Data Access 3

Using Apache HiveQL

Date of Publish: 2018-07-12

http://docs.hortonwor ks.com

http://docs.hortonworks.com

Data Access | Contents | ii

Contents

Apache Hive 3 tables.........oov i 4
Create a CRUD transaCtional taI€...........couciriiiriiiiieee bbb 5
Create an insert-only transactional talE.............oiiiiiiiii e 6
Create, use, and drop an exterNal taDIE............viiiiiiieie et 6

Drop an external table along With QataL..........c.ceiiiiiiiie bbb e 8

USING CONSITAINTS.veeetiteiiiteiesteest ettt ettt st be e bt st b et ae st et et et eb et eb e s e eb e se ek e s e eb e seebe s e eb e sb e st s b ene e b et e b et ebeneebeneebenea 8
DeterMing the TADIE LYPB......o ettt bbb bt b e bt e bt e bbb b e e b benes 9
Altering tables from flat t0 tranSACtiONEL.............ciieiriiire e 10

Alter atable from flat to tranSACtiONEccvuiiriiiriee e 10

Hive 3 ACID tranSACLIONS......cc.oiuiiieeieiesiesieee ettt 11
USINg MaterialiZed VIBWS.........coioieiieiieesiee et e 14
Create and USe @ MALENTAIIZEN VIBW........cviiiiieieiiee ettt 14

Use a materialized VIeW 1N @ SUDQUENY.......c..o ittt s sbe b b sa 16

Drop @ MELENTAliZEA VIBW.......ccueiiiieieiee ettt sttt b et ae b e b e s b e sb et e seese et e e et e neenenneene 16

SNOW MELENTAIIZEA VIEWS.......oeceiiieiieeiieet sttt et b e n s 17
DesCribe 8 MaterialiZEA VIEW.........ccueiiiiiieiieteeee ettt 17
Manage rEWIITING OF @ QUENYc.ceeiiiieeet ittt b b et s b b e e b et et e e e e e e e e e aeebeeaesaeebeneas 19
Create a materialized view and SOre it iN DIUID..........cooveiriiiiiiis s 20
Create and use a partitioned MaterialiZEA VIEW..........c.oii i 20
Apache Hive Query Language DaSiCS........ccccvvveiereieeriesieesee e esiee e snee e 22
Query the information_SChema dal@hasE.c..cvreiriiiee e 23

Insert data into @N ACID tBDIE........co.ciiie bbb 24
UPdate data iN 8 TADIE.......c.oiieeeee e bbb e e e e r e 24

MErge data iN TADIES.......cueceice bbb bbbt 25

Delete data from @ TADIE.... ..o bbb e bbb e ne e 25

Create a teMPOrary TADIE... ..o vttt bbbt 25
Configure temporary table SLOrAQE..........ccv it 26

USE @ SUDGQUETY ...ttt sttt sttt et s b e e b e e bt e bt s e e bt b et b et e b et e b e e e b e s e e b e s e e bt e b e bt reebe s e bt s b et s be st nbene et 26
SUBQUENY TESIIICHIONS. ...ttt bbbt b ettt b e e 27

AQOregate and GrOUP TaEAL.......c.cireeeirieiriee ettt et b ettt s b et bbbt b et ettt et e b e 27

QUENY COMTEIBEEH TALAL cveeeeeeetirtet ettt bbb bbb bbbt e e bbbt b e s b e e b e s nb e e enn 27

USiNg COMMON taDI€ EXPIESSIONS........ccuieiuiieierietirietere ettt sttt b e b et e et se bbb et st e e b e s b e enennens 28

USE @ CTE 1N @ QUENY ...ttt sttt b e st b e et s b et bbbt b et ettt e b 28

Escape an il1€gal 1BNTIIEN ..o bbb e bbb 29
CHAR LA LY SUPPOIT......eeetieetirteterteiestee sttt ettt b sttt s bt s et b e e b s e bt e e bt b eb e se bt sees e s b ese b enenb e e sbe s enan 29
Create partitions dynamicCally........c.ccoceeiieiiiiiicie e 30
Repair partitions USING MSCK FEDEIT.......cc.cieieeeiereeeseseseseseseestesaeseessesaees e ssessessessestessessessessessensensesessessens 31

Query a SQL data source using the JdbcStorageHandler ... 32

Data Access | Contents | iii

Creating a user-defined fUNCHION.........cccviiiiie s 33
Set up the devel OPMENT ENVITONIMIENT.......c.oii ittt e bbb b e b e b neene 33
Creale the UDF ClaSS.....ccuiiiiiieieeeie ettt bbb bbbttt bbbt 35
Build the project and Upload the JAR..........ciiiiiireee ettt et seene e 35
REGISIEN The UDF ..ottt bbb b bbbt b et b et b et b e s b e bbb st neenes 37

Call the UDF 1N @ QUENY ..ottt ettt ettt b et b e bt e bt e bt e st se et b e st b e e b b n s s 38

Data Access Apache Hive 3 tables

Apache Hive 3 tables

Using Hive, you can create managed tables or external tables.

In Hive 3, Hive has full control over managed tables. Only through Hive can you access and change the data

in managed tables. Managed tables, except temporary tables, are transactiona tables having ACID (atomicity,
consistency, isolation, and durability) properties. Because Hive has full control of managed tables, Hive can optimize
these tables extensively. If you need to bypass Hive to access data directly on the file system, you use external tables
or astorage handler, such as Druid or HBase.

The following matrix lists the types of tables you can create using Hive, whether or not ACID properties are
supported, required storage format, and key SQL operations.

Table Type ACID File Format INSERT UPDATE/DELETE
Managed: CRUD Yes ORC Yes Yes

transactional

Managed: Insert-only Yes Any Yes No

transactional

Managed: Temporary No Any Yes No

External No Any Yes No

Although you cannot use the SQL UPDATE or DELETE statements to delete data in some types of tables, you can
use DROP PARTITION on any table type to delete the data.

The managed table storage type is Optimized Row Column (ORC) by default. If you accept the default by not
specifying any storage during table creation, or if you specify ORC storage, the result isan ACID table with insert,
update, and delete (CRUD) capahilities. If you specify any other storage type, such astext, CSV, AVRO, or JSON,
the result is an insert-only ACID table. Y ou cannot update or delete columnsin the table.

The following table and subsequent sections cover other differences between managed (transactional) and external

tables:
Tabletype Security Spark access Optimizations
Managed (transactional) Ranger authorization only, no Y es, using Hive Warehouse Statistics and others
SBA Connector
External Ranger or SBA, which requiresan | Yes, direct file access Limited
ACL in HDFS

Transactional tables

Transactional (ACID) tablesreside in the Hive warehouse. To achieve ACID compliance, Hive has to manage
the table, including accessto the table data. The datain CRUD (create, retrieve, update, and delete) tables must
bein ORC file format. Insert-only tables support all file formats. Hive is designed to support arelatively low rate
of transactions, as opposed to serving as an online analytical processing (OLAP) system. Y ou can use the SHOW
TRANSACTIONS command to list open and aborted transactions.

Transactional tablesin Hive 3 are on a par with non-ACID tables. No bucketing or sorting is required in Hive 3
transactional tables. These tables are compatible with native cloud storage.

Hive supports one statement per transaction, which can include any number of rows, partitions, or tables.

External tables

External table datais not owned or controlled by Hive. You typically use an external table when you want to access
datadirectly at thefile level, using atool other than Hive. Hive 3 does not support the following capabilities for
externa tables:

Data Access

Apache Hive 3 tables

e Query cache

* Materialized views, except in alimited way

o Default statistics gathering

« Compute queries using statistics

e Automatic runtime filtering

» Filemerging after insert

When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the

DROP TABLE command to also remove the actual datain the external table, as DROP TABLE does on a managed
table, you need to set the external .table.purge property to true as described later.

L ocation of tablesin HDP 3.x

Managed tables reside in the managed tablespace, which only Hive can access. By default, Hive assumes external
tables reside in the external tablespace. The warehouse tablespaces are shown in the Files view in Ambari:

i =/ warehouse tablespace Total: 2 files or folders

Name » Size > Last Modified » Owner
-

[0 externa -- 2018-09-13 07:59 hdifs
0 managed -- 2018-09-13 07:59 hdfs

To determine the managed or external table type, you can run the DESCRIBE EXTENDED table_name command.

Hive limitations and prerequisites

Hiveis not designed to replace systems such as MySQL or HBase. If upgrading from an earlier version to Hive 3, you
must run a major compaction to use your transactional tables.

Create a CRUD transactional table

Y ou create a CRUD transactional table when you need a managed table that you can update, delete, and merge.

About thistask

In thistask, you create a CRUD transactional table on the command line. Y ou cannot sort this type of table.
Bucketing is optional in Hive 3 and does not affect performance. By default, table datais stored in the Optimized
Row Columnar (ORC) file format. Implementing a storage handler that supports AcidlnputFormat and
AcidOutputFormat is equivalent to specifying ORC storage.

Procedure

1. Launch Be€lineto start Hive.

Data Access Apache Hive 3 tables

For example:

beeline -u jdbc: hive2://nyhiveserver.com 10000 -n hive -p

2. Enter your user name and password.
The Hive 3 connection message, followed by the Hive prompt for entering HiveQL queries on the command line,
appears.

3. Create a CRUD transactional table named T having two integer columns, aand b:

CREATE TABLE T(a int, b int);

Create an insert-only transactional table
Y ou can create atransactional table using any storage format if you do not require update and del ete capability.

About thistask

In thistask, you create an insert-only transactional table for storing text.

Procedure

1. Start the Hive shell:
[vagrant@c7401]# hive

2. Enter your user name and password.
The Hive 3 connection message appears, followed by the Hive prompt for entering queries on the command line.

