning curve and de-
velopment process for software engineers. At the same time it was framed
keeping in mind the power of Open Source movement, which helped in ex-
panding its capabilities at amazing pace. Being open source in nature, peo-
ple could make small programs and share amongst each other with ease.
Group of programs to perform various tasks make up a module/package.
There are over 57989 module till date (Tuesday 8th March, 2016), which has
been submitted by equally large number of developers around the world.
This made python jump rapidly amongst computer science community and
finally grab number one position as the most favored programming language.

11

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

1.2 History

Development of python programming language dates back to 1980s. Its
implementation was started by Guido van Rossum at CWI in the Nether-
lands in December 1989. This was an era when computing devices were
becomes powerful and reliable every day. Python 1.0 was released to public
in 1994, Python 2.0 in 2000 and Python 3.0 in 2008 but Python 3 was not
made to be back compatible with Python 2 which made it less usable to
users who were already developing with Python 2. This made a lot of devel-
opers stick to Python 2 even now with very few taker of Python 3 in general.

Python derives its philosophy from ABC language to a large extent.
Synatx structure was largely derived from C and UNIX’s Bourne shell envi-
ronment served as inspiration for interpretative nature of the working envi-
ronment. It also used a lot of other concepts from a variety of languages to
make itself a robust multipurpose, object-oriented, high-level programming
language. A high level programming language is the one which has strong
abstraction from the details of computer. An object oriented programming
language is the one which deals with data as an object on which differ-
ent methods act, to produce a desired result. The abstract nature of objects
makes it possible to invent objects of our choice and apply the programming
concepts for a variety of applications.

1.3 Python and Engineering

Engineering problems employ numerical computations both at small scale
and large scales. Hence the requirements of engineering application require
a programming languages to fit well in both these regimes. There are very
few languages which can boast these qualities and python is definitely a
winner here. While running large computational tasks on bigger computa-
tional architectures, memory management, speed and reliability are the key
parameters. Python being interpretative language is generally considered to
be a slower options in this regard. But its ability to use faster codes written
in C, Java and Fortran using interlinking packages cython, jython and f2p,
speed intensive tasks can be run in native language within a python code.
This relieved a lot of coders around the world who wondered if already op-
timized codes must be re-written in python.

12

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Another aspect of engineering problems is ability of a programming lan-
guages to communicate with physical devices efficiently. Electronic devices
are connected via wires, blue-tooth, wireless and Internet. Using an ap-
propriate python module, one can connect to a compatible device to de-
rive data from it and then visualize it in desired platform. A variety of
micro-controllers (like Arduino) allow python to run its hardware with ease.
Micro-computers like Raspberry Pi allow running python programs access-
ing the input-output devices. This enables cost effective prototyping of an
engineering problem.

Users of MATLAB R© argue that Simulink is one of the easiest way of
prototyping and simulating a machine. Scilab also provide a similar platform
called Xcos. Python still lacks this ability and budding programmers from
coming generations can take this up as a challenge. A large community of
developers are eagerly waiting for such a solution.

1.4 Modular programming

Modular nature of python programming incorporates the complex tasks
being divided into small modules which seamlessly interact with each other.
This enables both, development and debugging, easier. Modules can simply
be imported to enables the use of various functions.

Python comes with thousands of modules to perform various tasks. Some
of them are listed in table 1.1

Package name Meaning Purpose

numpy numerical python Numerical computation
scipy Scientific python Scientific computations
sympy Symbolic python Symbolic computing
matplotlib Mathematical Plotting Library For plotting graphs

Table 1.1: Python modules

There are thousands of packages available for download at website for
python package index https://pypi.python.org/pypi/pip. Installing
packages can be quite tedious job when one needs to install them in proper
directories and assign the installation paths at proper places. To make life

13

https://pypi.python.org/pypi/pip

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

simple for developer working with ubuntu, one simply needs to write

1 $ sudo pip i n s t a l l numpy

Above command install numpy at proper place. Similarly, other packages
should be installed as and when required. It is important to note that
whereas modern day personal computer (PC) offers large memory to use,
micro-computers like Raspberry Pi has limited memory. Hence judicious use
of these memory resources is highly recommended. Since all modules occupy
some memory, hence they should be installed on need-to-install basis. Also
they should be imported in the program as and when required. Python
allows selective import if specific functions to optimize memory usage. It is
considered a good practice to write programs which avoid wasteful use of
resources.

Mentioning use of each modules is beyond the scope of present book. Mod-
ules will be introduced as per requirement of the topic. User is encourage
of check various modules and their documentation for usage. A general use
of modules and their function will be dealt at later point in present book.

1.5 summary

Python has gained a lot of attention world-wide owing to its flat learning
and steep development curves. It has gained number one spot in recent
times in terms of popularity and choice of programming language. Owing
to a large base of developers due to open-source model, it has a rich library
of modules for various tasks required to solve an engineering problem at
hand. Hence python educated engineers can fulfill the demands of modern
industry which demands fast and efficient solutions to their problems.

14

2
Introduction to basics of python

2.1 Introduction to python as an interpreted lan-
guage

Python is an interpreted language
as opposed to compiled languages
like C, C++, Java etc. Each line
of code is interpreted and executed
one by one, as per their order. This
makes the architecture of computa-
tion quite different than traditional
languages. For example, suppose
line 5 of a python program has syn-
tax error, in this case the program
will executes all commands till line
4 and will then show an error. In case of compiled languages, the compilation
steps would show error and program will not run at all. To understand this
difference elaborately one needs to understand the processes of compilation
and interpretation.

In the case of compiled languages, a compiler translates the human read-
able code into machine readable assembly language. Machine readable code
is are called object code given by object files. These object files can be run
directly on machines. As an example lets assume that code is given as:

1 /∗ Hel lo World program ∗/
2

15

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

3 #inc lude<s t d i o . h>
4

5 main ()
6 {
7 p r i n t f (”He l lo World”) ;
8

9 }

Suppose this code is saved as hello.c. To compile this code on UNIX
like machine with gcc compiler, we give command as:

gcc hello.c -o hello

This creates an object code named hello. During compilation, the
header stdio.h is used to understand the input-output statements such
as printf("Hello World").The object code can then be executed by writ-
ing on UNIX terminal:

./hello

The object file can be shared by the user with anybody and if the mi-
croprocessor architecture is same as that of user then, it will be executed
uniformly.

But this is not the case with python. Being interpreted language, it
employs an interpreter which interprets the code into an intermediate code
and then to machine code. An interpreter reads the source text of a program,
analyzes it, and executes it one line at a time. This process is very slow as
the interpreter spends a lot of time in analyzing strings of characters to
figure out what they mean. For example, to type hello world as done by
above C program, a python program will simply require:

1 pr in t ” h e l l o world”

In just one line, an interpreter scans the world print and looks for what
it means. In python interpreter, it means to print to a particular device.
A device can be a computer terminal, printer plotter etc. By default, its

16

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

a computer terminal. Print commands also demands arguments which is
scanned in second step as a string hello world (A string in python can be
enclosed in ” or ””). Hence the complete interpretation of the line is to print
the string hello world on a computer terminal.

When the programs compose of hundreds and thousands of lines, a com-
pilation process will yield a faster result because the object code needs to
be only compiled once and then run directly on microprocessor. Whereas
an interpreted code will check for interpretations each time it needs to be
processed.

Despite these odds of being inherently slow, it has becomes favorite amongst
scientists and engineers for being extremely simple, intuitive and powerful
due to rich library of modules for various computational tasks. Present
chapter will discuss some of them in detail.

2.2 Installation

To work with python, it must be installed first. Present book is written us-
ing Ubuntu 14.04 system where python comes per-installed. In case of other
systems, user is advised to visit (https://www.python.org/downloads/)
and download python 2.x where x shows the version number of python.
Users who wish to work in Integrated Development Environment (IDEs)
needs to explore the website at (http://en.wikipedia.org/wiki/Comparison_
of_integrated_development_environments#Python). Canopy is quite con-
venient python IDE and its academic version is free for students and teach-
ers at an educational institution. User is free to install any one of them
and run python commands at command prompt or save a script file with
filename.py extension and then run the command python filename.py

at the command prompt.

2.3 Python as a calculator

Python prompt can be used as a calculator in its simplest form. On the
python command prompt, following commands can be checked for 2 + 4

1 >2+4
2 >6
3

4 >2+4.

17

https://www.python.org/downloads/
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python
http://en.wikipedia.org/wiki/Comparison_of_integrated_development_environments#Python

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

5 >6.0

As per calculations above, 2 + 4 yields 6 whereas 2 + 4. yields 6.0. 6 and
6.0 are two different objects for a computer. 6 is an integer stored in lesser
space than 6.0, which is a floating point number. Just like two types of
numerical data, data can be classified in different kinds of objects (need not
be numeric). Python interprets everything as an object. An object, when
defined, needs to be defined with its attributes/properties. For example, a
floating point number has different rules of addition, substation, printing on
screen, representation of graphs etc, when compared to an integer. Hence
a floating point number is quite different data type when compared to an
integer. A detailed list of data types will be discussed later.

It is also important to note than to define a floating point number 4.0,
writing even 4. is sufficient. 4.0 and 4. are equivalent. similarly 0.4 and
.4 both mean the mathematical number 0.4. Next two chapters will discuss
various types of data and various operators that can operate on these data
types.

2.4 Modules

Python multi-verse has expanded with thousands of modules and being
open source, most of them are readily available too. Modules are collec-
tion of python programs to accomplish specific tasks. For example, numpy
has various facilities for numerical computation which was further expanded
into scipy for scientific computation in general. matplotlib is acronym
for mathematical plotting library, which has rich features to plot a vari-
ety of publication-ready graphs. pandas is the library for data analysis,
scikit-learn for machine learning, scikit-image for image processing
sympy for symbolic computing etc.

To use a module, it must be installed in the machine first. Installation in-
cludes downloading the files properly into an appropriate folder or directory,
unzipping it and defining proper paths. There is an easier way for Ubuntu
users where a short command line base program pip performs these tasks
seamlessly.

18

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Running a simple command:

sudo apt-get install python-pip

installs the program pip first. It can then be used to install a package
say numpy by simply issuing the command

pip install numpy

Replacing the name of package with the desired package will simply do
the trick of installing the packages hassle free.

Installing scipy stack is most useful for the present book because it in-
stall a variety of programs which will be used henceforth. It can be installed
by issuing the command on an Ubuntu terminal:

$ sudo apt-get install python-numpy python-scipy

python-matplotlib ipython ipython-notebook

python-pandas python-sympy python-nose

Above command in a single line installs numpy, scipy, matplotlib,
ipython, ipython-notebook, pandas, sympy, nose.

2.4.1 Using a module

To use a particular module and its functionalities, one must first import
it inside the workspace.

2.5 Summary

Python has an extremely flat learning curves owning to the fact that its
interpretive language due to which can be insert instructions line by line and
run them subsequently. This methods avoids compilation and subsequent
errors which prove to be major stumbling block for a beginner, who has
limited knowledge of the inner workings of the programming language.

19

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

20

3
Data types

3.1 Introduction to Various types of data

Modern computers distinguish
data as various types. Data can
be numbers, characters, strings (a
group of characters) etc. In python,
one can defines new data types
as and when required. There as
some built-in data types for han-
dling numbers and characters. Dif-
ferent data types occupy different
amount of memory. It is judicious
to understand the needs and choose
a data type accordingly. Data type also determines the accuracy of the an-
swer. Following sections will discuss various built-in data types in python.

3.2 Logical

logical: This type of data stores boolean values True or False boolean
values and can be operated by boolean operators like AND, OR etc. Most
programming languages use the values 1 or 0 for boolean values but python
differs in this approach.

21

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

3.3 Numeric

Numeric: There are four types of numeric data types:

• int : Integers

• long : long integers

• float : Floating point numbers

• complex : complex numbers

3.3.1 Integer

Python has arbitrary precision for float, long, complex, hence the
limit to length of these numbers is subject to availability of memory. The
positive side of this architecture is that one is not limited to a range of num-
bers. But one must always ensure that sufficient memory is available during
the calculation, to avoid erroneous results. Python 2 limits the size of int
to bytes (to same size as C programming language), whereas Python 3 has
merged int and long as int. On a 32-bit system, Python 2 stores int as
32 bits. The range of integers can be obtained using the module sys, whose
function maxint returns the value of maximum values of integer stored by
python.

1 >>>import sys
2 >>>sys . maxint
3 2147483647
4 >>>sys . maxint+1
5 2147483648L
6 >>>−1−sys . maxint
7 −2147483648
8

As shown above the maximum value for integer for a 32 bt machine
is 2147483647. When this value is incremented by 1, it is automatically
upgraded to a long type (which stores numbers with arbitrary precision).
This is indicated by L mentioned after writing the number :2147483648L.
The minimum value of integer is given by -1-sys.maxint which is given as
−2147483648.

22

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Python doesn’t have built-in unsigned types for integers as with some
other programming languages like C. To make a negative number positive,
one can simply use abs() function like abs(-1) is obtained as 1.

The in-built function type() presents the data type as follows:

1 >>>type (−1)
2 i n t
3

4 >>>type (1)
5 i n t
6

7 >>>type (sys . maxint+1)
8 long

As seen in above examples, python interpreter allocates data type dynam-
ically i.e. it allocates the data type to any integer more than 2147483647 as
long without any user input. This is quite convenient for a programmer.

It is worth mentioning that small numbers can be stored as long. 0L is
different than) as it is stored as long types as opposed to an int type. From
memory usage point of view, integers should be used as integers, wherever
required. long are stored in bigger memory space and also consume more
time while processing.

1 >>>type (0L)
2 long
3

4 >>>type (0)
5 i n t
6

7 >>>pr in t sys . g e t s i z e o f
(1000)

8 48

Function sys.getsizeof() in module sys gives the number of bytes re-
quired to store a particular number. This is a handy function to know and
control the numerical data storage.

23

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

3.3.2 Floating point numbers

In computing, floating point notation is a scheme of representing an
approximation of a mathematical real number. This scheme can trade-
off between range and precision. A real number is usually written with a
decimal point. For example, 2 is an integer whereas 2.0 is a real number.
These two numbers are quite different for a computer. Whereas 2 will be
stored as int type, 2.0 will be stored as float type.

1 >>>type (2)
2 i n t
3

4 >>>type (2 . 0)
5 f l o a t

The issue with floating point number based arithmetic is that the answer
is an approximation of real number since real numbers are defined for 10
as their base whereas computer works with numbers where 2 is used as the
base. For example: 0.123 is defined as

0.123→ 1

101
+

2

102
+

3

103

in the number system with base 10 whereas in number system with base 2,
it is represented as

0.123→ 1

21
+

2

22
+

3

23

Above calculation shows that 0.1232 = 0.13510. If one uses more number
of bits to store the value, one gets a better approximation of the real num-
ber, but one is always limited to use approximated values instead of real
values.

1 >>>from decimal import Decimal
2 >>>Decimal (0 . 1 23)
3 Decimal (’ 0.1229999999999999982236431605997495353221893310546875 ’

)
4 >>>Decimal (1 . 2345)
5 Decimal (’ 1.2344999999999999307220832633902318775653839111328125 ’

)
6 >>>type (Decimal (0 . 1 23))
7 Out [3 9] : decimal . Decimal

24

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

One can use the decimal module which has a function Decimal() that re-
turns the number as stored by the computer. As seen above 0.123 is stored as
0.1229999999999999982236431605997495353221893310546875 which is still
an approximation of the real number 0.123. For most cases, the error is
insignificant and one can ignore the fact that calculations using digital com-
puter (running on binary system of number) has introduced some error. But
for some cases, this error is significant and one must take proper measures
to calculate this error and counter the same.

1 >>>sys . g e t s i z e o f (Decimal (0 . 1 23))
2 72
3 >>>sys . g e t s i z e o f (0 . 1 23)
4 24
5 >>>pr in t ”%e” %(Decimal (0 . 1 23))
6 1.230000 e−01
7 >>>pr in t ”%f ” %(0.123)
8 0.123000

As seen above, Decimal(0.123) occupies 72 bits and hence is more ac-
curate approximation as compared to 0.123 which occupies 24 bits. Also
floating point numbers can be printed as numbers with decimal points using
formating argument %f or they can also be printed in scientific notation as
1.23× 10−1 using formatting argument %e.

3.3.3 complex Numbers

Complex numbers are extensively used in science and engineering studies.
The imaginary part of a complex number has important information about
phase of a signal. Python enables the use of complex numbers by creating
an object called complex.

1 >>>type (2+3 j)
2 complex
3 >>>sys . g e t s i z e o f (2)
4 24
5 >>>sys . g e t s i z e o f (2+3 j)
6 32
7 >>>complex (2 , 3)

25

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

8 (2+3 j)

As seen above a complex number is defined in two parts: a+bj where a

represents the real part, b represents the imaginary part and j=
√
−1. They

occupy more space in memory, to accommodate the information about real
and imaginary parts. complex(x,y) is another way of defining a complex
number where an ordered pair of two real number is defined, which make
up real and imaginary part. Here the ordering is important as x makes the
real part and y makes the imaginary part.

3.4 Sequences

Any symbol which requires storage is known as a character. Everything
that appears on computer screen and printed papers, is considered character
in programming languages. This includes ASCII and extended ASCII char-
acters. Examples of characters include letters, numeral digits, whitespace,
punctuation marks, exclamation mark etc. In general, all keys on keyboard,
produce characters.

For the purpose of communicating between computing devices, characters
are encoded in well defined internationally accepted formats (like ASCII,UTF-
8 etc) which assigns each character to a string of binary numbers. Two ex-
amples of usual encodings are ASCII and the UTF-8 encoding for Unicode.
All programming languages must be able to decode and handle internation-
ally accepted characters. Python also deal with characters using data type
string, list, tuple.

3.4.1 String

A string is simply a sequence of 8 bit characters. Lower case and upper
case characters has different encoding hence strings are case sensitive.

1 >>>type (’ a ’)
2 s t r
3 >>>type (’ abba ’)
4 s t r
5 >>>type (”a”)
6 s t r
7 >>>type (”abba”)

26

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

8 s t r

Here we defined a string of one and four characters respectively. It
is important to remember that white-space is also a character. Hence,
Hello world! has 12 characters namely h,e,l,l,o, ,w,o,r,l,d,!. While
defining strings, we enclose the characters under ’’ or "". When a string
has to span in multiple lines than triple quotes are used like:

1 >>>pr in t ””””Python i s an i n t e r p r e t i v e language
2 . . . I t i s one o f the f i n e s t ones in i t s category ”””
3 Python i s an i n t e r p r e t i v e language
4 I t i s one o f the f i n e s t ones in i t s category

3.4.2 list and tuples

A list is simply a group of objects, irrespective of its data type.

1 >>>type ((’ a ’ ,1 ,2 .0 ,3+4 j))
2 tup l e
3

4 >>>type ([’ a ’ ,1 ,2 .0 ,3+4 j])
5 l i s t

The only difference in thier definitions is the type of brackets enclosing
them: list is defined with [] brackets and tuple is defined with () brackets.
As seen above a tuple and list is defined with a string, integer, float and
complex number data type as its elements. The only difference between
list and tuples are that tuples are immutable lists i.e. their elements, once
defined, cannot be altered. Elements of a list can be altered using their
indices. More information about how this is done is given in next chapter
where operations on lists have been defined. In scientific computing, uni-
versal constants can be defined as a tuple and then can be accessed in a
program using its index.

27

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

3.5 Set and Frozen Set

The set data type is implementation of mathematical set. It is an un-
ordered collection of objects. Unlike sequence objects like list and tuple,
where elements are ordered, sets do not have such requirements. Sets do not
permit duplicity in occurrence of an element, i.e an element wither exist 0
or 1 times.

1 >>>s e t ([’h ’ , ’ e ’ , ’ l ’ , ’ l ’ , ’ o ’ ,1 ,2 .0 ,3+4 j])
2 {1 , 2 . 0 , ’ e ’ , ’ h ’ , ’ l ’ , ’ o ’ , (3+4 j) }
3 >>>f r o z e n s e t ([’ h ’ ,0 ,1 .0 ,2+3 j])
4 f r o z e n s e t ({0 , ’h ’ , (2+3 j) , 1 . 0})

Please note that an since l occurred two times while defining the set, it
was gives only one membership. Set operations are discussed in detail in
subsequent chapter. A frozen set is simply immutable set.

3.6 Mappings

Mapping is a scheme of defining data where each element is identified with
a key called ”hash tag”. The element can be accessed by referring to the
key. One of the data type in this category is a dictionary.

A dictionary is an unordered pair of values associated with keys. These
values are accessed with keys instead of index. These keys have to be hash-
able like integers, floating point numbers, strings, tuples, and frozensets.
Lists, dictionaries, and sets other than frozensets are not hashable. An
example of a dictionary is given below:

1 >>>d i c t { ’ a ’ : 1 , ’b ’ : 10}
2 { ’ a ’ : 1 , ’b ’ : 10}
3

4 >>> ’ a ’ in d i c t ([(”a” , 1) , (”b” , 10)])
5 True
6

7 >>> ’ b ’ in d i c t ([(”a” , 1) , (”b” , 10)])
8 True
9

10 >>> ’ c ’ in d i c t ([(”a” , 1) , (”b” , 10)])
11 False

28

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

In example above, we created a dictionary containing two characters a

and b identified by two keys 1 and 10. Subsequent commands checks if
characters a, b, c are past of the dictionary to which we get an answer
True for a and b but False for c. A variety of operators can operate on
dictionaries as discussed in subsequent chapter.

