Web Development with Python

with flask, tornado and nginx

Table of contents
This book is for
Table of contents
PREFACE
Chapter 1 - Preparation
Chapter 2 - Getting your hands dirty with “Hello World!”
Chapter 3 - Setting up your development environment
Chapter 4 - Making the app look good.
Chapter 5 - Databases - made simple
What we’ll build next:
Chapter 6 - Making the app tick.
Chapter 7 - Forms
Chapter 8 - User login - with management
Chapter 9 - An Admin Panel to save us all
Chapter 10 - Prepare for the production environment
Features
Chapter 11 - Going online
Chapter 15 - Alist of addons that might interest you
Flask-Babel - translate your website easy
Flask-Cache - Adds cache support to your Flask application.
Flask-Login - Flask-Login provides user session management for Flask. It
handles the common tasks of logging in, logging out, and remembering your
users' sessions over extended periods of time.
Flask-MongoAlchemy - Add Flask support for MongoDB using MongoAlchemy
Flask-OAuth - guess what it does :)
Flask-OpenlID
Flask-Testing - The Flask-Testing extension provides unit testing utilities for
Flask.

Flask-Uploads - Flask-Uploads allows your application to flexibly and efficiently

handle file uploading and serving the uploaded files.

This book is dedicated to Violeta

This book is for

Beginners or advanced in python and total beginners in web programming with python.
You should have a basic python knowledge.

Quick test:

1. You know how to convert a string to a number and vice-versa ?
2. Can you write a simple for loop in python ?

3. Can you create a simple class ?

If the answer to all above is “YES” then go ahead. If you don’t know, then you really
should start with some basic python. There are lots of nice and free resources on net.

It helps if you know a little html too, like “What does <h1> do ?” for example.

Disclaimer:

This book is written by an amateur, and it's goal is to provide you just with a
starting point into Python - Flask web programming and giving you my own version on
how to do things.

An amateur (French amateur "lover of", from OIld French and ultimately from Latin
amatorem nom. amator, "lover") is generally considered a person attached to a particular
pursuit, study, or science in a non-professional or unpaid manner. Amateurs often have
little or no formal training in their pursuits, and many are autodidacts (self-taught).
(wikipedia)

Alternatives better than this book.

1. The flask documentation itself is pretty good

2. http://exploreflask.com/

3. Flask Web Development: Developing Web Applications with Python by Miguel
Grinberg

4. Miguel Grindberg’s blog - free

5. Instant Flask Web Development by Ron DuPlain

6. There are even youtube movies on flask.

| remind you that You can do things differently and more optimized! Here | write my
own idea on how things should be. If you’re good in front-end I’'m sure you would find
better alternatives. If you’re good in web-security I'm sure you’ll find better alternatives
for example.

http://exploreflask.com/

PREFACE
Flask is minimal and simple. You don’t get ORM'’s, Admin Panels and other stuff that
Django has out of the box. You can install a very cool admin panel with just 1 line of

code: “pip install flask-admin” and integrate it with 3-4 lines in your app.

It is easy to learn, powerful and combined with Tornado it produces awesome
performance even on a small VPS of 1Ghz.

write in http://www.google.com/trends/ “Flask Python”

http://www.google.com/trends/

Interest over time | Forecast

</

What you see is the trending of Flask Programming. Pretty cool isn’t it ?

Quick preview on what we’ll build in this
book

A simple user-tracking database management system with pagination, admin panel,
login, security.

TestFlask Queryrecord = Addrecord

Test Flask

At Time IP User Agent

2014-08-27 192.168.0.101 Mezilla/5.0 (Windows NT 6.3; WOWG64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
16:02:48 Safari/537.36

2014-08-27 192.168.0.101 Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
16:02:47 Safari/537.36

2014-08-27 192.168.0.101 Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
16:02:47 Safari/537.36

2014-08-27 192.168.0.101 Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebkKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
2:45 Safari/537.36

192.168.0.101 Mozilla/5.0 (Windows NT €.3; WOWE4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
Safari/537.36

As extra we’ll discuss in the last chapter, best practices for production environment and
optimizing it for a high traffic app.

Chapter 1 - Preparation

You can skip this chapter if you already have a linux environment set up and you don’t
what to setup a new one.

Suggestion:

For $5 per month, | strongly suggest that you get a VPS at digitalocean.com. In fact | will
give you a gift of $10 if you sign up now using this link (you’'ll receive the money in your
account after you sign in and get a new droplet) http://goo.gl/ArLvyx (this is a referal link
to me from DigitalOcean, this way you can say thank you for this book and get $10)

- you get a static ip, you can add very easy a domain name and it's very fast. Now
(August 2014) you can choose locations from: New York, San Francisco, Amsterdam,
Singapore, London.

let’s get started:

1. Install Ubuntu latest version
2. Login into ssh

This book assumes that you are familiar with terminal commands and running remote
commands with putty. If you need help read this article
https://www.digitalocean.com/community/tutorials/how-to-log-into-your-droplet-with-
putty-for-windows-users

Tip: if you use Windows, install Putty then install https://code.google.com/p/superputty/
and you have a nice putty managment with multiple windows.

Commands to run:

df -h
ifconfig -a
ping -c 4 google.com

* if you get unknown host * -> sudo nano /etc/resolv.conf nameserver 192.168.1.1 (line
down) nameserver 8.8.8.8

sudo apt-get update && sudo apt-get upgrade

[ssh]

sudo apt-get install -y openssh-server
sudo nano /etc/ssh/sshd_config

sudo restart ssh

https://code.google.com/p/superputty/
https://www.digitalocean.com/community/tutorials/how-to-log-into-your-droplet-with-putty-for-windows-users
https://www.digitalocean.com/community/tutorials/how-to-log-into-your-droplet-with-putty-for-windows-users
http://goo.gl/ArLvyx

sudo apt-get install -y htop zip rar unrar
sudo apt-get install -y mysql-client mysql-server
sudo apt-get install -y nginx

[webmin]
sudo nano /etc/apt/sources.list

-> deb http://download.webmin.com/download/repository sarge contrib
wget -q http://www.webmin.com/jcameron-key.asc -O- | sudo apt-key add -
sudo apt-get update
sudo apt-get install webmin

[failtoban]
sudo apt-get install -y fail2ban
sudo nano /etc/fail2ban/jail.conf

check that you have this configuration

[ssh]

enabled = true
port =ssh
filter =sshd

logpath = /var/log/auth.log
maxretry = 3

sudo /etc/init.d/fail2ban restart
sudo fail2ban-client status

sudo apt-get install -y build-essential python python-dev python-pip python-
mysqgldb libmysqlclient-dev supervisor libomemcached-dev memcached
python-memcache

pip install flask flask-login flask-mail sqlalchemy flask-sqlalchemy flask-wtf
flask-migrate tornado flask-cache simpleencode
pip install pdfminer flask-admin flask-security

http://www.webmin.com/jcameron-key.asc
http://download.webmin.com/download/repository

Nginx (pronounced "engine-x") is an open source reverse proxy server for HTTP,
HTTPS, SMTP, POP3, and IMAP protocols, as well as a load balancer, HTTP cache,
and a web server (origin server). The nginx project started with a strong focus on high
concurrency, high performance and low memory usage.

regs/sec

10000

8000

6000

4000

2000

nginx
apache

500 1000 1500 2000 2500 3000 3500

concurrent
connections

Webmin is a web-based system configuration tool for Unix-like systems, although recent

versions can also be installed and run on Windows. With it, it is possible to configure
operating system internals, such as users, disk quotas, services or configuration files,
well as modify and control open source apps, such as the Apache HTTP Server, PHP
MySQL.

as
or

Login: root

@ webrrin
Backup Configuration Files
Change Language and
Therme
Webrnin Actions Log
WWebrmin Configuration
Webrmin Servers Index
Webmin Users

@ System
Bootup and Shutdown
Chanige Passwords
Disk and Metwork
Filesystems
Filesystem Backup
Initial System Bootup
Log File Rotation
MIME Type Programs
PAM Authentication
Running Processes
Scheduled Commands
Scheduled Cron Jobs
Software Packages
System Documentation
System Logs
Users and Graups

O gervers
Pracmail Mail Filter
Read User Mail
S5H Server

@ Matworking

O Hardware

@ cluster

@ Others

B Un-used Modules

Search:

A View Module's Logs

Module Config

=>

IP Access Control

]

User Interface

k|

Indeyx Page Options

s

Edit Categories

8o

Anonymaous Module Access

I

Advanced Options

Startatboottime | @ ves O Mg Chang
CF

Submit 05 Information

Webmin Configuration

Wagbrnin 1.420
Ports and Addresses Logging
- A
@y 43
pe

Wehmin Modules Onperating Systerm and Ervironrment

N
€

Upgrade Webmin Authentication

@

Webmin Themes
)

=
=
=
= (=)
@
=
@
@

File Locking Mohile Device Options

& -

Debugging Log File SEL Encryption

eate

Click this button to re-start the Webmin server process. This may be necessary if you have recently upgraded Perl.