3. Create ainsert-only transactional table named T2 having two integer columns, aand b:

CREATE TABLE T2(a int, b int)
TBLPROPERTI ES ('transactional properties' =" insert_only');

Create, use, and drop an external table
Y ou use an externa table, which is atable that Hive does not manage, to import data from afile on HDFS, or another
file system, into Hive.
Before you begin

In this task, you need access to HDFS to put a commarseparated values (CSV) file on HDFS. If you do not use
Ranger and an ACL isnot in place that allows you to access HDFS, you need to log in to a node on your cluster asthe
hdfs user. Alternatively, when using Ranger, you need to be authorized by a policy, such as the default HDFS all-path
policy (shown below) to access HDFS.

Ranger UacesManager [Audit & Settings o admin

testcluster_hadoop Policies

List of Policies : testcluster_hadoop

Q Search for your policy... Add New
Palicy
Policy ID Policy Name Policy Labels Status Audit Logging Groups Users Action
1 apan - DD - R (sl

Data Access Apache Hive 3 tables

About thistask

In thistask, you create an external table, store the datain Hive using a managed table, and drop the external table.
Y ou create an external table and load data from afile into the table. Y ou then use a Hive managed table to store the
datain Hive. Thistask demonstrates the following Hive principles:

* A major difference between an external and a managed (internal) table: the persistence of table data on the files
system after a DROP TABLE statement.

« External table drop: Hive drops only the metadata, which consists mainly of the schema definition.
« Managed table drop: Hive deletes the data and the metadata stored in the Hive warehouse.

* You can make the external table data available after dropping it by issuing another CREATE EXTERNAL
TABLE statement to load the data from the file system.

« TheLOCATION clausein the CREATE TABLE specifies the location of external table data.

Procedure

1. Create atext file named students.csv that contains the following lines.

1, j ane, doe, seni or, mat hemati cs
2,john, snmith,junior, engi neering

2. Asroot, move the file to /home/hdfs on a node in your cluster. As hdfs, create a directory on HDFS in the user
directory called andrenathat allows access by all, and put students.csv in the directory.

¢ Onthe command-line of a node on your cluster, enter the following commands:

sudo su -

mv students.csv /hone/ hdfs

sudo su - hdfs

hdfs dfs -nkdir /user/andrena

hdfs dfs -chnod 777 /user/andrena

hdf s dfs -put /hone/ hdfs/students.csv /user/andrena
hdfs dfs -chnod 777 /user/ andr enal/ students. csv

« Having authorization to HDFS through a Ranger policy, use the command line or Ambari to create the
directory and put the students.csv file in the directory.

3. Start the Hive shell.
For example, substitute the URI of your HiveServer: beeline -u jdbc:hive2://myhiveserver.com: 10000 -n hive -p

4. Create an external table schema definition that specifies the text format, loads data from students.csv located in /
user/andrena.

CREATE EXTERNAL TABLE | F NOT EXI STS nanes_t ext (
student I D INT, FirstName STRI NG LastNane STRI NG
year STRING Major STRI NG
COMVENT ' St udent Nanes'

ROW FORVAT DELI M TED

FI ELDS TERM NATED BY ',
STORED AS TEXTFI LE

LOCATI ON '/ user/ andrena’;

5. Verify that the Hive warehouse stores the student names in the external table.
SELECT * FROM names_text;

6. Createthe schemafor a managed table.

CREATE TABLE | F NOT EXI STS Nanes(
student I D INT, FirstName STRI NG Last Name STRI NG
year STRING Mjor STRI NG
COMMENT ' St udent Names';

Data Access

Apache Hive 3 tables

7.

8.

Move the external table data to the managed table.
INSERT OVERWRITE TABLE Names SELECT * FROM names _text;

Verify that the data from the external table resides in the managed table, and drop the external table, and verify
that the data still resides in the managed table.

SELECT * from Nanes;
DROP TABLE nanes_t ext;
SELECT * from Nanes;

The results from the managed table Names appears.

Verify that the external table schema definition islost.
SELECT * from names_text;

Selecting all from names_text returns no results because the external table schemaislost. The students.csv file on
HDFS containing student names data remains intact.

Drop an external table along with data

When you run DROP TABLE on an external table, by default Hive drops only the metadata (schema). If you want the
DROP TABLE command to also remove the actual data in the external table, as DROP TABLE does on a managed
table, you need to configure the table properties accordingly.

Procedure

1
2.

Create a CSV file of datayou want to query in Hive.

Launch Beeline to start Hive.
For example:

beeline -u jdbc: hive2://nyhiveserver.com 10000 -n hive -p

Create an external table to store the CSV data, configuring the table so you can drop it along with the data.

CREATE EXTERNAL TABLE | F NOT EXI STS nanes_t ext (
a INT, b STRI NG
ROW FORVAT DELI M TED
FI ELDS TERM NATED BY ',
STORED AS TEXTFI LE
LOCATI ON '/ user/ andr ena'
TBLPROPERTI ES (' external .table.purge' ="true');

Run DROP TABLE on the external table.
DROP TABLE nanes_t ext;

Thetable is removed from Hive Metastore and the data stored externally. For example, names _text is removed
from the Hive Metastore and the CSV file that stored the datais also deleted from HDFS.

Prevent datain external table from being deleted by a DROP TABLE statement.

ALTER TABLE addresses_text SET TBLPROPERTI ES
("external .table. purge' ='fal se');

Using constraints

You can use DEFAULT, PRIMARY KEY, FOREIGN KEY, and NOT NULL constraintsin Hive ACID table
definitions to improve the performance, accuracy, and reliability of data.

Data Access Apache Hive 3 tables

The Hive engine and Bl tools can simplify queriesif datais predictable and easily located. Hive enforces constraints

asfollows:

DEFAULT Ensures avalue exists, which is useful in EDW offload
cases.

PRIMARY KEY Identifies each row in atable using a unique identifier.

FOREIGN KEY Identifies arow in another table using a unique identifier.

NOT NULL Checks that a column valueis not set to NULL.

The optimizer uses the information to make smart decisions. For example, if the engine knowsthat avalueisa
primary key, it does not look for duplicates. The following examples show the use of constraints:

CREATE TABLE Persons (
I D INT NOT NULL,
Name STRI NG NOT NULL,
Age | NT,
Creat or STRI NG DEFAULT CURRENT_USER(),
Creat eDat e DATE DEFAULT CURRENT_DATE(),
PRI MARY KEY (I D) DI SABLE NOVALI DATE) ;

CREATE TABLE Busi nessUnit (

I D I NT NOT NULL,

Head | NT NOT NULL,

Creat or STRI NG DEFAULT CURRENT_USER(),

Creat eDat e DATE DEFAULT CURRENT DATE(),

PRI MARY KEY (| D) DI SABLE NOVALI DATE,

CONSTRAI NT fk FORElI GN KEY (Head) REFERENCES Persons(|D) Dl SABLE
NOVALI DATE

)

Determinethetabletype

Y ou can determine the type of a Hive table, whether it has ACID properties, the storage format, such as ORC, and
other information. Knowing the table type is important for a number of reasons, such as understanding how to store
datain the table or to complete remove data from the cluster.

Procedure

1. Inthe Hive shell, get an extended description of the table.
For example: DESCRIBE EXTENDED mydatabase.mytable;

2. Scroll to the bottom of the command output to see the table type.
The following output includes that the table type is managed and transaction=true indicates that the table has
ACID properties:

| Detailed Table Information | Tabl e(tabl eNane:t2, dbName: nydat abase,
owner: hdfs, createTi nme: 1538152187, | ast AccessTime: 0, retention:O0,
sd: St orageDescri ptor(col s: [Fi el dSchema(nane: a, type:int, conment:null),
Fi el dSchema(name: b, type:int, comrent:null)], .

Data Access

Apache Hive 3 tables

Altering tablesfrom flat to transactional

Knowing how Hive converts tables from flat to transactional, and being aware of the operations that are supported by

the conversion, helps you transition pre-existing tablesto Hive 3.

If you have aflat table (a managed, non-transactional table) that you created in release earlier than HDP 3.0, you can
convert the table to transactional using an ALTER TABLE statement. Hive changes only metadata, so this operation
executes very quickly. Compaction eventually rewrites the table to convert it to ACID format, but it occursin the
background, so you can run update and del ete operations on the table immediately after altering it.

Wide feature parity exists between flat and transactional tables as shown in the following list of features supported in
transactional tables:

Add Partition...

Alter Table

Alter Table T Concatenate
Alter Table T Rename To...
Create Table As...
Export/Import Table

Fully Vectorized

Insert Overwrite

Into Table...

LLAP Cache

Load Data...
Non-bucketed tables
Predicate Push Down

Alter atablefrom flat to transactional

Y ou might have aflat table, which is anon-transactiona table in the Hive warehouse, present from earlier releases.
You can use an ALTER TABLE statement to change a table from flat to transactional.

About thistask

Upon completion of the task, you can immediately run update and delete operations on the table.

Procedure

1

Start the Hive shell:
From the command line:hive

Enter your user name and password.
The Hive 3 connection message appears, followed by the Hive prompt for entering HiveQL queries on the
command line:

Connected to: Apache Hive (version 3.0.0.3.0.0.0-1361)
Driver: Hive JDBC (version 3.0.0.3.0.0.0-1361)
Transaction isol ation: TRANSACTI ON_REPEATABLE READ
Beel ine version 3.0.0.3.0.0.0-1361 by Apache Hive

0: jdbc: hive2://c7402. anbari . apache. org: 2181, >

Alter the flat table to make it transactional .

ALTER TABLE T3 SET TBLPROPERTI ES ('transactional'="true');

10

Data Access Hive 3 ACID transactions

Hive 3 ACID transactions

Hive 3 achieves atomicity and isolation of operations on transactional tables by using techniquesin write, read, insert,
create, delete, and update operations that involve deltafiles, which can provide query status information and help you
troubleshoot query problems.

Write and read operations

Hive 3 write and read operations improve the ACID properties and performance of transactional tables. Transactional
tables perform as well as other tables. Hive supports all TPC Benchmark DS (TPC-DS) queries.

Hive 3 and later extends atomic operations from simple writes and inserts to support the following operations:

e Writing to multiple partitions
e Using multipleinsert clausesin asingle SELECT statement

A single statement can write to multiple partitions or multiple tables. If the operation fails, partial writes or inserts are
not visible to users. Operations remain performant even if data changes often, such as one percent per hour. Hive 3
and later does not overwrite the entire partition to perform update or del ete operations.