3.7 Null object

None is a null object. Null objects in other programming languages like C,
Java, PhP are given by the keyword null, but in python its is denoted by the
keyword None. It refers to non-functionality i.e. no behavior for the object
with which it is associated. It is used in cases where we wish to perform an
action which may or may not work. Using None, one can check the state
of action at later point. help(None) and http://www.pythoncentral.io/

python-null-equivalent-none/ gives useful insights in its use.

3.8 Summary

Object oriented programming uses the fact that all computing entities are
merely objects which interact with each other as per their defined behavior.
Some built-in data types have been discussed in present chapter. Some data
types are defined inside the modules. One can define ones own data types
and define its properties. Before going to these advanced topics, ti will be
useful to know how operators operate on various kinds of data. This will be
subject of next chapter.

29

http://www.pythoncentral.io/python-null-equivalent-none/
http://www.pythoncentral.io/python-null-equivalent-none/

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

30

4
Operators

4.1 Introduction

Operators work in similar fashion
as mathematical functions. They
provide a relationship between two
different domains. For example,
multiplication operator makes an
ordered pair of operands (data on
which operator works) and produce
another data point. This can be
done to any number of data points.
In this way, operator transforms
data from domain of operands to
domain of results.

In the domain of numerical calculations, one needs to use basic and com-
plex mathematical functions/operators like multiplication (*), addition (+),
subtraction (-), division (/), Modulus (%), Exponentiation (**) etc. These
operators can be combined in complex manner to perform an arithmetic
operation. Depending on data type, they define thier functionality. For ex-
ample, on numeric data + performs numeric addition where as on a string
it will perform concatenation.

1 >>> 2+3
2 5
3 >>> ’ a ’ + ’b ’

31

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

4 ’ ab ’
5 >>> ” h e l l o ” + ” ” + ”world” + ” ! ”
6 ’ h e l l o world !

There are a variety of operators which can operate on data types as dis-
cussed in chapter 3.

Following section will discuss a variety of built-in operators like arithmetic,
logical/boolean etc. Please note that the field of operators is not limited to
discussion in present chapter. Modules define new data types for which
new operators are defined. We shall confine our discussion to built-in basic
operators only.

4.2 Concept of variables

Due to operators acting on data, its values can change during the course
of computation. To store values temporarily (i.e. during the course of com-
putation), we use variables. Variables store a particular value at a memory
location and address it with a symbol or set of symbols (called strings). For
example: one can store the value of 0.12 as a variable a and then use it in
an equation like

a2 + 10× a

.

1 >>>a=0.12
2 >>>answer = (a ∗∗2) + (10 ∗ a)
3 >>>pr in t answer
4 1 .2144
5 >>>type (a)
6 f l o a t

Here the numerical value 0.12 is stored at a memory location known by
the name a and this is called by subsequent equation defined using a vari-
able name answer, which when printed, prints the value stored in it. The
values stored is floating point number. The type of object can be known by
a function type() which takes the variable name as its argument.

32

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Python variables needs not be explicitly defined for their type.

4.2.1 Rules of naming variables

• Must begin with a letter (a - z, A - B) or underscore ()

• rest of the characters can be letters, numbers or

• Names are case sensitive

• There is no limit to length of names but its wise to keep them short
and meaningful

• keywords cannot be used as variable names.

Using the module keyword, one can obtain the list of keywords using the
function keyword.kwlist. The code given in keyword.py gives a list of
keywords, which cannot be used as variable names.

1 import keyword
2

3 pr in t ”Python keywords : ” , keyword . kw l i s t

Keyword.py

The result of running this code is given by:

1 Python keywords : [’ and ’ , ’ as ’ , ’ a s s e r t ’ , ’ break ’ , ’ c l a s s ’ , ’
cont inue ’ , ’ de f ’ , ’ d e l ’ , ’ e l i f ’ , ’ e l s e ’ , ’ except ’ , ’ exec ’ , ’
f i n a l l y ’ , ’ f o r ’ , ’ from ’ , ’ g l oba l ’ , ’ i f ’ , ’ import ’ , ’ in ’ , ’ i s ’
, ’ lambda ’ , ’ not ’ , ’ or ’ , ’ pass ’ , ’ p r i n t ’ , ’ r a i s e ’ , ’ r e turn ’ ,
’ t ry ’ , ’ whi l e ’ , ’ with ’ , ’ y i e l d ’]

Similarly, to check if a particular variable name is a keyword or not, one
can use the function keyword.iskeyword(). As shown below, if the input
string is a keyword then the value True is returned, otherwise False is
returned.

1 >>>import keyword
2 >>>keyword . iskeyword (’ lambda ’)
3 True
4 >>>keyword . iskeyword (’ lamb ’)
5 False

33

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

4.3 Assignment Operator

The concept of variables used a symbol = which is not same as ”equal to”
in mathematics. Instead its one of the assignment operator. Below is the
list of assignment operators.

Operator Example
= v = a+b

+= v +=a ⇒ v = v + a

-= v -=a ⇒ v = v - a

/= v /=a ⇒ v = v / a

//= v //=a ⇒ v = v // a

*= v *=a ⇒ v = v * a

**= v **=a ⇒ v = v ** a

%= v %=a ⇒ v = v % a

Assignment operators are most frequently used feature on all kinds of
programs. Increment and decrement operators like += and -= respectively,
are used extensively where we need to proceed stepwise.

Multiple assignment within the same statement can be done using = op-
erator as follows:

1 a = b = c = 10
2 a
3 10
4 b
5 10
6 c
7 10

While assigning a value, its data type need not be explicitly defined. It
is judged by python interpreter by the data itself. i.e. 4.0 will be taken as
floating point number, 4 will be taken as integer, A single character ’a’ or a
group of characters like ’sandeep’ will be taken as a string. This is shows in
the following example of code.

1 a = 4 . 0 ; type (a)
2 f l o a t
3

4 a = 4 ; type (a)

34

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

5 i n t
6

7 a = 4e1 ; type (a)
8 f l o a t
9

10 b = ’ a ’ ; type (a)
11 i n t
12

13 b = ’ a ’ ; type (b)
14 s t r
15

16 b = ’ sandeep ’ ; type (b)
17 s t r

4e1 denotes the engineering notation for number 4× 101.

4.4 Arithmetic operators

Mathematical operators like +,-,%,/ work by the same logic as in math-
ematics. ab is written as a**b and floor division is given by // symbols.

1 >>>4.2 % 2 .3
2 1.9000000000000004
3

4 >>>4.2 / 2 .3
5 1.8260869565217392
6

7 >>>4.2 + 2 .3
8 6 .5
9

10 >>>4.2 − 2 .3
11 1.9000000000000004
12

13 >>>4.2 ∗∗ 2
14 17 .64
15

16 >>>4.2 // 2 .3
17 1 .0

Some Arithmetic operators work on string and list object as well.

35

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

1 >>> ’ h e l l o ’ + ’ ’ + ’ world ’ + ’ ! ’
2 ’ h e l l o world ! ’
3 >>> [1 , 2 , 3] + [4 , 5 , 6]
4 [1 , 2 , 3 , 4 , 5 , 6]
5 >>> ’ h e l l o ’ ∗3
6 ’ h e l l o h e l l o h e l l o ’
7 >>> [1 , 2 , 3] ∗ 3
8 [1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3]
9 >>> ’ h e l l o ’ /3

10 Traceback (most r e c ent c a l l l a s t) :
11 F i l e ”<s td in>” , l i n e 1 , in <module>
12 TypeError : unsupported operand type (s) f o r / : ’ s t r ’ and ’ i n t ’
13 >>> [1 , 2 , 3] // 3
14 Traceback (most r e c ent c a l l l a s t) :
15 F i l e ”<s td in>” , l i n e 1 , in <module>
16 TypeError : unsupported operand type (s) f o r // : ’ l i s t ’ and ’ i n t ’
17 >>> ’ h e l l o ’ % 3
18 Traceback (most r e c ent c a l l l a s t) :
19 F i l e ”<s td in>” , l i n e 1 , in <module>
20 TypeError : not a l l arguments converted during s t r i n g formatt ing
21 >>> [1 , 2 , 3] % 3
22 Traceback (most r e c ent c a l l l a s t) :
23 F i l e ”<s td in>” , l i n e 1 , in <module>
24 TypeError : unsupported operand type (s) f o r %: ’ l i s t ’ and ’ i n t ’
25 >>> [1 , 2 , 3] − 3
26 Traceback (most r e c ent c a l l l a s t) :
27 F i l e ”<s td in>” , l i n e 1 , in <module>
28 TypeError : unsupported operand type (s) f o r −: ’ l i s t ’ and ’ i n t ’
29 >>> ’ h e l l o ’ − 3
30 Traceback (most r e c ent c a l l l a s t) :
31 F i l e ”<s td in>” , l i n e 1 , in <module>
32 TypeError : unsupported operand type (s) f o r −: ’ s t r ’ and ’ i n t ’

Using + and * operator on strings and list produce the effect of concate-
nation. Whereas + concatenates the two or more strings or list objects it is
operated upon, * concatenates them m number of times where m is an inte-
ger used after the operators. The behaviour of * on strings and lists can be
understood if one considers mathmatical multiplication in terms of addition
i.e. 2∗5 = 2+2+2+2+5. Hence multiplication with m means adding m times.

36

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

4.5 Changing and defining data type

Data types of objects can be changed as per their definitions.

1 >>>i n t (4 . 2345)
2 4
3

4 >>>i n t (4 . 7345)
5 4
6

7 >>> f l o a t (4)
8 4 .0
9

10 >>> f l o a t (’ sandeep ’)
11 −−
12 ValueError Traceback (most r e c en t c a l l l a s t)
13 <ipython−input−26−ebab53faf0bc> in <module>()
14 −−−−> 1 f l o a t (’ sandeep ’)
15

16 ValueError : could not convert s t r i n g to f l o a t : sandeep

4.6 Order of usage

Python follows PEMDAS (Parenthesis Exponents Multiplication Divi-
sion Addition Subtraction) order of operation. Hence, during a complex
calculation involving a number of arithmetic operators, entities are calcu-
lated in the order : Parenthesis → Exponents → Multiplication → Division
→ Addition → Subtraction.

1 >>> 5 + (6 − 5) ∗ 10 / (−1 / 9)
2 −5
3 >>> 5 ∗ 5 + 5 − 4 ∗∗ 2
4 14

4.7 Logical operators

Logical operators are supremely important for comparing the objects.
Operators used for comparison are called logical operators. Following is a
table of python’s logical operators:

37

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Operator Symbol Operator meaning Example
== equal to 1==1 is True, 1==2 is False

!= not equal to 1!=1 is False, 1==2 is True

<> not equal to 1==1 is False, 1==2 is True

< less than 1<2 is True, 2<1 is False

> greater than 1>2 is False, 2>1 is True

<= less than equal to 1<=1 is True, 1<=2 is True

>= greater than equal to 1>=1 is True, 1>=2 is False

The result of logical operators is either of the two binary objects aptly
named True and False. In some programming languages, binary operators
are represented as 1 and 0. They can also be compared for equality.

1 >>> not True
2 False
3 >>> a = True
4 >>> b = False
5 >>> a and b
6 False
7 >>> a or b
8 True
9 >>>

10 >>1 >= 2 == 2 >= 1
11 False
12 >>1 >= 2
13 False
14 >>>2 >= 1
15 True
16 >>>False == True
17 False
18 >>>False > True
19 False
20 >>>False < True
21 True

4.8 Membership Operator

Membership operator in checks if a value(s) of variables is a member of
specified sequence. If the member is found, it returns the boolean value
True, otherwise it returns False.

1 >>> ’ h e l l o ’ in ’ h e l l o world ’

38

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

2 True
3 >>> ’name ’ in ’ h e l l o world ’
4 False
5 >>> a=3
6 >>> b=[1 , 2 , 3 , 4 , 5]
7 >>> a in b
8 True
9 >>> 10 in b

10 False

Operator in is used extensively in checking conditions for loops. It is
one of the most convenient way to run a loop. One constructs a list of as
per a defined condition/formula and then runs a loop untill the condition is
satisfied. This approach will become smore clear on chapter for functions
and loops.

4.9 Identity Operator

To check if two values points to same type of object, an identify operator
is is used. It returns a boolean value True if objects on its either side are
same and return False otherwise.

1 >>> 1 i s 1
2 True
3 >>> 1 i s 1 . 0
4 False
5 >>> 1 i s 2
6 True

At line 1, both objects i.e. 1 are int type whereas at line 3, left hand
side has int and right hand side has float. Hence the result for 1 is 1.0

is given by boolean value False. At line 5, both 1 and 2 are int, hence the
result is true again.

is not operator is negation of result with is operator.

1 >>> 1 i s not 1 .0
2 True
3 >>> 1 i s not 1

39

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

4 False

4.10 Bitwise operators

All data is stored as bits in computers. If we can operate directly on bits,
it will provide great flexibility and fast computation. But it is difficult to
comprehend by humans since we are used to numerals defined in decimal
format rather than binary format. A list of bitwise operators is presented
below:

Bitwise Operator Description

>> Bitwise left shift

<< Bitwise right shift

& Bitwise AND

| Bitwise OR

˜ Bitwise not

• AND is 1 only if both of its inputs are 1, otherwise it’s 0.

• OR is 1 if one or both of its inputs are 1, otherwise it’s 0.

• XOR is 1 only if exactly one of its inputs are 1, otherwise it’s 0.

• NOT is 1 only if its input is 0, otherwise it’s 0.

Truth tables are useful in understanding thier operations.

AND 0 1

0 0 0
1 0 1

OR 0 1

0 0 1
1 1 1

XOR 0 1

0 0 1
1 1 0

NOT 0 1

1 0
The use of these operators is mentioned below

40

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

1 >>> pr in t bin (1) , oct (1) , hex (1)
2 0b1 01 0x1
3 >>> bin (10)
4 ’ 0b1010 ’
5 >>> bin (1)
6 ’ 0b1 ’
7 >>> 0b1010 >> 0b1
8 5
9 >>> bin (5)

10 ’ 0b101 ’
11 # 0b1010 trans forms in to 0b101 by s h i f t i n g one b i t s to r i g h t
12 >>> bin (2)
13 ’ 0b10 ’
14 >>> 0b1010 >> 0b10
15 2
16 >>> bin (2)
17 ’ 0b10 ’
18 # 0b1010 trans forms in to 0b10 by s h i f t i n g two b i t s to r i g h t
19 >>> 0b1010 << 0b1
20 20
21 >>> bin (20)
22 ’ 0b10100 ’
23 >>> 0b1010 << 0b10
24 40
25 >>> bin (40)
26 ’ 0b101000 ’
27 # here l e f t s h i f t i n g i s done by adding 0 s to r i g h t
28 >>> 0b1010 & 0b10
29 2
30 >>> bin (2)
31 ’ 0b10 ’
32 # AND (&) i s 1 only i f both o f i t s inputs are 1 , o therw i s e i t ’ s

0
33 # The zero b i t s in t h i s case e f f e c t i v e l y act as a f i l t e r ,

f o r c i n g the b i t s in the r e s u l t to be zero as we l l
34 >>> 0b1010 | 0b10
35 10
36 >>> bin (10)
37 ’ 0b1010 ’
38 OR i s 1 i f one or both o f i t s inputs are 1 , o therw i s e i t ’ s 0

4.10.1 Using bitwise operations

Bitwise operations find their use while dealing with hardware registers
in embedded systems. Every processor uses one or more registers (usually

41

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

a specific memory address) that control whether an interrupt is enabled or
disabled. When an interrupt is enabled, signals can be communicated. Inter-
rupts are enabled by setting the enable bit for that particular interrupt and
most importantly, not modifying any of the other bits in the register. When
an interrupt communicates with a data stream, it typically sets a bit in a sta-
tus register so that a single service routine can determine the precise reason
for the interrupt. Testing the individual bits allows for a fast decode of the
interrupt source. This is where bit operations comes handy. Shift operators
are used to shift the bits as per a formula whereas AND and OR operations
are used to check the status of bits at a specific location. The same concept
is used to alter the system file permission. In Linux file system, each file has
a number called its mode, which indicates the permission about accessing
the file. This integer can be retrieved in a program to know the status of
permissions for the file. Example: if ((mode & 128) != 0) {<do this>}

will check the mode by checking if an appropriate bit is 0, in 128 bit-system.
Bitwise operations are also preferred for their speed of operation since they
directly operate on bits in the memory.

4.11 Summary

Operators plays a very important part in computing as they provide the
backbone of defining pathways for computing. All mathematical functions
are expressed wither by individual operators or by combination of them. For
a programming language that caters to a variety of fields like science, engi-
neering, business, arts etc, a lot of different kinds of operators are needed.
Python is now being applied in various dimensions of life and maturing with
rich library of in-built as well as module wise operators.

42

5
Arrays

5.1 Introduction

Most often during scientific com-
putation, a series of numbers needs
to be operated upon together. The
list data type stores a number
of values within the same variable
name. All elements of list can be
accessed by their index. But indi-
vidual list elements can belong to
any data type. Hence a new kind
of object needs to be defined, simi-
lar to list, but which stores only nu-
meric values. This data type is called an array.

The numpy modules carries a unique object class called array. It carries
only one data type as per its initial definition in the program. The concept
of using arrays to store numerals, gave rise to a powerful idea of array
based computing. The origins of this method can be traced back to matrix
algebra. A matrix is also a collection of numbers. Similar to matrices,
arrays can be multi dimensional and can be used to be operated upon by
operators defined same as that for mathematical matrices. Using matrices,
problems involving a system of equations can be solved i.e. solving many
equations (which can even be coupled to each other) in one instance. Using

43

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

the method of indexing of elements, particular elements can be accessed for
operations. Using the concept of slicing, array dimensions can be altered
as per requirements. Using operators acting on this object, mathematical
formulations can be implemented. Present chapter will discuss the use of
arrays for mathematical computations.

5.2 Numpy

The numpy package contains various items which can be used for numeri-
cal computation, hence the name numerical python. NumPy originated from
Numeric which was originally created by Jim Hugunin along with contri-
butions from several other developers. Travis Oliphant created NumPy in
2005, by incorporating features of the competing Numarray into Numeric,
with extensive modifications. numpy is released under open source license.
Present chapter has been tested for version 1.8.2 (stable at 1 March 2015).

numpy can be installed on Ubuntu 14.04 by a simple pip program as

pip install numpy

To use, it can be imported and version number can be checked by:

1 >>> import numpy
2 >>> pr in t numpy . v e r s i on . v e r s i on
3 1 . 8 . 2

Line 1, import whole module named numpy for our use. Line 2 uses a
function version which further uses further a function version to find out
the installed version of numpy on the system. Users are encouraged to check
their version of python.

Python packages are installed at /usr/lib/python2.7/dist-packages/.
Here one can find numpy. To check the contents of the package, one can issue
UNIX shell commands as follows:

1 $cd / usr / l i b /python2 .7/ d i s t−packages /numpy
2 $ l s
3 add newdocs . py c o n f i g . pyc d i s t u t i l s f f t

i n i t . pyc matl ib . py oldnumeric setup . pyc ve r s i on . pyc

44

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

4 add newdocs . pyc core dual . py impo r t t o o l s . py
l i b matl ib . pyc polynomial t e s t i n g

5 compat c t yp e s l i b . py dual . pyc impo r t t o o l s . pyc
l i n a l g mat r i x l i b random t e s t s

6 c o n f i g . py c t yp e s l i b . pyc f2py i n i t . py
ma numarray setup . py ve r s i on . py

Now by issuing UNIX shell command cd numarray, one can see how
python programs are defined to work with arrays. Explanation of these
programs is beyond the scope of this introductory text on python, but the
digital adventurer would like to explore them on a text editor to understand
how modules work and in particular, how arrays in numpy works.

5.3 ndarray

ndarray is the main object of numpy, which is homogeneous multidimen-
sional array. It is termed homogeneous since it can contain only one data
type. Also it can be multidimensional as seen in examples below. They are
indexed by a tuple of positive integers.

1 >>>a = [1 , 2 , 3]
2 >>>a
3 [1 , 2 , 3]
4 >>>type (a)
5 l i s t
6 >>>import numpy
7 >>>b = numpy . array ([1 , 2 , 3])
8 >>>b
9 array ([1 , 2 , 3])

10 >>>type (b)
11 numpy . ndarray
12 >>>b . dtype
13 dtype (’ in t32 ’)
14 >>>c = numpy . array ([1 . 0 , 2 . 0 , 3 . 0])
15 >>>c
16 array ([1 . , 2 . , 3 .])
17 >>>c . dtype
18 dtype (’ f l o a t 6 4 ’)

45

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Above example explains how list and arrays in numpy are created dif-
ferently. The numpy object array takes a list as input. Line 12 explains that
element of array b are of the type int32 i.e. 32 bit integers. Similarly, c
is defined to have floating point numbers. The data type can be defined at
the time of creation too.

