Drools Documentation

Version 6.2.0.CR4

by The JBoss Drools team [http://www.jboss.org/drools/team.html]

http://www.jboss.org/drools/team.html
http://www.jboss.org/drools/team.html

IV = [o 4= PP 1
I 1 1 o To U o o1 I 3
0 OO 1o o o 0T i o 1o PP SPPPTTPPPIN 3
1.2. Getting INVOIVEAcooiiiiiiiiii e e 3
1.2.1. Sign UP t0 JDOSS.0IQ oevuriiiieiiiieiie e e e e e e e 4
1.2.2. Sign the Contributor Agreementcooooiiiiiiiiiii 4
1.2.3. Submitting isSUEs Via JIRAcoiiii i 5
1.2.4. FOrK GItHUD ooee e e 6
ST 1Y 11T T =) (= 6
1.2.6. Commit with Correct CONVENLIONScvvvviiiiiiieiiiee e 8
1.2.7. Submit PUll REQUESTEScvuiiiiciii e 9
1.3. Installation and Setup (Core and IDE)coveiiiiiiiiiiiiii e 11
1.3.1. Installing and USINGc.ooviiiiiiiiiecie e 11
1.3.2. BUilding from SOUICEociiiiiieiiii et 21
1.3.3. ECIPSE i 22
2. REIEASE NOLES .oouiiii i et 29
2.1. New and Noteworthy in KIE Workbench 6.2.0ccccoooiiiiiiiiii i 29
2.1.1. Project Editor PErMISSIONScieeutuieiiiiii et e et e eeenin e eeens 29
2.1.2. Unify validation style in Guided Decision Table Wizard. 29
2.1.3. IMProved WIZardsSoooeuuiiiiiiiieee e 30
2.1.4. Consistent behaviour of XLS, Guided Decision Tables and Guided
TEMPIALES .. oeeee et 31
2.1.5. Improved Metadata Tabccooevuiiiiiiiiii e 32
2.1.6. Improved Java Editorccooiiiiiiiiiiiiiee e 35
2.1.7. Execution Server Management Ulccoooeiiiiiiiiiinciinec e, 37
2.1.8. SOCIAl ACHVILIES ...eeviiiiii e 38
2.1.9. Contributors Dashboardccoooiiiiiiiii 40
2.1.10. Package SEIECIOrccuuuieiiiii e 41
2.1.11. Improved visual CONSISIENCYiviviiiiiii i 42
2.2. New and Noteworthy in Integration 6.2.0ccoveieiiiiiiiiiiiiec e 44
A N (=TS 1= T Y PP 44
2.3. What is New and Noteworthy in Drools 6.1.0ccccovveiiiiiiieiiiiinieeciieeees 46
2.3.1. JIMX support for KieSCaNNErccccuiiiiiiiiiii e e e 46
2.4. New and Noteworthy in KIE Workbench 6.1.0cccoovviiiiiiiiiiiiiiiccieeees 46
2.4.1. Data Modeler - round trip and source code preservation 46
2.4.2. Data Modeler - improved annotationsccceeveveiiinieiiiiineeeeiien. 46
2.4.3. Standardization of the display of tabular datac...cccooevenn. 46
2.4.4. Generation of modify(x) {...} BIOCKSccooiiiiiiiiii 48
2.5. New and Noteworthy in KIE APl 6.0.0cciiiiiiieiiici e 48
2.5.1. NeW KIE NAME ..o e 48
2.5.2. Maven aligned projects and modules and Maven Deployment 49
2.5.3. Configuration and convention based projectscccceevveveiiinneeens 49
2.5.4. KieBase INCIUSIONcoouuiiiiiiiii e 49

Drools Documentation

2.5.5. KieModules, KieContainer and KIE-Clccocoiiviiiiiiiiiiiiiecieen, 50

2.5.6. KIESCANNET ..civviiieiiii e 51

2.5.7. Hierarchical ClassLoadercocciviiiiiiiiiieiiiece e 51

2.5.8. Legacy API AdApLercc.iiiiiiiiii e 52

2.5.9. KIE DOCUMENTALIONiiiiieiiiieeiiee et e e ees 52

2.6. What is New and Noteworthy in Drools 6.0.0cccoeeiiiieiiineiiii e 52
2.6.1. PHREAK - Lazy rule matching algorithmccccooiviiiiiiiiiiiinnenen, 52

2.6.2. Automatically firing timed rule in passive modeccocceeiveviieennnnn. 52

2.6.3. EXPreSSioN TIMEIS ..o.uuuiiiiiii ettt ettt et e e e 53

2.6.4. RuleFowGroup and AgendaGroups are mergedcccccovvevvnieennnnnns 54

2.7. New and Noteworthy in KIE Workbench 6.0.0ccccooeiiiiiiiiiiiiiiiiciees 55

2.8. New and Noteworthy in Integration 6.0.0c.ccoiiiiiiiiiiiiii e 58

2 S 5 I O I | PP 58

2.8.2. SPIING iiiiiiii e 59

2.8.3. ArieS BIUEPIINTS ..ot e 59

R S @ 1 TR =T To | PP 59

3. Compatibility MALIIX oo 61
R PSP 63
O | PP 65
I @ V= o T PP 65
4.1.1. Anatomy Of ProOJECESiiiiiiiiiiiii e 65

4.1.2. LITECYCIES irniiiii e 66

4.2. Build, Deploy, Utilize and RUNcoiiiiiiiiiii e 67
0 W [1 o To (U T o o H PSP 67

4.2.2. BUIING ..ot 70

e T LY o] [0/ g T [P 87

A.2.4, RUNNING ottt ettt e e e e et e et eeeran s 93

4.2.5. Installation and Deployment Cheat Sheetscccocoeveviiiiiiieennnnn. 108

4.2.6. Build, Deploy and Utilize EXamplescoooviuiiiiiiiiiinneiiiineeeciine, 109

G T ST~ Tor 0 | 121
4.3.1. SECUILY MANAGET ...cceeviiieiiiiii ettt eeees 121

[1l. Drools Runtime and LAnNQUAGEoevuuiiiiiieiiiiei e eee e e e e e e s e e e et e e et e eaneees 125
5. HYDrid REASONING oiiiiiiiiii e 127
5.1. Artificial INtelligeNCecvvniiii e 127
5.1.1. A Little HISTOMY ..oovuiiiiiiieeee e 127

5.1.2. Knowledge Representation and Reasoningccceeeevevevineeinnnnn. 128

5.1.3. Rule Engines and Production Rule Systems (PRS)c....cccevvunnee. 129

5.1.4. Hybrid Reasoning Systems (HRS)cccooiiiiiiiiiiiiii e 131

5.1.5. EXPErt SYSIEMS ...ooiiiiiiiiiiiiii e 134

5.1.6. Recommended Readingccooeeuiiiiiiiiiiiieci e 135

5.2. Rete AlGOItNm ... 138

5.3. ReteOO AIQOItNM ...oouiiii e e e 145

5.4, PHREAK AIQOrithImooeiiii e 146
ORI Y =T g 1T To [PP 155

B.1. THE BaSICS .oiuitiiiii ittt 155

6.1.1. Stateless Knowledge SeSSIONc.cveviiiiiiiiieiiiiecie e 155
6.1.2. Stateful Knowledge SesSioNncoocoeeiiiiiiiiiiiieiiiice e 158
6.1.3. Methods VErsus RUIESuiiiiiiiiiiiiiiii e e 163
6.1.4. CroSS ProUCESuiiiiiiiiiieii e e e ees 164

6.2. EXECULION CONIOL ...t e e 165
B.2.1. AGENUA ...euniiiii et 165
6.2.2. Rule Matches and Conflict Sets.ocovviiiiiiiiiii e, 166
6.2.3. Declarative AQENTAoviiiiiiiiiiii e 173

6.3, INTEIENCE ... e 175
6.3.1. BUS Pass EXample ..o 175

6.4. Truth Maintenance with Logical ObJECESccoevvviiiiiiiiiiiieie e 178
B.4. 1. OVEIVIEW .eniiiieii ettt et e e e et e e e e s e e et e e eaneeeanees 178

6.5. Decision Tables in SpPreadsheetsccoovviiiiiiii i 182
6.5.1. When to Use Decision Tablesccocooviiiiiiiiiiiiiieeeee 183
B.5.2. OVEIVIEBW ..oiiiiiiieeeiii ettt e e e e e et e e e e et e e e e ene s 183
6.5.3. How Decision Tables WOrKcccouiiiiiiiiiiiiiiiee e 185
6.5.4. Spreadsheet SYNLAXccceuiiiiiiiiiiiiciin e 189
6.5.5. Creating and integrating Spreadsheet based Decision Tables 199
6.5.6. Managing Business Rules in Decision Tablesccccccoeveviiniinnnnns 199
6.5.7. RUlE TEMPIALES ...oovviiiiii e 200

[S 20 0T T 11 Vo XN 203
7. Rule Language REfEIENCEoiiiiiiiiii e 205
4 T O 1= 4T PP 205
T 1.1 A TUIE FilE e 205
7.1.2. What Makes @ TUIEcocuuniiiiiiiieee e 206

7.2, KEYWOIUS ..ottt ettt e et e et e e b 206
7.3, COMMENES oottt ettt e e et e e e e e et e e e e e en e nnes 208
7.3.1. Single [IN@ COMMENTciiiiiiiiii e 208
7.3.2. MUlti-lin€ COMMENT ...uuiiiiiii e 209

T4, EITOr IMESSATESuiiiiiiiii ettt ettt e et e et et e et e e e ena e 209
7.4.1. MeSSage fOrmMalccouiiiiiiii e 209
7.4.2. Error Messages DeSCriptionuuveiiiiiieiiiii e 210
7.4.3. Other MESSAQES . ccvvuiiiiiieiii et et e e e e e e e e aen 214