Proxy Serers and Downloads

Reassign Modules

S
S
Trusted Referrers

Blocked Hosts and Users

=
=0

Certificate Autharity

& this option to contral whether Webmin is started at boot time or not. Ifit is not currently started at boot and Yes is chosen, a new init script will be
il

Clicking this button will send infarmation about your operating system and Perl version to the YWebmin developers. This data will be strictly anonymous, and will

provide information about which operating systerns to best facus the developrent of Wehmin on

Fail2ban is software to protect computer servers from single-source brute-force attacks.

Fail2ban is an intrusion prevention framework written in the Python programming

language. It is able to run on POSIX systems that have an interface to a packet-control
system or firewall installed locally (for example, iptables or TCP Wrapper).

pip is a package management system used to install and manage software packages
written in Python.

Tornado is a scalable, non-blocking web server and web application framework written

in Python.

Tornado is noted for its high performance. It tries to solve the C10k problem affecting

other servers. The following table shows a benchmark test of Tornado against other

Python-based servers:

Server

Tornado

Setup

nginx, four frontends

Requests per second

8213

http://en.wikipedia.org/wiki/Nginx
http://en.wikipedia.org/wiki/Asynchronous_IO

Tornado One single-threaded frontend 3353

Django Apache/mod_wsgi 2223
web.py Apache/mod_wsgi 2066
CherryPy Standalone 785

Chapter 2 - Getting your hands dirty with “Hello World!”

PRO TIP OF THE DAY: the fastest way to learn this book is to type everything manually
from it. Copy-paste is not productive for learning programming unless you understand
100% the code. If you make a typo, then the simple action of debugging it will give you a
reward in learning.

If you already have a webserver and you skipped the first Chapter, run and install the
following:

sudo apt-get install -y build-essential python python-dev python-pip python-mysqldb
libmysqlclient-dev supervisor libmemcached-dev memcached python-memcache

pip install flask flask-login flask-mail sglalchemy flask-sqlalchemy flask-wtf flask-
migrate tornado flask-cache simpleencode
pip install pdfminer flask-admin flask-security

Hello World Application

Create a new directory under /home

cd /home
mkdir helloworld

create a new file named run.py

http://en.wikipedia.org/wiki/CherryPy
http://en.wikipedia.org/wiki/Mod_wsgi
http://en.wikipedia.org/wiki/Django_(web_framework)

nano run.py

run.py

from flask import Flask
app = Flask(_name_)

@app.route('/')
def hello_world():
return 'Hello World!'

if _name_ =="'
app.run()

save it, CTRL+X then “Y”’, Enter
now type:

python run.py

Then from your browser open

http://your server ip:5000/

If you forgot your server ip, write

wget -qO- http://ipecho.net/plain ; echo

Or if you use digitalocean you can see it after you login on your account after your VPS
name.

You should see a white page with a “Hello World!”. That’s all.
After you are done admiring your first flask application, hit CTRL+C.

PRO TIP OF THE DAY: you can write on top of run.py #!/usr/bin/python then chmod +x
run.py so you can just type ./run.py instead of “python run.py”.

If you get error like: -bash: ./run.py: /usr/bin/python*M: bad interpreter: No such file or
directory

apt-get install dos2unix then write “dos2unix run.py”. [and configure your IDE to use Line
separator Unix and OSX. code style->general in IntelliJ]

If you already knew this, and | offended you with this time wasting info, | apologize!

http://ipecho.net/plain
http://127.0.0.1:5000/

Chapter 3 - Setting up your development environment
The settings are just my preferences. You are free to use whatever you want of course.

Using nano to edit scripts is not productive. Here’s a screenshot on how | do it. You are
free to choose whatever method suits you however.

bl IsOnlineZilla2 - [CAworkspaceMsOnlineZila2] - 15

SuperPuTTY - o1

You see IntelliJ Studio and SuperPultty.

The text is so small because | have a 2560x1440 resolution (best money spend ever on
a good monitor), | have DELL U2713HM (now it's about $600)

| themed IntelliJ with a dark theme, so my eyes don’t hurt from so much white. You
prefer another color -> http://ideacolorthemes.org/home/ they have quite a few themes.

Python: https://www.python.org/download
IntelliJ Studio: http://www.jetbrains.com/idea/download/
Putty: http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe

http://the.earth.li/~sgtatham/putty/latest/x86/putty.exe
http://www.jetbrains.com/idea/download/
https://www.python.org/download
http://ideacolorthemes.org/home/

SuperPuty: https://code.google.com/p/superputty/

Start IntelliJ, configure whatever it asks you, choose “New Project” -> Python -> (don't
check Django, Google App Engine etc) just click next. next. Python interpreter. Name
your project.

Skip this step if you plan to use your own computer for development. But
eventually you’ll end up doing this in the end.

Go to Tools -> Deployment -> Configuration -> Add a new server. Select SFTP, fill the
detals host, port, username, password. Click test SFTP connection. You should see an
Successfully message. Select root path. Create a new folder in /home (for example).
Click the next tab from top Mappings

Type “I” in the Deployment path on the server “server_name”

Click “Use this server as default (a button on top)

Go to Tools -> Deployment -> Options. Check “Create empty directories”. And select
“Upload changed files automatically to the default server “Always”.

Now, to have Intellid show you nicely the code you need to install the packages on your
computer too.

Get the pip for windows
https://pypi.python.org/pypi/pip#downloads (link might change, so if it doesn’t work, just
google “install pip on windows”

start the shell on windows and write:

pip install flask flask-login flask-mail sqlalchemy flask-sqlalchemy
flask-wtf tornado flask-cache flask-admin flask-security

You need to install them both on windows and on the server because IntelliJ will use
them too.

https://pypi.python.org/pypi/pip#downloads
https://code.google.com/p/superputty/

Now let’s test if everything is going ok.

Remove the HelloWorld directory. You are not a beginner anymore :)

Let’s now structure the app a little.
Create a new directory named flask_tutorial.

mkdir flask_tutorial
cd flask_tutorial
mkdir app

mkdir app/static
mkdir app/templates

In the main directory “flask_tutorial” create a file named run.py
Inside app create a __init__.py and views.py

Here’s the standard folder structure of a Flask App.
So everything should look like this:

flask_tutorial/
app/
__init__.py
static/
templates/

views.py
run.py

The app folder is containing the bread and butter. Static folder is for css, js, jpg etc. files.
The __init__.py is where we will create our app object. The run.py is where the server

will be.

Edit: app/__init__.py

from flask import Flask
Define the WSGI application object

app = Flask(_name_)

from app import views

Here we just create the app object and import the views in it. In views we keep all the

logic on how the app responds to url requests.
Edit: app/run.py

import tornado

from tornado import autoreload

from tornado.wsgi import WSGIContainer
from tornado.httpserver import HTTPServer
from tornado.ioloop import IOLoop

from tornado.log import enable_pretty logging
from app import app

enable_pretty logging()

http_server = HTTPServer(WSGIContainer(app))
http_server.listen(1337)

ioloop = tornado.ioloop.IOLoop().instance()
autoreload.start(ioloop)

ioloop.start()

This is a default configuration on 1 core for the tornado server. We'll start like this

because you'll just write it once and you'll use it until the end of the book.