1 >>>a1 = numpy . array ([1 , 2 , 3] , dtype=f l o a t)
2 >>>a1
3 array ([1 . , 2 . , 3 .])
4 >>>a1 . dtype
5 dtype (’ f l o a t 6 4 ’)
6 >>>a2 = numpy . array ([1 , 2 , 3] , dtype=complex)
7 >>>a2
8 array ([1 .+0. j , 2 .+0. j , 3 .+0. j])
9 >>>a2 . dtype

10 dtype (’ complex128 ’)

ndarray is also known by its alias array. Apart from knowing the data
type using dtype, there are a variety of methods to get information about
various attributes of ndarray

ndarray.dtype Data type of elements

ndarray.ndim Dimension of array

ndarray.shape Shape of array, (n,m) for (n,m) array

ndarray.size Size of array ,n×m
ndarray.itemsize size in bytes of each element

ndarray.data Buffer data containing actual element

ndarray.reshape reshapes keeping n×m constant

The above table can be understood using the code below. We define a 3
array named a3.

1 >>>a3 = numpy . array ([(1 , 2 , 3) , (4 , 5 , 6) , (2 , 7 , 8)])
2 >>>a3
3 array ([[1 , 2 , 3] ,
4 [4 , 5 , 6] ,
5 [2 , 7 , 8]])
6 >>>a3 . ndim
7 2
8 >>>a3 . s i z e
9 9

10 >>>a3 . shape

46

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

11 (3L , 3L)
12 >>>a3 . dtype
13 dtype (’ in t32 ’)
14 >>>a3 . i t ems i z e
15 4
16 >>>a3 . data
17 <read−wr i t e bu f f e r f o r 0x00000000085BAFE0 , s i z e 36 , o f f s e t 0 at

0x0000000009A1D2D0>
18 >>>a3 . reshape (1 , 9)
19 array ([[1 , 2 , 3 , 4 , 5 , 6 , 2 , 7 , 8]])
20 # reshapes a 3 X 3 array to 1 X 9 array (1 row and 9 coloumns)
21 >>>a3 . reshape (9 , 1)
22 array ([[1] ,
23 [2] ,
24 [3] ,
25 [4] ,
26 [5] ,
27 [6] ,
28 [2] ,
29 [7] ,
30 [8]])
31 # reshapes a 3 X 3 array to a 9 X 1 array (9 rows and 1 coloumns

)
32 >>>a3 . reshape (9 , 1) i s a3 . reshape (1 , 9)
33 False
34 # r e s u l t i s f a l s e because both ar rays have d i f f e r e n t shapes

5.4 Automatic creation of arrays

Various functions exists to automatically create an array of desired dimen-
sions and shape. This comes handy during big mathematical calculations
where creating arrays by hand is tiresome task.

5.4.1 zeros

To create an array where all elements are 0, we use zeros() function.

1 >>>z e ro s ((3 , 4) , dtype=f l o a t)
2

3 array ([[0 . , 0 . , 0 . , 0 .] ,
4 [0 . , 0 . , 0 . , 0 .] ,
5 [0 . , 0 . , 0 . , 0 .]])

47

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

During initialization to zero values for matrix computations, zeros()

function is extensively used.

5.4.2 ones

To create an array where all elements are 1, we use ones() function.

1 >>>ones ((3 , 4) , dtype=f l o a t)
2

3 array ([[1 . , 1 . , 1 . , 1 .] ,
4 [1 . , 1 . , 1 . , 1 .] ,
5 [1 . , 1 . , 1 . , 1 .]])

5.4.3 ones like

Taking cue from an existing array, ones_like() creates an ones array of
similar shape and type.

1 >>>a = np . array ([[1 . 1 , 2 . 2 , 4 . 1] , [2 . 5 , 5 . 2 , 6 . 4]])
2 >>>a
3

4 array ([[1 . 1 , 2 . 2 , 4 . 1] ,
5 [2 . 5 , 5 . 2 , 6 . 4]])
6

7 >>>o n e s l i k e (a)
8

9 array ([[1 . , 1 . , 1 .] ,
10 [1 . , 1 . , 1 .]])

5.4.4 empty

empty() returns a new array of given shape and type, without initializing
entries.

1 >>>empty ((2 , 2))
2

3 array ([[1 .85323233 e−316 , 1 .48523169 e−316] ,
4 [1 .48523169 e−316 , 3 .15208230 e−316]])

48

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

5.4.5 empty like

Taking cue from an existing array, empty_like() creates an empty array
of similar shape and type.

1 >>>a = np . array ([[1 . 1 , 2 . 2 , 4 . 1] , [2 . 5 , 5 . 2 , 6 . 4]])
2 >>>a
3

4 array ([[1 . 1 , 2 . 2 , 4 . 1] ,
5 [2 . 5 , 5 . 2 , 6 . 4]])
6

7 >>>empty l ike (a)
8

9 array ([[4 .54892823 e+174 , 1 .77289997 e+160 , 6 .56350603 e
−091] ,

10 [7 .67547114 e−042 , 4 .57749997 e−315 , 2 .47032823 e−323]])

5.4.6 eye

Similar to a identity matrix, eye() returns a two dimensional array where
diagonal elements are 1.

1 >>>eye (3 , k=0)
2

3 array ([[1 . , 0 . , 0 .] ,
4 [0 . , 1 . , 0 .] ,
5 [0 . , 0 . , 1 .]])
6

7 # k i s index o f d i a g i n a l
8 # k = 0 means d iagona l in cente r
9 # k = po s i t i v e i n t e g e r means i t i s s h i f t e d in upper t r i a n g l e

10 # k = negat ive i n t e r g e r means i t i s s h i f t e d in lower t r a i n g l e
11

12 >>>eye (3 , k=1)
13

14 array ([[0 . , 1 . , 0 .] ,
15 [0 . , 0 . , 1 .] ,
16 [0 . , 0 . , 0 .]])
17

18 >>>eye (3 , k=2)
19

20 array ([[0 . , 0 . , 1 .] ,
21 [0 . , 0 . , 0 .] ,
22 [0 . , 0 . , 0 .]])
23

24 >>>eye (3 , k=−1)

49

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

25

26 array ([[0 . , 0 . , 0 .] ,
27 [1 . , 0 . , 0 .] ,
28 [0 . , 1 . , 0 .]])
29

30 >>>eye (3 , k=−2)
31

32 array ([[0 . , 0 . , 0 .] ,
33 [0 . , 0 . , 0 .] ,
34 [1 . , 0 . , 0 .]])

5.4.7 identity

identity() function generates a two dimensional identity array.

1 i d e n t i t y (4)
2 Out [6 7] :
3 array ([[1 . , 0 . , 0 . , 0 .] ,
4 [0 . , 1 . , 0 . , 0 .] ,
5 [0 . , 0 . , 1 . , 0 .] ,
6 [0 . , 0 . , 0 . , 1 .]])

5.4.8 full

full fills up particular data into all elemental positions.

1 >>> f u l l ((3 , 2) , 5)
2

3 array ([[5 . , 5 .] ,
4 [5 . , 5 .] ,
5 [5 . , 5 .]])

5.4.9 full like

Just like empty_like and ones_like, full_like creates a new matrix
taking shape and data types from an existing array.

1 >>>a = np . array ([[1 . 1 , 2 . 2 , 4 . 1] , [2 . 5 , 5 . 2 , 6 . 4]])
2

3 array ([[1 . 1 , 2 . 2 , 4 . 1] ,

50

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

4 [2 . 5 , 5 . 2 , 6 . 4]])
5

6 >>> f u l l l i k e (a , 5)
7

8 array ([[5 . , 5 . , 5 .] ,
9 [5 . , 5 . , 5 .]])

5.4.10 random

To create a random array (filled up with random numbers), one uses the
random function as follows:

1 a1 = random . rand (4)
2

3 a1
4 Out [8 9] : array ([0 .91994147 , 0 .75093653 , 0 .03770014 ,

0 . 82726801])
5

6 a2 = random . rand (4 , 4)
7

8 a2
9 Out [9 1] :

10 array ([[0 .04817544 , 0 .96832776 , 0 .94496133 , 0 . 13974019] ,
11 [0 .88772227 , 0 .55457598 , 0 .54588295 , 0 .8659888] ,
12 [0 .98772077 , 0 .93785153 , 0 .32630535 , 0 . 20258845] ,
13 [0 .28838472 , 0 .90353493 , 0 .50091164 , 0 . 7 6 2 4 3246]])

Note that the function rand() comes inside the subpackage random. To
get complete details of this wonderful package, user is encouraged to explore
it using help(numpy.random) after issuing the command import numpy.

This gives the following description of the package:

1 >>> help (numpy . random)
2 DESCRIPTION
3 ========================
4 Random Number Generation
5 ========================
6

7 ====================
8 Ut i l i t y f unc t i on s
9 =====================

51

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

10 random Uniformly d i s t r i b u t e d va lue s o f a g iven
shape .

11 bytes Uniformly d i s t r i b u t e d random bytes .
12 random integers Uniformly d i s t r i b u t e d i n t e g e r s in a g iven

range .
13 random sample Uniformly d i s t r i b u t e d f l o a t s in a g iven

range .
14 permutation Randomly permute a sequence / generate a

random sequence .
15 s h u f f l e Randomly permute a sequence in p lace .
16 seed Seed the random number genera to r .
17 ====================
18

19 ====================
20 Compat ib i l i ty f unc t i on s
21 ====================
22 rand Uniformly d i s t r i b u t e d va lue s .
23 randn Normally d i s t r i b u t e d va lue s .
24 ran f Uniformly d i s t r i b u t e d f l o a t i n g po int

numbers .
25 rand int Uniformly d i s t r i b u t e d i n t e g e r s in a g iven

range .
26 ====================
27

28 ====================
29 Univar ia te d i s t r i b u t i o n s
30 ====================
31 beta Beta d i s t r i b u t i o n over ‘ ‘ [0 , 1] ‘ ‘ .
32 binomial Binomial d i s t r i b u t i o n .
33 ch i square : math : ‘\ ch i ˆ2 ‘ d i s t r i b u t i o n .
34 exponent i a l Exponent ia l d i s t r i b u t i o n .
35 f F (Fisher−Snedecor) d i s t r i b u t i o n .
36 gamma Gamma d i s t r i b u t i o n .
37 geometr ic Geometric d i s t r i b u t i o n .
38 gumbel Gumbel d i s t r i b u t i o n .
39 hypergeometr ic Hypergeometric d i s t r i b u t i o n .
40 l a p l a c e Laplace d i s t r i b u t i o n .
41 l o g i s t i c L o g i s t i c d i s t r i b u t i o n .
42 lognormal Log−normal d i s t r i b u t i o n .
43 l o g s e r i e s Logar ithmic s e r i e s d i s t r i b u t i o n .
44 nega t i v e b inomia l Negative binomial d i s t r i b u t i o n .
45 noncen t r a l ch i s qua r e Non−c en t r a l chi−square d i s t r i b u t i o n .
46 nonc en t r a l f Non−c en t r a l F d i s t r i b u t i o n .
47 normal Normal / Gaussian d i s t r i b u t i o n .
48 pareto Pareto d i s t r i b u t i o n .
49 po i s son Poisson d i s t r i b u t i o n .
50 power Power d i s t r i b u t i o n .
51 r a y l e i g h Rayle igh d i s t r i b u t i o n .
52 t r i a n gu l a r Tr iangular d i s t r i b u t i o n .

52

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

53 uniform Uniform d i s t r i b u t i o n .
54 vonmises Von Mises c i r c u l a r d i s t r i b u t i o n .
55 wald Wald (i nv e r s e Gaussian) d i s t r i b u t i o n .
56 we ibu l l Weibull d i s t r i b u t i o n .
57 z i p f Z ip f d i s t r i b u t i o n over ranked data .
58 ====================
59

60 ====================
61 Mul t i va r i a t e d i s t r i b u t i o n s
62 ====================
63 d i r i c h l e t Mu l t i va r i a t e g e n e r a l i z a t i o n o f Beta

d i s t r i b u t i o n .
64 mult inomial Mu l t i va r i a t e g e n e r a l i z a t i o n o f the binomial

d i s t r i b u t i o n .
65 mul t iva r i a t e norma l Mu l t i va r i a t e g e n e r a l i z a t i o n o f the normal

d i s t r i b u t i o n .
66 ====================
67

68 ====================
69 Standard d i s t r i b u t i o n s
70 ====================
71 standard cauchy Standard Cauchy−Lorentz d i s t r i b u t i o n .
72 s tandard exponent i a l Standard exponent i a l d i s t r i b u t i o n .
73 standard gamma Standard Gamma d i s t r i b u t i o n .
74 standard normal Standard normal d i s t r i b u t i o n .
75 s tandard t Standard Student t−d i s t r i b u t i o n .
76 ====================
77

78 ====================
79 I n t e r na l f unc t i on s
80 ====================
81 g e t s t a t e Get tup l e r ep r e s en t i ng i n t e r n a l s t a t e o f

genera to r .
82 s e t s t a t e Set s t a t e o f genera to r .
83 ====================

The above description shows a rich library of functions to create random
numbers as per choice. This makes numpy a good choice for libraries used
in simulation work.

5.4.11 diagonal

diag() commands makes an array of defined dimensions as follows:

1 >>>a1 = random . randn (4 , 4)

53

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

2 >>>a1
3

4 array ([[0 .32300659 , −0.80867401 , 0 .73055204 , −0.42193636] ,
5 [0 .26766307 , −1.41864706 , −0.52676398 , −1.68007247] ,
6 [−0.39765223 , 0 .40380447 , 0 .51565046 , 1 . 18807724] ,
7 [1 .01937589 , 1 .58661357 , −0.86241172 , −0 .86339454]])
8

9 >>>a2 = diag (a1 , k=0)
10 >>>a2
11 array ([0 .32300659 , −1.41864706 , 0 .51565046 , −0.86339454])
12 # an array o f t rue d iagona l e lements o f array ’ a2 ’ i s returned .
13

14 >>>a2 = diag (a1 , k=1)
15 >>>a2
16 array ([−0.80867401 , −0.52676398 , 1 . 18807724])
17 # an array o f d iagona l e lements o f array ’ a2 ’ i s returned where

d imesn iona l ax i s i s s h i f t e d upwards by one un i t .
18

19 >>>a2 = diag (a1 , k=−2)
20 >>>a2
21 array ([−0.39765223 , 1 . 58661357])
22 # an array o f d iagona l e lements o f array ’ a2 ’ i s returned where

d imesn iona l ax i s i s s h i f t e d downwards by two uni t .

5.5 Numerical ranges

Creating a sequence of numbers is an integral part of a numerical com-
putation. A variety of functions exists to create a sequence of numbers
automatically.

5.5.1 arange

The syntax for automatically generating a range of numbers from a starting
point to a stop point with a step size is given by

numpy.arange([start,]stop, [step,]dtype=)

1 >>>arange (1 , 1 0 , 0 . 5)
2

3 array ([1 . , 1 . 5 , 2 . , 2 . 5 , 3 . , 3 . 5 , 4 . , 4 . 5 , 5 . ,
5 . 5 , 6 . ,

4 6 . 5 , 7 . , 7 . 5 , 8 . , 8 . 5 , 9 . , 9 . 5])
5

6 # de f au l t va lue o f s t a r t i s 1

54

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

7 >>>arange (10)
8 array ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])
9

10 #de f au l t va lue o f s tep s i z e i s 1
11 >>>arange (1 ,10)
12 array ([1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])

5.5.2 linspace

Whereas arange() has good control over step size, one cannot specify
number of elements in the array. To solve this issue linspace() function is
defined with following syntax.

linspace(start, stop, num, endpoint, dtype)

1 >>>l i n s p a c e (1 , 10 , 5)
2 array ([1 . , 3 . 25 , 5 . 5 , 7 . 75 , 10 .])
3

4 >>>l i n s p a c e (1 , 10 , 5 , endpoint=False)
5 array ([1 . , 2 . 8 , 4 . 6 , 6 . 4 , 8 . 2])

5.5.3 logspace

Just as linearly spaced points are generated by linspace(), logspace()
generates linearly spaced points on a logarithmic axis.

logspace(start, stop, num, endpoint=, base=, dtype=)

1 >>>l og space (2 . 0 , 5 . 0 , num=3)
2 array ([100 . , 3162 .27766017 , 100000.])
3

4 >>>l og space (2 . 0 , 5 . 0 , num=3, base=2)
5 array ([4 . , 11 .3137085 , 32 .])
6

7 >>>l og space (2 . 0 , 5 . 0 , num=3, endpoint=False)
8 array ([100 . , 1000 . , 1 0 0 0 0 .])

55

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

5.5.4 meshgrid

The meshgrid is modeled after MATLAB R©meshgrid command. To
understand the working of meshgrid, its best to use it once as follows.

1 >>>xx = l i n s p a c e (1 , 3 , 3)
2 >>>xx
3 array ([1 . , 2 . , 3 .])
4 >>>yy = l i n s p a c e (2 , 4 , 3)
5 >>>yy
6 array ([2 . , 3 . , 4 .])
7

8 >>>(a , b) = meshgrid (xx , yy)
9 >>>a

10

11 array ([[1 . , 2 . , 3 .] ,
12 [1 . , 2 . , 3 .] ,
13 [1 . , 2 . , 3 .]])
14

15 >>>b
16

17 array ([[2 . , 2 . , 2 .] ,
18 [3 . , 3 . , 3 .] ,
19 [4 . , 4 . , 4 .]])
20

21 # another example
22

23 >>>x = numpy . array ([1 , 2 , 3])
24 >>>y = numpy . array ([1 0 , 20 , 3 0])
25 >>>XX, YY = numpy . meshgrid (x , y)
26 >>>ZZ = XX + YY
27

28 >>>ZZ
29 array ([[1 1 , 12 , 13] ,
30 [2 1 , 22 , 2 3] ,
31 [3 1 , 32 , 3 3]])

meshgrid() makes a two dimensional coordinate system where x-axis is
given by first argument (here xx) and y-axis is given by second argument
(here yy). This function is used while plotting three dimensional plots or
defining a function defined on two variables.

56

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

5.5.5 mgrid and ogrid

mgrid and ogrid are used to created mesh directly i.e. without using
linspace, arange etc. A simple statement like

mgrid[a:b , c:d]

constructs a grid where x-axis has points from a to b and y-axis has
points from c to d.

mgrid constructs a multidimensional meshgrid. Following example ex-
plains its use.

1 >>>(a , b) = mgrid [1 : 1 0 , 2 : 5]
2 >>>a
3

4 array ([[1 , 1 , 1] ,
5 [2 , 2 , 2] ,
6 [3 , 3 , 3] ,
7 [4 , 4 , 4] ,
8 [5 , 5 , 5] ,
9 [6 , 6 , 6] ,

10 [7 , 7 , 7] ,
11 [8 , 8 , 8] ,
12 [9 , 9 , 9]])
13

14 >>>b
15

16 array ([[2 , 3 , 4] ,
17 [2 , 3 , 4] ,
18 [2 , 3 , 4] ,
19 [2 , 3 , 4] ,
20 [2 , 3 , 4] ,
21 [2 , 3 , 4] ,
22 [2 , 3 , 4] ,
23 [2 , 3 , 4] ,
24 [2 , 3 , 4]])
25

26 >>>x , y = np . ogr id [0 : 5 , 0 : 5]
27 >>>x
28

29 array ([[0] ,
30 [1] ,
31 [2] ,
32 [3] ,
33 [4]])
34

57

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

35 >>>y
36

37 array ([[0 , 1 , 2 , 3 , 4]])

5.5.6 tile

tile() functions makes the copy of existing array by the defined number
of times to make a new array as follows:

1 >>>a = array ([1 , 2 , 3])
2 >>>b = t i l e (a , 3)
3 >>>b
4

5 array ([1 , 2 , 3 , 1 , 2 , 3 , 1 , 2 , 3])
6

7 # array a i s repeated 3 t imes to make a new array b
8

9 # Another example to do the same f o r two dimesn iona l array
10

11 >>>a1 = eye (4)
12 >>>a1
13

14 array ([[1 . , 0 . , 0 . , 0 .] ,
15 [0 . , 1 . , 0 . , 0 .] ,
16 [0 . , 0 . , 1 . , 0 .] ,
17 [0 . , 0 . , 0 . , 1 .]])
18

19 >>>a2 = t i l e (a1 , 2)
20 >>>a2
21

22 array ([[1 . , 0 . , 0 . , 0 . , 1 . , 0 . , 0 . , 0 .] ,
23 [0 . , 1 . , 0 . , 0 . , 0 . , 1 . , 0 . , 0 .] ,
24 [0 . , 0 . , 1 . , 0 . , 0 . , 0 . , 1 . , 0 .] ,
25 [0 . , 0 . , 0 . , 1 . , 0 . , 0 . , 0 . , 1 .]])
26 >>>a2 = t i l e (a1 , (2 , 2))
27 >>>a2
28

29 array ([[1 . , 0 . , 0 . , 0 . , 1 . , 0 . , 0 . , 0 .] ,
30 [0 . , 1 . , 0 . , 0 . , 0 . , 1 . , 0 . , 0 .] ,
31 [0 . , 0 . , 1 . , 0 . , 0 . , 0 . , 1 . , 0 .] ,
32 [0 . , 0 . , 0 . , 1 . , 0 . , 0 . , 0 . , 1 .] ,
33 [1 . , 0 . , 0 . , 0 . , 1 . , 0 . , 0 . , 0 .] ,
34 [0 . , 1 . , 0 . , 0 . , 0 . , 1 . , 0 . , 0 .] ,
35 [0 . , 0 . , 1 . , 0 . , 0 . , 0 . , 1 . , 0 .] ,
36 [0 . , 0 . , 0 . , 1 . , 0 . , 0 . , 0 . , 1 .]])
37

58

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

38 # here the extens i on i s done on both dimensions

5.6 Broadcasting

Basic operations on numpy arrays are element-wise. This needs that di-
mensions of the arrays should be compatible for the desired operation i.e. 2
arrays and 2 arrays would be incompatible as first array has one less column
than the second one.