Read semantics consist of snapshot isolation. Hive logically locks in the state of the warehouse when aread operation
starts. A read operation is not affected by changes that occur during the operation.

Atomicity and isolation in insert-only tables

When an insert-only transaction begins, the transaction manager gets atransaction ID. For every write, the transaction
manager allocates awrite ID. This D determines a path to which datais actually written. The following code shows
an example of a statement that creates insert-only transactional table:

CREATE TABLE tm (a int, b int) TBLPROPERTIES
('transactional properties'="insert_only')

Assume that three insert operations occur, and the second one fails:

I NSERT | NTO t m VALUES(1, 1) ;
I NSERT | NTO tm VALUES(2,2); // Fails
I NSERT | NTO t m VALUES(3, 3);

For every write operation, Hive creates a delta directory to which the transaction manager writes data files. Hive
writes all datato deltafiles, designated by write IDs, and mapped to atransaction ID that represents an atomic
operation. If afailure occurs, the transaction is marked aborted, but it is atomic:

tm

____ delta 0000001 0000001 _0000

000000_0

____ delta_0000002_0000002_0000 //Fails
000000_0

____ delta 0000003 _0000003_0000

000000_0

During the read process, the transaction manager maintains the state of every transaction. When the reader starts, it
asks for the snapshot information, represented by a high watermark. The watermark identifies the highest transaction
ID in the system followed by alist of exceptions that represent transactions that are still running or are aborted.

The reader looks at deltas and filters out, or skips, any IDs of transactions that are aborted or still running. The reader
uses this technique with any humber of partitions or tables that participate in the transaction to achieve atomicity and
isolation of operations on transactional tables.

11

Data Access

Hive 3 ACID transactions

Atomicity and isolation in CRUD tables
You can create afull CRUD (create, retrieve, update, delete) transactional table using the following SQL statement:

CREATE TABLE acidtbl (a INT, b STRING ;

Running SHOW CREATE TABLE acidtbl provides information about the defaults: transactional (ACID) and the
ORC data storage format:

focccccccccccccccccccccococcocococococococoococoooooooooooooooae +
[createtab_stnt [
fcocococcoccooccoocoocoooocoocoocoocoocoocoooocoocoocoooe +
CREATE TABLE " aci dt bl ~ (
‘a int,
“b® string)

|

|

| ROW FORVAT SERDE

[' or g. apache. hadoop. hive. gl .io0.orc. OrcSerde'
| STORED AS | NPUTFORNMAT
|

I

I

I

|

' or g. apache. hadoop. hive. gl .i 0. orc. O cl nput For mat '
OQUTPUTFORVAT
' org. apache. hadoop. hive. gl .io0.orc. O cCut put Format' |
LOCATI ON
"hdfs://nyserver.com 8020/ war ehouse/ t abl espace/ managed/ hi ve/
acidtbl" |
| TBLPROPERTI ES (|
[" bucketing version' ="' 2", |
["transactional ' ='true', |
| "transactional _properties' =" default"', |
["transient_|astDdl Ti ne' =' 1555090610') [

Tables that support updates and deletions require aslightly different technique to achieve atomicity and isolation.
Hive runs on top of an append-only file system, which means Hive does not perform in-place updates or deletions.
Isolation of readers and writers cannot occur in the presence of in-place updates or deletions. In this situation, alock
manager or some other mechanism, isrequired for isolation. These mechanisms create a problem for long-running
queries.

Instead of in-place updates, Hive decorates every row with arow ID. Therow ID isastruct that consists of the
following information:

* Thewrite ID that maps to the transaction that created the row
« Thebucket ID, abit-backed integer with several bits of information, of the physical writer that created the row
e Therow ID, which numbers rows as they were written to a datafile

Metadata Columns | original_write_id

bucket_id Ruw_l D

row_id
eurrent_write_id

User Columns col_1:

a:INT
col_2:

b : STRING

12

Data Access

Hive 3 ACID transactions

Instead of in-place deletions, Hive appends changes to the table when a del etion occurs. The deleted data becomes
unavailable and the compaction process takes care of the garbage collection later.

Create operation
The following example inserts several rows of datainto afull CRUD transactional table, creates adeltafile, and adds
row IDsto adatafile.

I NSERT | NTO aci dt bl
"bananas") ;

(a,b) VALUES (100, "oranges"), (200, "apples"), (300,

This operation generates a directory and file, delta_00001_00001/bucket_0000, that have the following data:

ROW_ID a b

{1,0,0} 100 "oranges"
{10.1} 200 "apples’
{1,0,2} 300 "bananas"

Delete operation

A delete statement that matches a single row also creates adeltafile, called the delete-delta. The file stores a set of
row IDsfor the rows that match your query. At read time, the reader looks at this information. When it finds a delete
event that matches arow, it skips the row and that row is not included in the operator pipeline. The following example
deletes data from a transactional table:

DELETE FROM aci dTbl

where a = 200;

This operation generates adirectory and file, delete_delta_ 00002_00002/bucket_0000 that have the following data:

ROW_ID a b

{1,0,1} null null

Update operation

An update combines the deletion and insertion of new data. The following example updates a transactional table:
UPDATE aci dTbl SET b = "pears" where a = 300;

One deltafile contains the delete event, and the other, the insert event:

ACID_PK A B
{1.0.0} 100 “oranges”
{1.0,1} 200 "apples” 1 l
{1.0.2) 300 | “bananas” ACID PK A B ACID_PK A B
| {2,0,0%] 300 I ‘paars” | |{'I.E}.2} I null I mull |

delta_00001_00001/bucket_0000

delta_ 00003 00003/bucket 0000 delate_delta_00003_00003/bucket_0000

The reader, which requires the AcidinputFormat, applies al the insert events and encapsulates all the logic to handle
delete events. A read operation first gets snapshot information from the transaction manager based on which it selects
filesthat are relevant to that read operation. Next, the process splits each data file into the number of pieces that each
process has to work on. Relevant delete events are localized to each processing task. Delete events are stored in a
sorted ORC file. The compressed, stored datais minimal, which is a significant advantage of Hive 3. Y ou no longer
need to worry about saturating the network with insert eventsin deltafiles.

13

Data Access Using materialized views

Using materialized views

Apache Hive works with Apache Calcite to optimize your queries automatically using materialized views you create.

Using a materialized view, the optimizer can compare old and new tables, rewrite queries to accelerate processing,
and manage maintenance of the materialized view when data updates occur. The optimizer can use a materialized
view to fully or partially rewrite projections, filters, joins, and aggregations. Hive stores materialized views in the
Hive warehouse or Druid. Y ou can perform the following operations related to materialized views:

» Create amaterialized view of queries or subqueries

» Drop amateriaized view

* Show materialized views

o Describe amaterialized view

» Enable or disable query rewriting based on a materialized view

* Globally enable or disable rewriting based on any materialized view
« Use partitioning to improve the performance of materialized views.

Related I nformation
Materialized view commands

Create and use a materialized view

Y ou can create amaterialized view of a query to calculate and store results of an expensive operation, such asjoin.

About thistask

In thistask, you create and populate example tables. Y ou create a materialized view of ajoin of the tables.
Subsequently, when you run a query to join the tables, the query plan takes advantage of the precomputed join to
accelerate processing. Thistask is over-simplified and isintended to show the syntax and output of a materialized
view, not to demonstrate accel erated processing that resultsin areal-world task, which would process a large amount
of data.

Procedure

1. IntheHive shell or other Hive Ul, create two tables:

CREATE TABLE enps (
enpid | NT,
dept no | NT,
nane VARCHAR(256),
sal ary FLOAT,
hire_date Tl MESTAMP);

CREATE TABLE depts (
dept no | NT,
dept nane VARCHAR(256),
| ocationid I NT);

2. Insert some datainto the tables for example purposes:

I NSERT | NTO TABLE enps VALUES (10001, 101, ' jane doe', 250000, ' 2018-01-10');
I NSERT | NTO TABLE enps VALUES (10002, 100, ' sonporn

kl ai |l ee', 210000, ' 2017-12-25");
I NSERT | NTO TABLE enps VALUES (10003, 200, 'j ei ranan

t hongnopneua' , 175000, ' 2018- 05-05") ;

14

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access

Using materialized views

| NSERT | NTO TABLE depts VALUES (100,' HR , 10);
| NSERT | NTO TABLE depts VALUES (101,' Eng', 11);
| NSERT | NTO TABLE depts VALUES (200, Sup', 20);

. Create amaterialized view to join the tables:

CREATE MATERI ALI ZED VI EW nv1
AS SELECT enpid, deptnane, hire_date
FROM enps JO N depts
ON (enps. dept no = depts. dept no)
VWHERE hire_date >= '2017-01-01';

. Execute a query that takes advantage of the precomputation performed by the materialized view:

SELECT enpi d, deptnane
FROM enps
JO N depts
ON (enps. deptno = depts. dept no)
VHERE hire_date >= '2017-01-01'
AND hire_date <= '2019-01-01";

Output is:
foccoocooo feccoococooo +
| enmpid | deptname |
feoocooooo foococoooccoooo +
| 10003 | Sup |
| 10002 | HR [
| 10001 | Eng [
fococoocooo foccoococooo +

. Verify that the query rewrite used the materialized view by running an extended EXPLAIN statement:

EXPLAI N EXTENDED SELECT enpi d, dept nane
FROM enps
JO N depts
ON (enps. dept no = depts. dept no)
VWHERE hire_date >= '2017-01-01'
AND hire date <= '2019-01-01';

The output shows the alias default.mv1 for the materialized view in the TableScan section of the plan.