If you want to go into details with tornado, at the end of the book I'll give you a better

config, but for now this is more than enough.

Pretty logging for a nice display on the terminal. Notice that we start the app on port
1337!

[offtopic]

If 1337 doesn’t tell you anything then here’s the wikipedia intro to it.

Leet (or "1337"), also known as eleet or leetspeak, is an alternative alphabet for the
English language that is used primarily on the Internet. It uses various combinations of

ASCII characters to replace Latinate letters. For example, leet spellings of the word leet
include 1337 and /33t; eleet may be spelled 371337 or 3/33t.

The term leet is derived from the word elite. The leet alphabet is a specialized form of
symbolic writing. Leet may also be considered a substitution cipher, although many

dialects or linquistic varieties exist in different online communities. The term leet is also

used as an adjective to describe formidable prowess or accomplishment, especially in
the fields of online gaming and in its original usage — computer hacking.
[/offtopic]

Edit: app/views.py

from app import app

@app.route('/")
@app.route('/index")
def index():

http://en.wikipedia.org/wiki/Hacker_(hobbyist)
http://en.wikipedia.org/wiki/Online_game
http://en.wikipedia.org/wiki/Adjective
http://en.wikipedia.org/wiki/Variety_(linguistics)
http://en.wikipedia.org/wiki/Dialects
http://en.wikipedia.org/wiki/Substitution_cipher
http://en.wikipedia.org/wiki/Symbol
http://en.wikipedia.org/wiki/Elite
http://en.wikipedia.org/wiki/Latin_alphabet
http://en.wikipedia.org/wiki/ASCII
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/English_language
http://en.wikipedia.org/wiki/Alphabet

return "Hello, World2!"

Here we map the / and the /index to our “index()” function, that just returns a simple text.

Now go in the main folder and run “python run.py” then with our browser test the app at

http://your_server_ip:1337

you should see a “Hello, World2!” on it.

Chapter 4 - Making the app look good.

Twitter Bootstrap has evolved as an efficient tool kit and is widely used today for
creating websites. The reason that we do this now, is because it’s nicer to learn on
something that looks good. Let’s integrate bootstrap in our app

Probably at the time you read this, the libraries have different versions. You can just
google each one to get the latest and the greatest.

[don’t feel like typing ? go to the github page of this book
https://github.com/AndreiD/FlaskBook]

In the templates folder create a file called “base.html”. In it put:

<!DOCTYPE html>

<html lang="en" class="no-js">

{% set bootstrap_version = '3.2.0' %}
{% set modernizer_version = '2.8.2' %}
{% set jquery_version = '2.1.1' %}

{% set bootswatch version = '3.2.0' %}
{% set bootswatch_theme = 'slate' %}

<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-
scale=1.0" />
<meta http-equiv="X-UA-Compatible" content="IE=Edge,chrome=1" />
<title>{% block title%}Flask Testing{% endblock %} </title>

https://github.com/AndreiD/FlaskBook
http://your_server_ip:1337/

<link href="//netdna.bootstrapcdn.com/bootstrap/
{{ bootstrap_version }}/css/bootstrap.min.css" rel="stylesheet" />

<link href="//netdna.bootstrapcdn.com/bootswatch/
{{ bootswatch_version }}/{{ bootswatch_theme }}/bootstrap.min.css"
rel="stylesheet" >

<link href="/static/css/main.css" rel="stylesheet" />

<link rel="shortcut icon" href="/static/img/favicon.ico" />

{% block style block %} {# page-specific CSS #}{% endblock %}

<script src="//cdnjs.cloudflare.com/ajax/libs/modernizr/
{{ modernizer_version }}/modernizr.min.js"></script>{# Modernizr must be
here, above body tag. #}

{% block head script %} {# defer-incapable]S block #}{% endblock %}
</head>
<body>

{% include 'includes/nav.html' %} {# pull in navbar #}

<div class="container" id="maincontent">
{% include 'includes/flash_message.html' %} {# page-level
feedback notices #}
<div id="body_content">
{% block content %} {# main content area #} {% endblock %}
</div>
</div><!-- /container -->
<footer>
<div id="footer" class="container">
{% block footer %} {% endblock %}
</div><!-- [footer -->
</footer>
<script src="https://ajax.googleapis.com/ajax/libs/jquery/{{ jquery version
}}/jquery.min.js"></script>
<script src="//netdna.bootstrapcdn.com/bootstrap/
{{ bootstrap_version }}/js/bootstrap.min.js"></script>
<script src="/static/js/main.js"></script>
</body>
</html>

Pro tip of the day: instead of the bootswatch - “slate” theme, replace it with the
one of your liking.

You notice some tags like
{% include 'includes/nav.html' %}

As you probably suspect in the templates folder create another folder named includes.
We will use it to structure our code in a nice way, adding navigation to our site much
more easy.

The {{ variable }} means dynamic content. Something like: Total users: <?php
$total_users; ?> in php

lapp/templates/includes/nav.html

<nav class="navbar navbar-default" role="navigation">
<div class="navbar-header">
<button type="button" class="navbar-toggle" data-toggle="collapse"
data-target="#bs-example-navbar-collapse-1">
Toggle navigation

</button>
Test Flask
<ul class="nav navbar-nav navbar-right">
Example Nav

</div>
</nav>

Because we’ll be using after some time a nice way to give feedback to users called flash
let’s create it now

lapp/templates/includes/flash_message

{% with messages = get flashed_messages(with_categories=true) %}
{% if messages %}

{% if category == "error' %}
{% set icon = 'icon-exclamation-sign' %}
{% elif category == 'success' %}

{% set icon = 'icon-ok-sign' %}
{% else %}

{% set icon = 'icon-info-sign' %}
{% endif %}
{% for category, message in messages %}
<div class="alert alert-{{ category }}">
<i class="{{ icon }}"></i>
x

{{ message }}
</div>
{% endfor %}
{% endif %}
{% endwith %}

In the static folder create 3 folders: c¢ss, img, js. In the folder css create a file
named main.css and in the js one main.js. You can use the to add custom
things to your template.

After all this preparation, let’s finally create our index.html

lapp/templates/index.html

{% extends "base.html" %}
{% block content %}
<div style="font-size: 1.5em;text-align: center">
<h3>Testing Flask</h3>
<hr>
</div>
{% endblock content %}

This is all! Now we have everything in place. Just need to tell that on “/” or “/index” url

the view should display the “index.html” template. To do so update

lapplviews.py

from app import app

from flask import render_template
import logging

@app.route('/')
@app.route('/index")
def index():
return render_template("index.html")

Now go in the main folder and run “python run.py”

Because learning something should be fun, let’s quickly test our “webserver” to see how

it performs. Ideally you should use another server or machine for this.

Copy paste some random loren ipsum in the index.html so you load the page some
more. Keep in mind that this is a simple static page, no database queries, no other funny

stuff is inside.

sudo apt-get install apache2-utils

now for the benchmark write

ab -n 1000 -c 100 http://server_ip:1337/

Look at Time per request value. | get 126.564 [ms] (mean) on an i3 laptop with 4GB

ram. Try playing with increasing the -c to 250 for example.

Pro tip of the day: This testing is a little useless if you are running the test from
localhost and you are not interacting with any database. You should run it from a
different machine to get more accurate results. Also the tornado is set up to use just 1

core of your machine. But this is for the last chapter.

Later on, we’ll use nginx to make it even faster.

http://server_ip:1337/

Chapter 5 - Databases - made simple

What we’ll build next:

TestFlask Queryrecord = Addrecord

Test Flask

At Time IP User Agent

2014-08-27 192.168.0.101 Mezilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
16:02:48 Safari/537.36

2014-08-27 192.168.0.101 Mozilla/5.0 (Windows NT 6.3; WOW&4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
16:02:47 Safari/537.36

2014-08-27 192.168.0.101 Mozilla/5.0 (Windows NT 6.3; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
16:02:47 Safari/537.36

2014-08-27 192.168.0.101 Mozilla/5.0 (Windows NT €.3; WOWE4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
16:02:45 Safari/537.36

2014-08-27 192.168.0.101 Mozilla/5.0 (Windows NT 6.3; WOWE4) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143
16:02:42 Safari/537.36

SQLAIchemy is the Python SQL toolkit and Object Relational Mapper that gives
application developers the full power and flexibility of SQL.