1 >>>a = eye (4)
2 >>>b = array ([1 , 2 , 3 , 4])
3 >>>c = a + b
4 >>>c
5

6 array ([[2 . , 2 . , 3 . , 4 .] ,
7 [1 . , 3 . , 3 . , 4 .] ,
8 [1 . , 2 . , 4 . , 4 .] ,
9 [1 . , 2 . , 3 . , 5 .]])

10

11 >>>a . shape
12 (4L , 4L)
13

14 >>>b . shape
15 (4L ,)
16

17 >>>c . shape
18 (4L , 4L)
19

20 # bradcas t ing enab l e s array a (4 X 4) to be added to b (4 X 1)
to produce an array c (4 X 4)

21

22 # ANother example
23 >>>a = eye (4)
24 >>>a
25

26 array ([[1 . , 0 . , 0 . , 0 .] ,
27 [0 . , 1 . , 0 . , 0 .] ,
28 [0 . , 0 . , 1 . , 0 .] ,
29 [0 . , 0 . , 0 . , 1 .]])
30

31 >>>b = array ([1 0 , 10 , 10 , 1 0])
32 >>>c = a + b
33 >>>c
34

35 array ([[1 1 . , 1 0 . , 1 0 . , 1 0 .] ,

59

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

36 [1 0 . , 1 1 . , 1 0 . , 1 0 .] ,
37 [1 0 . , 1 0 . , 1 1 . , 1 0 .] ,
38 [1 0 . , 1 0 . , 1 0 . , 1 1 .]])
39

40 # A 4 X 4 matrix can be operated with a 4 X 1 matrix by making
the ’ i n v i s i b l e ’ e l emets zero .

5.7 Indexing

Elements of a array or list start with 0 in python i.e. first element is
indexed 0. All elements can be accessed using their indexes.

1 >>>a =[1 , 2 , 3 , 4 , 5 , 6]
2 >>>type (a)
3 l i s t # a s t o r e s a ’ l i s t ’ ob j e c t
4 >>>b = array (a)
5 >>>type (b)
6 numpy . ndarray # b s t o r e s a ’ array ’ ob j e c t
7 >>>a [1]
8 2 # ac c e s s i n g second element from l e f t hand s i d e f o r the l i s t ’ a

’
9 >>>b [0]

10 1 # ac c e s s i n g f i r s t element from l e f t hand s i d e f o r the array ’b
’

11 >>>a [−1]
12 6 # ac c e s s i n g the f i r s t element from the r i g h t hand s i d e f o r

l i s t ’ a ’
13 >>>b[−2]
14 5 # ac c e s s i n g the second element from the r i g h t hand s i d e f o r

array ’b ’

Above examples make it clear that arrays are simply homogeneous lists
and follow the same rules of indexing. Multidimensional arrays also follow
the same pattern of indexing. For two dimensional arrays, first number
indicates the row and second number indicates the columns.

1 >>>a1 = array ([[1 , 2 , 3] , [3 , 2 , 1]])
2 >>>a1
3

4 array ([[1 , 2 , 3] ,
5 [3 , 2 , 1]])
6

60

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

7 >>>a1 [1 , 2]
8 1 # choos ing elemnet whose row i s indexed 1 and coloumn i s

indexed 2 i . e second row and th i e rd coloumn i . e down−r i g h t
l a s t element

9

10 >>>a1 [1 , 1]
11 2 # chooi sng an element whose row i s indexed 1 and clolumn i s

indexed 1 i . e . second row and second coloumn
12

13 >>>a1 [1]
14 array ([3 , 2 , 1]) # choo i sng row with index 1 i . e second row

Indexes can be used to assign a particular value of the element too.

1 >>>a1 = array ([[1 , 2 , 3] , [3 , 2 , 1]])
2 >>>a1
3

4 array ([[1 , 2 , 3] ,
5 [3 , 2 , 1]])
6

7 >>>a1 [1 , 1] = 0
8 >>>a1
9

10 array ([[1 , 2 , 3] ,
11 [3 , 0 , 1]])
12 # second row and second coloumns element i . e 2 i s changed to 0

5.8 Slicing

Amongst the first operations to be applied on arrays is slicing. Slicing
employs the operator : which is used to separate the data on the row.

1 >>>a1 = arange (10)
2 >>>a1
3 array ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])
4

5 >>>a1 [0 : 5]
6 array ([0 , 1 , 2 , 3 , 4])
7 # [0 : 5] s e l e c e t s ’ from ’ index 0 ’ u n t i l l ’ index 5 i . e . exc lud ing

index 5
8

9 >>>a1 [: 5]

61

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

10 array ([0 , 1 , 2 , 3 , 4])
11 # [: 5] s e l e c e t s ’ from ’ s t a r t i n g ’ u n t i l l ’ index 5 i . e . exc lud ing

index 5
12

13 >>>a1 [2 : 5]
14 array ([2 , 3 , 4])
15 # [2 : 5] s e l e c e t s ’ from ’ index 2 ’ u n t i l l ’ index 5 i . e . exc lud ing

index 5
16

17 >>>a1 [2 : −2]
18 array ([2 , 3 , 4 , 5 , 6 , 7])
19 # [2 : −2] s e l e c e t s ’ from ’ index 2 ’ u n t i l l ’ index −2 (count ing

from r i gh t s t a r t s from −1) i . e . e x c l u s i ng index −2
20

21 >>>a1 [2 :]
22 array ([2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])
23 # [2 :] s e l e c e t s ’ from ’ index 2 ’ u n t i l l ’ l a s t index
24

25 >>>a1 [0 : 5 : 2]
26 array ([0 , 2 , 4])
27 # [s t a r t : stop : s tep] = [0 : 5 : 2] hence i t takes a tep o f 2 whi l e

choos ing i n d i c e s from 0 to 5

slicing can also be accomplished for multidimensional arrays.

1 >>>a = [1 , 2 , 3 , 4 , 5]
2 >>>b = [5 , 6 , 7 , 8 , 9]
3 a1 = array ([a , b])
4 >>>a1
5

6 array ([[1 , 2 , 3 , 4 , 5] ,
7 [5 , 6 , 7 , 8 , 9]])
8

9 >>>a1 . ndim
10 2 # the dimension o f array a1 i s 2
11

12 >>>a1 [0 : 2 , 0 : 2]
13

14 array ([[1 , 2] ,
15 [5 , 6]])
16 # Star t c o l l e c t i n g e lements from row indexed 0 and coloumn

indexed 2
17

18 >>>a1 [0 : 2 , 0 : 4]
19

20 array ([[1 , 2 , 3 , 4] ,

62

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

21 [5 , 6 , 7 , 8]])
22 # Fi r s t s l i c e i n d i c a t e s to c o l l e c t only f i r s t two elements by

second s l i c e i n d i c a t e s to c o l l e c t f i r s t f our elements , hence
us ing broadcas t ing the r e s u l t i s implemented

23

24 >>>a1 [1 : 2 , −1 :]
25 array ([[9]]) # because second s l i c e i n d i c a t e s to c o l l e c t the

l a s t element

Similar logic can be applied to any dimensional array. Slicing becomes an
extremely important tool for data filtering. In some cases, we would like to
work with only specific rows and/or columns of data. In that case, the data
can be sliced as per need.

5.9 Copies and views

From the memory usage point of view, slicing operation creates just a
view of original array. Using numpy.may_share_memory(), one can verify
this claim.

1 >>>a = arange (10)
2 >>>a
3 array ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])
4 >>>b = a [2 : 5]
5 >>>b
6 array ([2 , 3 , 4])
7 >>>may share memory (a , b)
8 True
9 # array ’ a ’ and ’b ’ share same memory space

10

11 # Now i f we change f i r s t element o f ’b ’ , array ’ a ’ element w i l l
a l s o change s i n c e ’b ’ i s j u s t a ”view” o f ’ a ’

12 >>>b [0] = 10
13 >>>a
14 >>>array ([0 , 1 , 10 , 3 , 4 , 5 , 6 , 7 , 8 , 9])

Being only a view, if an element of a slice is modified, original array is
modified too. Whereas this facilty can be desirable, it can create nuisance
in certain problems. Hence function copy() provides a way out by copying

63

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

original array instead of providing a view.

1 >>>a = arange (10)
2 >>>c = a [2 : 5] . copy ()
3 >>>c # check ing e lements o f array ’ c ’
4 array ([2 , 3 , 4])
5 >>>c [0] = 10 # changing f i r s t element to 10
6 >>>c # check ing f o r change
7 array ([1 0 , 3 , 4])
8 >>>a
9 array ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9])

10 # array ’ a ’ remains unchanged
11 >>>may share memory (a , c)
12 False
13 # ’a ’ remains unchanged because ’ a ’ and ’ c ’ don ’ t share t h i e r

memories

5.10 Masking

Arrays can be indexed using the method of masking. Masking is a way to
define the indexes as a separate object and then generating a new array from
original array using the mask as a rule. There are two ways using which
arrays can be masked: fancy indexing and indexing using boolean values.
It is important to note that masking methods generate copies instead of
views. The two methods are discussed in the following subsections.

5.10.1 Fancy indexing

numpy offers quite unique indexing facilities. One of them is fancy indexing
where an array of indices can be used to generate an array of elements.

1 >>>a = arange (1000) ∗∗3
2 # Generated cubes o f f i r s t 1000 cubes
3 >>> i = array (arange (10))
4 # Generated an array o f f i r s t 10 numbers s t a r t i n g from 0 upto 9
5 >>>a [i]
6 array ([0 , 1 , 8 , 27 , 64 , 125 , 216 , 343 , 512 , 729])
7 # Above i s the array o f f i r s t 10 cubes
8 >>>j = array (arange (0 ,50 ,10))
9 >>>j

10 array ([0 , 10 , 20 , 30 , 4 0])
11 # j i s an array o f numbers from 0 to 50 with s t ep s o f 10
12 >>>a [j]

64

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

13 array ([0 , 1000 , 8000 , 27000 , 64000])
14 # a [j] i s the array o f cubes indexed with array j
15 >>>k = array ([[1 , 2] , [11 , 12]])
16 # k i s a two dimens iona l array o f indexes 1 ,2 ,11 ,12
17 >>>a [k]
18 array ([[1 , 8] ,
19 [1331 , 1 7 2 8]])
20 # a [k] i s array made up o f e lements p laced at indexes g iven by k

5.10.2 Indexing with Boolean arrays

Indexing using integers specify the position of the element and using fancy
indexing, one can pick up those particular elements. Using boolean data type
for indexing, this is done with a different philosophy. Here boolean value
True means that array should become part of final array and value False

indicates that the element should not become part of the array.

1 >>>a = arange (100) . reshape (10 ,10)
2 # a i s a 10 X 10 matrix o f f i r s t hundred numbers
3

4 # Our aim i s to make an array o f even numbers and make a 5 X 10
matrix

5

6 >>>b = (a % 2 ==0)
7

8 b now s t o r e s a matrix o f boolean va lue s where the value i s ’ True
’ when the element o f a i s d i v i s i b l e by two and value i s ’
Fa l se ’ when elemnet o f a i s not d i v i s i b l e by two .

9

10 >>>a [b] . reshape (5 ,10)
11

12 array ([[0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18] ,
13 [2 0 , 22 , 24 , 26 , 28 , 30 , 32 , 34 , 36 , 3 8] ,
14 [4 0 , 42 , 44 , 46 , 48 , 50 , 52 , 54 , 56 , 5 8] ,
15 [6 0 , 62 , 64 , 66 , 68 , 70 , 72 , 74 , 76 , 7 8] ,
16 [8 0 , 82 , 84 , 86 , 88 , 90 , 92 , 94 , 96 , 9 8]])

5.11 Arrays are not matrices

Even though the python object ndarray (or simply arrays) look like defin-
ing matrices, they are not the same. Matrices are defined using the object

65

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

numpy.matrix. A numpy.matrixis a specialized 2-D array that retains its
2-D nature through operations. Certain special operators, such as * (matrix
multiplication) and ** (matrix power) are defined for them.

1 >>>a = arange (10) . reshape (2 , 5)
2 # de f i n i n g a 2 X 5 array made o f numbers from f i r s t ten numbers
3 >>>a
4 array ([[0 , 1 , 2 , 3 , 4] ,
5 [5 , 6 , 7 , 8 , 9]])
6

7 >>>type (a)
8 numpy . ndarray
9 # ’a ’ i s a numpy . ndarray

10

11 # Now we s h a l l c r e a t e a matrix us ing t h i s array
12 >>>b = matrix (a)
13 >>>b
14

15 matrix ([[0 , 1 , 2 , 3 , 4] ,
16 [5 , 6 , 7 , 8 , 9]])
17

18 >>>type (b)
19 numpy . mat r i x l i b . de fmatr ix . matrix
20 # ’b ’ i s a matrix un l i k e ’ a ’ , which i s an array
21

22 # Even though ’ a ’ and ’b ’ l ook s s im i l a r , they are two d i f f e r e n t
ob j e c t s

Mathematical operations like scalar multiplication, matrix multiplication
(dot and cross product), matrix power is defined for this data type.

1 >>>a ar ray = arange (12) . reshape (3 , 4)
2 >>>a ar ray
3

4 array ([[0 , 1 , 2 , 3] ,
5 [4 , 5 , 6 , 7] ,
6 [8 , 9 , 10 , 1 1]])
7 # ’ a ar ray ’ s t o r e s a 3 X 4 array o f numbers
8

9 >>>a a r ray 1 = a ar ray . copy
10 # ’ a a r ray 1 ’ i s a copy o f ’ a a r ray ’
11

12 >>>sum array = a ar ray + a ar ray
13 >>>sum array
14

15 array ([[0 , 2 , 4 , 6] ,

66

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

16 [8 , 10 , 12 , 1 4] ,
17 [1 6 , 18 , 20 , 2 2]])
18 # sum of two ar rays produces a new array where e lementwise

opera t i on (add i t i on here) i s performed
19

20 >>>s c a l a r p r oduc t = 3 ∗ a ar ray
21 >>>s c a l a r p r oduc t
22

23 array ([[0 , 3 , 6 , 9] ,
24 [1 2 , 15 , 18 , 2 1] ,
25 [2 4 , 27 , 30 , 3 3]])
26

27 # sc a l a r product o f array with a number i s s imply e lementwise
mu l t i p l i c a t i o n

28

29 >>>a matr ix = matrix (a ar ray)
30 >>>a matr ix
31

32 matrix ([[0 , 1 , 2 , 3] ,
33 [4 , 5 , 6 , 7] ,
34 [8 , 9 , 10 , 1 1]])
35 # A matrix ’ a matr ix ’ i s c r ea ted us ing an array ’ a s c a l a r ’
36

37 >>>sum matrix = a matr ix + a matr ix
38 >>>sum matrix
39

40 matrix ([[0 , 2 , 4 , 6] ,
41 [8 , 10 , 12 , 1 4] ,
42 [1 6 , 18 , 20 , 2 2]])
43

44 >>>s ca l a r mu l mat r ix = 3 ∗ a
45 >>>s ca l a r mu l mat r ix = 3 ∗ a matr ix
46 >>>s ca l a r mu l mat r ix
47

48 matrix ([[0 , 3 , 6 , 9] ,
49 [1 2 , 15 , 18 , 2 1] ,
50 [2 4 , 27 , 30 , 3 3]])
51

52 # Checking f o r t ranspose
53 >>>a array T = a ar ray .T
54 >>>a array T
55

56 array ([[0 , 4 , 8] ,
57 [1 , 5 , 9] ,
58 [2 , 6 , 1 0] ,
59 [3 , 7 , 1 1]])
60

61 >>>a matrix T = a matr ix .T
62 >>>a matrix T

67

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

63

64 matrix ([[0 , 4 , 8] ,
65 [1 , 5 , 9] ,
66 [2 , 6 , 1 0] ,
67 [3 , 7 , 1 1]])
68

69 # checking f o r dot product o f arays and matr i ce s
70

71 >>>dot ar ray = dot (a array , a array T)
72 >>>dot ar ray
73

74 array ([[14 , 38 , 62] ,
75 [38 , 126 , 214] ,
76 [62 , 214 , 3 6 6]])
77

78 >>>dot matr ix = dot (a matrix , a matrix T)
79 >>>dot matr ix
80

81 matrix ([[14 , 38 , 62] ,
82 [38 , 126 , 214] ,
83 [62 , 214 , 3 6 6]])
84

85

86 # Well the matrix behaves exac t l y same as array u p t i l l now

But there are some differences too:

1 >>>power array = a ar ray ∗∗ 2
2 >>>power array
3

4 array ([[0 , 1 , 4 , 9] ,
5 [16 , 25 , 36 , 4 9] ,
6 [64 , 81 , 100 , 1 2 1]])
7

8 # But i s s u i n g a command a matr ix ∗∗ 2 w i l l g ive an e r r o r because
matr i ce s can only be mu l t i p l i e d i f number o f rows o f one i s

equal to number o f coloumns o f other i . e m X n can be
mu l t i p l i e d with only n X l

9 # Hence matrix power needs the matrix to be squared matr i ce s

A common question that arises in the minds of programmers is that if one
had array object then what was the need of matrix ?

68

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

The answer is quite complex. While array serves most of the general
purposes for matrix algebra, matrix is written to facilitate linear algebra
functionalities. Linear algebra is performed using a submodule of numpy

accessed as numpy.linalg. Issuing command help(numpy.linalg) gives
idea about the purpose of this module. Some of the useful function from
matrix algebra point of view are:

• solve() to solve system of linear equations

• norm() to find norm of matrix

• inv() to find matrix inverse

• pinv() to find pseudo-inverse

• matrix_power() to perform an integer power of a square matrix

To perform linear algebra calculations using matrices, it is suggested that
matrix object is used to avoid errors.

More information about matrix object can be found by issuing the com-
mand help(numpy.matrix) or visiting http://docs.scipy.org/doc/numpy/
reference/generated/numpy.matrix.html.

5.12 Some basic operations

array allows some basic in-built operations which come quite handy while
performing calculations. These functions have been written to optimize time
spent on running the code and minimizing error, hence user can concentrate
on using them for computation rather than writing their own and then
optimizing them. Some of them have been discussed below.

5.12.1 sum

sum() calculates the sum of all elements in the array.

1 >>>a = arange (25)
2 # created an array ’ a ’ c o n s i s t i n g o f f i r s t 25 numbers
3 >>>a
4

5 array ([0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 ,
14 , 15 , 16 ,

69

http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

6 17 , 18 , 19 , 20 , 21 , 22 , 23 , 2 4])
7

8 >>>sum(a)
9 300

10

11 # reshap ing i t to a 5 X 5 matrix does not change the sum of
e lements

12

13 >>>b = a . reshape (5 , 5)
14 >>>b
15

16 array ([[0 , 1 , 2 , 3 , 4] ,
17 [5 , 6 , 7 , 8 , 9] ,
18 [1 0 , 11 , 12 , 13 , 14] ,
19 [1 5 , 16 , 17 , 18 , 19] ,
20 [2 0 , 21 , 22 , 23 , 2 4]])
21

22 >>>sum(b)
23 300
24

25 # sum can be de f ined f o r an ax i s
26

27 >>>sum(b , ax i s=0)
28 array ([5 0 , 55 , 60 , 65 , 7 0])
29 # each element i f sum of coloumn elements
30

31 >>>sum(b , ax i s=1)
32 array ([10 , 35 , 60 , 85 , 110])
33 # each element i s sum of row elements

5.12.2 Minimum and maximum

min() and max() gives the minimum and maximum value amongst the
element values.