7.5, PACKAGE ...eeiiiii e 214
428 5 T 111 o o ¢ (N 215
7.5.2. 910DAI oo 216

LG TR ¥ To 1o o TSP 217
7.7. Type DECIAratioNccoeuuiiiiiiiiii e e 218
7.7.1. Declaring NEW TYPES ...uciuuiiiiiiieiiieeei e e e e e e e e e e e e eens 219
7.7.2. Declaring Metadatacc.uuviiiiiiiiiiiii e 221
7.7.3. Declaring Metadata for EXisSting TYPES ...cccvveviiiiiiiieiiiecii e 228
7.7.4. Parametrized constructors for declared typesocooeviiieieiiinnenes 228
7.7.5. Non Typesafe ClaSSeSccuvviiiiiiiiii e 229

Drools Documentation

7.7.6. Accessing Declared Types from the Application Code 229
7.7.7. Type Declaration 'extends’couoviiiiiiiiiiieii e 231
A - TR I - V1 T 231

7.8 RUIE e 238
7.8.1. RUle AHINDULES ..o e 239
7.8.2. Timers and Calendarscooeuuiiiiiiiiiiieiiiine e 243
7.8.3. Left Hand Side (When) SYNtaXc.cccoeviiiiiiiiiiiiiiiie e 247
7.8.4. The Right Hand Side (then)ccooooiiiiii i 300
7.8.5. Conditional named CONSEQUENCEScccuuuieiirinieeiiiiiieeeeiia e e 302
7.8.6. A Note on Auto-boxing and Primitive TYPesSccceeveeiiieiiineeinneennnn. 304

S T O U= PP PPTPPTPIN 305
7.10. Domain Specific LANQUAGESuuieiiiiiiii e e e e e eens 308
7.10.1. When t0 USE @ DSL ..oovuiiiiiiiii e 308
7.010.2. DSL BASICS ..eieitiieiiiiiiieeiii e ettt e e et e e et e e eaar e aae 308
7.10.3. Adding Constraints to FACISc..iviiiiiiiiiiiiiieci e 311
7.10.4. Developing @ DSLciiuiiiiicie e 313
7.10.5. DSL and DSLR Referencecoooeuiviiiiiiiiiiiiiieeieec e 313

8. CompleX EVENt ProCESSING ..ciuuiiiiiiiiiii e et e e e e e e e e et e e e eanes 319
8.1. Complex EVENE PrOCESSING .. ccvvvriieiiiiiie ettt 319
02 B (o To (-3 U= o T o PR 320
8.3. EVENE SEMANTICS ..oivuiiiiiieiii et e e e e e e e e e e e e e eeen 322
8.4. Event Processing MOAEScouuiiiiiiiiiiiicii e e e e e e 323
S 2 T o T I 1Y/ o To [P 324
8.4.2. Stream MOAEcocvuniiiiiii i 325

8.5. SESSION ClOCK ...civiiiiiiiei e e 327
8.5.1. Available Clock Implementationsccooevviiiiiiiieiie e 328

8.6. SlidiNg WINUOWScouumiiiiiiieii e 329
8.6.1. Sliding Time WINAOWSccovuiiiiiiiiiice e 329
8.6.2. Sliding Length WINAOWSc..uiiiiiiiiieiiii e 330

8.7, SIrEAMS SUPPOI L.ttt e e e e e 331
8.7.1. Declaring and Using Entry POINtSoooiiiiiiiiiiiiiiiii e 332

8.8. Memory Management for EVENLSc.c.ooviiiiiiiiici e 334
8.8.1. Explicit expiration OffSEtoeeeiiiiiiiiiii i 334
8.8.2. Inferred expiration offSetcoeeiiiiiiiii 335

8.9. Temporal REASONINGcouuuieiiiiiiiei e 335
8.9.1. Temporal OPEIALOrScceuuieiiiiieiiiee i ee e e e e e e e e eaaeee 336

V. DroolS INTEGIALIONcouuuiiiiii ettt et e et e et e e e b 351
L I B o To] F-T @a T 4] 49 =T o £ PPTRPPN 353
LS Y = PPN 353
LS 20 I B €5 1 (<1 o TP 353
9.1.2. JSON it 353
9.1.3. JAXB ettt aan 353

9.2. CommMANAS SUPPOIEAcevuenieiiiii ettt 354
9.2.1. BatchExecutionCommandccuiieeiiiiiieiiiiiieeeeiine e 356

Vi

9.2.2. InsertObjectCoOmMMANGoiiiiiiieiiii e 357

9.2.3. RetraCtCoOMMANTuiiiiiiiieiiiii e e e e eens 359

9.2.4. ModifyComMMEANTcoouuiiiiiiiieiiii e 360

9.2.5. GetObhjectCommandcooeiiiiiiiii i 361

9.2.6. InsertElementsCommandcooeeuiiiiiiiiiiin e 362

9.2.7. FireAlIRUIESCOMMANGooviiiiiiiieiii e 364

9.2.8. StartProcessCommaNndo.uivviuiiiiiieiiie e 365

9.2.9. SignalEventCommaNdc.ccuuieiiiieiiiieeiii e e 367

9.2.10. CompleteWorkltemCommandooeeeviiiiiiiiiinniiiie e 368

9.2.11. AbortWorklitemCommandcceuuiiiiiiiiiieiiiiie e 369

9.2.12. QUEIYCOMMANT ...euuniiiiiiee ittt e e et e e e e e e e e e e e 370

9.2.13. SetGlobalCommandcoveviiiiiieiiiii e 371

9.2.14. GetGlobalCommandcoeviiiiiiiiii e 373

9.2.15. GetObjectsCommandccoevuiiiiiieiiii e 374

0 TR I U SPPPSPP 377
(020 O [o T [o 1T o TP 377

O T Y o aTo] = 11 o] 1 T PTRPRR 377
10.2.1. @KREICASEIU ... ceieviiiieiiii e 377

10.2.2. @KCONTAINET ..ueniiiiiee e e e e e e 377

10.2.3. @KBASE ..covvviieiiiiiieeeee et 378

10.2.4. @KSesSion for KieSESSIONccviviiiiiiieieeeeeee e, 379

10.2.5. @KSession for StatelessSKIieSeSSIONc..vvvviniiiiiiiiiiieieieineenas 380

10.3. API Example COMPATISONcccuuuiiiiiiiieieiii ettt 381

11. Integration With SPriNg ..o e e e 383
11.1. Important Changes for Drools 6.0cooiviiiiiiiiiiii e 383
11.2. Integration with Drools EXPErtcoieiuiiiiiiiiiiii e 383
11.2.1. KieMOAUIE ...oiiei e 383

11.2.2, KIEBASE ..ueiiiiiiieiiiii ettt 384

11.2.3. IMPORTANT NOTE ..ottt 385

11.2.4, KIESESSIONS ..eivtiiiiiiii ettt e et e et e e et e e et s e e e et s e e eesenaeaaees 385

11.2.5. EVENE LISTENEIS ..vniiiii e 386

0 2 G T o To [1= TP 390

11.2.7. Defining Batch Commandsccooeiiiiiiiiiiiiineei e 392

11.2.8. PEISISIENCE ..oovvniiiiiiiiiee et 393

11.3. Integration with JBPM Human Taskcccoveiiiiiiiiiiiiniiec e 394
11.3.1. How to configure Spring with JBPM Human task 394

12. Apache Camel INTEGrationcoouuiiiiiiiiiee e 399
12.0, CAMEI oot e 399

13. Drools Camel SEIVENciviit i e eans 403
R 200 I [11 o T [o 1T o TP 403
13.2. DEPIOYMENT ...ttt e 403
RS T T @do] 41 o 11] =1 1 o] o N 403
13.3.1. REST/Camel Services configurationccccoeeeiiviineiiiiiinneeinnnnnn. 403

14. IMX monitoring with RHQ/JONoiiiiiiiiii e 409

Vii

Drools Documentation

I I [1o T [T o) o PPN 409
14.1.1. Enabling JMX monitoring in a Drools applicationcc.c.uu.... 409
14.1.2. Installing and running the RHQ/JON pluginccoooviiiiiinniiiinnnnen. 409

V. Drools WOTKDENCRuiiii e 411
15, WOTKDENCRN e e e e e e e e 413

15.0. INSTAlIALION ..oiveiiieee e 413
15.1.2. War installationcooveiiiiiii e 413
15.1.2. WOorkbench datauoviiiiiiiiiiiii e 413
15.1.3. SYSLEM PrOPEILIES ..oeuueiiiii ettt 413

15.2. QUICK STAIT ..iiiiiiiei e et e e e e 415
15.2.1. Add rEPOSITONY ..oiieiiiieeieii et e 415
15.2.2. AdA PrOJECE couniiiii i 417
15.2.3. Define Data MOdelcoveuiiiiiiiei e 420
15.2.4. DefiNe RUIE ...cvuniiiii i 424
15.2.5. Build @nd DeplOycceveiuiiiiiiiiiieie e 426

15.3. ADMINISITALION ..oievtiieiiiii e et e e et eeeete e eeene 428
15.3.1. AdMINIStration OVEIVIEWuviiiiiiiieiieee e e e 428
15.3.2. Organizational UNitc.couiiiiiiiiiiii e 428
15.3.3. REPOSIIOMNESiieiiiieieiii et 429

ST @do] 1) o U] =1 (o] o H N 431
15.4.1. USEr ManagemeNtccuuiiiiunieriiiitieerie et e e e e e eaneeees 431
15.4.2. ROIES ouiiie i 432
15.4.3. Restricting access t0 repoSItoriesocuvvvviiiiiiieeiiiieee e, 433
15.4.4. Command line config toolcciiiiiiiiiiii e 433

TR ST [110 o U T 1o] o PPN 435
15.5.1. Log in and 10g OULiiiiiiiiiec e 435
15.5.2. HOME SCIEEM ..ouiiiiiiiiei et e e 435
15.5.3. WOrkbench CONCEPLSccuiiiiiiiiii e 435
15.5.4. INnitial TAYOULcooiiiiei e 436

15.6. Changing the [ayOut ..o e 437
15.6.1. RESIZING ..ceeeiiieiiiti ettt 437
15.6.2. REPOSItIONING ..ivvuiiiiieiii e e e e e e e e e e e e eanees 438