An ORM is good for abstracting the datastore (sqlite, mysql, oracle, etc etc) in order to
provide an interface that can be used in your code.

If you didn’t installed it from the first chapter go ahead and write

pip install flask-sqlalchemy

Because we’ll use lots of configuration constants in our app. Let’s organize them in a

config file.

In the main folder flask_tutorial, (where the run.py is) create a new file called

config.py

Iconfig.py

import os
basedir = os.path.abspath(os.path.dirname(__file_))

class Config(object):
DEBUG = False
TESTING = False
SQLALCHEMY_DATABASE URI ="
APP_NAME = 'Flask Test'
SECRET_KEY = 'thisisaveryhardsecret!1234!1234'

class ProductionConfig(Config):
SQLALCHEMY_DATABASE_URI =

'mysql://username:password@server_ip/db'
DEBUG = False

class DevelopmentConfig(Config):

SQLALCHEMY_ DATABASE_URI = 'sqlite:///' + os.path.join(basedir,
'‘db.sqlite')

SQLALCHEMY_MIGRATE_REPO = os.path.join(basedir, '‘db_repository')

DEBUG = True

class TestingConfig(Config):

SQLALCHEMY_DATABASE_URI = 'sqlite:///' + os.path.join(basedir,
‘db.sqlite’)

SQLALCHEMY_MIGRATE_REPO = os.path.join(basedir, ‘db_repository')

TESTING = True

Now we should let know that the app will use this configuration

lapp/_init__.py

from flask import Flask
from flask.ext.sqlalchemy import SQLAlIchemy
import logging

app = Flask(_name_)
app.config.from_object('config.DevelopmentConfig')
db = SQLAIchemy(app)

logger = logging.getLogger(__name_)
logger.setLevel(logging.INFO)

from app import views, models

Now a model for the database is required, which are a collection of classes that we’ll use

to interact with the db.

A database model is a type of data model that determines the logical structure of a

database and fundamentally determines in which manner data can be stored, organized,

and manipulated. The most popular example of a database model is the relational

model, which uses a table-based format. [wikipedial]

create a model.py in /app

lapp/model.py

import datetime
from app import db

class Tracking(db.Model):
__tablename__ = "tracking"

id = db.Column(db.Integer, primary_key=True)

user_ip = db.Column(db.String(46))

user_agent = db.Column(db.String(100))

at_time = db.Column(db.DateTime, default=datetime.datetime.now)

def add_data(self, user_ip, user_agent):
new_user = Tracking(user_ip=user_ip, user_agent=user_agent)
db.session.add(new_user)
db.session.commit()

def list_all_users(self):
return Tracking.query.all()

def _repr_ (self):
return '<Tracking %r>"' % (self.id)

Update views.py to
lappl/views.py
from flask import render_template, request

from models import *
from flask.ext.admin import Admin, BaseView, expose

from flask.ext.admin.contrib.sqla import ModelView
from app import *
import logging

Executes before the first request is processed.
@app.before_first_request
def before_first_request():
logging.info(" initializing everything ")
db.create_all()

@app.route('/')
@app.route('/index")
def index():

new_tracking = Tracking()
new_tracking.add_data(request.remote_addr,request.headers.g
et(‘User-Agent’))

list_records = new_tracking.list_all_users()

for record in list_records:
logging.info(record.user_ip + " " + record.user_agent)

return render_template("index.html|")

The @app.before_first_request
This creates the database when you first access your website.

You can test the database with a quick view: nano db.sqliteyou should see your table

there.

Using request we get the visitor ip and the user-agent and we store it each time we
refresh the page.

Open your browser http://server_ip:1337/
And “python run.py”
You should see in the terminal something like this

[1140827 11:22:29 views:18] 192.168.0.123 Mozilla/5.0 (Windows NT 6.3; WOW64)
AppleWebKit/537.36 (KHTML, like Gecko) Chrome/36.0.1985.143 Safari/537.36

http://server_ip:1337/

and each time you refresh it, more records are added.

Chapter 6 - Making the app tick.

No need to write now, just read.
So the url routing is done like this:

@app.route('/welcome’)
def welcome():
return render_template(‘welcome.html') # render a template

This means that if you write you_website.com/welcome you will get the
“welcome.html” from the templates directory.

You can also use the routing to display static content like this:
@app.route("/favicon.ico")

def favicon():

return app.send_static_file("img/favicon.ico")

or other static content:
see http://stackoverflow.com/a/14054039/1031297

from flask import Flask, request, send_from_directory
@app.route('/robots.txt")
@app.route('/sitemap.xml’)
def static_from_root():
return send_from_directory(app.static_folder, request.path[1:])

You can also make the url dynamic and add variables to it like this (from flask
documentation)

@app.route(‘/user/<username>')

def show_user_profile(username):
show the user profile for that user
return 'User %s' % username

Or with an integer

http://stackoverflow.com/a/14054039/1031297

@app.route('/post/<int:post_id>")

def show_post(post_id):
show the post with the given id, the id is an integer
return 'Post %d' % post_id

You can combine them

@app.route('/hello/')
@app.route('/hello/<name>')
def hello(name=None):
return render_template(‘hello.html’, passed_name=name)

Notice the variable name with the default None. You can use it in your templates using {{

.

like <p>Greeting {{ passed_name }}!</p>

and you can specify http methods

@app.route('/login', methods=['GET"', 'POST"])
def login():
if request.method == 'POST":
do_the_login()
else:
show_the_login_form()

Now let’'s modify the index.html template to show nicely the records in our database and
add a new url to display a record by id.

lapplviews.py

from flask import render_template, request
from app import *
from models import *

@app.route('/')
@app.route('/index")
def index():
new_tracking = Tracking()
new_tracking.add_data(request.remote_addr, request.headers.get('User-

Agent'))
list_records = new_tracking.list_all_users()
return render_template("index.html", list_records=list_records)

PRO TIP OF THE DAY: You can use CTRL+ALT+L to re-format your code in Intellid. Try
it.

The return Tracking.query.all() returns a list with all records. We passed the list of all
records to our index template.

Quick intro into Jinja2 (the templates that
flask is using)

read more here http://jinja.pocoo.org/docs/dev/templates/

for the if we have:

{% if True %}
it's true
{% endif %}

a for statement is done like this

{% for item in list_of_items %}
do something with {{ item }}
{% endfor %}

and for if/else:

{% if kenny.sick %}
Kenny is sick.
{% elif kenny.dead %}
You killed Kenny! You bastard!!!
{% else %}
Kenny looks okay --- so far
{% endif %}

you can also use else with for like this:

{% for user in users %]}
{{ user.username }}</Ii>

http://jinja.pocoo.org/docs/dev/templates/

{% else %}

no users found
{% endfor %}

[great examples taken from jinja2 documentation]

so we modify our index.html
lapp/templates/index.html

{% extends "base.html" %}
{% block content %}
<div style="font-size: 1.5em;text-align: center">
<h3>Test Flask</h3>
<hr>

{% for record in list_records %]}
{{ record.user_ip }}

{{ record.user_agent }}

{% endfor %}

</div>
{% endblock content %}

Test it in your browser. Works! but wait, it looks ugly. Let’s wrap it up in a bootstrap nice
table.

{% extends "base.html" %}
{% block content %}
<div style="font-size: 1.5em;text-align: center">
<h3>Test Flask</h3>
<hr>
<table class="table table-striped table-bordered table-hover">
<thead>
<tr>
<th>IP</th>
<th>User Agent</th>
</tr>
</thead>
{% for record in list_records %}

<tr>
<td> {{ record.user_ip }}</td>
<td>{{ record.user_agent }}</td>
</tr>
{% endfor %}
</table>
</div>
{% endblock content %}

and edit the

lapp/static/css/main.css

td {
font-size: 0.8em;
text-align: left;

}

Test it. Looks much better now isn’t it ?