OPTI M ZED SQL: SELECT “enpid’, " deptnane’
FROM “default ™. nv1l°
VHERE Tl MESTAMP ' 2019-01- 01 00: 00: 00. 000000000" >= “hire_date’
STAGE DEPENDENCI ES:
Stage-0 is a root stage

STAGE PLANS:
Stage: Stage-0
Fet ch Qperat or
limt: -1
Processor Tree:
Tabl eScan
alias: default.m1l
filterExpr: (hire_date <= TI MESTAMP 2019-01-01
00: 00: 00') (type: bool ean) |
Gat her Stats: fal se
Filter Operator
i sSanpl i ngPred: false
predi cate: (hire_date <= TI MESTAMP 2019-01-01

15

Data Access Using materialized views

00: 00: 00') (type: bool ean)
Sel ect Operator
expressions: enpid (type: int), deptname (type:
var char (256))
out put Col umNanes: _col 0, _coll
Li st Si nk

Related Information
Materialized view commands

Usea materialized view in a subquery

Y ou can cresate a materialized view for optimizing a subquery.

About thistask

In thistask, you create a materialized view and use it in a subquery to return the number of destination-origin pairs.
Suppose the dataresides in a table named flights_hdfs that has the following data:

c_id dest origin

1 Chicago Hyderabad

2 London Moscow
Procedure

1. Create atable schema definition named flights hdfs for destination and origin data.

CREATE TABLE f i ghts_hdf s(
c_id INT,
dest VARCHAR(256),
ori gi n VARCHAR(256));

2. Create amaterialized view that counts destinations and origins.

CREATE MATERI ALI ZED VI EW mv1
AS
SELECT dest, origin, count(*)
FROM flights hdfs
GROUP BY dest, origin;

3. Usethe materialized view in a subquery to return the number of destination-origin pairs.

SELECT count (*)/2

FROM
SELECT dest, origin, count(*)
FROM flights_hdfs
GROUP BY dest, origin

) AS t;

Related I nformation
Materialized view commands

Drop a materialized view
Y ou must understand when to drop a materialized view to successfully drop related tables.

16

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access

Using materialized views

About thistask

Drop amaterialized view before performing a DROP TABLE operation on arelated table. Hive does not support

dropping atable that has a relationship with a materialized view.
In thistask, you drop a materialized view named mv1 from the my_database database.

Procedure

Drop amaterialized view in my_database named mv1.
DROP MATERIALIZED VIEW my_database.mv1;

Related Information
Materialized view commands

Show materialized views

You can list all materialized views in the current database or in another database.

Procedure

1. List materialized viewsin the current database.
SHOW MATERIALIZED VIEWS;

2. List materialized views in a particular database.
SHOW MATERIALIZED VIEWS IN my_database;

Related I nformation

Materialized view commands

Describe a materialized view

Y ou can get summary, detailed, and formatted information about a materialized view.

About thistask
This task builds on the task that creates a materialized view named mv1.

Procedure

1. Get summary information about the materialized view named mv1.

DESCRI BE nv1;

feccoocococooo feccoccocoooooco fecoococooo +
| col _nanme | data_type | coment |
feoccoocococooo feccoccocoooococs fococococooo +
enpid	int	
deptnane	varchar (256)	
hire_date	tinmestanp	
feccoocococooo feccoccocoooooco fecoococooo +

2. Get detailed information about the materialized view named mv1.

DESCRI BE EXTENDED nmv1;

col _nane | data_t ype

17

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access

Using materialized views

feccococococoococococoocococooooooo feccoococococoococcooococococoocococooo

| enpid | int

| deptnane | varchar (256)

| hire_date | tinestanp C
| | NULL .

|

Detail ed Table Information | Tabl e(tabl eNanme: mv1, dbNane: def aul t,
owner : hi ve, createTi nme: 1532466307, | ast AccessTi nme: 0,
retention: 0, sd:StorageDescriptor(col s:[Fiel dSchema(nane: enpi d,
type:int, comment:null), FieldSchema(nane: deptnane,
type: varchar (256), coment:null), FieldSchema(nane: hire_ date,
type:tinmestanp, coment:null)], location:hdfs://
myserver . com 8020/ war ehouse/ t abl espace/ managed/ hi ve/ nv1,
i nput For mat : or g. apache. hadoop. hi ve. gl .i 0. orc. O cl nput For mat,
out put For mat : or g. apache. hadoop. hi ve. gl . i 0. orc. O cQut put For mat ,
conpressed: fal se, nunBuckets: -1, serdel nfo: SerDel nf o(nhane: nul |,
serializationLi b: org. apache. hadoop. hi ve. gl .i 0. orc. O cSerde
paraneters:{}), bucketCols:[], sortCols:[], paraneters:{},
skewedl nf o: SkewedI nf o(skewedCol Nanmes: [], skewedCol Val ues:[],
skewedCol Val ueLocati onMaps: {}), storedAsSubDirectories:false),
partitionKeys:[], paraneters:{total Si ze=488, nunRows=4,
rawDat aSi ze=520, COLUMN_STATS ACCURATE={\"BASI C_STATS\":\"true\"},
nunti |l es=1, transient | astDdl Ti me=1532466307, bucketi ng versi on=2},
vi ewOri gi nal Text: SELECT enpi d, deptnane, hire_dat e\ nFROM enps2
JO N dept s\ nON (enps2. deptno = depts. dept no)\ nVV\HERE hire_dat e
>= '2017-01-17', vi ewExpandedText: SELECT "enps2 . enpid
“depts’ . deptnane’, “enps2 . hire_date \nFROM “default” . enps2” JON
“default™. depts \nON (enps2 . deptno = "depts . deptno)\ nVWHERE
“enps2’ . "hire _date’ >= '2017-01-17', tabl eType: MATERI ALI ZED VI EW
rewiteEnabl ed:true, creationMetadata: Creati onMet adat a(cat Nane: hi ve,
dbNane: def aul t, tbl Narme: mv1, tabl esUsed: [default.depts,
def aul t. enps2], validTxnLi st:53%def aul t. depts: 2: 9223372036854775807:
$def aul t. enps2: 4: 9223372036854775807: :
mat eri al i zati onTi ne: 1532466307861), cat Nane: hi ve, owner Type: USER)

3. Get formatting details about the materialized view named mv1.

DESCRI BE FORVMATTED nmv1;

fcccoccococoococcooococcoooococooo feccoococococoocococooccocooooococooo
| col _nane | data_type
ecocococococcoccoccoocoooocooocooooo eccocoocococcoccoccoocooocooocoooooo
| # col _nane | data_type

| enpid | int

| deptnane | varchar (256)

| hire_date | tinestanp

[| NULL

| # Detailed Table Information | NULL

| Dat abase: | default

| Oaner Type: | USER

| Owner: | hive

| CreateTine: | Tue Jul 24 21:05:07 UTC 2018

| Last AccessTi ne: | UNKNOWN

| Retention: | O

| Location: | hdfs://nmycluster-hdp3-1.field.

| Tabl e Type: | MATERI ALI ZED VI EW

I I

Tabl e Paraneters: NULL
| | COLUMN_STATS_ ACCURATE
| | bucketing_version

[| nunfiles

18

Data Access

Using materialized views

| | nunmRows
| | rawbDat aSi ze
| | total Size

| | transient_ | astDdl Ti me

I | NULL

| # Storage Information | NULL

| SerDe Library: | org.apache. hadoop. hive.qgl.io.or...
| I nput For nmat : | org.apache. hadoop. hive.qgl.io.or...
| CQut put For mat : | org.apache. hadoop. hive.qgl.io.or...
| Conpressed: |

| Num Bucket s: | -1

| Bucket Col unms: | 1]

| Sort Col ums: | T[]

| # View Information | NULL

| View Original Text: | SELECT enpid, deptname, hire_da...
| View Expanded Text: | SELECT “enps2’. enpid, “depts ...
| View Rewite Enabl ed: | Yes C

Related I nformation
Materialized view commands

Manage rewriting of a query

Y ou can use aHive query to stop or start the optimizer from rewriting a query based on a materialized view, and as
administrator, you can globally enable or disable rewriting of all queries based on materialized views.

About thistask

By default, the optimizer can rewrite a query based on a materialized view. If you want a query executed without
regard to a materialized view, for example to measure the execution time difference, you can disable rewriting and
then enableit again.

Procedure

1. Disable rewriting of aquery based on a materialized view named mv1 in the default database.
ALTER MATERI ALI ZED VI EW def aul t. nv1 DI SABLE REVRI TE;

2. Enablerewriting of aquery based on materialized view mv1.
ALTER MATERI ALI ZED VI EW defaul t. mvl ENABLE REWRI TE;

3. Globally disable rewriting of queries based on materialized views by setting a global property.
SET hive. materializedview rewiting=true;

Related Information
Materialized view commands

19

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html
https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access

Using materialized views

Create a materialized view and storeit in Druid

Y ou can create amaterialized view and store it in an external system, such as Druid, which supports JSON queries,
very efficient timeseries queries, and groupBYy queries.
Before you begin

» Hiveisrunning asaservicein the cluster.
e Druidisrunning asaservice in the cluster.

About thistask

In thistask, you include the STORED BY clause followed by the Druid storage handler. The storage handler
integrates Hive and Druid for saving the materialized view in Druid.

Procedure

1. Execute aHive query to set the location of the Druid broker using a DNS name or |P address and port 8082, the
default broker text listening port.

SET hi ve. drui d. br oker . addr ess. def aul t =10. 10. 20. 30: 8082;

2. Create amaterialized view store the view in Druid.

CREATE MATERI ALI ZED VI EW dr ui d_mv

STORED AS ' or g. apache. hadoop. hi ve. drui d. Dr ui dSt or ageHand| er'
AS SELECT _ tine, page, user, c_added, c_renoved

FROM sr c;

Related Information
Materialized view commands

Create and use a partitioned materialized view

When creating a materialized view, you can partition selected columns to improve performance. Partitioning
separates the view of atable into parts, which often improves query rewrites of partition-wise joins of materialized
views with tables or other materialized views.