15.7. AUTNOTING .t 439
15.7.1. Artifact REPOSITOIYuiiiiiiiiii e 439
15.7.2. ASSEE EQItOr ..oevniiiiicie e 441
15.7.3. Project EXPIOTErcvvuniiii e e 444
15.7.4. Project EQItOrccoouuuiiiiiiii et 452
15.7.5. Validationccooveiiiiiiiiee e 456
15.7.6. Data MOEIIEToiiiieeee e 458
15.7.7. Categories EditOrccccuiiiiiiiiiiiec e 485

15.8. Embedding Workbench In Your Applicationccoooiiiiiiiniiiiiinneennnn, 487

16. AULNOTING ASSBIS Luuiiiiiiiiii i e e e e e et e e e et eaanaaes 489

16.1. Creating @ PACKAGEuuiiiiiiii ettt e e e 489

16.1.1. EMPLY PACKAGE ...covniiiiieiiie e 490

viii

16.1.2. Copy, Rename and Delete Packagescccocevviviiiiiiniiiiiieiinenn, 491

16.2. Business rules with the guided editorccoooviiiiiiiiin e, 493
16.2.1. Parts of the Guided Rule Editorcccoveviiiiiiiiiiiiiiieeeeeis 493
16.2.2. The "WHEN" (left-hand side) of a Rulecccooviiiiiiiiiiiines 494
16.2.3. The "THEN" (right-hand side) of a Ruleccoooviiiiiiiiiiiiiinnnnn. 498
16.2.4. Optional attributesc.oiiiiiiiiii e 501
16.2.5. Pattern/Action toolbarc.oiiiiiiiiii 501
16.2.6. User driven drop down liStSccooviiiiiiiiiiiii e 501
16.2.7. Augmenting with DSL SENtENCEScccvviiieiiiiiiieieiiieeeeii e 502
16.2.8. A more complex eXample: ... 503

16.3. Templates of aSSEetS/TUIESoooiiiiiiiiii e 504
16.3.1. Creating a rule templatecooooiiiiiiiiiii e 505
16.3.2. Define the templateooveiiiiiiii 505
16.3.3. Defining the template datacccccoiiiiiiiiii i, 506
16.3.4. Generated DRLoovvuiiiiiii e 510

16.4. Guided decision tables (web based)cccoooviiiiiiiii 512
16.4.1. Types of decision tableooiiiiiiiiii e 512
16.4.2. Main componentS\CONCEPLSivvueiiiiiiii e e e e e e e e 513
16.4.3. Defining a web based decision tablecccooiiiiiiiin 516
16.4.4. Rule definitionooiiiiiiiiiii e 531
16.4.5. AUCIE LOQ ..oiiiveniiiiiie e 532

16.5. Spreadsheet decision tablescccocoiiiiiiiiii i 534

G TS Yoo =T o= T o £ 535
16.6.1. (2) Setup Parameterscccoieiiiiiiiii i 536
16.6.2. (D) CharaCteriStiCSiiiiiiiiieiiii e 537

T A =TS S Tod =T o = T T L PP 539
16.7.1. GIVEN SECHON ...eeeiiiiii e e e 542
16.7.2. EXPECE SECHON .uuiiiiiii i 542
16.7.3. Global SECHON ...cccviiiiiii e 543
16.7.4. NeW INPUL SECLIONccoviiiiii e 543

GRS R U d 1T 1 PPN 543

L GIRe T I 1] =T [(o U 544

16.10. Data enumerations (drop down list configurations)ccccoeceevinneeennnn. 545
16.10.1. Advanced enumeration CONCEPLSccuuvverniiiiiieiiiieeiiieeeiieerieeeaenns 546

16.11. Technical ruleS (DRL) ...cc.uuiiiiiiiiiiiii e 547

17. Workbench INtegrationccoouiiiiiiiiiii i e e e eeas 549

L7, REST i 549
17.0.1. 30D CallS covvieiiiiiie e 549
17.1.2. RePOSItOry CallSoeiiiiiieiiiii e 550
17.1.3. Organizational unit callscccoooeiiiiiiiiii e, 552
17.2.4. MAVEN CallS ...oeeniieiiee e 553
17.1.5. REST SUMMAIY .ottt ettt e e e et e e eanees 553

18. Workbench High Availabilityccooiiiiiiiiiii e 555

00 PP 555

Drools Documentation

18.1.1. VFS CIUSEEIING .eevvuieiiiiiieieiiie et et 555
18.1.2. JBPM CIUSIENNG .vuiiiiiciie et e e 559

V1. DroolS EXBMPIESouuiiiiiiieieiit ettt ettt e ettt e e et e e e eat e e e enaneeees 561
10, EXAMIPIES oot 563
19.1. Getting the EXamPIEsooiiiiii e 563
19.2. HEllo WOTIA ...coviniei e 563
19.3. State EXAMPIE ..o 569
19.3.1. Understanding the State Exampleccoccoiviiiiiiiii i 569
19.4. FIbonacCi EXamMPIEiiiiiiiie i 576
19.5. Banking TULOMIAloiiuiiii e e e e 583
19.6. Pricing Rule Decision Table EXampleccooiiiiiiiiiiiniiiiee e, 597
19.6.1. Executing the exampleccoooiiiiiii e, 597
19.6.2. The decCiSion tableccooiiiiiiii e 598
19.7. Pet Store EXampPIecooviiiiiice e 600
19.8. Honest Politician EXamPpPlecoouuiiiiiiiiiiii e 612
19.9. SUdOKU EXaMPIEuciiiiii e 616
19.9.1. SUAOKU OVEIVIEWievniiiieiii e et e e e e e e e et e e e eeens 617
19.9.2. Running the EXamPlecoooviiiiiiiici e 617
19.9.3. Java Source and RUlES OVEIVIEWccuuveiiiiinieiiiiiiieeeiineeaenean 623
19.9.4. Sudoku Validator Rules (validate.drl)cccccoeveiiiiiiiiiiiiieeiee, 623
19.9.5. Sudoku Solving Rules (sudoku.drl)cccooviiiiiiiiiiiiiiii e, 624
19.20. NUMDEE GUESS ...ciiviiiiiiiii ettt e e e et e e e e e 625
19.11. Conway's Game OF Lifeccuuiiiiiiiiiiiiiii e 632
T I 101V To 1= £ PP 639
LS 2 I 1 Y= To (=] €30 Y. V] o 640
19.12.2. INVAAEIS2MAINcieiiiieeiiii e e et e et eeeaa e e aee 641
19.12.3. INVAAEIS3MAUN ...uuiiiiieii e e eens 641
19.12.4. INVAAEIrSAMAINcccvviieiiiii ettt e e e e eee 642
19.12.5. INVAdErSEMAINuiiiiiiiieie e 642
19.12.6. INVAErSBMAINcccvuiieiiiiiiiee et e eees 643
19.12.7. INVAAEISAMAINuiiiiiiieii e e e 643
19.13. Adventures With DrOOISiiiiiiiiiiiiii e 644
19.13.1. USING the Qame. ..o e 645
19.13.2. THE COUR ittt 646

L 00 I o o o PPN 649
19.15. WUMPUS WOTIA ..oooiii e e e e e 649
19.16. Miss Manners and Benchmarkingccoiiiiiiiiiniiii e 652
19.16.1. INtrOQUCTION ...ceeiiieeeci e e 653
19.16.2. In depth DISCUSSIONccevuiiieiiiiiiieeeiie e 656
19.16.3. OULPUL SUMMAIY .uiiiiiiiiei e ans 662
19.17. Backward-ChainiNgoooieiiiioiiii e 665
19.17.1. Backward-Chaining SYStEMScccoviiiiiiiiiiiieccin e, 666
19.17.2. Cloning Transitive CIOSUIEScoviieiiiiieiiiiiieeeeiie e 667
19.17.3. Defining @ QUETY . covvniiii i e e 668

19.17.4. Transitive Closure EXampleccooooeiiiiiiiiini e 669

19.17.5. Reactive Transitive QUETIEScccvuiiiiiiieiiieeiii e 671
19.17.6. Queries with Unbound Argumentscooeuiiiiiiiinieiiiinneeeiennn, 672
19.17.7. Multiple Unbound Argumentscccoeeviiiiiiiiieiie e 673

Xi

Xii

(9Drools

Xiv

Part I. Welcome

Welcome and Release Notes

Chapter 1.

Chapter 1. Introduction

1.1. Introduction

It's been a busy year since the last 5.x series release and so much has change.

One of the biggest complaints during the 5.x series was the lack of defined methodology for
deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.
A big focus for 6.0 was streamlining the build, deploy and loading(utilization) aspects of the
system. Building and deploying now align with Maven and the utilization is now convention and
configuration oriented, instead of programmatic, with sane default to minimise the configuration.

The workbench has been rebuilt from the ground up, inspired by Eclipse, to provide a flexible
and better integrated solution; with panels and perspectives via plugins. The base workbench
has been spun off into a standalone project called UberFire, so that anyone now can build high
quality web based workbenches. In the longer term it will facilitate user customised Drools and
jBPM installations.

Git replaces JCR as the content repository, offering a fast and scalable back-end storage for
content that has strong tooling support. There has been a refocus on simplicity away from
databases with an aim of storing everythign as as text file, even meta data is just a file. The
database is just there to provide fast indexing and search via Lucene. This will allow repositories
now to be synced and published with estbalished infrastructure, like GitHub.

jBPM has been dramatically beefed up, thanks to the Polymita acquisition, with human tasks, form
builders, class modellers, execution servers and runtime management. All fully integrated into the
new workbench.

OptaPlanner is now a top level project and getting full time attention.

A new umbrella name, KIE (Knowledge Is Everything), has been introduced to bring our related
technologies together under one roof. It also acts as the core shared around for our projects. So
expect to see it a lot.

1.2. Getting Involved

We are often asked "How do | get involved". Luckily the answer is simple, just write some code
and submit it :) There are no hoops you have to jump through or secret handshakes. We have
a very minimal "overhead" that we do request to allow for scalable project development. Below
we provide a general overview of the tools and "workflow" we request, along with some general
advice.