1 >>>a = arange (10) . reshape (2 , 5)
2 >>>a
3

4 array ([[0 , 1 , 2 , 3 , 4] ,
5 [5 , 6 , 7 , 8 , 9]])
6

7 >>>a . min ()
8 0
9 >>>a .max()

10 9
11 >>>a .max(ax i s=0)

70

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

12 array ([5 , 6 , 7 , 8 , 9])
13 # maximum in each coloumn
14

15 >>>a .max(ax i s=1)
16 array ([4 , 9])
17 # maximum in each row

5.12.3 Statistics: mean median and standard deviation

mean(), median(), std() finds the mean median and standard devia-
tion for the data stored in the array.

1 >>>a = arange (10) . reshape (2 , 5)
2 >>>a
3 array ([[0 , 1 , 2 , 3 , 4] ,
4 [5 , 6 , 7 , 8 , 9]])
5 >>>mean(a)
6 4 .5
7 >>>median (a)
8 4 .5
9 >>>std (a)

10 2.8722813232690143

5.12.4 sort

sort() sorts the array values from maximum to minimum.

1 >>>a = rand (3 , 4)
2 >>>a
3

4 array ([[0 .12623497 , 0 .08767029 , 0 .76615535 , 0 . 85825585] ,
5 [0 .78531643 , 0 .92799983 , 0 .03808058 , 0 . 87323096] ,
6 [0 .40734359 , 0 .7030647 , 0 .02290688 , 0 .1080126]])
7

8 >>>s o r t (a)
9

10 array ([[0 .08767029 , 0 .12623497 , 0 .76615535 , 0 . 85825585] ,
11 [0 .03808058 , 0 .78531643 , 0 .87323096 , 0 . 92799983] ,
12 [0 .02290688 , 0 .1080126 , 0 .40734359 , 0 .7030647]])
13 # so r t s by coloumn by de f au l t
14

15 >>>s o r t (a , ax i s=1)
16

71

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

17 array ([[0 .08767029 , 0 .12623497 , 0 .76615535 , 0 . 85825585] ,
18 [0 .03808058 , 0 .78531643 , 0 .87323096 , 0 . 92799983] ,
19 [0 .02290688 , 0 .1080126 , 0 .40734359 , 0 .7030647]])
20

21 >>>s o r t (a , ax i s=0)
22

23 array ([[0 .12623497 , 0 .08767029 , 0 .02290688 , 0 .1080126] ,
24 [0 .40734359 , 0 .7030647 , 0 .03808058 , 0 . 85825585] ,
25 [0 .78531643 , 0 .92799983 , 0 .76615535 , 0 . 8 7 3 2 3096]])

A variety of sorting algorithms exist. Choice of algorithm can depend on
requirements about average speed, worst case scenario, workspace size and
stability. Numpy documentation at http://docs.scipy.org/doc/numpy/

reference/generated/numpy.sort.html list three choices as follows:

kind speed worst case workspace stable

‘quicksort’ 1 O(n2) 0 no
‘mergesort’ 2 O(n× log(n)) n

2 yes
‘heapsort’ 3 O(n× log(n)) 0 no

Sorting an array of complex numbers is accomplished by sort_complex().

1 >>>a = array ([4−3 j , 4+5j , 3−8 j])
2 >>>sor t complex (a)
3 array ([3.−8. j , 4.−3. j , 4 .+5. j])

5.12.5 Rounding off

Rounding off numbers is performed by function around() with same logic
as in mathematics, i.e. if a numeral is 5 or more, the preceding numeral is
incremented by 1.

1 >>>a = rand (10)
2 >>>a
3

4 array ([0 .13817612 , 0 .05911436 , 0 .55986426 , 0 .10755959 ,
0 .62031418 ,

5 0 .68802259 , 0 .40226421 , 0 .71521764 , 0 .34881375 , 0 . 00660543])
6

7 >>>around (a)
8 array ([0 . , 0 . , 1 . , 0 . , 1 . , 1 . , 0 . , 1 . , 0 . , 0 .])
9

72

http://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html
http://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

10 >>>around (a) . astype (i n t)
11 array ([0 , 0 , 1 , 0 , 1 , 1 , 0 , 1 , 0 , 0])

5.13 asarray and asmatrix

A variety of variables are not defined as arrays but if at certain point of
time during computation, if they needs to be considered as an array or as
matrix then asarray() and asmatrix() can be used.

1 >>>(a , b , c , d) = (1 , 2 , 3 , 4)
2 >>>array1 = asarray ([a , b , c , d])
3 >>>array1
4 array ([1 , 2 , 3 , 4])
5 >>>matrix1 = asmatr ix ([a , b , c , d])
6 >>>matrix1
7 matrix ([[1 , 2 , 3 , 4]])
8 >>>s t r i n g = ’ He l lo world ’
9 >>>array2 = asarray (s t r i n g)

10 >>>array2
11 array (’ He l lo world ’ , dtype=’ | S11 ’)
12 # ind i c a t e s that data type i s s t rong with 11 cha ra c t e r s

5.14 Summary

Array based computing is used as a primary force to solve equations or
system of equations. Using slicing and indexing operations, it provides pow-
erful tools to manipulate data using a program. Since present book is an
interactive text in python, hence discussion about all functions for indexing
and slicing is out of the scope for the book. Users are requested to visit http:
//docs.scipy.org/doc/numpy/reference/routines.indexing.html

Discussing all the facilities of array manipulations that are present in
numpy is beyond the scope of any textbook. Moreover, new functionalities
are added with each newer version. Some quite important functions ere dis-
cussed in the chapter. http://docs.scipy.org/doc/numpy/reference/

routines.array-manipulation.html#joining-arrays discuss these array
manipulations with ample of examples. Use is advised to consult the link
as and when required or when in doubt about usage.

73

http://docs.scipy.org/doc/numpy/reference/routines.indexing.html
http://docs.scipy.org/doc/numpy/reference/routines.indexing.html
http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html#joining-arrays
http://docs.scipy.org/doc/numpy/reference/routines.array-manipulation.html#joining-arrays

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Python’s ability to flexible create variety of arrays and compute using
various mathematical functions makes it one of the most preferred language
in the field of computational physics and mathematics. One more fact which
makes it a preferable programming language among scientific community is
its ability to plot publication quality graphs with relative ease. This shall
be discussed in the next chapter.

74

6
Plotting

6.1 Introduction

Plotting the data is one of
the most essential part of nu-
merical computation. In per-
processing, during computation and
post-processing, plotting data in
term of variety of graphs becomes
essential. Visualization of data in
a convenient format lets one under-
stand the process better. Visual
clues generate a lot of information
about the process which generated
that particular data. One can look for error easily and derive simple as
well as complex interpretations. A good programming language must in-
corporate facilities to plot data easily. Plotting two dimensional (2D) and
three-dimensional (3D) graphs are essential qualities in a good visualization
product. Python users have a good number of choices in this regard.

Present chapter will discuss some of them. Essential requirements while
choosing a plotting library, depends on requirements of data like:

• plotting 2D or 3D

• plotting live data or static

75

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

• plotting large data quickly

• saving plots in variety of formats

• plotting data with chosen resolution to keep a check about file size.

Various plotting libraries will be discussed in present chapter and they will
be judged based on above mentioned parameters. None of them if perfect.
They fulfill each others gaps. Hence a programmer is encouraged to learn
all of them and then choose to use them as and when required.

6.2 Matplotlib

John Hunter, the creator of matplotlib, rightly quoted that

”Matplotlib tries to make easy things easy and hard things possible”.

In some cases, with just one line of code, one can generate high qual-
ity publication ready graphics visualization of problem at hand. Before
python, gnuplot was used to plot the data passed by a python script. With
matplotlib at hand, this action has become very flexible now. matplotlib
was modeled after graphic capabilities of MATLAB R©, which came as a
boon for programmer who were already well versed with MATLAB R©. Some
of the major advantages of using matplotlib over other plotting libraries
are:

• It is integrated with LATEXmarkup

• It is cross platform and portable

• Its is open sourced, so one does not have to worry about license fees.

• Being part of python, its programmable

matplotlib stands for mathematical plotting library. It is one of the
most popular plotting library amongst programmer owing to its simple and
intuitive commands and well as ability to produce high quality plots which
can be saved in variety of formats. It supports both interactive and non-
interactive modes of plotting and can save images in a variety of formats
like (JPEG, PS, PDF, PNG etc). It can utilize a variety of window toolkits
like GTK+, wxWidgets, QT etc. The most attractive feature is that it have

76

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

a variety of plotting styles like line, scatter, bar charts as well as histograms
and many more. It can also be used interactively with Ipython. numpy is
essential to work with matplotlib, hence it must be installed on the system
before one can work with matplotlib.

6.2.1 Build Dependencies

• Python 2.x (Python 3 is not supported yet)

• numpy >1.1

• libpng >1.1

• FreeType >1.4

6.2.2 pylab versus pyplot

Within matplotlib, pyplot and pylab are two most discussed modules
inside matplotlib which provide almost same functionalities and thus cause
some confusion about their usage. Hence its important to differentiate be-
tween them at this point.

Within the package matplotlib, two packages namely matplotlib.pylab

and matplotlib.pyplot exists. Since plotting can start as a simple exer-
cise and then become quite complicated one, matplotlib is designed in a
hierarchical pattern where by default, simple functions are implemented in
matplotlib.pyplot environment and then as the complexity increases, a
more complex environment like matplotlib.pylab is implemented.

A more object oriented approach is matplotlib.pyplot where functions
like figures(), axes(), axes() are defined as objects to keep track of
their properties dynamically. For even complex tasks like making graphic
user interfaces (GUI), exclusive pyplot usage can be dropped altogether
and object-oriented approach can be used to fabricate plots. At basic level,
when plots are mostly non-interactive, pyplot environment can be used.
pylab is sued for interactive studies.

77

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

6.3 Plotting basic plots

We shall first explore the working environment offered by matplotlib.pyplot.
Functional inside pyplot control a particular feature of the plot like putting
up a tile, mentioning labels on x-axis and y-axis, putting mathematical equa-
tions on the body of plot at a desired position, defining tick labels, defining
types of markers to plot a graph etc. pyplot is stateful i.e. it keeps updat-
ing the changes in the state of figure once defined. This makes it easier to
modify a graph until desired level before including the code in the program.

plot() function is used for plotting simple 2D graphs. It take a number
of arguments which fill data and other feature information to plot a graph.
In its simplest form, it can plot a list of numbers (code: sqPlot0.py).

1 # p l o t t i n g numbers
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4 a = np . arange (10)
5 p l t . p l o t (a)
6 p l t . show ()

sqPlot0.py

Figure 6.1: Plotting first ten integers using plot() function

The result can be seen in 6.1. A plot needs two axes which are usually
termed as x and y axis. When plot() command is supplied with a single
list or array, it assumes it to be the values for y-axis and automatically gen-
erates corresponding x-values taking cue from length of list. In or case, we

78

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

had 10 numbers, hence x-axis had 10 numbers from 0 to 9.

plot() can take both axes as input vectors to produce a plot a shown
in the code given by sqPlot1.py.

1 import numpy as np
2 from matp lo t l i b import pylab as p l
3 x = np . l i n s p a c e (0 ,100)
4 y = x ∗∗ 2
5 pl . p l o t (x , y)
6 pl . show ()

sqPlot1.py

The result can be seen in figure ??. A very basic plot could be plotted by
just few lines of code where one first imports relevant libraries (line 1 and
line 2), then define x and y axes, and then use the plot command which
is given the parameters about x and y axes. These commands can e issued
one by one at python command prompt, or it can be saved as a python file
(use a text-editor, write the code and save with sqPlot1.py).

Figure 6.2: Plotting first ten integers using plot() function

The axes are defined as a numpy array. They can be generated by all
the methods available at hand like generating by hand, generated using a
formula (like in code sqPlot1.py, array named y is generated by element-
wise squaring of array x), generated by a data file, data taken live from a
remote/local server using internet or LAN etc. Subsequent chapters will
deal with file input output facilities. Hence for present chapter, only array

79

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

generated by self or using formulas, will be used.

It is worth mentioning the role of seemingly simple but powerful function
show(). A simple search on command prompt (write: matplotlib.pyplot.show)
for it declares its purpose. It displays figure(s) on a computer terminal hav-
ing graphics capabilities, which most modern computers do. During non-
interactive mode in Ipython console, it first displays all figures and block
the console until the figures have been closed whereas in interactive mode
it does not block the console. Both modes have thier own merits. Interac-
tive mode is used for checking the change in features. Non-interactive mode
is used when the focus is more upon the code generation which produces
the graphs. Usually, programmers work with interactive mode and optimize
a view of plots and then work with non-interactive mode taking the same
settings which were generated during experiments with interactive mode.

6.3.1 Plotting more than one graph on same axes

More than one plot on same axes, can be plotted in same figure by simply
issuing two plot commands as in sqPlot2.py

1 import numpy as np
2 from matp lo t l i b import pylab as p l
3 x = np . l i n s p a c e (0 ,100)
4 y1 = x ∗∗ 2 # y i s square o f x
5 y2 = x ∗∗ 2 .2 # y i s x r a i s e d to power 2 .2
6 pl . p l o t (x , y1)
7 pl . p l o t (x , y2)
8 pl . show ()

sqPlot2.py

6.3.2 Various features of a plot

A variety of features exists for a graph. Following is a list of features of a
graph:

• Title: Title gives a short introduction for the purpose of the graph

title() object sets the title of the current axes, positioned above
axes and in the center. It takes a string as an input.

• Labels for axes: Labels marks the purpose of graph axes.

80

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Figure 6.3: Plotting more than one graph on same axes

xlabel() and ylabel() object sets the label of x and y axis re-
spectively. The text strong which it takes as input is positioned above
the axis in the center.

• Ticks: Ticks on axis show the division of data points on an axes and
help judging information about a data point on graph.

xticks and yticks sets the ticking frequency and location. For
example
xticks(arange(5), (’a’, ’b’, ’c’, ’d’, ’e’))

shows that 5 ticks named a,b,c,d,e are placed equidistant. linspace
and logspace can also be used for the same.

• Markers: markers are the symbols drawn at each data point. The
size and type of markers can be differentiated for showing the data
points belonging to two or more different data sets.

In the plot() function, for every pair x, y, there is an optional
third argument as a format string that indicates the color and line
type of the plot. A list of markers is given at http://matplotlib.

org/api/markers_api.html#module-matplotlib.markers. For ex-
ample: plot(x,y,’r+’) means that red plus signs (+) will be placed
for each data point.

81

http://matplotlib.org/api/markers_api.html#module-matplotlib.markers
http://matplotlib.org/api/markers_api.html#module-matplotlib.markers

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Marker Abbreviation Marker Style

. Point
, Pixel
o Circle
v Triangle down
< Triangle left
> Triangle right
1 Tripod down
2 Tripod up
3 Tripod left
4 Tripod right
s square
p pentagon
∗ star
h hexagon
H Rotated hexagon
+ plus
x cross
D Diamond
d Thin diamond
- Horizontal line

• Line width: Line width defines the width of markers.

linewidth=n where n can be set as an integer, sets the marker
size to a desired dimension.

• Line style: Line style defines the style of lines which connect the
markers. They can be set off when data points need not be connected.

linestyle = ’.’ sets the line style as a connecting dot between
two data points. Similarly a number of other line style also exist.

Style Abbreviation Style

- solid line
– dashed line
-. dash dot line
: dotted line

• Color: Color of markers can also be used for distinguishing data points
belonging to two or more different data sets, but this method cannot
be used where data needs to be published in Black and White color

82

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

scheme.

plot(arange(10,100,1), linestyle=’--’, marker=’+’, color=’g’)

Above command sets the line style as --, markers as + in green color.
A shortcut command would have been

plot(range(10), ’--g+’)

Following is the list of codes for choosing particular color:

Color Abbreviation Color Name

b blue
c cyan
g green
k black
m magenta
r red
w white
y yellow

Apart from using above pre-defined symbols to choose a color, one
can also use hexadecimal string such as #FF00FF, RGBA tuple like
(1,0,1,1) and setting grayscale intensity as string like ’0.6’.

• Grid: Grid can be turned off or an for a graph using the syntax:

grid(True)

• Legends: Legends are used to differentiate between different types of
data points from multiple graphs in a same figure by showing symbol
for data type and printing text for the same.

Their usage is illustrated at

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.

legend

By default, legend() takes input as the string provided within plot()

function under the flag label=’’. The location is set to be top-right

83

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend
http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.legend

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

corner by default. It can be changed as per requirement by setting
loc= argument.

The URL at http://matplotlib.org/api/lines_api.html#matplotlib.
lines.Line2D gives a variety of options for setting the line properties for
a 2D plot() functions. Code sqPlot3.py shows a plotting of a formatted
figure using a variety of formatter arguments.

1 # import pylab and numpy
2 from matp lo t l i b import pylab as p l
3 import numpy as np
4

5 # Create a f i g u r e o f s i z e 9x7 inches , 100 dots per inch
6 pl . f i g u r e (f i g s i z e =(9 , 7) , dpi=100)
7

8 # Create a new subplot from a gr id o f 1x1
9 pl . subp lot (1 , 1 , 1)

10

11 # We wish to p l o t s i n (x) and s i n (2x)
12

13 # f i r s t we de f i n e x− ax i s in terms o f p i un i t s
14

15 X = np . l i n s p a c e (−np . p i ∗ 2 , np . p i ∗2 , 10e4 , endpoint=True)
16

17 ’ ’ ’ x−ax i s i s de f in ed from −2p i to 2 p i with 10000 po in t s
18 where l a s t po int i s a l s o inc luded ’ ’ ’
19

20 S , S2 = np . s i n (X) , np . s i n (2∗X)
21

22 # Plot s i n (x) with a blue cont inuous l i n e o f width 1 (p i x e l s)
23 # l ab e l l e d as s i n (x)
24 pl . p l o t (X, S , c o l o r=”blue ” , l i n ew id th =1.0 , l i n e s t y l e=”−” , l a b e l

= ” $s in (x) $”)
25

26 # Plot s i n e (2x) with a red cont inuous l i n e o f width 1 (p i x e l s)
27 # l ab e l l e d as s i n (2x)
28 pl . p l o t (X, S2 , c o l o r=” red ” , l i n ew id th =1.0 , l i n e s t y l e=”−” , l a b e l

= ” $s in (2x) $”)
29

30 # Set x l im i t s from −2p i to 2 .5∗ pi
31 pl . xl im(−2∗ np . pi , 2 .5∗ np . p i)
32

33 # Set x t i c k s
34 pl . x t i c k s (np . l i n s p a c e (−2.5 ∗ np . pi , 2 . 5 ∗ np . pi , 9 , endpoint=

True))
35

36 # Set y l im i t s from 1 .2 to −1.2

84

http://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D
http://matplotlib.org/api/lines_api.html#matplotlib.lines.Line2D

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

37 pl . yl im (−1.2 , 1 . 2)
38

39 # Set y t i c k s
40 pl . y t i c k s (np . l i n s p a c e (−1 , 1 , 5 , endpoint=True))
41

42 # Set the t i l e as ’ S ine waves ’
43 pl . t i t l e (’ $ s in (x) $ and $s in (2x) $ waves ’)
44

45 # Set t ing l a b e l on x−ax i s and y−ax i s
46

47 pl . y l ab e l (’ $ s in (x) $ and $s in (2x) $ ’)
48 pl . x l ab e l (’ x ’)
49

50 # Set t ing the g r id to be ON
51 pl . g r i d (True)
52

53 # To show a legend at one corner f o r d i f f e r e n t i a t i n g two curves
54 pl . l egend ()
55

56 # Show r e s u l t on sc r e en
57 pl . show ()

sqPlot3.py

Figure 6.4: Plotting sin(x) and sin(2x)

6.4 Setting up to properties

The setup() and getup() objects allows to set and get properties of
objects. They work well with matplotlib objects. Hence for the object
plot(), setup() can be used to set the properties.

85

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

6.5 Histograms

Histograms use vertical bars to plot events occurring with a particular
range of frequency (called bins). The can be simply plotted using hist()

function as in code plottingHistogram.py

1 import matp lo t l i b . pyplot as pt
2 import numpy as np
3

4 a = np . random . rand (50)
5 pt . h i s t (a)
6 pt . show ()

plotHistogram.py

The result in shown in figure 6.5. It is important to note that since we
used random numbers as input to the hist() function, a different plot will
be produced each time.

Figure 6.5: Histogram plot for 50 random numbers

Number of bins can be set to a number along with input variable as
shown in code plotHistogramBins.py.

1 import matp lo t l i b . pyplot as pt

86

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

2 import numpy as np
3

4 a = np . random . rand (50)
5 pt . h i s t (a , 2 5) # s e t t i n g number o f b ins to 25
6 pt . show ()

plotHistogramBins.py

The result in shown in figure 6.6.

Figure 6.6: Histogram plot for 50 random numbers

6.6 Bar charts

One of simplest plots is to plot rectangular bars (either horizontally or
vertically) where height of rectangle is proportional to the data value. This
kind of graph is called a bar chart. These are generated by bar() function
which takes two inputs for defining x-axis and y-axis, as opposed to hist()

function which takes only one input. A sample code is presented in bar.py

where x and y arrays are defined.