About thistask

This task assumes you created a materialized view of emps and depts tables. The emps table contains the following
data:

empid deptno name salary hire_date

10001 101 jane doe 250000 2018-01-10

10005 100 somporn klailee 210000 2017-12-25

10006 200 jeiranan thongnopneua 175000 2018-05-05
The depts table contains the following data:

deptno deptname locationid

100 HR 10

101 Eng 11

200 Sup 20

20

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html

Data Access

Using materialized views

In thistask, you create two materialized views: one partitions data on department; the another partitions data on hire
date. Y ou select data, filtered by department,from the original table, not from either one of the materialized views.
The explain plan shows that Hive rewrites your query for efficiency to select data from the materialized view that
partitions data by department. In this task, you also see the effects of rebuilding a materialized view.

Procedure

1. Create amaterialized view of the emps table that partitions data into departments.

CREATE MATERI ALI ZED VI EW partition_m/_1 PARTI TI ONED ON (dept no)
AS SELECT hire_date, deptno FROM enps WHERE deptno > 100 AND deptno < 200;

2. Create asecond materialized view that partitions the data on the hire date instead of the department number.

CREATE MATERI ALI ZED VI EW partition_mv_2 PARTI TI ONED ON (hire_date)
AS SELECT deptno, hire_date FROM enps where deptno > 100 AND deptno <
200;

3. Generate an extended explain plan by selecting data for department 101 directly from the emps table without
using the materialized view.

EXPLAI N EXTENDED SELECT deptno, hire_date FROM enps_a where deptno = 101;

The explain plan shows that Hive rewrites your query for efficiency, using the better of the two materialized views
for the job: partition_mv_1.

| OPTIM ZED SQ.: SELECT CAST(101 AS I NTEGER) AS “deptno’, "hire_date |
| FROM “default”. partition_nmv_1 [

| WHERE 101 = “deptno’ |

| STAGE DEPENDENCI ES: [

| Stage-0 is a root stage

4. |Insert another row for Jane Doe that uses a different hire date 2018-02-12, rebuild one of the materialized views,
but not the other, and compare contents of both materialized views.

I NSERT | NTO enps VALUES (10001, 101, 'j ane doe', 250000, ' 2018- 02-12");
ALTER MATERI ALI ZED VI EW partition_mv/_1 REBU LD,

SELECT * FROM partition_m/_1 where deptno = 101;

SELECT * FROM partition_m/_2 where deptno = 101;

The output of selecting the rebuilt partition_mv_1 includes the original row and newly inserted row because
INSERT does not perform in-place updates (overwrites).

feccoccococcoccococooccocooooo feccoccoccocoococcocoococooo +
| partition_nmv_1.hire date | partition_mv_1.deptno |
feccococococcoccoocoooocoooooos foccococooococoococooocoocooooo +
| 2018-01-10 00: 00: 00. 0 | 101 |
| 2018-02-12 00: 00: 00. 0 | 101 |
feccoccococoococococoocococooooo feccoccococoococcocooococooo +

| 101 | 2018-01-10 00: 00: 00.0 |

21

Data Access Apache Hive Query Language basics

5. Create a second employees table and a materialized view of the tables joined on the department number.

CREATE TABLE enps2 TBLPROPERTI ES AS SELECT * FROM enps;

CREATE MATERI ALI ZED VI EW partition_mv_3 PARTI TI ONED ON (dept no) AS
SELECT enps. hire_date, enps.deptno FROM enps, enps2
WHERE enps. dept no = enps2. dept no
AND enps. deptno > 100 AND enps. deptno < 200;

6. Generate an explain plan that joins tables emps and emps2 on department number using a query that omits the
partitioned materialized view.

EXPLAI N EXTENDED SELECT enps. hire_date, enps.deptno FROM enps, enps2
WHERE enps. dept no = enps2. dept no
AND enps. deptno > 100 AND enps. deptno < 200;

The output shows that Hive rewrites the query to use the partitioned materialized view partition_mv_3 even
though your query omitted the materialized view.

7. Verify that the partition_mv_3 sets up the partition for deptno=101 for partition_mv_3.

SHOW PARTI TI ONS partition_mv_3;

Output is:
foccoccocooooo +
| partition |
foccocoococoocooc +
| deptno=101 |
feccoccocooooo +

Related I nformation
Create and use amaterialized view
Materialized view commands

Apache Hive Query Language basics

Using Apache Hive you can query distributed data storage including Hadoop data.

Hive supports ANSI SQL and atomic, consistent, isolated, and durable (ACID) transactions. For updating data, you
can use the Hive Query Language (HiveQL) MERGE statement, which now also meets ACID standards. Materialized
views optimize queries based on access patterns. Hive supports tables up to 300PB in Optimized Row Columnar
(ORC) format. Other file formats are a so supported. Y ou can create tables that resemble those in atraditional
relational database. Y ou use familiar insert, update, delete, and merge SQL statements to query table data. The insert
statement writes data to tables. Update and del ete statements modify and del ete values already written to Hive. The
merge statement streamlines updates, deletes, and changes data capture operations by drawing on co-existing tables.
These statements support auto-commit that treats each statement as a separate transaction and commits it after the
SQL statement is executed.

Related Information
ORC Language Manual on the Apache wiki

22

https://docs.hortonworks.com/HDPDocuments/HDP3/HDP-3.0.1/materialized-view/content/hive_alter_materialized_view_rebuild.html
https://cwiki.apache.org/confluence/display/Hive/LanguageManual+ORC/

Data Access Apache Hive Query Language basics

Query theinformation_schema database

Hive supports the ANSI-standard information_schema database, which you can query for information about tables,
views, columns, and your Hive privileges. The information_schema data reveal s the state of the system, similar to
sys database data, but in a user-friendly, read-only way. Y ou can use joins, aggregates, filters, and projectionsin
information_schema queries.

Before you begin

¢ Youused Ambari to install HDP 3.0 or later.

« In Ambari, you added, configured, and started the Ranger service, which makes the information_schema database
accessible and sets up an access policy for the Hive user.

About thistask

One of the stepsin this task involves changing the time interval for synchronization between HiveServer and the
policy. HiveServer responds to any policy changes within thistime interval. Y ou can query the information_schema
database for only your own privilege information.

Procedure

1. In Ambari, open the Ranger Access Manager at <node URI>:6080, and check that access policies exist for the
hive user.

Policy ID Policy Name Policy Labels Status Audit Logging Groups Users Action

o

1 d Nveservice

R

2 all - url

o

database, table, calumn

3 a

o8 |e o
R
EEEE

4 all - database, udf

2. Navigate to Hive > Advanced > Custom hive-site.
3. Add the hive.privilege.synchronizer.interval key and set the value to 1.
This setting changes the synchronization from the default one-half hour to one minute.
4. From the Beeline shell, start Hive, and check that Ambari installed the information_schema database:

SHOW DATABASES;

e +
[dat abase_nane |
feccoococococoococcooooo +
| default [
| information_schema |
| sys I
feccoococococoococcooooo +

5. Usetheinformation _schema database to list tablesin the database.

USE i nf or mati on_schenms;

SHOW TABLES;

feccoccococooccocooooo +
[tab_name [
foccocococococococcoocoooo +
| columm_privil eges |
| columms |
| schemat a |

23

Data Access

Apache Hive Query Language basics

| table privileges |
| tables |
| views |

6. Query the information_schema database to see, for example, information about tables into which you can insert
values.

SELECT * FROM i nformati on_schena. tabl es WHERE i s_i nsertabl e_i nt o=' YES

limt 2;
+__ __________________ Fm e e e e e e e e e e e e m - - .
| tabl es.tabl e_catal og|tabl es.tabl e_schena|tabl es. tabl e_nane
feccoccococoocococooooo feccoococcooocococooo feccoccoccooococooo
| def aul t | def aul t | student s2
| def aul t | def aul t [t3

Insert datainto an ACID table

Y ou can insert data into an Optimized Row Columnar (ORC) table that resides in the Hive warehouse.

About thistask
You assign null values to columns you do not want to assign avalue. Y ou can specify partitioning as shown in the
following syntax:

INSERT INTO TABLE tablename [PARTITION (partcol1=vall, partcol2=val2 ...)] VALUES values row [,
values row...]

where

values row is(value[, value)) :

Procedure
1. Create atable to contain student information.
CREATE TABLE students (name VARCHAR(64), age INT, gpa DECIMAL(3,2));

2. Insert name, age, and gpavalues for afew students into the table.
INSERT INTO TABLE students VALUES (‘fred flintstone', 35, 1.28), (‘barney rubble', 32, 2.32);

3. Create atable called pageviews and assign null values to columns you do not want to assign avalue.

CREATE TABLE pagevi ews (userid VARCHAR(64), link STRING from STRI NG
PARTI TI ONED BY (datestanp STRING CLUSTERED BY (userid) |NTO 256 BUCKETS;
| NSERT | NTO TABLE pagevi ews PARTI TI ON (datestanp = '2014-09-23') VALUES

("jsmth', "mail.com, 'sports.com), ('jdoe', '"mail.com, null);

I NSERT | NTO TABLE pagevi ews PARTI Tl ON (dat estanp) VALUES ('tjohnson',
"sports.com, 'finance.com, '2014-09-23'), ('tlee', 'finance.com, null,
' 2014-09-21");

Updatedatain atable

Y ou use the UPDATE statement to modify data already stored in an Apache Hive table.

About thistask
Y ou construct an UPDATE statement using the following syntax:

UPDATE tablename SET column = value [, column = value ...] [WHERE expression];

24

Data Access

Apache Hive Query Language basics

Depending on the condition specified in the optional WHERE clause, an UPDATE statement might affect every
row in atable. The expression in the WHERE clause must be an expression supported by a Hive SELECT clause.
Subqueries are not allowed on the right side of the SET statement. Partition and bucket columns cannot be updated.

Before you begin
Y ou must have SELECT and UPDATE privileges to use the UPDATE statement.
Procedure

Create a statement that changes the values in the name column of all rows where the gpa column has the value of 1.0.
UPDATE students SET name = null WHERE gpa <= 1.0;

Merge datain tables

Y ou can conditionally insert, update, or delete existing datain Hive tables using the ACID MERGE statement.

About thistask
The MERGE statement is based on ANS|-standard SQL.