If you contribute some good work, don't forget to blog about it ;)

Chapter 1. Introduction

1.2.1. Sign up to jboss.org

Signing to jboss.org will give you access to the JBoss wiki, forums and JIRA. Go to http:/
www.jboss.org/ and click "Register".

In | Regist
Members Projects Products IR
Overview Lommunity User Groups Events Blogs Articles Books
Choosing the right technology... tay connected: 3 <) KD
JBoss Community JBoss Enterprise
EZL\n:n:u" ty driven propects m Products Stable, supported products ﬂ f_hErk out mg latest
eaturing the latest innovations h certified on multiple platforms & Asy audio podcasts
for cutting edge apps. Tor misshon critical apps.

JBoss Developer

Webinar Series

Learn more about the Webinar Series»

Found a security issue with
a |Boss project or product?

Report it now.

April 4-5 : Tokye, Roppongi Hills
JavaOne Tokyo 2012

Join Red Har at the JavaOne conference in

I '[0 Tokyo where you can hear talks on some of

has been teleased! - the latest JBoss projects.

June ¥5-26 : Boston
(N] Tty TaTh B B - EAET SN

1.2.2. Sign the Contributor Agreement

The only form you need to sign is the contributor agreement, which is fully automated via the web.
As the image below says "This establishes the terms and conditions for your contributions and
ensures that source code can be licensed appropriately"

https://cla.jboss.org/

http://www.jboss.org/
http://www.jboss.org/
https://cla.jboss.org/

Submitting issues via JIRA

Sign CLA

If vou've submitted a patch that's been accepted, or been offered an invitation to commit directly into a project's source code repository, then please
login using vour jboss.org user account and sign an [ndividual or Corporate Contributor License Agreement (CLA).

This establishes the terms and conditions for your contributions and ensures that the source code can be licensed appropriatelv.

Username: | E|

Password:]

Login

Do not sign a CLA unless you've met the conditions above.

This helps to keep our systems tidv and prevents project leads from reviewing unnecessary agreements.

1.2.3. Submitting issues via JIRA

To be able to interact with the core development team you will need to use JIRA, the issue tracker.
This ensures that all requests are logged and allocated to a release schedule and all discussions
captured in one place. Bug reports, bug fixes, feature requests and feature submissions should
all go here. General questions should be undertaken at the mailing lists.

Minor code submissions, like format or documentation fixes do not need an associated JIRA issue
created.

https://issues.jboss.org/browse/JBRULES [???](Drools)
https://issues.jboss.org/browse/JBPM

https://issues.jboss.org/browse/GUVNOR

???
???
https://issues.jboss.org/browse/JBPM
https://issues.jboss.org/browse/GUVNOR

Chapter 1. Introduction

Projects ! lssues = EENIEES

Drools / JBRULES-3370
|- Array fields are not supported in declared facts

Log In

Details

Type Enhancement Status s Open (View Workflow)
Priority 4 Minor Resolution Unresolved

Affects Version/s None Fix Version/s Mone

Component/s drools-compiler, drools-core Security Level Public (Everyone can see)
Labels None

Similar Issues Show 10 results *

Description

it should be possible to do

declare Bean
arrayField : SomeObject[]
end

optionally,

declare Bean
arrayField : SomeObject]] = new SomeQObject[3]
end

1.2.4. Fork GitHub

With the contributor agreement signed and your requests submitted to JIRA you should now be
ready to code :) Create a GitHub account and fork any of the Drools, jBPM or Guvnor repositories.
The fork will create a copy in your own GitHub space which you can work on at your own pace.
If you make a mistake, don't worry blow it away and fork again. Note each GitHub repository
provides you the clone (checkout) URL, GitHub will provide you URLs specific to your fork.

https://github.com/droolsjbpm
@ droolsjbpm / drools # Admin | ©Watch & Fork b PullRequest 125 4 81

Code Network Pull Requests 10 Stats & Graphs

Drools Expert is the rule engine and Drools Fusion does complex event processing (CEP). — Read more
http:/fwww.jboss.org/drools

=1 ZIP S5H. HTTP Git Read-Only | git@github.com:droclsibpm/drools.git Read+Write access

A branch: master ~ Files Commits Branches 4 Tags 10 Downloads

1.2.5. Writing Tests

When writing tests, try and keep them minimal and self contained. We prefer to keep the DRL
fragments within the test, as it makes for quicker reviewing. If their are a large number of rules

https://github.com/droolsjbpm

Writing Tests

then using a String is not practical so then by all means place them in separate DRL files instead
to be loaded from the classpath. If your tests need to use a model, please try to use those that
already exist for other unit tests; such as Person, Cheese or Order. If no classes exist that have
the fields you need, try and update fields of existing classes before adding a new class.

There are a vast number of tests to look over to get an idea, MiscTest is a good place to start.

https://github.com/droolsjbpm/drools/blob/master/drools-compiler/src/test/java/org/drools/
integrationtests/MiscTest.java [https://github.com/droolsjbpm]

https://github.com/droolsjbpm
https://github.com/droolsjbpm
https://github.com/droolsjbpm

Chapter 1. Introduction

ETest
public vold testEvalWithBigDecimal () throws Excepticon |
String str = "";

str += "package org.drools \n":

3tr += "import jeva.math.BigDecimal; “n":
str += "global javea.util.list list “\n":
str += "rule rulel “n";

Itr 4= " dialect “"Jjawvah"™ \n";

str += "when ‘n":

atr += " $bd : BigDecimal() “n™:

atr += " eval { $bd.compareTo(BigDecimal.ZERO § > 0) \n";
str += "then ‘n":

Str += " list.add{ sbkd }; n":

str += "end ‘\n";

EnowledgeBuilder kbuilder = EnowledgeBuilderFactory.newKnowledgeBuilder():

k¥builder.add(ResourceFactory.newByteArravBesocurce(str.getBytes()).,
ResourceType.DEL) :

if { kbuilder.hasErrcrs())} |
logger.warn({ kbuilder.getErrocrs().toString())
1

assertFalse(kbuilder.hasErrcra()):

EnowledgeBase kbase = KnowledgeBaseFactory.newkEnowledgeBase():
k¥base.addEnowledgePackages | kbuilder.getEnowledgePackages()):

StatefulKnowledgeSession ksession = createkKnowledgeSession(kbase) !
List list = new ArravList():
ksession.setGlckal("list",
list):
ksession.ingert{ new BigDecimal({ 1.5) }:

ksession.fireRl1Bules() ;

assertEquals(1,
list.zize()):
assertEquals(new BigDecimal({ 1.5),
list.gec{ 0)):

1.2.6. Commit with Correct Conventions

When you commit, make sure you use the correct conventions. The commit must start with the
JIRA issue id, such as JBRULES-220. This ensures the commits are cross referenced via JIRA,
so we can see all commits for a given issue in the same place. After the id the title of the issue
should come next. Then use a newline, indented with a dash, to provide additional information

Submit Pull Requests

related to this commit. Use an additional new line and dash for each separate point you wish to
make. You may add additional JIRA cross references to the same commit, if it's appropriate. In
general try to avoid combining unrelated issues in the same commit.

Don't forget to rebase your local fork from the original master and then push your commits back
to your fork.

Drools / JBRULES-328 FactTemplates / JBRULES-329
' implement core handling of Templates for ObjectType

Log In

mark_proctor@jboss.com submitted changeset 5421 to trunk in JBossRules (20 files) - 02/Aug/06 &:14 PM

JBRULES 229 Refactor ObjectType to work with Templates
-This also involved refactor Evaluator to use Enums for ValueType and Qperatar

JBRULES220 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work. still not integrated into parsers and builds, it also needs unit tests.

JEBRULES24E Allow & and | connectives for field constraints

-XmiReader is now fixed

-Xml and Drl Dumpers have been fixed
[trunk/draols-compiler/sro/mainjavalorg/droolsflang/DriDumperjava (+53-27) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/FieldConstraintDescrjava (+5-1) A B ® &
[trunk/dracls-compiler’sro/mainjavalorg/droolsflang/descriLiteralRestrictionDescrjava (+7-7) A B ® &
[trunk/drools-compilerisro/mainjavalorg/droolsfiang/descr/ReturnValueRestricionDescrjava (+7-9) A B @ &
[trunk/dracls-compiler’sro/mainjavalorg/drools/semantics/java/RuleBuilder java (+74-62) A B @ &
[trunk/drools-compiler’sro/mainjavalorg/droolsfxmliBoundvariableHandlerjava (+0-110) A B © &
[trunk/dracls-compiler’sro/mainjavalorg/droolsiimliFieldBindingHandlerjava (+2-6) AE @ &
trunk/drools-compilen’sroimainijavalorg/droolsixmliFieldConstraintHandlerjava (+95) A B O 4
[trunk/dracls-compiler’sro/mainjavalorg/droolsimliLiteralHandlerjava (+0-110) ABE © &
trunk/drools-compilen’sroimainijavalorg/droolsixmliLiteralRestricionHandlerjava (+103) AEBE © &
...19 more files in changeset

Mark Proctor <mdproctor@gmail.com:= submitted changeset b98d43508c91f1cb01d53b22395603ca87d69d5¢e to 5.2.x in
8:14 PM

JBRULES 220 Refactor ObjectType to work with Templates -This also involved refactor Evaluator to use Enums for Value
JBRULES 320 implement core handling of Templates for ObjectType
-Initial commmit for FactTemplate work, still not integrated into parsers and builds, it also needs unit tests.

JBRULES 21& Allow & and | connectives for field constraints
-XmiReader is now fixed
-Xml and Drl Dumpers have been fixed

1.2.7. Submit Pull Requests

With your code rebased from original master and pushed to your personal GitHub area, you can
now submit your work as a pull request. If you look at the top of the page in GitHub for your work
area their will be a "Pull Request" button. Selecting this will then provide a gui to automate the
submission of your pull request.