87

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

1 import matp lo t l i b . pyplot as p l
2 import numpy as np
3 x = np . array ([1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0])
4 y = np . array ([1 , 4 , 2 , 3 , 4 , 5 , 7 , 6 , 8 , 7])
5 pl . bar (x , y)
6 pl . t i t l e (’ Ve r t i c a l Bar chart ’)
7 pl . x l ab e l (’ x ’)
8 pl . y l ab e l (’ y ’)
9 pl . show ()

bar.py

The result in shown in figure 6.7.

Figure 6.7: Vertical Bar chart

Bar charts and histograms look very similar. Difference lies in the way one
defines them. Whereas bar() requires both x-axis and y-axis arguments,
hist() requires only y-axis argument. barh() function plots horizontal
bars.

1 import matp lo t l i b . pyplot as p l
2 import numpy as np
3 x = np . array ([1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0])
4 y = np . array ([1 , 4 , 2 , 3 , 4 , 5 , 7 , 6 , 8 , 7])
5 pl . barh (x , y)
6 pl . t i t l e (’ Hor i zonta l Bar chart ’)
7 pl . x l ab e l (’ x ’)
8 pl . y l ab e l (’ y ’)
9 pl . show ()

barh.py

88

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

The result in shown in figure 6.8.

Figure 6.8: Horizontal Bar chart

6.7 Error Bar Charts

All of experimental scientific work involves errors and it is important to
plot errors along with the data for many reasons. Errors must be plot-
ted so that one can judge data quality, one can understand the regions of
data where error is huge or minuscule etc. In matplotlib, the errorbar()

function enables one to create such graphs called error bar charts. The rep-
resentation of distribution of data values is done by plotting a single data
point, (commonly) the mean value of dataset, and an error bar to represent
the overall distribution of data. To accomplish this, code ploterror.py

defined an array for x axis and then defined an array for y axis using the
formula y = x2. Error is stored in third array saved with variable name
err. These variable names are passed as arguments to errorbar() function
hence it takes three variable in a in a sequence as x,y,err.

1 import matp lo t l i b . pyplot as p l
2 import numpy as np
3 x = np . arange (0 , 4 , 0 . 2) # generated data po int from 0 to 4 with

step o f 0 . 2
4 y = x∗2 # y = eˆ(−x)
5 e r r = np . array ([

0 , . 1 , . 1 , . 2 , . 1 , . 5 , . 9 , . 2 , . 9 , . 2 , . 2 , . 2 , . 3 , . 2 , . 3 , . 1 , . 2 , . 2 , . 3 , . 4])
6 pl . e r r o rba r (x , y , ye r r=err , e c o l o r=’ r ’)
7 pl . t i t l e (’ Error bar chart with symmetrical e r r o r ’)
8 pl . x l ab e l (’ x ’)
9 pl . y l ab e l (’ y ’)

89

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

10 pl . show ()

ploterror.py

The file produces the graph shown in figure 6.9.

Figure 6.9: Symmetrical Error bar chart

ecolor sets the color for error bars. Just as setting value for yerr key-
word, one can also set xerr to produce error bars on x-axis too.

In example ploterror.py error bars are symmetrical i.e positive and
negative errors are equal. For plotting asymmetrical error bars, errorbar()
would incorporate two arrays for error definition as follows.

1 import matp lo t l i b . pyplot as p l
2 import numpy as np
3 x = np . arange (0 , 4 , 0 . 2) # generated data po int from 0 to 4 with

step o f 0 . 2
4 y = x∗2 # y = eˆ(−x)
5 e r r p o s i t i v e = np . array ([

0 . 5 , . 1 , . 1 , . 2 , . 1 , . 5 , . 9 , . 2 , . 9 , . 2 , . 2 , . 2 , . 3 , . 2 , . 3 , . 1 , . 2 , . 2 , . 3 , . 4])

6 e r r n e g a t i v e = np . array ([
0 . 2 , . 4 , . 3 , . 1 , . 4 , . 3 , . 1 , . 9 , . 1 , . 3 , . 5 , . 0 , . 5 , . 1 , . 2 , . 6 , . 3 , . 4 , . 1 , . 1])

7 pl . e r r o rba r (x , y , ye r r =[e r r p o s i t i v e , e r r n e g a t i v e] , e c o l o r=’ r ’)
8 pl . t i t l e (’ Error bar chart with Asyymetric e r r o r ’)

90

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

9 pl . x l ab e l (’ x ’)
10 pl . y l ab e l (’ y ’)
11 pl . show ()

ploterror1.py

The file produces the graph shown in figure 6.10.

Figure 6.10: Asymmetrical Error bar chart

6.8 Scatter plot

Scatter plot is simply points plotted on a 2D mesh (made of two axes, say
x and y). The data aren’t connected with lines, hence they look scattered
unconnected!

This is achieved by scatter() function which takes two arrays as ar-
guments. Scatter plots are used to get correlation between two variables.
When plotted, the clusters show strong correlation between particular data
ranges. This is one of the key actions required by regression analysis.

1 import matp lo t l i b . pyplot as p l
2 import numpy as np
3 x = np . random . rand (1000)

91

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

4 y = np . random . rand (1000)
5 pl . s c a t t e r (x , y)
6 pl . t i t l e (’ S ca t t e r Chart ’)
7 pl . x l ab e l (’ x ’)
8 pl . y l ab e l (’ y ’)
9 pl . show ()

scatter.py

The file produces the graph shown in figure 6.11.

Figure 6.11: Scatter Plot

6.9 Pie Chart

When data needs to be categorized into sectors for number of events in
a particular range, pie charts come handy. Pie charts are circular shapes
where sectors/wedges are carved out for different data ranges where size of
a wedge is proportional to the data value. The pie() function works in this
regard.

1 import matp lo t l i b . pyplot as p l
2 import numpy as np
3 x = np . array ([1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 0])
4 l a b e l = [’ a ’ , ’ b ’ , ’ c ’ , ’ d ’ , ’ e ’ , ’ f ’ , ’ g ’ , ’ h ’ , ’ i ’ , ’ j ’]
5 explode = [0 . 2 , 0 . 1 , 0 . 5 , 0 , 0 , 0 . 3 , 0 . 3 , 0 . 2 , 0 . 1 , 0]
6 pl . p i e (x , l a b e l s=labe l , explode = explode , shadow=True , autopct=

’%2.2 f%%’)

92

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

7 pl . t i t l e (’ Pie Chart ’)
8 pl . show ()

pie.py

The file produces the graph shown in figure 6.12.

Figure 6.12: Unexploded and exploded Pie Chart

When explode label is not defined, one gets an unexploded pie chart.
autopct sets the show the percentage of weight for a particular weight which
can be set by format specifier. %2.2f%% sets the display of percentage weights
uptill 2 decimal places with 2 significant digits. shadow provides a shadow
below the wedge so that it looks like a real pie!

6.10 Polar Plots

Until now, all plots have been dealing with data defined in cartesian sys-
tem. For data defined in polar system i.e (r, θ) instead of (x, y). Polar plots

93

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

are obtained by plot() function.

1 import matp lo t l i b . pyplot as p l
2 import numpy as np
3

4 r = np . arange (0 , 10 . 0 , 0 . 1)
5 theta = 2∗ np . p i ∗ r
6

7 pl . po la r (theta , r , c o l o r =’ g ’)
8 pl . show ()

polar.py

The file produces the graph shown in figure 6.13.

Figure 6.13: Polar Plot

6.11 Decorating plots with text, arrows and anno-
tations

Sometimes, one is required to put text at a specific place on the plot (say
coordinated (x, y)). text() function is used to place text as shown below.

1 import matp lo t l i b . pyplot as p l

94

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

2 import numpy as np
3 x = np . arange (0 , 2∗np . pi , . 0 1)
4 y = np . s i n (x)
5 pl . p l o t (x , y , c o l o r = ’ r ’) ;
6 pl . t ex t (0 . 1 , −0.04 , ’ $ s in (0) = 0$ ’)
7 pl . t ex t (1 . 5 , 0 . 9 , ’ $ s i n (90) = 1$ ’)
8 pl . t ex t (2 . 0 , 0 , ’ $ s i n (180) = 0$ ’)
9 pl . t ex t (4 . 5 , −0.9 , ’ $ s in (270) = −1$ ’)

10 pl . t ex t (6 . 0 , 0 . 0 , ’ $ s i n (360) = 1$ ’)
11 pl . annotate (’ $ s in (theta)=0$ ’ , xy=(3 , 0 . 1) , xytext =(5 , 0 . 7) ,

arrowprops=d i c t (f a c e c o l o r=’ green ’ , shr ink =0.05))
12 pl . t i t l e (’ I n s e r t i n g text and annotat ion in p l o t s ’)
13 pl . x l ab e l (’ $theta$ ’)
14 pl . y l ab e l (’ $y = s i n (theta) $ ’)
15 pl . show ()

textPlot.py

The file produces the graph shown in figure 6.14.

Figure 6.14: Inserting text in the Plot

As seen in the example textPlot.py, text, arrow and annotations can
be placed at appropriate places by defining coordinate axis pints for them.
A convenient method of identifying appropriate coordinates is to roll over
the mouse on body of plot and look for down-left corner of the figure where

95

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

present mouse coordinates are shown. help(matplotlib.pyplot.annotate)
gives useful inputs to use this function.

6.12 Subplots

Multiple plots can be plotted using subplot option where different plots
are considered to be a matrix of graphs. Just like a regular matrix, elements
are identified by index. As seen in code subplot1.py subplots are located
using indices like (222) which essentially mean that the matrix is a 2×2 and
one is accessing 2nd position to place the scatter() function based plot.
Similarly (221) uses a plot() function at 1st position, (223) at 3rd position
plots a histogram using hist() function and (224) is 4th plot using barh()

giving a horizontal bar graph.

1 import matp lo t l i b . pyplot as p l
2 import numpy as np
3

4 x = np . arange (10)
5 y1 = np . random . rand (10)
6 y2 = np . random . rand (10)
7

8 f i g = pl . f i g u r e ()
9

10

11 ax1 = f i g . add subplot (221)
12 ax1 . p l o t (x , y1)
13

14 ax2 = f i g . add subplot (222)
15 ax2 . s c a t t e r (x , y2)
16

17 ax3 = f i g . add subplot (223)
18 ax3 . h i s t (y1)
19

20 ax4 = f i g . add subplot (224)
21 ax4 . barh (x , y2)
22

23 pl . show ()

subplot1.py

The file produces the graph shown in figure 6.15.

96

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Figure 6.15: Subplots

6.13 Saving plot to a file

Most of the times, a graph plotted using matplotlib needs to be saved
for future reference and use. In these cases, savefig() function is used
to specify the file name, permission, file type etc. for the figure. As an
example, code sqPlot4.py results a file named plot1.png in the working
folder. (Those who are working with Ipython can know about present work-
ing directory by typing pwd). If one provides a proper path as the string
argument of savefig() function, a file is created at that path provided user
have proper privileges to create the same.

1 import matp lo t l i b . pyplot as pt
2 import numpy as np
3 pt . p l o t (np . arange (10))
4 pt . s a v e f i g (’ p lo t1 . png ’)

sqPlot4.py

The file produces the graph shown in figure 6.16.

It is important to know the size of file and resolution of figure for the
purpose of publication at both off-line/print and on-line medium. When

97

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Figure 6.16: Plotting sin(x) and sin(2x)

none of the arguments for setting the resolution of figure and size of file is
set within the program, default values are used. These default values can
be known by following code:

1 >>>import matp lo t l i b as ml
2 >>>ml . rcParams [’ f i g u r e . f i g s i z e ’]
3 [8 . 0 , 6 . 0]
4 # Defau l t f i g u r e s i z e i s 8 X 6 inche s
5 >>>ml . rcParams [’ s a v e f i g . dpi ’]
6 100 .0
7 # Defau l t f i g u r e r e s o l u t i o n i s 100 dpi

Since a 8× 6 inches figure is created with 100 dpi (dots/pixels per inch),
hence a 800× 600 pixels image is saved using savefig() by default. When
this file is directed towards a computer graphic terminal for displaying,
length units are ignored and pixels are displayed. If file is directed towards
a printing media like a printer or plotter, lengths parameters and DPI de-
termine figure size and resolution.

6.14 Displaying plots on web application servers

In the era of connecting using internet, many problems require plotting
interactive graphs on web pages. These require different types of plots to be
plotted on web pages written in different kinds of languages working under

98

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

different environments. It is important to note that matplotlib requires
graphic user interface requiring a X11 connection. Hence it is important to
turn on this faculty on a web application server before updating the plots
dynamically, generated by matplotlib. There are two aspects to plotting
graphs on computer in general. Coding using a set of commands to make
a script is known as frontend task which require a backend effort. Back-
end does all the hardwork of interacting with graphical capabilities of the
system to produce a graph in a desired plot. Plots can be plotted interac-
tively using backends like pygtk, wxpython, tkinter, qt4, macosx or they
can be plotted non-interactively (permanently saved as files on computer)
using backends like PNG, SVG, PS, PDF. The latter are also known as hardcopy
backends.

There are two routes to configure a backend.

1. matplotlibrc file in installation directory can be edited to set backend
parameter to a particular value such as one example below:

1 backend : WXAgg # use wxpython with an t i g r a i n (agg)
render ing

2

matplotlibrc is present at /etc/matplotlibrc on a LINUX system

2. Using use() to set a particular backend temporarily.

1 >>>import matp lo t l i b
2 >>>matp lo t l i b . use (’PDF ’) # generate PDF f i l e as

output by de f au l t
3

Choosing one of the ways to set backend depends on the application of
the program. If the program aims to save plots as non-interactive PDF files
temporarily, method number 2 can be used, which works until another pro-
gram sets the backend differently. Setting the backend must be done be-
fore import matplotlib.pyplot or import matplotlib.pylab. More on
using various backends for variety of application can be found on http:

//matplotlib.org/faq/usage_faq.html#what-is-a-backend. For a web
application server, setting backend as WXAgg, GTKAgg, QT4Agg, TkAgg will
work.

99

http://matplotlib.org/faq/usage_faq.html#what-is-a-backend
http://matplotlib.org/faq/usage_faq.html#what-is-a-backend

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

One way to save transparent figures as opposed to white colored by default
is to set transparent=TRUE. This is particularly important in the case when
figures needs to be embedded on a web-page with predefined-background
color/image.

Another way of turning interactive mode to be ON or OFF is by including
commands matplotlib.pyplot.ion() and matplotlib.pyplot.ioff() re-
spectively.

Ipython notebook

While working with Ipython, if one wishes to work with plots to dynam-
ically change by issuing commands at Ipython command prompt, then one
simply issues a command at UNIX terminal:

1 $ ipython −pylab

This enables a special matplotlib support mode in IPython that looks
for configuration file looking for the backend, activating the proper GUI
threading model if required. It also sets the Matplotlib interactive mode,
so that show() commands does not block the interactive Ipython shell.

In case of working with Ipython notebook environment, issuing the com-
mand:

1 $ ipython notebook () −−pylab=i n l i n e

produces the graphs in-line i.e. within the body of the code in between
the command lines where plot is called, otherwise plots pop out in a separate
window. In-line mode is useful while designing teaching material. But before
sharing with concerned person, it should be ensured that encoded backends
and dependencies are installed on users computer.

6.15 Working with matplotlib in object mode

Pythonic way of using matplotlib is to use it in object mode where explicit
definition of an object allows ultimate customization. For this purpose, one
must define each element of a graph as an object and use the properties

100

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

to customize the same. The hierarchy of three basic objects used for the
purpose is as follows:

1. FigureCanvas: Container class for Figure instance

2. Figure: Container class for axes instance

3. Axes: Axes are the rectangular areas to hold various plot features like
lines, ticks, curves, text etc.

When working with matplotlib in object-oriented mode, one specifies a
FigureCanvas which holds figure(s) which in turn holds axes where va-
riety of plotting features can be implemented. The whole process allows
customization to any extent as can be imagined. The following example
explain this concept.

1 import matp lo t l i b . pyplot as p l t
2 f i g = p l t . f i g u r e ()
3 # va r i ab l e f i g s t o r e s ” f i g u r e ” in s t anc e
4 ax1 = f i g . add subplot (221)
5 # va r i ab l e ax1 s t o r e s the subplot o f f i g u r e at 1 s t p lace in 2 x

1 matrix
6 ax1 . p l o t ([−1 , 1 , 4] , [−2 , −3, 4]) ;
7 # ax1 i s c a l l e d and p lo t fucn t i on i s g iven to i t .
8 # plo t func t i on c a r r i e s two l i s t s g i v ing x and y ax i s po in t s f o r

graph
9 ax2 = f i g . add subplot (222)

10 ax2 . p l o t ([1 , −2, 2] , [0 , 0 , 2]) ;
11 # same l o g i c as f o r ax1
12 ax3 = f i g . add subplot (223)
13 ax3 . p l o t ([1 0 , 20 , 3 0] , [1 0 , 20 , 3 0]) ;
14 ax4 = f i g . add subplot (224)
15 ax4 . p l o t ([−1 , −2, −3] , [−10 , −20, −30]) ;
16 p l t . show ()
17 # show the f i g u r e on computer te rmina l

objPlot.py

The resulting plot is given by 6.17

Most of the plots in present book will be plotted in objective mode hence-
forth.

101

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Figure 6.17: Plotting using object mode capabilities

6.16 Logarithmic plots

A variety of engineering data uses logarithmic scales, particularly those
where changes result in an order of magnitude change in values of observed
variable. Python provides facility to plot logarithmic plots.

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x = np . arange (0 . , 10 , 0 . 01)
5

6 f i g = p l t . f i g u r e ()
7

8 ax1 = f i g . add subplot (221)
9 y1 = np . l og (x)

10 ax1 . p l o t (x , y1) ;
11 ax1 . g r id (True)
12 ax1 . s e t y l a b e l (’ $y = log (x) $ ’) ;
13 ax1 . s e t t i t l e (’ y−ax i s in l og s c a l e ’)
14

15 ax2 = f i g . add subplot (222)
16 y2 = np . s i n (np . p i ∗x /2 .)
17 ax2 . semi logx (x , y2 , basex = 3) ;
18 ax2 . g r id (True)
19 ax2 . s e t t i t l e (’ x−ax i s in l og s c a l e ’)

102

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

20

21 ax3 = f i g . add subplot (223)
22 y3 = np . s i n (np . p i ∗x /3 .)
23 ax3 . l o g l o g (x , y3 , basex=2) ;
24 ax3 . g r id (True)
25 ax3 . s e t y l a b e l (’ both axes in l og ’) ;
26

27 ax4 = f i g . add subplot (224)
28 y4 = np . cos (2∗x)
29 ax4 . l o g l o g (x , y3 , basex=10) ;
30 ax4 . g r id (True)
31

32 p l t . show ()

log.py

Following axes instances are defined:

1. ax1 uses y = log(x)

2. ax2 uses y = sin(πx2)

3. ax3 uses y = sin(πx3)

4. ax4 uses y = cos(2x)

The resulting graph is given by Figure: 6.18

As seen in the program log.py logarithmic values can be directly passed to
plot() function. When a particular axis needs to be plotted in logarithmic
values then semilog() and semilogy() can be used where a base index
can also be defined. The value of that particular axis is converted into
logarithmic scale and plotted subsequently. When logarithmic values needs
to be plotted on both axes loglog() functions needs to be invoked.

Logarithmic plots find their use in a variety of fields like signal processing,
thermodynamics etc. Essentially, whenever data changes by an order of a
magnitude, its easier to observe it using logarithmic plot. Logarithmic scale
is a non-linear scale. The ability of change base of logarithmic function,
provides a powerful tool at the hands of developers to plot creatively to
derive most meaningful conclusion.

103

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Figure 6.18: Plotting using object mode capabilities

6.17 Two plots on same figure with atleast one
axis different

Using functions twinx() and twiny() one can use two x or y axes on the
same figure to plot two sets of data points. An example to use twinx() is
used here where x axis is twinned to produce plots of two data sets sharing
same x-axis data points.

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 x = np . arange (0 . , 100 , 1) ;
5 y1 = x ∗∗2 ;
6 # y1 i s de f i ned as square o f x va lue s
7 y2 = np . sq r t (x) ;
8 # y2 i s de f i ned as square root o f x va lue s
9

10 f i g = p l t . f i g u r e ()
11 ax1 = f i g . add subplot (111)
12 ax1 . p l o t (x , y1 , ’ bo ’) ;

104

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

13 ax1 . s e t y l a b e l (’ $xˆ{2}$ ’) ;
14 ax2 = ax1 . twinx () # twinx () func t i on i s used to show twinned x

axes
15 ax2 . p l o t (x , y2 , ’ k+’) ;
16 ax2 . s e t y l a b e l (’ $\ s q r t {x}$ ’) ;
17 ax2 . s e t t i t l e (’Same x ax i s f o r both y va lue s ’) ;
18 p l t . show ()

twinx.py

It is worth noting that two different axes instances namely ax1 and ax2

are superimposed on each other where data from y1 being alloted to axes
instance ax1 and data from y2 being alloted to axes instance ax2. This also
illustrates the power of defining a plot in object mode. The corresponding
plot is given in 6.19

Figure 6.19: Using twinx() variable

6.18 Contour plots

In some engineering applications, contour plots become an essential part
of interpretation because they can define segregation of data into regions
based on certain similarity. For example, if one imagines a mountain viewed

105

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

from top, one can define regions of similar height being shown with a closed
loop. Thus a mountain will be a series of loops. Similarly, a 2D map of
non-uniformly heated region can be viewed as contours depicting regions of
same temperature. A region of rainfall can be viewed as contour showing
regions of dis-similar size of droplets.