Procedure

1. Construct aquery to update the customers names and states in customer table to match the names and states of
customers having the same IDs in the new_customer_stage table.

2. Enhancethe query to insert datafrom new_customer_stage table into the customer table if none already exists.

MERGE | NTO cust oner USI NG (SELECT * FROM new_cust oner _stage) sub ON sub.id
= custoner.id

WHEN MATCHED THEN UPDATE SET nane = sub. nane, state = sub.new state
VWHEN NOT MATCHED THEN | NSERT VALUES (sub.id, sub.nanme, sub.state);

Related Information
Merge documentation on the Apache wiki

Delete data from atable

Y ou use the DELETE statement to delete data already written to table, which must be an ACID table.

About thistask
Use the following syntax to delete data from a Hive table. DELETE FROM tablename [WHERE expression];
Procedure

Delete any rows of data from the students table if the gpa column has avalue of 1 or 0.
DELETE FROM students WHERE gpa <= 1,0;

Createatemporary table

Create atemporary table to improve performance by storing data outside HDFS for intermediate use, or reuse, by a
complex query.

About thistask

Temporary table data persists only during the current Apache Hive session. Hive drops the table at the end of the
session. If you use the name of a permanent table to create the temporary table, the permanent table isinaccessible

25

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DML#LanguageManualDML-Merge

Data Access

Apache Hive Query Language basics

during the session unless you drop or rename the temporary table. Y ou can create atemporary table having the same
name as another user's temporary table because user sessions are independent. Temporary tables do not support
partitioned columns and indexes.

Procedure

1. Create atemporary table having one string column.
CREATE TEMPORARY TABLE tmpl (tname varchar(64));

2. Create atemporary table using the CREATE TABLE AS SELECT (CTAYS) statement.

CREATE TEMPORARY TABLE t np2 AS SELECT c2, c3, c4 FROM nyt abl e;
3. Create atemporary table using the CREATE TEMPORARY TABLE LIKE statement.

CREATE TEMPORARY TABLE tnp3 LI KE tnpl;

Related Information
Create/Drop/Truncate Table on the Apache wiki

Configuretemporary table storage

Y ou can change the storage of temporary table data to meet your system requirements.

About thistask
By default, Apache Hive stores temporary table datain the default user scratch directory /tmp/hive-<username>.

Often, thislocation is not set up by default to accommodate alarge amount of data such as that resulting from
temporary tables.

Procedure
1. Configure Hiveto store temporary table datain memory or on SSD by setting hive.exec.temporary.table.storage.

» Store datain memory. hive.exec.temporary.table.storage=memory
« Store dataon SSD. hive.exec.temporary.table.storage=ssd

2. Create and use temporary tables.
Hive drops temporary tables at the end of the session.

Use a subquery

Hive supports subqueries in FROM clauses and WHERE clauses that you can use for many Hive operations, such as
filtering data from one table based on contents of another table.

About thistask

A subquery isa SQL expression in an inner query that returns aresult set to the outer query. From the result set, the
outer query is evaluated. The outer query isthe main query that contains the inner subquery. A subquery in a WHERE
clause includes a query predicate and predicate operator. A predicate is acondition that evaluates to a Boolean value.
The predicate in a subquery must also contain a predicate operator. The predicate operator specifies the relationship
tested in a predicate query.

Procedure

Select all the state and net_payments values from the transfer_payments table if the value of the year columnin the
table matches ayear in the us_censustable.

SELECT state, net_paynents
FROM transfer_paynents

26

https://cwiki.apache.org/confluence/display/Hive/LanguageManual+DDL#LanguageManualDDL-CreateTableCreate/Drop/TruncateTable

Data Access Apache Hive Query Language basics

WHERE t ransfer_paynments.year |IN (SELECT year FROM us_census);

The predicate starts with the first WHERE keyword. The predicate operator isthe IN keyword.

The predicate returnstrue for arow in the transfer_payments table if the year value in at least one row of the
us_census table matches ayear value in the transfer_payments table.

Subquery restrictions
To construct queries efficiently, you must understand the restrictions of subqueriesin WHERE clauses.

» Subqueries must appear on the right side of an expression.

* Nested subqueries are not supported.

< A single query can have only one subquery expression.

e Subquery predicates must appear as top-level conjuncts.

» Subqueries support four logical operatorsin query predicates: IN, NOT IN, EXISTS, and NOT EXISTS.
e ThelN and NOT IN logical operators may select only one column in a WHERE clause subquery.

e The EXISTSand NOT EXISTS operators must have at least one correlated predicate.

» Theleft side of asubquery must qualify all references to table columns.

» Referencesto columnsin the parent query are allowed only in the WHERE clause of the subquery.

» Subquery predicates that reference a column in a parent query must use the equals (=) predicate operator.
e Subquery predicates may not refer only to columnsin the parent query.

» Correlated subqueries with an implied GROUP BY statement may return only one row.

« All unqualified references to columnsin a subquery must resolve to tables in the subquery.

» Correlated subqueries cannot contain windowing clauses.

Aqggregate and group data

You use AVG, SUM, or MAX functions to aggregate data, and the GROUP BY clause to group data query resultsin
one or more table columns..

About thistask
The GROUP BY clause explicitly groups data. Hive supports implicit grouping, which occurs when aggregating the
tablein full.

Procedure

1. Construct aquery that returns the average salary of all employeesin the engineering department grouped by year.

SELECT year, AV sal ary)
FROM Enpl oyees
WHERE Departnment = 'engi neering’ GROUP BY year;

2. Construct an implicit grouping query to get the highest paid employee.
SELECT MAX(sal ary) as hi ghest pay,
AV sal ary) as average_pay

FROM Enpl oyees
WHERE Departnent = 'engineering';

Query correlated data

Y ou can query one table relative to the datain another table.

27

Data Access

Apache Hive Query Language basics

About thistask

A correlated query contains a query predicate with the equals (=) operator. One side of the operator must reference at
least one column from the parent query and the other side must reference at |east one column from the subquery. An
uncorrelated query does not reference any columns in the parent query.

Procedure

Select al state and net_payments values from the transfer_payments table for years during which the value of the
state column in the transfer_payments table matches the value of the state column in the us_census table.

SELECT state, net_paynents
FROM transfer_paynents
WHERE EXI STS
(SELECT year
FROM us_census
WHERE t ransfer _paynents.state = us_census. state);

This query is correlated because one side of the equals predicate operator in the subquery references the state column
in the transfer_payments table in the parent query and the other side of the operator references the state column in the
us_censustable.

This statement includes a conjunct in the WHERE clause.

A conjunct is equivalent to the AND condition, while a disjunct is the equivalent of the OR condition The following
subquery contains a conjunct:

... WHERE transfer_payments.year = "2018" AND us_census.state = "california’
The following subquery contains a digunct:

... WHERE transfer_payments.year = "2018" OR us_census.state = "california’

Using common table expressions

Using common table expression (CTE), you can create atemporary view that repeatedly references a subquery.

A CTE isaset of query results obtained from a simple query specified within aWITH clause that immediately
precedes a SELECT or INSERT keyword. A CTE exists only within the scope of asingle SQL statement and not
stored in the metastore. Y ou can include one or more CTEs in the following SQL statements:

» SELECT

e INSERT

e CREATETABLEASSELECT
» CREATEVIEW ASSELECT

Recursive queries are not supported and the WITH clause is not supported within subquery blocks.

UssaCTEinaquey

Y ou can use a common table expression (CTE) to simplify creating a view or table, selecting data, or inserting data.

Procedure
1. UseaCTE to create atable based on another table that you select using the CREATE TABLE AS SELECT
(CTAS) clause.

CREATE TABLE s2 AS WTH g1 AS (SELECT key FROM src WHERE key = '4') SELECT
* FROM q1;

28

Data Access

Apache Hive Query Language basics

2. UseaCTE to create aview.

CREATE VIEWvVv1 AS WTH g1 AS (SELECT key FROM src WHERE key='5"') SELECT *
fromql;

3. UseaCTE to select data.

WTH ql1 AS (SELECT key from src where key = '5")
SELECT * from ql;

4, UseaCTE to insert data
CREATE TABLE sl LIKE src; WITH g1 AS (SELECT key, value FROM src WHERE key ='5") FROM g1l
INSERT OVERWRITE TABLE s1 SELECT *;

Escape an illegal identifier

When you need to use reserved words, special characters, or a space in acolumn or partition name, encloseit in
backticks (7).

About thistask

An identifier in SQL is a sequence of aphanumeric and underscore (_) characters enclosed in backtick characters. In
Hive, these identifiers are called quoted identifiers and are case-insensitive. Y ou can use the identifier instead of a
column or table partition name.

Before you begin
Y ou have set the following parameter to column in the hive-sitexml file to enable quoted identifiers:

Set the hive.support.quoted.identifiers configuration parameter to column in the hive-sitexml file to enable quoted
identifiersin column names. Valid values are none and column. For example, hive.support.quoted.identifiers =
column.

Procedure
1. Create atable named test that has two columns of strings specified by quoted identifiers:
CREATE TABLE test ('x+y" String, “a?b’ String);
2. Create atable that defines a partition using a quoted identifier and a region number:
CREATE TABLE partition_date-1 (key string, value string) PARTITIONED BY (‘dt+x" date, region int);
3. Create atable that defines clustering using a quoted identifier:
CREATE TABLE bucket_test(‘key?1" string, value string) CLUSTERED BY (‘key?1’) into 5 buckets;

CHAR datatype support

Knowing how Hive supports the CHAR data type compared to other databases is critical during migration.

Table 1. Trailing Whitespace Characterson Various Databases

Data Type Hive Oracle SQL Server MySQL Teradata
CHAR Ignore Ignore Ignore Ignore Ignore
VARCHAR Compare Compare Configurable Ignore Ignore
STRING Compare N/A N/A N/A N/A

29

Data Access Create partitions dynamically

Create partitions dynamically

Y ou can configure Hive to create partitions dynamically and then run a query that creates the related directories on
the file system, such as HDFS or S3. Hive then separates the data into the directories.