Chapter 1. Introduction

The pull request then goes into a queue for everyone to see and comment on. Below you can see
a typical pull request. The pull requests allow for discussions and it shows all associated commits
and the diffs for each commit. The discussions typically involve code reviews which provide helpful
suggestions for improvements, and allows for us to leave inline comments on specific parts of the
code. Don't be disheartened if we don't merge straight away, it can often take several revisions
before we accept a pull request. Luckily GitHub makes it very trivial to go back to your code, do
some more commits and then update your pull request to your latest and greatest.

It can take time for us to get round to responding to pull requests, so please be patient. Submitted
tests that come with a fix will generally be applied quite quickly, where as just tests will often way
until we get time to also submit that with a fix. Don't forget to rebase and resubmit your request
from time to time, otherwise over time it will have merge conflicts and core developers will general
ignore those.

sotty wants someone to merge 5 commits into [EiEElmoEEEi=Sy from

Discussion #® | Commits <> |5 | Diff 3= |8

sotty opened this pull request 22 days ago
‘ JBRULES-3370 Array fields are not supported in declared facts

Mo one is assigned | £+ Mo milestone | £+

Well, not exactly a ground-breaking feature, but still useful -)
Also improves bean initialization with MVEL expression

, ‘ sotty and etirelli are participating in this pull request

*'I: etirelli commented 22 days ago

@sotty thanks for providing this. | was reviewing the code, and with a few changes it can also support multi-dimensional
arrays (e.g. Object[][], int[J{]{]. etc). Do you think you can change it for that?

1 etirelli started a discussion in the diff

drools-compiler/src/main/java/org/drools/lang/DRLParser. java View full changes
}
}
D 1
F YCIE N rceo colab 22 days ago

There is already a rule called type(). Please use that instead of creating a fieldType() rule. It supports multi-dimentional
arrays and generics, although | know MVEL does not support generics yet.

Add a line note

10

#90

+ 388 additions

- 60 deletions

All Pull Reguests

Installation and Setup (Core and IDE)

1.3. Installation and Setup (Core and IDE)

1.3.1. Installing and using

Drools provides an Eclipse-based IDE (which is optional), but at its core only Java 1.5 (Java SE)
is required.

A simple way to get started is to download and install the Eclipse plug-in - this will also require the
Eclipse GEF framework to be installed (see below, if you don't have it installed already). This will
provide you with all the dependencies you need to get going: you can simply create a new rule
project and everything will be done for you. Refer to the chapter on the Rule Workbench and IDE
for detailed instructions on this. Installing the Eclipse plug-in is generally as simple as unzipping
a file into your Eclipse plug-in directory.

Use of the Eclipse plug-in is not required. Rule files are just textual input (or spreadsheets as the
case may be) and the IDE (also known as the Rule Workbench) is just a convenience. People
have integrated the rule engine in many ways, there is no "one size fits all".

Alternatively, you can download the binary distribution, and include the relevant JARs in your
projects classpath.

1.3.1.1. Dependencies and JARs

Drools is broken down into a few modules, some are required during rule development/compiling,
and some are required at runtime. In many cases, people will simply want to include all the
dependencies at runtime, and this is fine. It allows you to have the most flexibility. However, some
may prefer to have their "runtime"” stripped down to the bare minimum, as they will be deploying
rules in binary form - this is also possible. The core runtime engine can be quite compact, and
only requires a few 100 kilobytes across 3 JAR files.

The following is a description of the important libraries that make up JBoss Drools

« knowledge-api.jar - this provides the interfaces and factories. It also helps clearly show what is
intended as a user API and what is just an engine API.

» knowledge-internal-api.jar - this provides internal interfaces and factories.

« drools-core.jar - this is the core engine, runtime component. Contains both the RETE engine
and the LEAPS engine. This is the only runtime dependency if you are pre-compiling rules (and
deploying via Package or RuleBase objects).

* drools-compiler.jar - this contains the compiler/builder components to take rule source, and build
executable rule bases. This is often a runtime dependency of your application, but it need not
be if you are pre-compiling your rules. This depends on drools-core.

« drools-jsr94.jar - this is the JSR-94 compliant implementation, this is essentially a layer over
the drools-compiler component. Note that due to the nature of the JSR-94 specification, not all
features are easily exposed via this interface. In some cases, it will be easier to go direct to the
Drools API, but in some environments the JSR-94 is mandated.

11

Chapter 1. Introduction

 drools-decisiontables.jar - this is the decision tables ‘compiler' component, which uses the
drools-compiler component. This supports both excel and CSV input formats.

There are quite a few other dependencies which the above components require, most of which
are for the drools-compiler, drools-jsr94 or drools-decisiontables module. Some key ones to note
are "POI" which provides the spreadsheet parsing ability, and "antlr" which provides the parsing
for the rule language itself.

NOTE: if you are using Drools in J2EE or servlet containers and you come across classpath issues
with "JDT", then you can switch to the janino compiler. Set the system property "drools.compiler":
For example: -Ddrools.compiler=JANINO.

For up to date info on dependencies in a release, consult the released POMs, which can be found
on the Maven repository.

1.3.1.2. Use with Maven, Gradle, lvy, Buildr or Ant

The JARs are also available in the central Maven repository [http://search.maven.org/#search|
galllorg.drools] (and also in the JBoss Maven repository [https://repository.jboss.org/nexus/
index.html#nexus-search;gav~org.drools~~~~]).

If you use Maven, add KIE and Drools dependencies in your project's pom xmi like this:

<dependencyManagenent >
<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-bomx/artifactld>
<t ype>ponx/type>
<version>...</version>
<scope>i nport </ scope>
</ dependency>

</ dependenci es>
</ dependencyManagenent >
<dependenci es>
<dependency>
<groupl d>or g. ki e</ gr oupl d>
<artifactld>kie-api</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifactld>drool s-compiler</artifactld>
<scope>runti ne</ scope>
</ dependency>

<dependenci es>

12

http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
http://search.maven.org/#search|ga|1|org.drools
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~
https://repository.jboss.org/nexus/index.html#nexus-search;gav~org.drools~~~~

Installing and using

This is similar for Gradle, Ivy and Buildr. To identify the latest version, check the Maven repository.

If you're still using Ant (without Ivy), copy all the JARs from the download zip's bi nar i es directory
and manually verify that your classpath doesn't contain duplicate JARs.

1.3.1.3. Runtime

The "runtime" requirements mentioned here are if you are deploying rules as their binary form
(either as KnowledgePackage objects, or KnowledgeBase objects etc). This is an optional feature
that allows you to keep your runtime very light. You may use drools-compiler to produce rule
packages "out of process", and then deploy them to a runtime system. This runtime system only
requires drools-core.jar and knowledge-api for execution. This is an optional deployment pattern,
and many people do not need to "trim" their application this much, but it is an ideal option for
certain environments.

1.3.1.4. Installing IDE (Rule Workbench)

The rule workbench (for Eclipse) requires that you have Eclipse 3.4 or greater, as well as Eclipse
GEF 3.4 or greater. You can install it either by downloading the plug-in or, or using the update site.

Another option is to use the JBoss IDE, which comes with all the plug-in requirements pre
packaged, as well as a choice of other tools separate to rules. You can choose just to install rules
from the "bundle" that JBoss IDE ships with.

1.3.1.4.1. Installing GEF (arequired dependency)

GEF is the Eclipse Graphical Editing Framework, which is used for graph viewing components
in the plug-in.

If you don't have GEF installed, you can install it using the built in update mechanism (or
downloading GEF from the Eclipse.org website not recommended). JBoss IDE has GEF already,
as do many other "distributions" of Eclipse, so this step may be redundant for some people.

Open the Help->Software updates...->Available Software->Add Site... from the help menu.
Location is:

http://downl oad. ecl i pse. org/tool s/ gef/ updat es/rel eases/

Next you choose the GEF plug-in:

13

Chapter 1. Introduction

= [%] GEF Update Site -
> [J 000 GEF 5DK 3.2.2
b [000 GEF SDK 3.3.2
~ [=] 000 GEF SDK 3.4.2

O {tn Graphical Editing Framework Draw2d 3.4.2v20090218-1145-3317w311_12250244]

O &g Graphical Editing Framework Draw2d Developer Resour 3.4.2 v20090218-1145-3317w311_12250244]

O & Graphical Editing Framework Draw2d 5DK 3.42v20090218-1145-67738084A6665K366E

!ﬁ’- Graphical Editing Framework GEF 3.42w20090218-1145-67728084A56B412336]|

O &p Graphical Editing Framewaork GEF All-In-One SDK 3.4.2v20090218-1145-TF7I69NpWtnmMXBEpuUC

[J 4 Graphical Editing Framework GEF Developer Resources 3.4.2.v20090218-1145-67728084A56B4/12336!
[4 Graphical Editing Framework GEF Examples 3.4.1v20080806-7TETI0AQI99MORGC

O &g Graphical Editing Framewaork GEF SDK 3.4.2v20090218-1145-7BTES97TOKBd7QHQEH
O &g Graphical Editing Framework Zest Visualization Toolkit 1.0.0.v20080115-5318xB6CE899P233613552
[& Graphical Editing Framework Zest Visualization Toolkit D 1.0.0.w20080115-5318xB6CE899P233613552
O ke Graphical Editing Framework Zest Visualization Toolkit S 1.0.0.v20080115-5318_GCGFGJMZHOMaa6PM

(o]

Show only the latest versions of available software

Include items that have already been installed

Software Updates and Add-ons
Installed Software | Available Software
|type fiter text = Install...
Name Version E

Properties

Add Site...

Manage Sites...

IO

Refresh

Open the 'Automatic Updates' preference page to set up an autematic update schedule.

Close

Press next, and agree to install the plug-in (an Eclipse restart may be required). Once this is
completed, then you can continue on installing the rules plug-in.

1.3.1.4.2. Installing GEF from zip file

To install from the zip file, download and unzip the file. Inside the zip you will see a plug-in
directory, and the plug-in JAR itself. You place the plug-in JAR into your Eclipse applications plug-
in directory, and restart Eclipse.