Going even further

Problem: if you refresh the page couple of times you get bigger and bigger listing. Let’s
add pagination to it. With SQLAIchemy pagination is piece of cake. Here’s the recipe
since I’'m supposing you don’t have time to read the official documentation.

In /config.py in the main Config(object) add LISTINGS_PER_PAGE = 5

class Config(object):
DEBUG = False
TESTING = False
SQLALCHEMY_DATABASE_URI ="
APP_NAME = 'Flask Test'
SECRET_KEY = 'thisisaveryhardsecret!1234!1234'
LISTINGS_PER_PAGE =5

Change the lapp/models.py to

def list_all_users(self,page, LISTINGS_PER_PAGE):
return Tracking.query.paginate(page, LISTINGS_PER_PAGE, False)

lapplviews.py

from flask import render_template, request
from app import *
from models import *

@app.route('")
@app.route('/index")
@app.route('/index/<int:page>")
def index(page=1):
new_tracking = Tracking()
new_tracking.add_data(request.remote_addr, request.headers.get('User-Agent’))
list_records =
new_tracking.list_all_users(page,app.config['LISTINGS _PER_PAGE'"))
return render_template("index.html", list_records=list_records)

Now we have to add the pagination 1, 2, 3....8,9 small buttons at the bottom of the page.

lapp/templates/index.html

{% extends "base.html" %}
{% block content %}
<div style="font-size: 1.5em;text-align: center">

<h3>Test Flask</h3>
<hr>
<table class="table table-striped table-bordered table-hover">
<thead>
<tr>
<th>At Time</th>
<th>IP</th>
<th>User Agent</th>
</tr>
</thead>
{% for record in list_records.items %}
<tr>

<td> {{ record.at_time }}</td>
<td> {{ record.user_ip }}</td>
<td>{{ record.user_agent }}</td>
</tr>
{% endfor %}

</table>

<ul class="pagination">
{%- for page in list_records.iter_pages() %}
{% if page %}
{% if page != list_records.page %}

 {{ page }}

{% else %}

<li class="active"> {{ page }}

<Nli>
{% endif %}
{% else %}
 ...
{% endif %}
{%- endfor %}

</div>
{% endblock content %}

Test it, and see the greatness of your work!
[If something is wrong, copy-paste the file from the github]

Optional Improvements:

add a time formatting:
<td> {{ record.at_time.strftime('%Y-%m-%d %H:%M:%S") }}</td>

order the records by created time:

lapp/models.py

[...]
from sqlalchemy import asc, desc
[...]
def list_all_users(self,page, LISTINGS_PER_PAGE):
return

Tracking.query.order_by(desc(Tracking.at_time)).paginate(page,

LISTINGS_PER_PAGE, False)

Add some test data

Since you've been connecting just from your computer, add a new different record to the
database by accessing it from a web proxy.

https://simple-proxy.com/
[note: if you develop from a local network you can open the port from your router]

[note2: if you don’t like this just add some dummy test data]
dummy test data;

somewhere in /index
new_user = Tracking(user_ip="100.100.100.100", user_agent="My browser”)

db.session.add(new_user)
db.session.commit()

How to add url for displaying just one record

What you need to modify.
lapp/models.py

def track_user_ip(self, user_ip, page, LISTINGS_PER_PAGE):
return Tracking.query.filter(Tracking.user_ip ==
user_ip).order_by(desc(Tracking.at_time)).paginate(page, LISTINGS_PER_PAGE,
False)

let’'s add the view now
lapplviews.py

@app.route('/track/<user_ip>")
@app.route('/track/<user_ip>/<int:page>')
def track_user_ip(user_ip="", page = 1):

new_tracking = Tracking()

list_records = new_tracking.track_user_ip(user_ip, page,
app.config[LISTINGS PER_PAGE'])

return render_template("track_ip.html", list_records=list_records)

https://simple-proxy.com/

and duplicate the index.html to track_ip.html
[optional: you can modify it’s title from Test Flask to Track IP or something]

Small instant homework. If you add more test data, you see that the pagination doesn’t
work. Fix it.

[-------—-- spoiler alert ------------]
[----mmmee spoiler alert ------------]
[-------- spoiler alert ------------]
[--mmmmmee spoiler alert ------------]
[-------- spoiler alert ----------—-]
[~ spoiler alert ------------]
[~ spoiler alert ------------]
[--------- spoiler alert ------------]
[---mmmmeee spoiler alert ------------]
[-----—-- spoiler alert ----------—-]
[--mmmmmmeee spoiler alert ------------]
[-------- spoiler alert ------------]
[--mmmmmee spoiler alert ------------]
[-------- spoiler alert ----------—-]
[~ spoiler alert ------------]
[~ spoiler alert ------------]
[--------- spoiler alert ------------]

change the {{url_for(‘index’)}} in the pagination at the bottom to url_for(“track_user_ip”)]

Test it: http://server_ip:1337/track/91.121.21.58

Alternative: with Flask-Restless create an API for adding/deleting/updating a record.

Flask-Restless provides simple generation of ReSTful APIs for database models defined
using SQLAIchemy (or Flask-SQLAIchemy). The generated APIs send and receive
messages in JSON format.

http://server_ip:1337/track/91.121.21.58

Chapter 7 - Forms

Let’'s create some forms to add new records to our database.
create a new file /app/forms.py
lapp/forms.py

from app import *
from wtforms.validators import Required, Length
from wtforms import Form, TextField

class TrackingInfoForm(Form):

user_ip = TextField('user_ip', validators=[Required(), Length(max=46,
message='max 46 characters')])

user_agent = TextField(‘user_agent’, validators=[Length(max=46, message="'max
46 characters')])

We are using WTF Forms. You can play with them like adding different fields, validators. But’s
let’s keep it basic for now.

change the imports of /app/views.py to
lappl/views.py

import logging

from flask import render_template, request, flash
from models import *

from forms import *

We're importing logging to do some debuging in the app, the forms and “flash” to display some
feedback to the user.

and add this to views.py
lappl/views.py
[...]
@app.route(‘/add_record', methods=['GET", 'POST'])
def add_record():
form = TrackingInfoForm(request.form)

if request.method == 'POST":
if form.validate():

new_tracking = Tracking()
user_ip = form.user_ip.data
user_agent = form.user_agent.data
logging.info("adding " + user_ip + " " + user_agent)
new_tracking.add_data(user _ip, user_agent)
flash("added successfully", category="success")

return render_template("add _record.html", form=form)

Update the navigation bar:

lapp/templates/includes/nav.html

<nav class="navbar navbar-default" role="navigation">
<div class="navbar-header">

<button type="button" class="navbar-toggle" data-toggle="collapse" data-target="#bs-
example-navbar-collapse-1">

Toggle navigation

</button>
Test Flask
<ul class="nav navbar-nav navbar-right">
Add record

</div>

</nav>

Test it by adding few records to the db. You should also see in the terminal the debug
message.

The most important part of this chapter are 2 homeworks that you really should do. They are
simple and should take 2-3 minutes for the first one and about 10 minutes for the second.

Homework 1.

Add a validator for ip address in the form.

HINT: You should search the documentation of WTFForms

[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]

[spoiler alert]

[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]

[spoiler alert]

from wtforms.validators import Required, Length, IPAddress

user_ip = TextField('user_ip', validators=[Required(), IPAddress(message="Invalid IP
Address")])

Homework 2.

Remember the track_user_ip to display a record filtered by ip ? Add to the track_ip.html page a
form with one input text where you can enter the IP and a button submit. Display the filtered ip

page after.