About thistask

This example assumes you have the following CSV file named employees.csv to use as the data source:

1, j ane doe, engi neer, servi ce
2,john smth,sales rep, sal es

3, naoko rmurai, service rep, service
4, sonmpor n thong, ceo, sal es

5, xi singh, cfo, finance

Procedure

1. Putthe CSV file on afile system, for example in HDFS at/user/hive/datal oad/empl oyee, and change permissions.

hdf s dfs -nkdir /user/hive/datal oad/ enpl oyee

hdf s dfs -chnod 777 /user/hive/ dat al oad/ enpl oyee

hdf s dfs -put enpl oyees. csv /user/hive/ datal oad/ enpl oyee/ enpl oyees. csv
hdf s dfs -chnod 777 /user/hive/ dat al oad/ enpl oyee/ enpl oyees. csv

2. Launch Beeline and in the Hive shell, create an unpartitioned table that holds al the data.

CREATE EXTERNAL TABLE enpl oyees (eid int, name string, position string,
dept string)
ROW FORMAT DELI M TED
FI ELDS TERM NATED BY ',
STORED AS TEXTFI LE
LOCATI ON '/ user/ hi ve/ dat al oad/ enpl oyee' ;

3. Check that the data loaded into the employeestable.
SELECT * FROM enpl oyees;

The output, formatted to fit this publication, appears.

fecoooo feccoccocoooooco feccoccocooooo feccoooo feccoococo +
| eid | nane | position | dept | |
4o - T T T 4o - N S |
1	jane doe	engineer	service
2	john snmith	sales rep	sales
3	naoko nurai	service rep	service
4	sonmporn thong	ceo	sales
5	xi singh	cfo	finance [
focoooo feccoccocoooococs foccoccocooooo fooccooccoccooococooo +

4. Create a partition table.

CREATE EXTERNAL TABLE EMP_PART (eid int, name string, position string)
PARTI TI ONED BY (dept string);

30

Data Access Create partitions dynamically

5. Set the dynamic partition mode to create partitioned directories of data dynamically when dataisinserted.

SET hi ve. exec. dynani c. partition. node=nonstri ct;

6. Insert datafrom the unpartitioned table (all the data) into the partitioned table , dynamically creating the partitions.

| NSERT | NTO TABLE EMP_PART PARTI TI ON (DEPT)
SELECT ei d, nane, posi tion, dept FROM enpl oyees;

Partitions are created dynamically.
7. Check that the partitions were created.

SHOW PARTI TI ONS enp_part ;

| dept=finance |
| dept=sales |
| dept=service |

8. Check the corresponding partition directories on HDFS.

hdf s dfs -Is /warehouse/tabl espace/ ext ernal / hi ve/ enp_part

dr wxr wxr wx+ - hive hadoop 0 2019-06-13 22: 30 /warehouse/
t abl espace/ ext ernal / hi ve/ enp_part/ dept =fi nance

drwxrwxrwx+ - hive hadoop 0 2019-06-13 22: 30 /warehouse/
t abl espace/ ext ernal / hi ve/ enp_part/ dept =sal es

drwxrwxrwx+ - hive hadoop 0 2019-06-13 22: 30 /warehouse/
t abl espace/ ext ernal / hi ve/ enp_part/ dept =servi ce

Y ou cannot remove the directories in the warehouse owned by hive.

Repair partitionsusing M SCK repair
The MSCK REPAIR TABLE command was designed to manually add partitions that are added to or removed from
the file system, such as HDFS or S3, but are not present in the metastore.
About thistask

Thistask assumes you created a partitioned external table named emp_part that stores partitions outside the
warehouse. Y ou remove one of the partition directories on the file system. This action renders the metastore
inconsistent with the file system. Y ou repair the discrepancy manually to synchronize the metastore with the file
system, HDFS for example.

Procedure

1. List the partition directories on HDFS.

hdfs dfs -Is /user/hive/datal oad/ enpl oyee
Found 4 itens

dr wxr - Xr - x - hive hdfs 0 2019-06-09 00: 31 /user/ hi ve/ dat al oad/
enpl oyee/ dept =f i nance
dr wxr - Xr - x - hive hdfs 0 2019-06-09 00: 31 /user/ hive/ dat al oad/

enpl oyee/ dept =sal es

31

Data Access Query a SQL data source using the JdbcStorageHandler

dr wxr - Xr - x - hive hdfs 0 2019-06-09 00: 31 /user/ hivel/ dat al oad/
enpl oyee/ dept =servi ce
STWF--7-- 3 hdfs hdfs 147 2019-06-08 23:54 /user/ hivel/ dat al oad/

enpl oyee/ enpl oyees. csv

2. Remove the dept=sales directory.

hdfs dfs -rm-r /user/hive/dat al oad/ enpl oyee/ dept =sal es;
19/ 06/ 13 00:52:16 INFO fs. TrashPol i cyDefaul t: Mved: 'hdfs://max.com 8020/
user/ hi ve/ dat al oad/ enpl oyee/ dept =sal es' to trash at:...

This action also removes the data file 000000_0 in the dept=sal es directory.
3. Launch Bedline, and in the Hive shell, look at the emp_part table partitions.

SHOW PARTI TI ONS enp_part;

The list of partitionsis stale; it still includes the dept=sales directory.

| dept=finance |
| dept=sales |
| dept=service |

4. Repair the partition manually.

M5CK REPAI R TABLE enp_part DROP PARTI Tl ONS;

Query a SQL data source using the JdbcStorageHandler

Using the JdbcStorageHandl er, you can connect Hive to aMySQL, PostgreSQL, Oracle, or Derby data source, create
an external table to represent the data, and then query the table.

About thistask

In thistask you create an external table that uses the JdbcStorageHandler to connect to and read alocal JDBC data
source.

Procedure

1. Load datainto a supported SQL database, such as MySQL, on anodein your cluster or familiarize yourself with
existing data in the your database.

2. Obtain credentials for accessing the database.

« |f you are accessing data on your network and have no security worries, you can use the user name and
password that authorizes your to access Hive.

» If you are accessing data on a remote network, create a JCEKS credentia keystore on HDFS, and use
credentials you specify in the process.

3. Create an external table using the JdbcStorageHandler and table properties that specify the minimum information:
database type, driver, database connection string, user name and password for querying hive, table name, and
number of active connections to Hive.

CREATE EXTERNAL TABLE nyt abl e_j dbc(
col 1 string,
col 2 int,

32

Data Access Creating a user-defined function

col 3 doubl e

)
STORED BY ' org. apache. hi ve. st orage. j dbc. JdbcSt or ageHandl er'
TBLPROPERTI ES (

"hi ve. sql . dat abase. type" = "MYSQ",
"hive.sql.jdbc.driver" = "com nysql.jdbc.Driver",
"hive.sql.jdbc.url" = "jdbc: mysqgl://Iocal host/sanple",
"hi ve. sqgl . dbcp. usernane" = "hive",

"hi ve. sql . dbcp. password" = "hive",

"hive.sql.table" = "MTABLE",

"hi ve. sql . dbcp. maxActive" = "1"

)
4. Query the external table.

SELECT * FROM nytabl e _jdbc WHERE col 2 = 19;

Creating a user-defined function

Y ou export user-defined functionality (UDF) to a JAR from a Hadoop- and Hive-compatible Java project and store
the JAR on your cluster. Using Hive commands, you register the UDF based on the JAR, and call the UDF from a
Hive query.

Before you begin

* You have accessto HDFS on the cluster.
« HiveServer or Hive Interactive Server, or both, are running on the cluster.

e You haveinstalled the JDK 1.8 and a Javaintegrated development environment (IDE) tool on the machine where
you will create the UDF.

Set up the development environment

Y ou can create a Hive UDF in a development environment using IntelliJ, for example, and build the UDF with Hive
and Hadoop JARS that you download from your HDP 3.x cluster.

Procedure

1. Onyour cluster, locate the hadoop-common-<version>.jar and hive-exec-<version>.jar.
For example:

I's /usr/hdp/current/hadoop-client/hadoop-comopn-* |grep -v test
[usr/ hdp/ current/hadoop-client/hadoop-conmon-3.1.1.3.1.0.0-78.jar

|'s [usr/hdp/current/hive-server2/lib/hive-exec-*
{usr/ hdp/current/hive-server?2/Ilib/hive-exec-3.1.0.3.1.0.0-78.jar
2. Download the JARs to your development computer to add to your IntelliJ project later.

3. Open IntelliJ and create a new Maven-based project. Click Create New Project, select Maven, and select Java
version 1.8 asthe Project SDK. Click Next.

4. Add archetype information.
For example:
e Groupld: com.mycompany.hiveudf
» Artifactld: hiveudf

5. Click Next and Finish.

33

Data Access Creating a user-defined function

The generated pom.xml appears in sample-hiveudf.

6. Tothe pom.xml, add properties to facilitate versioning.
For example:

<properties>
<hadoop. version>3.1. 1
<hi ve. versi on>3. 1. 0. 3.
</ properties>

3.
1.

([eoNe)

1. 0. 0- 78</ hadoop. ver si on>
0. 0- 78</ hi ve. ver si on>

7. Inthe pom.xml, define the repositories.
Useinterna repositoriesif you do not have internet access.

<repositories>
<reposi tory>
<rel eases>
<enabl ed>t r ue</ enabl ed>
<updat ePol i cy>al ways</ updat ePol i cy>
<checksunPol i cy>war n</ checksunPol i cy>
</rel eases>
<snapshot s>
<enabl ed>f al se</ enabl ed>
<updat ePol i cy>never </ updat ePol i cy>
<checksunPol i cy>f ai | </ checksunPol i cy>
</ snapshot s>
<i d>HDPRel eases</i d>
<nanme>HDP Rel eases</ nane>
<url >http://repo. hort onwor ks. conf content/repositories/rel eases/ </
url >
<l ayout >def aul t </ | ayout >
</repository>
<r epository>
<i d>publ i c. repo. hort onwor ks. conx/ i d>
<name>Publ i ¢ Hort onwor ks Maven Repo</ nane>
<url >http://repo. hort onwor ks. conf cont ent/ groups/ public/</url >
<snapshot s>
<enabl ed>f al se</ enabl ed>
</ snapshot s>
</repository>
</repositories>

8. Define dependencies.
For example:

<dependenci es>
<dependency>
<gr oupl d>or g. apache. hi ve</ gr oupl d>
<artifactld>hive-exec</artifactld>
<versi on>${ hi ve. ver si on} </ ver si on>
</ dependency>
<dependency>
<gr oupl d>or g. apache. hadoop</ gr oupl d>
<artifactld>hadoop- cormon</artifactld>
<ver si on>%${ hadoop. ver si on} </ ver si on>
</ dependency>
</ dependenci es>

9. Sdlect File > Project Structure. Click Modules. On the Dependenciestab, click + to add JARS or directories.
Browse to and select the JARs you downloaded in step 1.