1.3.1.4.3. Installing Drools plug-in from zip file

Download the Drools Eclipse IDE plugin from the link below. Unzip the downloaded file in your
main eclipse folder (do not just copy the file there, extract it so that the feature and plugin JARs
end up in the features and plugin directory of eclipse) and (re)start Eclipse.

http://www.jboss.org/drools/downloads.html

To check that the installation was successful, try opening the Drools perspective: Click the
'Open Perspective' button in the top right corner of your Eclipse window, select 'Other..." and
pick the Drools perspective. If you cannot find the Drools perspective as one of the possible

14

http://www.jboss.org/drools/downloads.html

Installing and using

perspectives, the installation probably was unsuccessful. Check whether you executed each of
the required steps correctly: Do you have the right version of Eclipse (3.4.x)? Do you have
Eclipse GEF installed (check whether the org.eclipse.gef 3.4.*.jar exists in the plugins directory
in your eclipse root folder)? Did you extract the Drools Eclipse plugin correctly (check whether the
org.drools.eclipse_*.jar exists in the plugins directory in your eclipse root folder)? If you cannot
find the problem, try contacting us (e.g. on irc or on the user mailing list), more info can be found
no our homepage here:

http://www.jboss.org/drools/
1.3.1.4.4. Drools Runtimes

A Drools runtime is a collection of JARs on your file system that represent one specific release
of the Drools project JARs. To create a runtime, you must point the IDE to the release of your
choice. If you want to create a new runtime based on the latest Drools project JARs included in
the plugin itself, you can also easily do that. You are required to specify a default Drools runtime
for your Eclipse workspace, but each individual project can override the default and select the
appropriate runtime for that project specifically.

1.3.1.4.4.1. Defining a Drools runtime

You are required to define one or more Drools runtimes using the Eclipse preferences view.
To open up your preferences, in the menu Window select the Preferences menu item. A new
preferences dialog should show all your preferences. On the left side of this dialog, under the
Drools category, select "Installed Drools runtimes". The panel on the right should then show the
currently defined Drools runtimes. If you have not yet defined any runtimes, it should like something
like the figure below.

15

http://www.jboss.org/drools/

Chapter 1. Introduction

S

[opefiter texd l

[General

P Ant
=~ Drools
Drools Flow nodes
Drools Task
Guvnor
Help
Install/lUpdate
Java
Maven
Plug-in Development
Run/Debug
Team

XML

R e

Preferences b

@ Select a default Drools Runtime o -

Add, remove or edit Drools Runtime definitions. By default, the checked
Drools Runtime is added to the build path of newly created Drools
projects.

Installed Drools Runtimes

Name Location [Add. .. l

[| Cancel

To define a new Drools runtime, click on the add button. A dialog as shown below should pop up,
requiring the name for your runtime and the location on your file system where it can be found.

16

Installing and using

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame:

Create a new Drools 5 Buntime ...

Cancel

In general, you have two options:

1. If you simply want to use the default JARs as included in the Drools Eclipse plugin, you can
create a new Drools runtime automatically by clicking the "Create a new Drools 5 runtime ..."
button. A file browser will show up, asking you to select the folder on your file system where
you want this runtime to be created. The plugin will then automatically copy all required
dependencies to the specified folder. After selecting this folder, the dialog should look like the
figure shown below.

2. If you want to use one specific release of the Drools project, you should create a folder on
your file system that contains all the necessary Drools libraries and dependencies. Instead of
creating a new Drools runtime as explained above, give your runtime a name and select the
location of this folder containing all the required JARs.

17

Chapter 1. Introduction

Drools Runtime

Either select an existing Drools Runtime on your file system or create
a new one.

Mame: Drools 5.0.0 runtime

Fath: /NotBackedUp/development/drools-runtimes/drools-5.0.

Create a new Drools 5 Buntime |

| OK | | Cancel

After clicking the OK button, the runtime should show up in your table of installed Drools runtimes,
as shown below. Click on checkbox in front of the newly created runtime to make it the default
Drools runtime. The default Drools runtime will be used as the runtime of all your Drools project
that have not selected a project-specific runtime.

|' = Preferences =

[type filter text l Installed Drools Runtimes =t =

P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the
b Ant build path of newly created Drools projects.

< Drools Installed Drools Runtimes

Drools Flow nodes Name Location Add...

Installed Drools Runtimes Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Drools Task

Guwvnor

Help

Install/Update

Java

Maven

Plug-in Development
Run/Debug

Team

v vV vy v v v v v

XML

&3] oK I [Cancel

You can add as many Drools runtimes as you need. For example, the screenshot below shows
a configuration where three runtimes have been defined: a Drools 4.0.7 runtime, a Drools 5.0.0

18

Installing and using

runtime and a Drools 5.0.0.SNAPSHOT runtime. The Drools 5.0.0 runtime is selected as the

default one.
Preferences
[l Installed Drools Runtimes o -
P General Add, remove or edit Drools Runtime definitions. By default, the checked Drools Runtime is added to the build path of
B Ant newly created Drools projects.
¥ Drools Installed Drools Runtimes

Drools Flow nodes Name Location

Installed Drools Runtimes

Drools 5.0.0 runtime /NotBackedUp/development/drools-runtimes/drools-5.0.0

Edit...

Drools Task [J Drools 4.0.7 runtime /MotBackedUp/development/drools-runtimes/drools-4.0.7

Guwvnor Remove

II>
o
=

[0 Drools 5.0.0.SNAPSHOT /NotBackedUp/development/drools-runtimes/drools-5.0.0 SNAPSHOT
Help

InstallfUpdate

Java

Maven

Flug-in Development
Run/Debug

Team

XML

R A A A S

@ | ok || cance |

Note that you will need to restart Eclipse if you changed the default runtime and you want to make
sure that all the projects that are using the default runtime update their classpath accordingly.

1.3.1.4.4.2. Selecting a runtime for your Drools project

Whenever you create a Drools project (using the New Drools Project wizard or by converting an
existing Java project to a Drools project using the "Convert to Drools Project" action that is shown
when you are in the Drools perspective and you right-click an existing Java project), the plugin
will automatically add all the required JARs to the classpath of your project.

When creating a new Drools project, the plugin will automatically use the default Drools runtime for
that project, unless you specify a project-specific one. You can do this in the final step of the New
Drools Project wizard, as shown below, by deselecting the "Use default Drools runtime" checkbox
and selecting the appropriate runtime in the drop-down box. If you click the "Configure workspace
settings ..." link, the workspace preferences showing the currently installed Drools runtimes will
be opened, so you can add new runtimes there.

19

Chapter 1. Introduction

Drools Runtime @

Select a Drools Runtime

[] Use default Drools Runtime {currently Drools 5.0.0 runtime)

Drools Runtime: |Drcm|5 4.0.7 runtirme b
~onfi W Setti
@ < Back Finish] | Cancel

You can change the runtime of a Drools project at any time by opening the project properties
(right-click the project and select Properties) and selecting the Drools category, as shown below.
Check the "Enable project specific settings" checkbox and select the appropriate runtime from the
drop-down box. If you click the "Configure workspace settings ..." link, the workspace preferences
showing the currently installed Drools runtimes will be opened, so you can add new runtimes
there. If you deselect the "Enable project specific settings" checkbox, it will use the default runtime
as defined in your global preferences.

20

Building from source

Properties for Drools Project

[pe filter tex l Drools -

Resource Enable project specific settings
Builders

Drools Runtime: |Drools 5.0.0. SNAPSHOT runtime A
Guvnor

Java Build Path
[Java Code Style
I Java Compiler
[» Java Editor
Javadoc Location
Project References
Run/Debug Settings
Task Tags

[Restnre gefaultsl [Apply l

@ [OK H Cancel]

1.3.2. Building from source

1.3.2.1. Getting the sources

The source code of each Maven artifact is available in the JBoss Maven repository as a source
JAR. The same source JARs are also included in the download zips. However, if you want to build
from source, it's highly recommended to get our sources from our source control.

Drools and jBPM use Git [http://git-scm.com/] for source control. The blessed git repositories are
hosted on GitHub [https://github.com]:

* https://github.com/droolsjbpm

Git allows you to fork our code, independently make personal changes on it, yet still merge in our
latest changes regularly and optionally share your changes with us. To learn more about git, read
the free book Git Pro [http://progit.org/book/].

1.3.2.2. Building the sources

In essense, building from source is very easy, for example if you want to build the guvnor project:

21

http://git-scm.com/
http://git-scm.com/
https://github.com
https://github.com
https://github.com/droolsjbpm
http://progit.org/book/
http://progit.org/book/

Chapter 1. Introduction

$ git clone git@ithub.com drool sjbpnf guvnor. git

$ cd guvnor
$ nmvn clean install -DskipTests -Dfull

However, there are a lot potential pitfalls, so if you're serious about building from source and
possibly contributing to the project, follow the instructions in the README file in droolsjbpm-
build-bootstrap [https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/
README.md].

1.3.3. Eclipse

1.3.3.1. Importing Eclipse Projects

With the Eclipse project files generated they can now be imported into Eclipse. When starting
Eclipse open the workspace in the root of your subversion checkout.

& Workspace Launcher |§|

—

Select a workspace

Eclipse 50K stores wour projects in a folder called a workspace,
Choose a workspace Folder ko use For this session,

Wiorkspace:

- j Erowse, .,

[Use this as the default and do not ask again

(] 4 Zancel

22

https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md
https://github.com/droolsjbpm/droolsjbpm-build-bootstrap/blob/master/README.md

Eclipse

& Java - Eclipse SDK

File Edit Source Refackor Mavigate Search Proj

I -EHE | %9 %-0-Q- |

e

Hierarchy g |

: Package Explorer X

TG
Mew »

2 Copy ChrlH4-C

' Paste Chrl+y

¥ Cclete Dielete
Eiild Path »

¢ 1 Impoark...

iy Export...,

q}{h Refresh F5

23

Chapter 1. Introduction

& Import

Select

Create new projects From an archive file or directory,

Select an import source:

J kvpe Filker bexk

== General
L, archive File
QE‘ Breakpoints

Existing Projects inko WWorkspace
s {:L File Swstem
2L, Preferences

-2 CYS

-2 Plug-in Development
- Team
[+ = Other

24

Eclipse

& Import

Import Projects

Select a directary ko search for existing Eclipse projects.,

{+ Select rook directory: |C:'|,|:Iev'|,jl:unssrules

(" select archive file: |

Projects:

drools-carnpiler Select Al
drools-core
drools-ide Deselect Al
drools-jsra4

arg.nexb,easyveclpse.drools, deployer

Refresh

g | Copy projects inko workspace

When calling nvn i nstal | all the project dependencies were downloaded and added to the local
Maven repository. Eclipse cannot find those dependencies unless you tell it where that repository
is. To do this setup an M2_REPO classpath variable.