[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]
[spoiler alert]

[spoiler alert]

add

lapp/forms.py
class QueryOneForm(Form):

user_ip = TextField('user_ip', validators=[Required(), IPAddress(message="Invalid
IP Address")])

lapp/templates/includes/nav.html

Query record

lappl/views.py

modify track_user_ip function to:

@app.route('/track’, methods=['GET', 'POST'])
@app.route('/track/<user_ip>', methods=['GET', 'POST'])
@app.route('/track/<user_ip>/<int:page>', methods=['GET', 'POST'])
def track user _ip(user_ip="", page=1):

form = QueryOneForm(request.form)

if request.method == 'POST":
if form.validate():
user_ip = form.user_ip.data

new_tracking = Tracking()
list records = new_tracking.track user _ip(user_ip, page,
app.config['LISTINGS_PER_PAGE'])

return render_template("track_ip.html", list_records=list_records, form=form,
user_ip = user_ip)

and

lapp/templates/track_ip.html

{% extends "base.html" %}

{% block content %}

<h3>Track IP</h3>

<hr>

<div class="row">

<div class="well bs-component">
<form class="form-horizontal" method="post" action="">
<fieldset>
<legend>Search by IP</legend>
<div class="form-group">

<label for="user_ip" class="col-lg-4 control-label">User
IP</label>

<div class="col-lg-6">
{{form.user_ip (class="form-control")}}
{% for error in form.errors.user_ip %}

<div class="alert alert-danger" style="display:
inline-block">

{{error}}
</div>
{% endfor %}
</div>

</div>

<div class="form-group">

<div class="col-lg-4 col-lg-offset-4">

<button type="submit" class="btn btn-
primary">Search</button>

</div>
</div>
</fieldset>
</form>

</div>

<table class="table table-striped table-bordered table-hover">
<thead>
<tr>
<th>At Time</th>
<th>IP</th>
<th>User Agent</th>
</tr>
</thead>
{% for record in list_records.items %}
<tr>
<td> {{ record.at_time.strftime('%Y-%m-%d %H:%M:%S') }}</td>

<td> {{ record.user_ip }}</td>

<td>{{ record.user_agent }}</td>
</tr>
{% endfor %}

</table>

<ul class="pagination">
{%- for page in list_records.iter_pages() %}
{% if page %}
{% if page != list_records.page %}

 <a href="{{ url_for('track_user_ip', user_ip = user_ip, page =
page) }}">{{ page }}

{% else %}

<li class="active"> {{ page }}

{% endif %}
{% else %}
 ...
{% endif %}
{%- endfor %}

</div>

{% endblock content %}

Chapter 8 - User login - with management

To write yourself the user registration, email confirmation, forgot password etc. would
take some time and you’d have to be very good to write it without bugs and optimized.

We are grateful for having Flask-Security to save our souls.
https://pythonhosted.org/Flask-Security/index.html

Let’s get our hands dirty. We want a user register, confirmation by email, forgot
password and a /secret_page with a ultra-secret information inside.

We’'ll use yahoo, that has a limit of 100 emails per day. For our testing purposes it will be
ok.

If you have another mail server, just change the config.

For large volumes you can check http://sendgrid.com

Let’s clear our previous database first.
rm -rf db.sqlite

To use Flask-Security, first let’s configure it
add this values in the main Config
Iconfig.py

SECURITY_REGISTERABLE = True
SECURITY_RECOVERABLE = True
SECURITY_TRACKABLE = True
SECURITY_PASSWORD_HASH = 'sha512 crypt'
SECURITY_PASSWORD _SALT = 'add_salt 123 hard_one'
SECURITY_CONFIRMABLE = True

MAIL SERVER = 'smtp.mail.yahoo.com'

MAIL PORT = 465

MAIL USE_SSL = True

http://sendgrid.com/
https://pythonhosted.org/Flask-Security/index.html

MAIL_USE_TLS = False

MAIL_USERNAME = 'email@yahoo.com’
MAIL_PASSWORD = 'password'
DEFAULT_MAIL_SENDER = 'email@yahoo.com’
SECURITY_EMAIL SENDER = 'email@yahoo.com’

we need to add the flask-mail object

lapp/_init__.py
[...]

from flask_mail import Mail

[...]
mail = Mail(app)

We need to update our models.py too
Imodels.py

from flask.ext.security import UserMixin, RoleMixin,
SQLAIchemyUserDatastore

roles_users = db.Table('roles_users’,
db.Column('user_id', db.Integer(), db.ForeignKey('user.id')),
db.Column('role_id', db.Integer(), db.ForeignKey('role.id")))

class User(db.Model, UserMixin):
id = db.Column(db.Integer, primary_key=True)
email = db.Column(db.String(255), unique=True)
password = db.Column(db.String(255))
active = db.Column(db.Boolean())
confirmed_at = db.Column(db.DateTime())
roles = db.relationship('Role’, secondary=roles_users,

backref=db.backref(‘users', lazy='dynamic'))

last login_at = db.Column(db.DateTime())
current_login_at = db.Column(db.DateTime())
last_login_ip = db.Column(db.String(255))
current_login_ip = db.Column(db.String(255))
login_count = db.Column(db.Integer)

def _repr__(self):
return '<models.User[email=%s]>"' % self.email

class Role(db.Model, RoleMixin):
id = db.Column(db.Integer(), primary_key=True)
name = db.Column(db.String(80), unique=True)
description = db.Column(db.String(255))

user_datastore = SQLAIchemyUserDatastore(db, User, Role)

And the views.py
Iviews.py

[...]
from flask.ext.security import Security, login_required, logout_user

[...]
security = Security(app, user_datastore)

@app.route('/secret’)
@login_required
def secret():
return render_template('secret.html')

now create a simple secret.html in templates and write “secret page” in the content.

Flask-security uses some templates. Because They are simple, and self explanatory, |
won'’t copy paste them here.

I've customized my own templates with bootstrap, also you’ll find email templates.
Here is the all chapter with all the code. You just have to edit the config file with your
mail credentials.
https://github.com/AndreiD/FlaskBook/tree/master/flask_book/chapter_8

Chapter 9 - An Admin Panel to save us all

Flask-Admin

pip install Flask-Admin

https://github.com/AndreiD/FlaskBook/tree/master/flask_book/chapter_8

https://qithub.com/mrjoes/flask-admin

Flask-Admin is a batteries-included, simple-to-use Flask extension that lets you add
admin interfaces to Flask applications. It is inspired by the django-admin package, but
implemented in such a way that the developer has total control of the look, feel and
functionality of the resulting application. (official description)

Working with flask admin is very simple. Here’s the way to do it with SQLAIchemy.

from flask.ext.admin.contrib.sqla import ModelView
Flask and Flask-SQLAIchemy initialization here

admin = Admin(app)
admin.add_view(ModelView(User, db.session))

And this is all! It creates an admin panel for the User, with all the goodies that come with
it.

However, we want to customize it and to protect it with flask-security.

from flask.ext.admin.contrib.sqla import ModelView
Flask and Flask-SQLAIchemy initialization here

class MyView(ModelView):
Disable model creation
can_create = False

Override displayed fields
column_list = (‘login’, ‘email')

def _init_ (self, session, **kwargs):
You can pass name and other parameters if you want to

super(MyView, self). _init_ (User, session, **kwargs)

admin = Admin(app)
admin.add_view(MyView(db.session))

To the MyView class we can add

def is_accessible(self):

http://flask.pocoo.org/
https://github.com/mrjoes/flask-admin

return current_user.has_role(‘admin’)

So here’s the code for our app. There’s no need to copy it, just read it line by line and try
to understand it

H o ADMIN PART ----=m-=mm oo
class MyView(BaseView):
@expose('/')
def index(self):
return self.render(‘admin/index.html")

class TrackingAdminView(ModelView):
can_create = True
def is_accessible(self):
return current_user.has_role('end-user’)
def _init_ (self, session, **kwargs):
super(TrackingAdminView, self). _init_ (Tracking, session, **kwargs)

class UserAdminView(ModelView):
column_exclude_list = (‘password")

def is_accessible(self):
return current_user.has_role(‘admin’)

def _init_ (self, session, **kwargs):
super(UserAdminView, self). _init_ (User, session, **kwargs)

class RoleView(ModelView):
def is_accessible(self):
return current_user.has_role(‘admin')
def __init_ (self, session, **kwargs):
super(RoleView, self).__init_ (Role, session, **kwargs)

admin = Admin(app, name="Flask Test Admin")
admin.add_view(TrackingAdminView(db.session))
admin.add_view(UserAdminView(db.session))
admin.add_view(RoleView(db.session))

Chapter 10 - Prepare for the production environment

Time has come to let the world know on what we’ve been spending our resources...especially
time.