Data Access Creating a user-defined function

Createthe UDF class
Y ou define the UDF logic in anew class that returns the data type of a selected column in atable.

Procedure

1. InlintelliJ, click the vertical project tab, and expand hiveudf: hiveudf > src > main. Select the java directory, and
on the context menu, select New > Java Class and name the class, for example, TypeOf.

2. Extend the GenericUDF classto include the logic that identifies the data type of a column.
For example:

package com nyconpany. hi veudf ;

i mport org. apache. hadoop. hi ve. gl . exec. UDFAr gunent Except i on;
i mport org. apache. hadoop. hi ve. gl . net adat a. H veExcepti on;
i mport org. apache. hadoop. hi ve. gl . udf . generi c. Generi cUDF;
i mport org. apache. hadoop. hi ve. serde2. obj ecti nspect or. Cbj ect | nspect or;
i mport
or g. apache. hadoop. hi ve. serde?2. obj ecti nspector.primtive.PrinitiveCbjectlnspectorFact
i mport org. apache. hadoop. i o. Text;

public class TypeO extends Generi cUDF {
private final Text output = new Text();

@verride
public Objectlnspector initialize(Qbjectlnspector[] argunments) throws
UDFAr gunent Excepti on {
checkArgsSi ze(argunents, 1, 1);
checkArgPrimtive(argunents, 0);
bj ect I nspector outputd =
PrimtiveObjectlnspectorFactory.witableStringhjectlnspector;
return outputd;

}

@verride
public Object eval uate(DeferredObject[] argunents) throws H veException

bj ect obj ;
if ((obj = argunents[0].get()) == null) {
String res = "Type: NULL";
out put . set (res);
} else {
String res = "Type: " + obj.getd ass().get Nanme();
out put . set (res);

}
return output;
}
@verride
public String getDi splayString(String[] children) {
return get St andar dDi spl ayString(" TYPEOF", children, ",");
}

}

Build the project and upload the JAR

Y ou compile the UDF code into a JAR and place the JAR on the cluster. Y ou choose one of several methods of
configuring the cluster so Hive can find the JAR.

35

Data Access

Creating a user-defined function

About thistask
In thistask, you choose one of several methods for configuring the cluster to find the JAR:

* Direct reference

Straight-forward, but recommended for development only.
» Hiveaux library directory method

Prevents accidental overwriting of files or functions. Recommended for tested, stable UDFs to prevent accidental
overwriting of files or functions.
« Reloadable aux JAR Avoids HiveServer restarts.

Recommended if you anticipate making frequent changes to the UDF logic.

Procedure

1. Build the IntelliJ project.

t I NFO] Buil ding jar: /Users/max/|deaProjects/hiveudf/target/ TypeO-1.0-
SNAPSHOT. j ar
[INFQ

[I NFO

[INFQ Total tine: 14.820 s

[INFQ Finished at: 2019-04-03T16: 53: 04-07: 00
[INFQ Final Menory: 26M 397M

[1

Process finished with exit code 0O

2. Navigate to the JAR in the /target directory of the project.
3. Configure the cluster so Hive can find the JAR using one of the following methods.

Direct JAR reference

a. Upload the JAR to the cluster.
b. Movethe JAR into the Hive warehouse on HDFS. For example:

$ sudo su - hdfs

$ hdfs dfs -put TypeOF-1.0- SNAPSHOT. j ar /war ehouse/ t abl espace/ nanaged/
hi veudf - 1. 0- SNAPSHOT. j ar

Reloadable Aux JAR

a. Upload the JAR to the /hadoop/hive-udf-dyn directory on all HiveServer instances (and all Metastore
instances, if separate). An HDFS location is not supported.

b. Inhive-sitexml, set the following property: hive.reloadabl e.aux.jars.path=/hadoop/hive-udf-dyn.
Hive aux JARs path

a. Create aexterna (outside HDFS) directory on the cluster, /usr/hdp/3.1.0.0-78/hive/auxlib for example.

b. Create asymboalic link to the external directory. For example: In -s /local-apps/hive-udf-aux /usr/
hdp/3.1.0.0-78/hive/auxlib

Hive automatically picks up JARS from ${ HIVE_HOME}/auxlib which does not exist by default. Asthe
${HIVE_HOME]} isversion dependent, do not create the auxlib directory under the binary location, but
instead, create a symbolic link that will survive versioning.

36

Data Access Creating a user-defined function

Register the UDF

In the cluster, you log into Hive, and run a command from Beeline to make the UDF functional in Hive queries. The
UDF persists between HiveServer restarts.

Before you begin
Y ou need to set up UDF access, using a Ranger policy for example.

About thistask

In thistask, the registration command differs depending on the method you chose to configure the cluster so Hive

can find the JAR. If you use the Hive aux library directory method that involves a symbolic link, you need to restart
HiveServer after registration. If you use another method, you do not need to restart HiveServer. Y ou must recreate the
symbolic link after any patch or maintenance upgrades that deploy a new version of Hive.

Procedure

1. Using Beeline, login to HiveServer or HiveServer Interactive as a user who has UDF access.

e HiveServer, for example:

beeline -u jdbc: hive2://nmycluster.com 10000 -n hive -p

e HiveServer Interactive, for example:

beeline -n hive -u jdbc: hive2://
nycl ust er. com 10500/ ; t ranspor t Mode=Dbi nary

2. At the Hive prompt, select a database for use.
USE default;

3. Run the registration command that corresponds to the way you configured the cluster to find the JAR.

In the case of the direct JAR reference configuration method, you include the JAR location in the command. If
you use another method, you do not include the JAR location. The classloader can find the JAR.

* Direct JAR reference:

CREATE FUNCTI ON udftypeof AS 'com nmyconpany. hi veudf. TypeOf 01' USI NG JAR
"hdfs:///warehouse/t abl espace/ managed/ TypeOf 01- 1. 0- SNAPSHOT. j ar ' ;

* Reloadable aux JAR:

RELQAD,;
CREATE FUNCTI ON udftypeof AS 'com myconpany. hi veudf. Typeof 01';

e Hiveaux library directory:

a. Set up asymboalic link on the command line of the local file system. HDFS is not supported.

In -s /local -apps/hive-udf-aux /usr/hdp/3.1.0.0-78/hive/auxlib
b. In Beeling, run the command to register the UDF.

CREATE FUNCTI ON udftypeof AS 'com myconpany. hi veudf. Typeof 01';

C. Restart HiveServer.
4. Check that the UDF is registered.

SHOW FUNCTI ONS;

Y ou scroll through the output and find default.typeof.

37

Data Access Creating a user-defined function

Call the UDF in aquery
After registration of a UDF, you do not need to restart Hive before using the UDF in a query. In this example, you
call the UDF you created in a SELECT statement, and Hive returns the data type of a column you specify.
Before you begin

« For the example query in thistask, you need to create atable in Hive and insert some data.
e Asauser, you need to have permission to call a UDF, which a Ranger policy can provide.

About thistask
This task assumes you have the following example table in Hive:

feccoocococcoococooc feccooccocoooooac feccooccocoooooac +
| students. name | students.age | students.gpa |
foccocoococoococoocoooos feccocoococoocoooos feccocoococoocoooos +
| fred flintstone | 35 | 1.28 |
| barney rubble | 32 | 2.32 [
feccoococcccoococooc feccooccocooooooc feccooccocooooooc +

Procedure

1. Usethe database in which you registered the UDF.
For example:

USE defaul t;
2. Query Hive depending on how you configured the cluster for Hive to find the JAR.
» Either direct JAR reference or Hive aux library directory

For example:

SELECT students. name, udftypeof (students.nane) AS type FROM students
VWHERE age=35;

* Reloadable aux JAR

For example:

REL QAD;

SELECT students. nanme, udftypeof (students. name) AS type FROM students
WHERE age=35;

Y ou get the data type of the name column in the students table.

| fred flintstone | Type:
or g. apache. hadoop. hi ve. serde2.i o. Hi veVarcharWitabl e |

38

	Contents
	Apache Hive 3 tables
	Create a CRUD transactional table
	Create an insert-only transactional table
	Create, use, and drop an external table
	Drop an external table along with data
	Using constraints
	Determine the table type
	Altering tables from flat to transactional
	Alter a table from flat to transactional

	Hive 3 ACID transactions
	Using materialized views
	Create and use a materialized view
	Use a materialized view in a subquery
	Drop a materialized view
	Show materialized views
	Describe a materialized view
	Manage rewriting of a query
	Create a materialized view and store it in Druid
	Create and use a partitioned materialized view

	Apache Hive Query Language basics
	Query the information_schema database
	Insert data into an ACID table
	Update data in a table
	Merge data in tables
	Delete data from a table
	Create a temporary table
	Configure temporary table storage

	Use a subquery
	Subquery restrictions

	Aggregate and group data
	Query correlated data
	Using common table expressions
	Use a CTE in a query

	Escape an illegal identifier
	CHAR data type support

	Create partitions dynamically
	Repair partitions using MSCK repair

	Query a SQL data source using the JdbcStorageHandler
	Creating a user-defined function
	Set up the development environment
	Create the UDF class
	Build the project and upload the JAR
	Register the UDF
	Call the UDF in a query