25

Chapter 1. Introduction

Project Run

Help

= I ﬁ Eﬁ} Mew \Window h,

— gt
Mew Editor

Open Perspective L&
Shiow Wiew »

Zuskomize Perspective. ..
Save Perspective &4s...
Reset Perspective

iZlose Perspective

ilose All Perspectives

Mavigation r

ff.'?' Working Sets k

26

Eclipse

& Preferences

] tyvpe filker text

+- eneral
+|- &nt
+-Help
+- Installflpdate
-|- Java
[+- Appearance
Build Path
spath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

- -

(=13
Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[F=ECLIPSE_HOME - Du\javaleclpse Pew..,
EI JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200

Edit...

I

|

=

[oc]

& New Variable Entry

Ok Cancel

MName: | MZ_REPC
Path: | % /Docurnents and Settings/mproctar) . m2repository File. ..
Folder...
-:'E"_'] QK Zancel

27

Chapter 1. Introduction

& Preferences

| tyvpe filker text

+- eneral
+- Ant
+-Help
|- Install/Update
-l Java
[+- Appearance
Build Path
Classpath Yariables
User Libraties
Code Skyle
Campiler
Debug
Editor
Installed JREs
JuUnik:
Properties Files Editor
+- Plug-in Development:
+- Run/Debug
+- Team

[+

oy O e O e e B

- B

Classpath V¥ariables =1

& classpath variable can be added to a project's class path. It can be used to define the location of a
JAR. file that isn't part of the workspace, The reserved class path wariables JRE_LIB, JRE_SR.C,
JRE_SRCROOT are set internally depending on the JRE setting.

Defined classpath variables:

[ECLIPSE_HOME - Dn\javaleclpse

;:. JRE_LIE {reserved) - D:\javaljdkl . 5.0_0ahjre\liblrt.jar
& JRE_SRiC (reserved) - Dnijavaljdkl.5.0_08\src.zip

= IRE_SRCROOT (reserved) - (empky) e
(= JUNIT_HOME - Dn\javaleclipsepluginsiorg. junit_3.5.1 -
[£= JUNIT_SRC_HOME - Dn\javalecipsepluginsorg. eclipse. jdt source_3.2.0,v200
[Z=-M2_REPQ - Dt\Docurments and Settingsimprockar.m2repasitory

Edit...

eS|
e

ok Cancel

28

Chapter 2.

Chapter 2. Release Notes

2.1. New and Noteworthy in KIE Workbench 6.2.0

2.1.1. Project Editor permissions

The ability to configure role-based permissions for the Project Editor have been added.

Permissions can be configured using the WEB- I NF/ cl asses/ wor kbench- pol i cy. properties
file.

The following permissions are supported:-

» Save button
f eature. wb_proj ect _aut hori ng_save
+ Delete button
feature.wb_project_authoring_delete
« Copy button
f eat ure. wb_proj ect _aut hori ng_copy
* Rename button
f eat ure. wb_proj ect _aut hori ng_r enane
 Build & Deploy button

f eat ure. wb_proj ect _aut hori ng_bui | dAndDepl oy

2.1.2. Unify validation style in Guided Decision Table Wizard.

All of our new screens use GWT-Bootstrap widgets and alert users to input errors in a consistent
way.

One of the most noticable differences was the Guided Decision Table Wizard that alerted errors
in a way inconsistent with our use of GWT-Bootstrap.

This Wizard has been updated to use the new look and feel.

29

Chapter 2. Release Notes

OutputField

Sc1ScoreCardData Fact binding

Facts that need to be referenced in
the actions need to be given an
identifier. If an identifier is not given
the system will create one.

Binding: | g5 | %

Duplicate bindings detected

Figure 2.1. New Guided Decision Table Wizard validation

2.1.3. Improved Wizards

During the re-work of the Guided Decision Table's Wizard to make it's validation consistent with
other areas of the application we took the opportunity to move the Wizard Framework to GWT-
Bootstrap too.

The resulting appearance is much more pleasing. We hope to migrate more legacy editors to
GWT-Bootstrap as time and priorities permit.

30

Consistent behaviour of XLS, Guided Decision Tables and Guided Templates

/' Summary

<

/' Imports

<

/' Add Fact Patterns

<

" Add Constraints

£

¢ Add Actions to update Facts

L4

* Add Actions to insert Facts

L4

4/ Columns to expand

<

Guided Decision Table Wizard

Define actions to insert new Facts\Pattemns.

Available patterns

Applicant
Bankruptcy
DataField
IncomeSource

LoanApplication

Chosen patterns

LoanApplication

>>

<<

Available fields

this : this

amount : Whole numb
approved : True or Fal
approvedRate : Whole
deposit : Whole numb

Chosen fields

[Amount loaned] amount

=

<<

OutputField explanation : Text

SclScoreCardData insuranceCost : Whole

lengthYears : Whole n~
» » » »

Binding (7]

Logically insert a fact - the fact will be deleted when the supporting evidence is removed. @

* Column header (description): | Amount loaned

(optional) value list: 2]

Default value:

< Previous Next »

Figure 2.2. New Wizard Framework

2.1.4. Consistent behaviour of XLS, Guided Decision Tables
and Guided Templates

Consistency is a good thing for everybody. Users can expect different authoring metaphores to
produce the same rule behaviour (and developers know when something is a bug?).

There were a few inconsistencies in the way XLS Decision Tables, Guidied Decision Tables
and Guided Rule Templates generated the underlying rules for empty cells. These have been
eliminated making their operation consistent.

« If all constraints have null values (empty cells) the Pattern is not created.

Should you need the Pattern but no constraints; you will need to include the constraintt hi s !
= null.

This operation is consistent with how XLS and Guided Decision Tables have always worked.

« You can define a constraint on a String field for an empty String or white-space by delimiting it

with double-quotation marks. The enclosing quotation-marks are removed from the value when
generating the rules.

31

Chapter 2. Release Notes

The use of quotation marks for other String values is not required and they can be omitted.
Their use is however essential to differentiate a constraint for an empty String from an empty
cell - in which case the constraint is omitted.

2.1.5. Improved Metadata Tab

The Metadata tab provided in previous versions was redesigned to provide a better asset
versioning information browsing and recovery. Now every workbench editor will provide an
"Overview tab" that will enable the user to manage the following information.

) Droots Workbench x

o o YR : : ®0(iE =

U berFire Explore - New ~ Project ~ Repository ~

Project Explorer @ Underage.rdrl - Guided Rules Save | Delete | | Rename || Copy | Validate | | LatestVersion ™ | | x || ~

demo ~ / uf-playground ~ / mortgages v ¢ Type Guided Rules Comments. {Varzlon:1
Description s project refactoring to use mortgages package

& <default> Used . " 4 Version 2

sed in projects morigages
& org L o . admin: Applicant age changed to 22
& Last modified By/admin on 2014-09-02 17:58 e i be Glase oA

Created on By/Walter Medvedeo on 2013-08-18 15:54 oo] [

Version history Metadata Applicant age changed to 23

g DRL ~

Date Commit Message Author
E] oomam specrric Lancuace perimioNs «
Current Tuesday, 2014 Sep... Applicant age chan... admin
=] enumeraTion peFTIoNS
Select Tuesday, 2014 Sep... | Applicant age chan... admin
8] cumep pecision TasLES
Select Wednesday, 2013 ... project refactoring t... Walter Medvadeo

@) oupep rues ~
Bankruptcy history
No bad credit checks
no NINJAs
ReglaRestored
Underage
(&) cupep rues i ost) - S i
CreditApproval
RegexDslRule

Editor Overview Source Config

E JAVA SOURCE FILES ¥ %3
v
@] TesT scenamios ~ Problems Refresn | | x ||~
Level Text Flle Column Line

Figure 2.3. Improved Metadata Tab

 Versions history

The versions history shows a tabular view of the asset versions and provides a "Select" button
that will enable the user to load a previously created version.

32

Improved Metadata Tab

Type:
Description

Used in projects
Last modified
Created on:

Version history

Guided Rules

Mo

mortgages

By/admin on 2014-09-02 17:58

ecrntion vat - what doas
escription yet - what aoes

this rule do?

By/Walter Medvedeo on 2013-09-18 15:54

Metadata

Date

Commit Message

Author

Current

Select

Select

Tuesday, 2014 Sep...

Tuesday, 2014 Sep...

Wednesday, 2013 ...

Figure 2.4. Versions history

Metadata

Applicant age chan...

Applicant age chan...

project refactoring t...

"l

admin

admin

Walter Medvedeo

4 130f3 » w» M

The metadata section gets access to additional file attributes.

Comments

admin:
"Age should be change to 23 "

2044-05-02 1801

33

Cc

hapter 2. Release Notes

2014-08-02 1801

Type: Guided Rules Comments
Description No descripti
5 admin:
Used in projects mortgages "Age should be change to 23 "
Last modified By/admin on 2014-09-02 17:38
Created on: By/Walter Medvedeo on 2013-09-18 15:54

Version history ~ Metadata

Categories: L
Note: Applicant age changed to 23
URI:

git://master@uf-playground/mortgages/src/main/resources/org/mortgages/Underage. rdrl
Subject:
Type:

External link:

Source:

Figure 2.5. Metadata section

Comments area

The redesigned comments area enables much clearer discussions on a file.
Version selection dropdown

The "Version selector dropdown" located at the menu bar provides the ability to load and restore
previous versions from the "Editor tab", without having to open the "Overview tab" to load the
"Version history".