Before we venture into spending $$$ into advertising it :) let's make sure the production release is
good.

Everything | know, | share it with you. If any of you are more knowledgeable than me and you
want to share this with the people that will read this book, please email me your suggestions
using the http://androidadvance.com contact form.

What we plan to do:
* Time to leave sqlite and move to mysq|l.
® [f by some mysterious force our app breaks, we want to restart automatically

e |et's serve the app from nginx with a modified tornado

In order to tune the app for performance, let’s first make it do some hard work. Go into config
and modify the LISTINGS_PER_PAGE = 500

Now for the testing let’s use apache benchmark. The idea is to use it from a different machine
than the one you are hosting the app. If you have 2 servers just use another one, if you want to
have it on windows

Go to http://www.apachehaus.com/cgi-bin/download.plx and download Apache 2.4.10 x64 (you

have a x64 OS don’t you ?). Inside /bin you find ab.exe. Run it with PowerShell or cmd just like on linux

Testing with:

\ab.exe -n 100 -c 50 http://server_ip:1337/ (replace .\ab.exe with ab in linux)

On an old i3 laptop, 4GB RAM, with a shitty HDD

http://server_ip:1337/
http://www.apachehaus.com/cgi-bin/download.plx
http://androidadvance.com/

/run.py

http_server = HTTPServer(WSGIContainer(app))
http_server.listen(1337)

ioloop = tornado.ioloop.lOLoop().instance()
autoreload.start(ioloop)

ioloop.start()

We’ll call it single threaded, 1 core.

Testing on single core, sqlite database

Requests per second: 5.89 [#/sec] (mean)
Time per request: 8495.497 [ms] (mean)
Time per request: 169.910 [ms] (mean, across all concurrent requests)

Improvements list

/run.py

http_server = HTTPServer(WSGIContainer(app))
http_server.bind(1337)

http_server.start(0)

ioloop = tornado.ioloop.lOLoop().instance()
autoreload.start(ioloop)

ioloop.start()

We'll call it 4 cores tornado

Changing the config to Production, with a mysql server hosted on another machine. Make sure
the Debug is set to False

4 core tornado:

Requests per second: 13.39 [#/sec] (mean)

Time per request: 3735.012 [ms] (mean)

Time per request: 74.700 [ms] (mean, across all concurrent requests)

Alright, now we’re talking. With multithread and mysql the performance skyrocketed.
$sudo apt-get install nginx

nginx + 4 core tornado + mysq|

Requests per second: 13.45 [#/sec] (mean)

Time per request: 3716.845 [ms] (mean)

Time per request: 74.337 [ms] (mean, across all concurrent requests)

How to configure nginx with flask.

Clean and install nginx if you already played with it.

sudo apt-get purge nginx nginx-common nginx-full

then reinstall:

sudo apt-get install nginx

Test if nginx is running. Open the ip of your server. You should see a “hello world from
nginx” message.

Read this article https://www.digitalocean.com/community/tutorials/how-to-optimize-
nginx-configuration

[Note: all config files are in https://github.com/AndreiD/FlaskBook last chapter]
now let’s put flask in nginx

letc/nginx/sites-enabled/default

server {
listen 80 default;
server_ name domain.com;
server name www.domain.com;

access_log /var/log/nginx/domain.com.access.log;

root /home/your _flask project;

location /static/ {
expires max;
add_header Last-Modified $sent_http Expires;
alias /home/your_flask project/app/static/;

http://www.domain.com/
https://github.com/AndreiD/FlaskBook
https://www.digitalocean.com/community/tutorials/how-to-optimize-nginx-configuration
https://www.digitalocean.com/community/tutorials/how-to-optimize-nginx-configuration

location / {
try files $uri @tornado;
}

location @tornado {
proxy _set header Host $host;
proxy_set header X-Real-IP $remote_addr;
proxy set header X-Forwarded-For $proxy add_x forwarded_for;
proxy_pass http://127.0.0.1:1337;

}

Now you should change the port on your testing machine.

Jab.exe -n 100 -c¢ 50 http://server_ip/ (nginx server is on another port)

Want more testing ? check out http://www.slashroot.in/httperf-web-server-performance-
test

Make the app autorestart on crash:
apt-get install supervisor

Supervisor:
(from the official website)

Features

Simple

Supervisor is configured through a simple INI-style config file that's easy to learn. It
provides many per-process options that make your life easier like restarting failed
processes and automatic log rotation.

Centralized

Supervisor provides you with one place to start, stop, and monitor your processes.
Processes can be controlled individually or in groups. You can configure Supervisor to
provide a local or remote command line and web interface.

Efficient

Supervisor starts its subprocesses via fork/exec and subprocesses don’t daemonize.
The operating system signals Supervisor immediately when a process terminates, unlike
some solutions that rely on troublesome PID files and periodic polling to restart failed
processes.

Extensible

Supervisor has a simple event notification protocol that programs written in any

http://www.slashroot.in/httperf-web-server-performance-test
http://www.slashroot.in/httperf-web-server-performance-test
http://server_ip:1337/
http://127.0.0.1:1337/

language can use to monitor it, and an XML-RPC interface for control. It is also built with
extension points that can be leveraged by Python developers.

Compatible

Supervisor works on just about everything except for Windows. It is tested and
supported on Linux, Mac OS X, Solaris, and FreeBSD. It is written entirely in Python, so
installation does not require a C compiler.

Proven

While Supervisor is very actively developed today, it is not new software. Supervisor has
been around for years and is already in use on many servers.

Note that: Supervisor will not run at all under any version of Windows.
let’'s now insert our program into supervisor. Terminate the app if you have it running and

letc/supervisor/supervisord.conf

; supervisor config file

[unix_http_server]
file=/var/run/supervisor.sock ; (the path to the socket file)
chmod=0700 ; sockef file mode (default 0700)

[supervisord]

logfile=/var/log/supervisor/supervisord.log ; (main log file;default
$CWD/supervisord.log)

logfile_maxbytes=50MB

pidfile=/var/run/supervisord.pid ; (supervisord pidfile;default supervisord.pid)
childlogdir=/var/log/supervisor ; ('AUTO' child log dir, default $TEMP)
; the below section must remain in the config file for RPC

; (supervisorctl/web interface) to work, additional interfaces may be

; added by defining them in separate rpcinterface: sections
[rpcinterface:supervisor]

supervisor.rpcinterface factory =
supervisor.rpcinterface:make_main_rpcinterface

[supervisorctl]
serverurl=unix:///var/run/supervisor.sock ; use a unix:// URL for a unix socket

; The [include] section can just contain the "files" setting. This
; setting can list multiple files (separated by whitespace or

; hewlines). It can also contain wildcards. The filenames are

; interpreted as relative to this file. Included files *cannot*

; include files themselves.

[include]
files = /etc/supervisor/conf.d/*.conf

[program:mysuperappl

command=python /home/the_path_to_your _project/run.py
stderr_logfile = /var/log/supervisor/mysuperapp-stderr.log
stdout_logfile = /var/log/supervisor/mysuperapp-stdout.log
autostart=true

autorestart=true

stdout_logfile_maxbytes=10MB
stderr_logfile_maxbytes=10MB

startsecs=5

startretries=20

If you want, you can read more about supervisor config at
http://supervisord.org/configuration.html
You have so many users that your server can’t hold them ?

find out where’s the bottleneck

e check Flask-Cache for a nice way to implement caching in your app
e split the logic into multiple servers

e ask for help on stackoverflow.com

® see http://www.maxcdn.com/

® money are no problem ? Get a 64GB / 20 CPUS 640GB SSD DISK 9TB
TRANSFER MONTHLY $640.00 from digitalocean...or 2, 3...

Chapter 11 - Going online

My Method!