Hence contour lines are also called level lines or isolines. The term iso- is
attached to data points having constant value and the regions of these data
points are separated by contours.

For a contour plot, one needs x, y and z axis where z axis defines the
height. The data with same height is clubbed together within isolines.

1 import matp lo t l i b . pyplot as p l t
2 import numpy as np
3

4 # de f i n i n g data f o r x , y , z axes
5 x = np . l i n s p a c e (0 ,1 , 100)
6 y = np . l i n s p a c e (1 ,2 , 100)
7 (X,Y) = np . meshgrid (x , y)
8 z = np . s i n (X)−np . s i n (Y)
9

10 # p l o t t i n g contour
11 f i g = p l t . f i g u r e ()
12

13 ax1 = f i g . add subplot (211)
14 c1 = ax1 . contour (x , y , z)
15 l 1 = ax1 . c l a b e l (c1)
16 l x1 = ax1 . s e t x l a b e l (”x”)
17 l y1 = ax1 . s e t y l a b e l (”y”)
18

19

20 # p l o t t i n g f i l l e d contour
21 ax2 = f i g . add subplot (212)
22 c2 = ax2 . contour f (x , y , z)
23 l 2 = ax2 . c l a b e l (c2)
24 l x2 = ax2 . s e t x l a b e l (”x”)
25 l y2 = ax2 . s e t y l a b e l (”y”)
26

27 p l t . show ()
28

29 # p l o t t i n g f i l l e d contour

contour.py

The corresponding plot is given at 6.20

106

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Figure 6.20: Contour plots

contour() and contourf() functions can be used to plot unfilled and
filled contour. A simple command help(contour) gives extensive informa-
tion about setting various parameters for a contour plot.

6.19 3D plotting in matplotlib

With advanced in computing technologies at both software and hardware’s
end, it has become easier to produce interactive 3D plots on graphic termi-
nals. matplotlib provides a decent number of options in this regard, which
are discussed in following subsections.

6.19.1 Line and scatter plots

matplotlib’s toolkits has a class mplot3D which provides Axes3D ob-
ject. Using the projection=’3D’ keyword, an Axes3D object is created
which provides the screen area to show a 3D plot. Axes3D can then be
passed on to a figure object to show it as a figure. A line plot can be
simply created by passing three arguments to plot() function as seen in
3Dline.py python script.

1 import matp lo t l i b as mpl
2 from mp l t o o l k i t s . mplot3d import Axes3D

107

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

3 import numpy as np
4 import matp lo t l i b . pyplot as p l t
5

6 f i g = p l t . f i g u r e ()
7 ax = f i g . gca (p r o j e c t i o n=’ 3d ’)
8

9 x = np . l i n s p a c e (−10∗(np . p i) ,10∗ (np . p i) ,10 e4)
10 y = np . s i n (x)
11 z = np . cos (x)
12

13 ax . p l o t (x , y , z , l a b e l=’ $y=s i n (x) $ and $z = cos (x) $ ’)
14 ax . legend ()
15 ax . s e t t i t l e (’ 3D l i n e curve ’)
16 ax . s e t x l a b e l (’ x ’)
17 ax . s e t y l a b e l (’ $y = s i n (x) $ ’)
18 ax . s e t z l a b e l (’ $z = cos (x) $ ’)
19 p l t . show ()

3Dline.py

1 import numpy as np
2 from mp l t o o l k i t s . mplot3d import Axes3D
3 import matp lo t l i b . pyplot as p l t
4

5 f i g = p l t . f i g u r e ()
6 ax = f i g . add subplot (111 , p r o j e c t i o n=’ 3d ’)
7

8 x = np . l i n s p a c e (−5∗(np . p i) , 5∗(np . p i) ,200)
9 y =np . s i n (x)

10 z =np . cos (x)
11

12 ax . s c a t t e r (x , y , z , marker=’ ∗ ’)
13

14 ax . s e t x l a b e l (’ x ’)
15 ax . s e t y l a b e l (’ $y = s i n (x) $ ’)
16 ax . s e t z l a b e l (’ $z = cos (x) $ ’)
17 ax . s e t t i t l e (’ S ca t t e r p l o t in 3D’)
18

19 p l t . show ()

3Dscatter.py

The corresponding graph is shown in figure 6.21

Scatter plots are plotted in 3D in similar way as line plots. This is illus-
trated in the python scripy 3Dscatter.py and the corresponding graph is
shown in figure 6.21

108

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Figure 6.21: line and scatter plot in 3D

6.19.2 Wiremesh and Surface plots

During computation with discrete values, it is sometimes useful to plot a
wiremesh plot as seen in figure 6.22. meshgrid function is used to generate
a grid of points using x and y values. Function

z =
√
x2 + y2

is generated on top of this grid and plotted using wiremesh function. rstride
and cstride define the row and column step size.

109

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

1 from mp l t o o l k i t s . mplot3d import axes3d
2 import matp lo t l i b . pyplot as p l t
3 import numpy as np
4

5 f i g = p l t . f i g u r e ()
6 ax = f i g . add subplot (111 , p r o j e c t i o n=’ 3d ’)
7

8 a = np . arange (−5 , 5 , 0 . 2 5)
9 b = np . arange (−5 , 5 , 0 . 2 5)

10 x , y = np . meshgrid (a , b)
11 z = np . sq r t (x∗∗2 + y∗∗2)
12

13 ax . p l o t w i r e f r ame (x , y , z , r s t r i d e =2, c s t r i d e =2)
14

15 ax . s e t x l a b e l (’ x ’)
16 ax . s e t y l a b e l (’ y ’)
17 ax . s e t z l a b e l (’ $z = \ s q r t {xˆ{2}+yˆ{2}}$ ’)
18 ax . s e t t i t l e (’Wiremesh type o f 3D p lo t ’)
19

20 p l t . show ()

3Dwiremesh.py

Surface plots are similar to wiremesh plots except the fact that its contin-
uously filled up. Hence instead of wiremesh() function, one uses surface()
function.

1 from mp l t o o l k i t s . mplot3d import axes3d
2 import matp lo t l i b . pyplot as p l t
3 import numpy as np
4

5 f i g = p l t . f i g u r e ()
6 ax = f i g . add subplot (111 , p r o j e c t i o n=’ 3d ’)
7

8 a = np . arange (−5 , 5 , 0 . 2 5)
9 b = np . arange (−5 , 5 , 0 . 2 5)

10 x , y = np . meshgrid (a , b)
11 z = np . sq r t (x∗∗2 + y∗∗2)
12

13 ax . p l o t s u r f a c e (x , y , z , r s t r i d e =2, c s t r i d e =2)
14

15 ax . s e t x l a b e l (’ x ’)
16 ax . s e t y l a b e l (’ y ’)
17 ax . s e t z l a b e l (’ $z = \ s q r t {xˆ{2}+yˆ{2}}$ ’)
18 ax . s e t t i t l e (’ Sur face type o f 3D p lo t ’)
19

20 p l t . show ()

110

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

3Dsurface.py

The corresponding graph is shown in figure 6.22

Figure 6.22: Wiremesh and surface plot

6.19.3 Contour plots in 3D

Just as in two dimensional contours, 3D contour plots employ isosurfaces
i.e. surfaces having equal height. Using contour() and contourf() func-

111

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

tions, one can plot unfilled and filled contour plots.

1 from mp l t o o l k i t s . mplot3d import axes3d
2 import matp lo t l i b . pyplot as p l t
3 from matp lo t l i b import cm
4 import numpy as np
5

6 f i g = p l t . f i g u r e ()
7 ax1 = f i g . add subplot (121 , p r o j e c t i o n=’ 3d ’)
8 x = np . l i n s p a c e (2∗np . pi ,−2∗(np . p i) ,1000)
9 y = np . l i n s p a c e (2∗np . pi ,−2∗(np . p i) ,1000)

10 X,Y = np . meshgrid (x , y)
11 Z = np . s i n (X) + np . s i n (Y)
12

13 cont = ax1 . contour (X, Y, Z)
14 ax1 . c l a b e l (cont , f o n t s i z e =9, i n l i n e =1)
15 ax1 . s e t x l a b e l (’ x ’)
16 ax1 . s e t y l a b e l (’ y ’)
17 ax1 . s e t t i t l e (’ Contour f o r $z=s i n (x)+s i n (y) $ ’)
18

19 ax2 = f i g . add subplot (122 , p r o j e c t i o n=’ 3d ’)
20 Z = np . s i n (X) + np . s i n (Y)
21 cont = ax2 . contour f (X, Y, Z)
22 ax2 . c l a b e l (cont , f o n t s i z e =9, i n l i n e =1)
23 ax2 . s e t x l a b e l (’ x ’)
24 ax2 . s e t y l a b e l (’ y ’)
25 ax2 . s e t t i t l e (’ F i l l e d Contour f o r $z=s i n (x)+s i n (y) $ ’)
26

27

28

29 p l t . show ()

3Dcontour.py

The corresponding graph is shown in figure 6.23

6.19.4 Quiver plots

1 from mp l t o o l k i t s . mplot3d import axes3d
2 import matp lo t l i b . pyplot as p l t
3 import numpy as np
4

5 x = np . l i n s p a c e (np . pi ,−(np . p i) ,10)
6 y = np . l i n s p a c e (np . pi ,−(np . p i) ,10)
7 (X,Y) = np . meshgrid (x , y)
8 u = −15∗X
9 v = 5∗Y

10 q = p l t . qu iver (X,Y, u , v , ang l e s=’ xy ’ , s c a l e =1000 , c o l o r=’b ’)

112

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Figure 6.23: Contour plots using contour and contourf functions plot

11 #p = p l t . qu iverkey (q , 1 , 16 . 5 , 5 0 , ”50 m/ s ” , coo rd ina t e s=’data ’ , c o l o r
=’ r ’)

12 x l = p l t . x l ab e l (”x (km) ”)
13 y l = p l t . y l ab e l (”y (km) ”)
14 p l t . show ()

3Dquiver.py

The corresponding graph is shown in figure 6.24

6.20 Other libraries for plotting data

matplotlib has been in use to such an extent that new developers do
not realize other options to plot the data. There are variety of other ways
to plot data in other modules which might have more powerful plotting
capabilities depending on context. Amongst them are plotly, mayavi and

113

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Figure 6.24: Quiver plots

gnuplot to name a few. A brief discussing follows about using plotly, which
interestingly, plots the data on the web. This is particularly interesting for
those engineering applications where the sensor data needs to be plotted on
web in real time.

6.20.1 Plotly

Plotly is an on-line analytics and data visualization tool. Apart from
python, plotly can also plot data used in Perl, Julia, Arduino, R and
MATLAB R©. Weblink https://plot.ly/ gives pretty good idea about ca-
pabilities of plotly. Essentially plotly allows plotting and publishing the
graph on-line for allowing collaboration. Hence one must be connected to
internet before working with plotly library.

First, one needs to make a user account at plotly website. Account will

114

https://plot.ly/

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

provide a username and API key which needs to be used in the program.
Then one can write a code either as one command at a time on python
terminal or as a python script.

1 import numpy as np
2 import p l o t l y . p l o t l y as py
3 from p l o t l y . g raph obj s import ∗
4 py . s i g n i n (’ username ’ , ’APIkey ’)
5 data = Data ([S ca t t e r (x=np . arange (100) , y=np . random . randn (100) ,

name=’ t r a c e 0 ’)])
6 f i g = Figure (data=data)
7 p l o t u r l = py . p l o t (f i g)

plotly.py

User needs to provide the username and API key in the above script.
The above script results in generating a scatter plot on-line at workspace
in the user account. These graphs can be plotted quite interactively using
the functions provided by plotly. When data is steamed from a device con-
nected to a live sensor, live data is plotted in real time. This can further be
embedded on a website.

6.21 Summary

The present chapter discussed various plotting options available while
working with python. The ease of plotting data is one of the most attrac-
tive feature from python. Just a few lines of code visualize the data in
a variety of ways. Visualization is the back bone of data presentation and
analysis since understanding of data becomes more clearer. Apart from sim-
ple visualization, matplotlib allows rich feature to decorate the graph with
useful information in a desired manner.

115

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

116

7
File I/O

7.1 Introduction

Handling files is an essential
part of the process of computation.
Python provides many features to
perform this act. Files come in
a variety of format and hence any
programming language enjoying the
capabilities of handling files must
provides the functionalities for han-
dling variety of file formats and
opening, making, editing and delet-
ing them as desired, with ease.

7.2 Reading input from keyboard

UNIX and alike systems treat all computing resources as files, which in-
clude computer’s peripherals. Keyboard is one of them and reading keystrokes
to input values into a program remains critical functionality to any program-
ming language. Python provides two functions for the same.

7.2.1 input and raw input

Two built-in functions namely input and raw_input provide the func-
tionality to incorporate values provided through a keyboard. raw_input

117

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

reads one-line and returns it as a string. on the other hand, input function,
treats the input as a valid python expression nd returns the result.

1 St r ing f rom raw input = raw input (”Enter the input f o r raw input
func t i on : ”)

2 pr in t ” raw input y i e l d s = ” , St r ing f rom raw input
3

4 St r ing f r om input = input (”Enter the input f o r input func t i on : ”)
5 pr in t ” raw input y i e l d s = ” , S t r i ng f r om input

input.py

The result is shown below:

1 Enter the input f o r raw input func t i on : Hi
2 raw input y i e l d s = Hi
3

4 Enter the input f o r input func t i on : [x f o r x in range (10)]
5 raw input y i e l d s = [0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9]

7.3 file object

Python has an in-built object namely file to treat data files. help(file)
gives detailed information about the same. A data file needs to be opened
before it can be dealt with in any way. Once opened, a file can be read for
editing. Editing can be done by writing to the file some data. After these
actions, the file needs to be closed. Two methods of file object is shown
in table 7.1.

open() Open a file

close() Close a file

Table 7.1: Methods for file object

open() function opens a file using the syntax.

file_object = open (file_name [,access_mode][,buffering])

For example, a file a.txt can be opened as:

1 f i l e 1 = open (”a . txt ” , ” r ”)

118

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

Here file1 variable will store the file object containing the contents of
the file named a.txt. This file is opened in read only mode as specified by
second parameter given by the string "r". A number of modes exist for files
to be opened, as shown in table 7.2

r read only

rb read only in binary format

r+ read and write

rb+ read and write in binary format

w write only

w+ read and write

wb+ read and write in binary format

a append

a+ append and read

ab+ append and reading in binary format

Table 7.2: Different modes in which a file can be opened

1. In the mode w,wb,wb+, python program over-writes a file if it exists.
If it does not exist then creates a new file for writing.

2. In the mode a,ab,ab+, python program appends the contents of a file
if it exists. If it does not exist then creates a new file for writing.

7.4 file object’s attributes

Different methods to access various attributes of a file object are provided
to a programmer for convenience of knowing the state of file operation. Some
of them are discussed below.

file.name Returns the name of the file

file.closed Returns boolean object True/False if file is closed/open

file.mode Returns access mode at the time of opening the file

Table 7.3: attributes of file object

To understand these concept in better manner, following exercise can be
done. Under a new directory of choice, a file named a is created.

119

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

1 >>>a1 = open (”a” , ’w ’)

This command will make a new file named a in working directory and
open it in write mode. This file object is stored in a variable named a1.

1 >>>type (a1)
2 f i l e
3

4 >>>a1 . name
5 ’ a ’
6

7 >>>a1 . c l o s ed
8 False
9

10 >>>a1 .mode
11 ’w ’
12

13 >>>a1 . c l o s e ()
14 >>>a1 . c l o s ed
15 True
16

17 >>>a1 .mode
18 ’w ’
19

20 >>>a1 . name
21 ’ a ’

Line number 1 inquired about the type of object stored in the variable
name a1 which is returned as a file type. Line 4 inquires about name of
the file which is returned as a. Line 7 inquires if the file is closed. Since
the present set of commands have not closed the file so a boolean data type
False is returned. Line number 10 inquires about the mode of file, for
which write is returned. When the file is closed using instructions at Line
13 then the inquiry about its closing status at Line number 14 is returned
as a boolean object True. All attributes can still be inquired after closing
as seen in Line 17 and 20.

7.5 Reading and writing to files

The write() and read() methods enable writing and reading the open
files. If the files are closed then they will show error. write() takes a string

120

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

as input argument.

1 >>>a2 = open (’ fun . txt ’ , ’wb ’)
2 >>>a2 . wr i t e (”Python i s fun \n Monty python i s f unn i e r ”)
3 >>>a2 . c l o s e ()
4 >>>a2 . c l o s ed
5 True
6 >>>a2 . wr i t e (”Add t h i s l i n e ”)
7 ValueError Traceback (most r e c en t

c a l l l a s t)
8 <ipython−input−41−83de982ee0fc> in <module>()
9 −−−−> 1 a2 . wr i t e (”Add t h i s l i n e ”)

10

11 ValueError : I /O operat i on on c l o s ed f i l e

A new file named fun.txt is created in the working directory, which is
opened in writable binary formatted file. In this file a two lines namely
”Python is fun” and ”Monty python is funnier” are printed. Then the file
is closed and the status is checked that the file is indeed closed. When the
file has been close, using write() method will call for error, explicitly men-
tioning that input/output operations cannot be performed on a closed file.

read() method reads a string from a file. Python strings can have binary
data apart from text data.

7.6 Buffering

This feature is incorporated when physical writes are performed on storage
devices. For small files, it is not needed. When very big files are dealt with
and data speed is slower then buffering (holding the data before recording)
is needed and a space in memory is required to hold the data before passing
it on to programs for reading and writing. When the value 0 is used to force
unbuffered operation, all file write operations are performed immediately.
When the value 1 is used, line buffering is enforced i.e. output lines are
written whenever a line terminator like \n is written. Any other positive
value for this argument will make a buffer size of that particular value,
available for the file operation.

121

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

7.7 Summary

File I/O is central part of a python programmer in all domains of studies.
Hence present chapter introduced the fundamentals of file I/O operations
using python. Various modes of file operations were illustrated and impor-
tance of creating, opening and closing files in a particular mode of operations
was illustrated. These actions are critical parts of real-world data analysis
where input data is usually in terms of files.

122

8
Functions and Loops

8.1 Introduction

A function is a part of a computer
program where a number of pro-
gramming statements are clubbed
as a block. It can be called as and
when desired. his enables modular
approach to programming tasks and
has become most popular amongst
programmers now-a-days as mod-
ules can be edited with ease instead
of finding edition in one big pro-
gram. Functions receive input pa-
rameters and returns output parameters. Which using a function, func-
tion name is called along with values for input parameters and after exe-
cution, a set of output parameters are returned. Python functions can be
defined at any place in the program, irrespective of the place from where
they are being called. They can even be defined as a separate file individu-
ally or in a combined manner. Also, they can be called any number of times
or may not be called too, as per requirements.

8.2 Defining functions

Just like any other language, python has its own way of defining functions.
The structure of a Python function is:

123

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

1 de f funct ion name (parameter 1 , parameter 2 , . . .) :
2 ””” De s c r i p t i v e s t r i n g ”””
3 # Comment about statements below
4 statements
5 re turn re turn parameter s

As seen above, a python function consists of three parts:

1. Header: Begins with a keyword (def) and ends with a colon (:)

2. Descriptive String: A string which describes the purpose of charac-
ter and can be accessed using help() function.

3. Body: An indented (4 white spaces in general) set of python state-
ments below the header

8.2.1 Function name

Function names follow the same rules as variable names in python. It is
a wiser option to give functions a name which is relevant to its description
and also to keep it short too.

8.2.2 Descriptive string

An essential part of a defining a function is to define its inner working de-
tails as a string. When help() is used, this descriptive string is displayed to
user to understand the function and its usage. Usage of a descriptive string
is not compulsory feature but it is recommended as a good programming
practice. Since the description should be as detailed as possible, hence it
constitutes a multi-line string. Multi-line strings can be written under triple
quotes. Even if description is one line long, it might need to print single or
double quotes for emphasizing a word or phrase, hence usage of triple quotes
has been mandated in definition of descriptive string.

8.2.3 Indented block of statements

To define the block of statements which are part of a function, indentation
is used as a marker. Statements which are indented after first statement to
define a function, are part of the body of statement which the function will

124

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

execute. When a statement is written without indentation, function is ex-
ited.

Rules of defining a function name are same that for defining variable
names. It is wise to name them with functionally relevant names so that
they are easier to be recalled when in need. When return_parameetrs are
omitted, the functions returns a null object.