When it comes to buying domain names | go with namecheap
http://www.namecheap.com/?aff=64507 (please use the link if you want to say thanks for
this book)

1. Buy a domain from namecheap.

2. Get a VPS from digitalocean.com http://goo.gl/ArLvyx (my referal link again and you
get +$10 on your account after you make it)

3. Now in your namecheap domain manager

My Account = Manage Domains = Modify Domain

https://manage.www.namecheap.com/myaccount/domain-list.asp
https://manage.www.namecheap.com/myaccount/index.asp
http://goo.gl/ArLvyx
http://www.namecheap.com/?aff=64507
http://www.maxcdn.com/
http://supervisord.org/configuration.html

Specify Custom DNS Servers (Your own DNS Servers)
NS1.DIGITALOCEAN.COM

NS2.DIGITALOCEAN.COM

NS3.DIGITALOCEAN.COM

4. Now go to your digitalocean.com dashboard

create a new droplet (while the minimum droplet should be enough for start, get the
1Ghz one if +$5 per month is not too much for you)

Click the droplet.

Go to DNS

From the top button click “Add Domain”

Select the droplet from the left. The IP address should be added automatically

Enter the domain name (Ex: androidadvance.com)

Add an “A” record ... pointing to the droplet ip
@ oo, ip_of the_droplet

[this might be already added for you]
Add a CNAME

[optional] Add CNAMEs for a subdomain
subdomain.domain.com.............c.cceveveininnnnn. @

Example:

69 g e
“ @ 188 226.150.116 ®

CNAME * @
CNAME cars.uslugibg.net. @ (%)

CNAME music.uslugibg.net. @

NS1 DIGITALOCEAN COM.
NS2 DIGITALOGEAN COM.
NS3.DIGITALOGEAN.COM. (%)

Zone File

STTL 1800
5} IN S0R NS1.DIGITALOCERN.CCM. hostmaster.uslugibg.net. |
1401878588 ; last update: 2014-06-04 10:45:58 OUIC
3600 ; refresh
800 ; retry
1209600 ; expire

1800 ; ttl
}
IN N5 NS1.DIGITALOCEAN. COM.
NS NS2.DIGITALOCERN. COM.
NS NS3.DIGITALOCEAN. COM.
2 IH & 188.226.150.116
¥ CHN&ME @
cars.uslugibg.net. CHEME @
music.uslugibg.net. CHAME @

Now login in your droplet, install supervisor, install nginx, deploy your super flask app
etc.

Chapter 15 - A list of addons that might interest you

skipping the ones that we already used.

Flask-Babel - translate your website easy
Flask-Cache - Adds cache support to your Flask application.

Flask-Login - Flask-Login provides user session management for Flask. It handles the
common tasks of logging in, logging out, and remembering your users' sessions over
extended periods of time.

Flask-MongoAlchemy - Add Flask support for MongoDB using MongoAlchemy
Flask-OAuth - guess what it does :)

Flask-OpenID
Flask-Restless - provides simple generation of ReSTful APIs for database models

defined using SQLAIchemy (or Flask-SQLAIchemy). The generated APIs send and
receive messages in JSON format.

Flask-RESTful - is an extension for Flask that adds support for quickly building REST
APls.

Flask-Testing - The Flask-Testing extension provides unit testing utilities for Flask.

Flask-Uploads - Flask-Uploads allows your application to flexibly and efficiently handle
file uploading and serving the uploaded files.

| wish you good luck and if you have any feedback please use
http://androidadvance.com contact page.

Chapter 16

This is intended to be sort of "blog posts", regarding flask, python, admin stuff that might
help you on your road ahead.

Logging.

What you want to do:
Log serios errors to a file. Log debug messages on the console. Enable colors on the
console so they appear pretty.

http://androidadvance.com/

1. create a folder called "utils". inside it create an empty file called __init__.py
this is called a package. and the __init__.py tells python that there are modules to be
imported from this "folder".

2. create colorstreamhandler.py
Google mooware / colorstreamhandler.py and copy-pate it from his gist.

[sidenote: Gist is a simple way to share snippets and pastes with others. All gists are Git
repositories, so they are automatically versioned, forkable and usable from Git. You can
create two kinds of gists: public and private.

3. create general_utils.py

-*- coding: utf-8 -*-
import logging
import logging.handlers

import colorstreamhandler

LOG_FILENAME = "../LOCATION/the_log.out'
my_logger = logging.getLogger(‘MyLogger")
my_logger.setLevel(logging.DEBUG)

file_handler = logging.handlers.RotatingFileHandler(LOG_FILENAME,
maxBytes=10000, backupCount=0)
file_handler.setLevel(logging.ERROR)
my_logger.addHandler(file_handler)

stderr_log_handler = colorstreamhandler.ColorStreamHandler()
stderr_log_handler.setLevel(logging.NOTSET)
my_logger.addHandler(stderr_log_handler)

def cool _log(message, category="debug"):
if category == "debug":
my_logger.debug(message)

if category == "info":
my_logger.info(message)
if category == "warning":

my_logger.warning(message)

if category == "error":
my_logger.error(message)

[edit the LOCATION for "the_log.out"]

"# -*- coding: utf-8 -*-" is good if you work with russian,chineese characters.
"LOG_FILENAME = "../folder/the_log.out' si where the log.out will be
RotatingFileHandler will keep it small...so you don't end up with 200GB log
files.

file_handler.setLevel(logging.ERROR) - we only log ERRORS to the file

now we add another handler and set the logging level to NOTSET so we see
everything in the console.

Now we call our log with:

/some_file.py
#!/usr/bin/python

#-*- coding: utf-8 -*-

from utils import general_utils

general_utils.cool_log("hello from error","error")
general_utils.cool_log("hello from debug","debug")

you should see both messages displayed in color on your console. and just
the error message logged to file.

Homework:
add time to the log in the file (hint: use "%Y-%m-%d %H:%M:%S") and level
name in the console display.

[------ spoiler alert ----------]

[------ spoiler alert ---------- |
[------ spoiler alert ----------]
[------ spoiler alert ---------- 1
[------ spoiler alert ----------]
[------ spoiler alert ---------- |
[------ spoiler alert ----------]
[------ spoiler alert ---------- 1
[------ spoiler alert ----------]
[------ spoiler alert ---------- |
[------ spoiler alert ----------]
[------ spoiler alert ---------- 1
[------ spoiler alert ----------]
[------ spoiler alert ---------- |
[------ spoiler alert ----------]
[------ spoiler alert ---------- 1
[------ spoiler alert ----------]
[------ spoiler alert ---------- |
[------ spoiler alert ----------]
[------ spoiler alert ---------- 1
[------ spoiler alert ----------]
[------ spoiler alert ---------- |
[------ spoiler alert ----------]
[------ spoiler alert ---------- 1
[------ spoiler alert ----------]
[------ spoiler alert ---------- |
[------ spoiler alert ----------]

file_handler.setFormatter(logging.Formatter("%(asctime)s ### %
(message)s”, "%Y-%m-%d %H:%M:%S"))

stderr_log_handler.setFormatter(logging.Formatter("%(levelname)s ### %
(message)s", "%Y-%m-%d %H:%M:%S"))
Backups done easy

Option 1: write your backup scripts, add them in cron.
Option 2: use webmin

If you don't have webmin installed already, you can scroll to the begining of
the book to see how it's done or google it.

After you logged in to webmin, let's configure it to be able to send us
notification mails.

Webmin Configuration > Sending Email (on the bottom of the screen)
Configure "Send email using"

Note: | use sendgrid, so | put Via SMTP to remote mail server
smtp.sendgrid.net port 587 and my username and password, SMTP
authentication method: "Login". But if you prefer another setting please
configure it.

One of the most important things to do is backup the database. Here's how:

Open MySQL Database Server on servers (or in unused modules)
enter root and password

on the bottom you have "backup databases" with all the nice options,
including Scheduled backup enabled and sending mail in case the backup
fails. Sweet

Problem. If you chose to make backup every day, the webmin overwrites the
files. We want to create a new folder everytime a backup is done.

To enable this return to the main mysql server module. Click module config
link (upper part). Set Do strftime substitution of backup destinations? YES

Now in the backup database screen write the backup folder with
/home/backups/%d-%m-%Y/ (example if you want daily backups). Now each

time a backup is done, it will create a new folder.

Note: in case your database is a big one, you might want to consider other
methods.

Homework:

Webmin has lots of other cool things too. Check tab "Filesystem Backup" and
"Scheduled Cron Jobs"