For example fn-hello.py as shown below, does not take any input param-
eters and simply executes the statements of printing the string Hello world

1 de f g r e e t () :
2 pr in t ”He l lo world”
3

4 g r e e t ()

fn–hello.py

Running the file fn-hello.py produces the output as shown below:

1 >>>python fn−h e l l o . py
2 >>>Hel lo World

8.2.4 return statement

When a function returns a parameters, it need not always print the same.
Returning can be many other kinds of actions apart from simply printing
on a screen. Returning can include passing the variables or their values to
another function and/or variables, generating a file of code/data, generating
graphs and/or storing it as a file in a graphic format as desired etc. Python
program fn-sq.py prints the square of first 10 integers.

1 de f square (x) :
2 re turn x∗x
3

4 f o r i in range (10) :
5 s qua r ed i= square (i)
6 pr in t i , s qua r ed i

fn–sq.py

125

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Result of running the program is given below:

1 >>>0 0
2 1 1
3 2 4
4 3 9
5 4 16
6 5 25
7 6 36
8 7 49
9 8 64

10 9 81

Here the function square is called inside a ”for loop” which increments
value of variable i from 1 to 10 (generated by the in-built function range()).

8.3 Multi-input multi-output functions

A function can input and return any number of parameters as shown in
python program def-multi.py

1 de f sum(a , b) :
2 c = a+b
3 re turn a , b , c
4

5 r e s u l t s = sum(100 ,102)
6 pr in t r e s u l t s

def–multi.py

The execution results in:

1 >>>(100, 102 , 202)

8.4 Local and Global variables

8.5 Concept of loops

The main advantage of using computers for calculations are performing
repetitive tasks because they can compute faster than humans. The term

126

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

loop is associated with a repetitive calculations because one defined variable
names and repetitively shuffles the variable values in a specified sequence
generated by a condition. For example, one might like to find square root of
first 10 integers. To perform this calculations, one need to run the function
sqrt() on a list of first 10 integers (which can be generated by range())
function. The list of integers can be stored in an integer and this variable
can be put into a loop to perform the operation of finding out square root
of each member of the list one-by-one.

8.6 for loop

When same operation has to be carried out on given set of data, for loop is
a good choice. For example, suppose we simply want to print the individual
member of the list, then python code given below (code: ListMember.py)
can be employed.

1 import numpy as np
2

3 a = [’ a ’ , 1 , 3 . 1 4 , ’name ’]
4

5 f o r item in a :
6 pr in t ”The cur rent item i s : ” ,
7 pr in t item

ListMembers.py

The output is printed on the terminal as:

1 The cur rent item i s : a
2 The cur rent item i s : 1
3 The cur rent item i s : 3 .14
4 The cur rent item i s : name

It is worth noting that most of the programming languages employ a logi-
cal statement defining the initialization, condition and increment for running
the code. Python programs employ a different strategy where an array is
employing a condition and loop simply iterates on each member of the ar-
ray. This is important for python programs since python being interpretive
language, is inherently slower in operation. Spending time in checking a
condition each time the loop wishes to take a step, is computationally costly
affair. Hence python devise the computation in such a way that once a

127

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

list/array is formed as per the defined condition, loop can then be run of
list/array members. In this way, overall computation time can be reduced.

As an example to understand the usage of for loop for numerical compu-
tation, suppose one wishes to find the even Pythagorean numbers i.e. even
numbers a, b, c such that:

a2 + b2 = c2

This can be accomplished using for loop as given in the python code
pytha.py. In this python code, user inputs a number denoting the maximum
number for which this calculation will be performed. This ensures that
calculation has a proper end condition (without explicit definition).

1 # Program to generate even Pythagorean numbers
2 # Pythagorean numbers are those numbers f o r which pythagorus

equat ion stands t rue
3

4 from numpy import sq r t
5 n = raw input (” Please input a maximum number : ”) # Asks user to

input a number
6 n = in t (n)+1 # conver t s the va lue s s to r ed in va r i ab l e n to

i n t e g e r data type and adds 1 so that computation can be done
i f user f e ed s 0

7

8 # Two loops to d e f i n e ar rays f o r a and b f o r which c s h a l l be
computed

9 f o r a in range (1 , n) :
10 f o r b in range (a , n) :
11 c square = a∗∗2 + b∗∗2
12 c = in t (sq r t (c square)) # c i s converted to an i n t e g e r
13 i f ((c square − c ∗∗2) == 0) : # i f square o f a and square

o f b i s equal to square o f c then the r e s u l t w i l l be zero
14 i f (c%2 ==0) : # check ing i f c i s an even number
15 pr in t a , b , c

pytha.py

1 >>>Maximal Number? 20
2 6 8 10
3 12 16 20

As an exercise, one can write few more lines of code to check if there are
any prime number triplets as Pythagorean numbers.

128

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

8.7 if-else loop

In the example python code pytha.py, if statement has already been
used. It simply checks a condition, runs the loop if condition results True

boolean data and exits the loop if condition results False boolean data.
When multiple conditions needs to be checked in a sequence, if-else loops
are employed where if condition results True boolean data, the statement
is executed otherwise next condition is checked and similar operation is
performed recursively. This action is performed unless all conditions result
in returning the False boolean data.

1 # Program to c a l c u l a t e sh ipp ing co s t based on money spent and
l o c a t i o n

2

3 t o t a l = in t (raw input (’What i s the t o t a l amount f o r your on l i n e
shopping ?\n ’))

4 area = raw input (’ ’ ’ Type ” I ” i f you are shopping with in Ind ia . . .
5 and ”O” i f you are shopping out s id e Ind ia \n ’ ’ ’)
6

7 i f area == ” I ” :
8 i f t o t a l <= 500 :
9 pr in t ” Shipping Costs INR 20.00 ”

10 e l i f t o t a l <= 1000 :
11 pr in t ” Shipping Costs INR 100.00 ”
12 e l i f t o t a l <= 1500 :
13 pr in t ” Shipping Costs INR 250.00 ”
14 e l s e :
15 pr in t ”FREE”
16

17 i f area == ”O” :
18 i f t o t a l <= 500 :
19 pr in t ” Shipping Costs INR 75.00 ”
20 e l i f t o t a l <= 1000 :
21 pr in t ” Shipping Costs INR 200.00 ”
22 e l i f t o t a l <= 1500 :
23 pr in t ” Shipping Costs INR 500.00 ”
24 e l s e :
25 pr in t ”FREE”

ifelif.py

1 >>>What i s the t o t a l amount f o r your on l i n e shopping ?
2 2001
3

4 Type ” I ” i f you are shopping with in Ind ia . . .
5 and ”O” i f you are shopping out s id e Ind ia
6 I

129

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

7 FREE
8

9 >>>What i s the t o t a l amount f o r your on l i n e shopping ?
10 300
11

12 Type ” I ” i f you are shopping with in Ind ia . . .
13 and ”O” i f you are shopping out s id e Ind ia
14 I
15 Shipping Costs INR 20.00

8.8 while loop

A while loop has following syntax:

1 whi le exp r e s s i on :
2 statement (s)

Note that the statement()s) are indented for grouping. The statement(s)
can be single or multiple actions. The condition is a logical expression. The
loop iterated until the values of logical expression is True. As soon as it be-
comes False, the program control is passed to the next line. while loop
plays an important role in cases where looping must be skipped if condition
is not satisfied since none of satement is executed, if logical expression has
False value.

The program while.py gives an example of code demonstrating working
of while loop. Here another modules namely time is used to time taken by
two lines of codes for thier execution. Writing help(time) gives important
documentation regarding its usage. The function time.clock() returns a
floating point number which represents CPU time since the start of process
or the time when this fucntion is called first. By substracting the two one
gets a number depicting number of seconds taken to execute statements.

1 # Program demonstrat ing usage o f whi l e loop
2

3 # Program to count number o f s t ep s and time taken f o r t h i e r
execut ion

4

5 import time #This module i s used f o r t iming l i n e s o f codes
6 import numpy as np

130

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

7

8 i = 0 # i n i t i a l i z i n g the counter
9 whi le (i <10) : # counter cond i t i on

10 s t a r t = time . c l o ck () # de f i n i n g the va r i ab l e which s t o r e s
time . c l o ck (va lue)

11 pr in t ”Square root o f %d = %3.2 f : ”%(i , np . s q r t (i)) #
pr i n t i n g the number and i t s square root

12 i=i+1 # increment ing the counter
13 t iming = time . c l o ck () − s t a r t # p r i n t s time taken to execute

two l i n e s o f code above
14 pr in t ”Time taken f o r execut ion = %e seconds \n” % timing
15

16 pr in t ”The end” # s i g n i f i e s e x i t i n g the loop a f t e r cond i t i on i s
s a t i s f i e d

while.py

The result is shown as:

1 >>>Square root o f 0 = 0 . 0 0 :
2 Time taken f o r execut ion = 0.000158652234404 seconds
3

4 Square root o f 1 = 1 . 0 0 :
5 Time taken f o r execut ion = 3.97699673158 e−05 seconds
6

7 Square root o f 2 = 1 . 4 1 :
8 Time taken f o r execut ion = 4.19081375185 e−05 seconds
9

10 Square root o f 3 = 1 . 7 3 :
11 Time taken f o r execut ion = 2.77962135442 e−05 seconds
12

13 Square root o f 4 = 2 . 0 0 :
14 Time taken f o r execut ion = 2.22369708354 e−05 seconds
15

16 Square root o f 5 = 2 . 2 4 :
17 Time taken f o r execut ion = 2.18093368858 e−05 seconds
18

19 Square root o f 6 = 2 . 4 5 :
20 Time taken f o r execut ion = 2.13817029362 e−05 seconds
21

22 Square root o f 7 = 2 . 6 5 :
23 Time taken f o r execut ion = 2.1809336431 e−05 seconds
24

25 Square root o f 8 = 2 . 8 3 :
26 Time taken f o r execut ion = 2.22369708354 e−05 seconds
27

28 Square root o f 9 = 3 . 0 0 :
29 Time taken f o r execut ion = 2.43751414928 e−05 seconds

131

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

30

31 The end

Note that the output time might be different for each execution even on
same computer since time taken to process a line of code is functional of the
state of CPU at that particular moment of time.

8.9 Infinite loops

If the logical expression always outputs the boolean value True, then the
program never stops. These loops are termed as infinite loops since they
will take infinite time for execution. One of the simplest example is given
in python code infinite.py

1 i=1
2 whi le i ==1:
3 pr in t i
4 pr in t ”Good bye”

infinite–loop.py

Since the condition remains true always so program will never quite dis-
playing the value of i, which is 1. It will never print the last line of code.
On a Linux machine, one needs to press CTRL+C to interrupt the executing
and come back to command line.

8.10 while-else

Within a while loop, the statements are executed if condition produces a
boolean value True. Using else statement within this structure allows the
user the route the flow of program if condition returns the boolean value
False.

1 i=0
2

3 whi le i <5:
4 pr in t i
5 i=i+1
6 e l s e :
7 pr in t ” the value execeeds 5”

132

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

while–else.py

The result is shown below:

1 0
2 1
3 2
4 3
5 4
6 the value execeeds 5

As soon as incremented value becomes 5, the flow is handles by state-
ments under else condition.

8.11 Summary

Functions enable modular structure of programs. Also, controlling the
flow of information as well as iterations have become the very basis of com-
putational work in most applications. These two actions are performed by
loops. Together, they make python a powerful tool for various applications.
Modular structure makes it easier to test and debug. Mastering both skills
of writing functions as well as choosing proper loop structure have become
key indicators for ranking a programmers performance to solve problems
using python codes. Hence the present chapter becomes one of the most
important ones for programmers.

133

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

134

9
Numerical Computing formalism

9.1 Introduction

Numerical computation enables
us to compute solutions to nu-
merical problems, provided we can
frame them into a proper format.
This requires certain considerations.
For example, if we digitize contin-
uous functions, then we are going
to introduce certain errors due to
the sampling at a finite frequency.
Hence a very accurate result would
require very fast sampling rate. In
cases when a large data set needs to be computed, it becomes computation-
ally intensive and time consuming task. Also one must understand that the
numerical solutions are an approximation at best, compared to analytical
solutions. The onus of finding their physical meaning and significance lies
on us. The art of discarding solutions which do not have a meaning for
real world scenario, is something which a scientist/engineer develops over
the years. Also, a computational device is just as intelligent as its operator.
The law of GIGO (Garbage-In-Garbage-Out) is followed very strictly in this
domain.

135

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

In the present chapter, we shall try to understand some of the important
steps one must consider to solve a physical problem using numerical com-
putation. Defining a problem in proper term is just the first step. Making
the right model and then using the right method to solve (solver) enables
to distinguish between a naive and experienced scientist/engineer.

9.2 Physical problems

Everything in our physical world is governed by physical laws. Owing to
men and women of science who toiled under difficult circumstances and came
up with fine solutions to things happening around us, we obtained mathe-
matical theories for physical laws. To test these mathematical formalisms
of physical laws, we use numerical computation. If it yields the same results
as that of a real experiment, the validate each other. Numerical simulations
can remove the need of doing an experiment altogether provided we have
a well tested mathematical formalism. For example, nuclear powers of our
times need not test nuclear bombs for real any more. The data about nu-
clear explosion, which was obtained during real nuclear explosions, enabled
scientists to model these physical systems quite accurately, thus eliminating
the need to a real testing.

Apart from applications like simulating a real experiment, modeling phys-
ical problems are good educational exercises. While modeling, hands-on
exercises enables students explore the subject in depth and give a proper
meaning of topic under study. Solving numerical problem and visualization
of results makes the learning permanent and also ignites the research about
flaws in mathematical theory which ultimately leads to new discoveries.

9.3 Defining a model

Modeling means writing equations for a physical system. As the name
suggests, an equation is about equating two sides. An equation is written
using an = sign where terms on left hand side is equal to term on right hand
side. The terms on either sides of equations can be numbers or expressions.
For example:

3x+ 4y + 9z = 10

This is an equation having a term 3x+ 4y + 9z on left hand side (LHS)

136

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

and a term 10 on right hand side (RHS). Please note that whereas LHS is
an algebraic term, RHS is a number.

Expressions are written using functions which is simply a relation be-
tween two domains. Like f(x) = y is a relation from y to x using rules of
algebra. Mathematics has a rich library of functions using which one can
make expressions. Choice of proper functions depend on problem. Some
functions describe some situations best. For example, oscillatory behavior
can be described in a reasonable manner using trigonometric functions like
sin(x), cos(x) etc. Objects moving in straight lines can be described well
using linear equations like y = mx+ c where x is their present position, m
is constant rate of change of x w.r.t y and c is the offset position. Objects
moving in a curved fashion can be described by various non-linear functions
(where power of dependent variable like x above, is not 1).

In real life we can have situations which can be mixture of these scenarios.
Like an object can oscillate and move in curved fashion at the same time.
In that case we write an expression using mixture of functions or find new
functions which could explain the behavior of object. Verifying the func-
tions is done by finding solutions to equations describing the behavior and
matching it with observations taken on object. If they match perfectly, we
obtain perfect solutions. In most cases, an exact solutions might be difficult
to obtain. In these cases, we get an ”approximate” solution. If the errors in-
volved while obtaining an approximate solution are within toleration limits,
the models can be acceptable.

As discussed above, physical situations can be analytically solved by writ-
ing mathematical expressions in terms of functions involving dependent vari-
ables. Simplest problems have simple functions between dependent variables
with a single equation. There can be situation where multiple equations are
needed to explain a physical behavior. In case of multiple equations being
solved, the theory of matrix comes handy.

Suppose equations below define the physical behavior of a system:

−x+ 3y = 4 (9.1)

2x− 4y = −3 (9.2)

137

www.bookmuft.com
Dr. Sandeep Nagar

sandeep.nagar@gmail.com

Then this system of two equations can be represented by a matrix equa-
tion as follows:[

−1 3
2 −4

]
+

[
x
y

]
=

[
4
3

]

Now using matrix algebra, values of variables x and y can be found such
that they satisfy the equations. Those values are called roots of these equa-
tions. These roots are the point in 2-D space (because we had 2 dependent
variables) where the system will find stability for that physical problem. In
this way, we can predict the behavior of system without actually doing an
experiment.

Mathematical concept of differentiation and integration becomes very im-
portant where we need to work with dynamic system. When the system is
constantly changing the values of dependent variables to produce a scenario,
then its important to know the rate of change of these variables. When these
variables are independent of each other, we use simple derivatives to define
their rate of change. When they are not independent of each other, we use
partial derivatives for the same.

For example, Newtons second law of motion says that rate of change
of velocity of an object is directly proportional to the force applied on it.
Mathematically:

F ∝ dy

dx
(9.3)

The proportionality is turned into equality by substituting for a constant
of multiplication m such that:

F = m× dy

dx
(9.4)

If we know values or expressions for F , this equation can be solved ana-
lytically and solutions can be found to this equation. But in some cases, the
analytical solution may be too difficult to obtain. In those cases, we digitize
the system and find a numerical solution.

138

Dr. Sandeep Nagar
sandeep.nagar@gmail.com www.bookmuft.com

There are many methods to digitize and numerically solve a given func-
tion. Programs to implement a particular method to solve a function nu-
merically, is called a solver. A lot of solvers exist to solve a function. Choice
of solver is critical to successfully obtain a solution. For example, equation
9.4 is a differential equation. It is a first order ordinary differential equation.
A number of solvers exist to solve it like Euler, Runge-Kutta etc. Choice
of particular solver depends on accuracy of its solution, time taken for ob-
taining a solution and amount of memory used during the process. The
latter is important where memory is not an freely expendable commodity
like micro-computers with limited memory storage.

The advantage of using python to perform a numerical computation lies
in the fact that it has a very rich library of modules to perform various tasks
required. The predefined functions has been optimized for speed and accu-
racy (in some cases, accuracy can be predefined). This enables the user to
rapidly prototype the problem instead of concentrating on writing functions
to do basic tasks and optimizing them for speed, accuracy and memory us-
age.

9.4 Python Packages

A number of packages exist to perform numerical computation in a partic-
ular scientific domain. The website https://pypi.python.org/pypi gives
a list of packages. Installing package can be simply attained by writing the
command

>> pip install <package-name>

on the LINUX command line.

9.5 Summary

Almost all branch of science and engineering requires one to perform nu-
merical computation. Python is one of the alternative to do so. Python
has a library of optimized functions for general computation. Also it has a
variety of packages are present to perform a specialized job. This makes it
an ideal choice for prototyping a numerical computation problem efficiently.

139

https://pypi.python.org/pypi

	Introduction to pythonic way of life
	Introduction
	History
	Python and Engineering
	Modular programming
	summary

	Introduction to basics of python
	Introduction to python as an interpreted language
	Installation
	Python as a calculator
	Modules
	Using a module

	Summary

	Data types
	Introduction to Various types of data
	Logical
	Numeric
	Integer
	Floating point numbers
	complex Numbers

	Sequences
	String
	list and tuples

	Set and Frozen Set
	Mappings
	Null object
	Summary

	Operators
	Introduction
	Concept of variables
	Rules of naming variables

	Assignment Operator
	Arithmetic operators
	Changing and defining data type
	Order of usage
	Logical operators
	Membership Operator
	Identity Operator
	Bitwise operators
	Using bitwise operations

	Summary

	Arrays
	Introduction
	Numpy
	ndarray
	Automatic creation of arrays
	zeros
	ones
	ones like
	empty
	empty like
	eye
	identity
	full
	full like
	random
	diagonal

	Numerical ranges
	arange
	linspace
	logspace
	meshgrid
	mgrid and ogrid
	tile

	Broadcasting
	Indexing
	Slicing
	Copies and views
	Masking
	Fancy indexing
	Indexing with Boolean arrays

	Arrays are not matrices
	Some basic operations
	sum
	Minimum and maximum
	Statistics: mean median and standard deviation
	sort
	Rounding off

	asarray and asmatrix
	Summary

	Plotting
	Introduction
	Matplotlib
	Build Dependencies
	pylab versus pyplot

	Plotting basic plots
	Plotting more than one graph on same axes
	Various features of a plot

	Setting up to properties
	Histograms
	Bar charts
	Error Bar Charts
	Scatter plot
	Pie Chart
	Polar Plots
	Decorating plots with text, arrows and annotations
	Subplots
	Saving plot to a file
	Displaying plots on web application servers
	Working with matplotlib in object mode
	Logarithmic plots
	Two plots on same figure with atleast one axis different
	Contour plots
	3D plotting in matplotlib
	Line and scatter plots
	Wiremesh and Surface plots
	Contour plots in 3D
	Quiver plots

	Other libraries for plotting data
	Plotly

	Summary

	File I/O
	Introduction
	Reading input from keyboard
	input and raw_input

	file object
	file object's attributes
	Reading and writing to files
	Buffering
	Summary

	Functions and Loops
	Introduction
	Defining functions
	Function name
	Descriptive string
	Indented block of statements
	return statement

	Multi-input multi-output functions
	Local and Global variables
	Concept of loops
	for loop
	if-else loop
	while loop
	Infinite loops
	while-else
	Summary

	Numerical Computing formalism
	Introduction
	Physical problems
	Defining a model
	Python Packages
	Summary

		2016-03-29T01:43:41+0000
	Preflight Ticket Signature