34

Improved Java Editor

Underage.rdrl - Guided Rules
EXTENDS None selected
WHEN
1. There is a LoanApplication [application]
There is an Applicant with:

2 age less than v|23
THEN
1. delete LoanApplication [application]
Set value of LoanApplication [application]
2:
Set value of LoanApplication [application]
(show
options...)

Editor Overview Source Config

approved

explanation

Figure 2.6. Version selection dropdown

2.1.6. Improved Java Editor

The Java editor was unified to the standard workbench editors functioning.
every Java file is edited on his own editor window.

false

Underage

Save Delete Remame Copy @ Validate | Latest Version ™

Version 1
project refactoring to use mortgages package

| Version 2

Applicant age changed to 22
Version 3
Applicant age changed to 23

It means that and now

35

x

%
agedl|

B 2

agedk

LE

Chapter 2. Release Notes

@) Drools Workbench x
&« (& [127.00.1 Y . ®r i E

U be rF i re Explore~ New - Project » Repository «

Project Explorer o Applicant.java - Java Source Files Save || Delete || Rename || Copy || validate | | latestversion™ | | x| T
demo ~ / uf-playground ~ / mortgages ~ &
Create new field Data object Field
*Id Label
) -
DED Identifier Applicant
g DOMAIN SPECIFIC LANGUAGE DEFINITIONS ~ Label
ENUMERATION DEFINITIONS ~ org.mortgages.Applicant Description
Position Identifier & Label Type

@ ‘GUIDED DECISION TABLES ~

___._. o e '
Integer
(5| GUIDED RULES ~

1

applicationDate Date % Drools & JBPM parameters:

@ GUIDED RULES (WITH DSL) ~

4 approved Boolean x TypeSafe v e

6 JAVA SOURCEFILES ~ |2 creditRating String x ClassReactive)
Applicant PropertyReactive

3 name Siring x et -

Bankruptcy o -

IncomeSource
LoanApplication L v e
PojoRenamed Duration r
Expires
g ®

(% | TEST SCENARIOS +

Editor Overview Source

Problems Refresh | | %= ||~

Level Text Flle Column Line

Figure 2.7. Improved Java Editor

* "New -> Java" file option was added to create the java classes.

« Overview tab was added for every Java file to manage the file metadata and have access to
the file versions history.

« Editable "Source Tab" tab was added. Now the Java code can be modified using the workbench.

« "Editor" - "Source Tab" round trip is provided. This will let the user to do manual changes on
the generated Java code and go back to the editor tab to continue working.

» Class usages detection. Whenever a Java file is about to be deleted or renamed, the project
will be scanned for the class usages. If usages are found (e.qg. in drl files, decision tables, etc.)
the user will receive an alert. This will prevent the user from breaking the project build.

36

Execution Server Management Ul

@ Drools Workbench x
& «» @ [0 127001 kbenc 0 t o n.scre n ss @ {1 [

Usages Detected

Class: org.mortgages.Applicant is being used in the following files, do you still
want to delete it?

Name Path

CreditApproval.rdsir defaults

RegexDs|Rule.rdslr default:

credit rating; default:/

ApplicantDsl.ds| default:

No bad credit checks. rdri default:/

Underage.rdrl default://imaster@uf-playground/mortgages. .

NINJAs.scenario default:/

T

Figure 2.8. Usages detection

2.1.7. Execution Server Management Ul

A new perspective called Management has been added under Servers top level menu.
This perspective provides users the ability to manage multiple execution servers with multiple
containers. Available features includes connect to already deployed execution servers; create
new, start, stop, delete or upgrade containers.

37

Chapter 2. Release Notes

8006 KIE Workbench

KIE Workbench

Home Authoring Deploy A re anagement ~ asks D Find User: admin ~

Server Management Browser Container Info [mortgages] x
ce Register £ Refresh
Start Scanner = Stop Scanner Scan Now @
® MyServer
® mortgages

http://localhost:8081/kie-server-
services/services/rest/server/containers/mortgages

I Group Id Artifact Id Version
mortgages mortgages LATEST Upgrade
Group Id Artifact 1d Version
mortgages mortgages 0.01

Figure 2.9. Management perspective

Note

Current version of Execution Server just supports rule based execution.

2.1.8. Social Activities

A brand new feature called Social Activities has been added under a new top level menu item
group called Activity.

This new feature is divided in two different perspectives: Timeline Perspective and People
Perspective.

The Timeline Perspective shows on left side the recent assets created or edited by the logged
user. In the main window there is the "Latest Changes" screen, showing all the recent updated
assets and an option to filter the recent updates by repository.

38

Social Activities

Recent Assets Latest Changes
Ef_-ig anotherDRL.drl edited today Showing updates for: | Latest Changes |

B Finance.java

—= . = i added 05/09/2014 11:48:52
HE‘:E sampleDrl.drl edited today [admin o)

1N

- = in edited 05/09/2014 11:49:35 "JIRA[1234]"
s) Finance.java added today E_‘..‘a admin /09/ []
& :
]
E‘i - Finance.java edited today = sampleDrl.drl
= 1 ﬂ director edited 05/09/2014 11:47:15 "JIRA[123]"
% anotherDRL.drl

admin edited 05/09/2014 11:46:38 "rule changed for X"

Figure 2.10. Timeline Perspective

The People Perspective is the home page of an user. Showing his infos (including a gravatar
picture from user e-mail), user connections (people that user follow) and user recent activities.
There is also a way to edit an user info. The search suggestion can be used to navigate to a user
profile, follow him and see his updates on your timeline.

Eder Ignatowicz's Profile " Eder Ignatowicz's Recent Activities

Connections:

]

= anotherDRL.drl edited today

- sampleDrl.drl edited today

-
i

W4

User name:admin

E-mail:ignatowicz@gmail.com

Edit my infos

Figure 2.11. People Perspective

39

Chapter 2. Release Notes

Edit my infos

E-mail

ignatowicz@gmail.com

Real Name

Eder Ignatowicz

Figure 2.12. Edit User Info

2.1.9. Contributors Dashboard

A brand new perspective called Contributors has been added under a new top level menu
item group called Activity. The perspective itself is a dashboard which shows several indicators
about the contributions made to the managed organizations / repositories within the workbench.
Every time a organization/repository is added/removed from the workbench the dashboard itself
is updated accordingly.

This new perspective allows for the monitoring of the underlying activity on the managed
repositories.

40

Package selector

KIE Workbench

Contributors

Commits per organization
500

Number of commits
w
-1

Activity ~

Contributors

#Commits evolution

- Select Author -

60
45
30
demo 18
0
R A S SR, At ARy S S P T\ BN S N S R RN SN R
AT QY N g 0N gt 0N ga 00T 90hT e o aah” g et g ot g
500@ }PN \ﬁ"‘a\ ““oe‘d@‘e(6{0@(6@@: \)aﬁ ‘ﬂzﬂq@'d\ W‘\\ ‘,1\'2“ 5‘)0@ 3‘-‘\\‘ \}g‘f}ﬁ@eﬁﬁ&o@ ﬁ@e(
1 2 3 P-%eg‘@ a0 e 3 ged P-QFO@ oo
#repositories
SUNDAY
- Select Organization - v P
- Select Repository - A ai TUESDAY
- 2012 maz WEDNESDAY
W 2013 a3
THURSDAY
a4
- Select Top Contributor - v =
FRIDAY
SATURDAY

Author

Repository

Date

Commit

David Gutierrez

Administrator User

David Gutierrez

Administrator User

David Gutierrez

jopm-playground
jopm-playground
jbpm-playground
jbpm-playgreund

jbpm-playground

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

2013 Nov 22 17:22:35

Figure 2.13. Contributors perspective

2.1.10. Package selector

delete {{Evaluation/.pom.xml}

hjk

delete {{Evaluation/src/main/resource. .
hjk

delete {{Evaluation/_project.imports}

M4 1501237 » » M

The location of new assets whilst authoring was driven by the context of the Project Explorer.

This has been replaced with a Package Selector in the New Resource Popup.

The location defaults to the Project Explorer context but different packages can now be more

easily chosen.

41

Chapter 2. Release Notes

* Resource Name

Location

Create new Guided Rule

resource name

org.mortgages

<default>
org

org.mortgages

urgpz

(DSL)

O Ok Cancel

Figure 2.14. Package selector

2.1.11. Improved visual consistency

All Popups have been refactored to use GWT-Bootstrap widgets.

Whilst a simple change it brings greater visual consistency to the application as a whole.

42

Improved visual consistency

Condition column configuration

Pattern:LoanApplication [applicatinn
Calculation type:® Literal value) Formula® Predicate

Fielg: @mount ey

Operator:greater than g#

From Entry Point:

Column header (description); &mount min
(optional) value list:
Default value:

Binding:

Hide column:_

O Ok Cancel

Figure 2.15. Example Guided Decision Table Editor popup

43

Chapter 2. Release Notes

Modify constraints for LoanApplication

Modify constraints for LoanApplication

Add a restriction on a field ... ¥
Multiple field constraint ... v ©
Advanced options:

Add a new formula style expression New formula
Expression editor Expression editor

Variable name @ Set

Figure 2.16. Example Guided Rule Editor popup
2.2. New and Noteworthy in Integration 6.2.0

2.2.1. Kie Server

A new Kie Execution Server was created with the goal of supporting the deployment of kjars and
the automatic creation of REST endpoints for remote rules execution. This initial implementation
supports provisioning and execution of kjars via REST without any glue code.

A user interface was also integrated into the workbench for remote provisioning. See the
workbench's New&Noteworthy for details.

@rat h("/server")
public interface KieServer {

@ET
@°r oduces({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
publ i c Response getlnfo();

@osT

@Consunes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
@r oduces({ Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})
publ i ¢ Response execute(CommandScript command);

44

Kie Server

@ET

@Pat h("cont ai ners")

@r oduces({ Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})
publi ¢ Response |i st Containers();

@ET

@rat h("containers/{id}")

@r oduces({ Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})
publ i ¢ Response get Contai nerlnfo(@athParanm("id") String id);

@ur

@rat h("containers/{id}")

@onsunes({ Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})

@r oduces({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})

publ i c Response createContainer(@athParan("id") String id, KieContainerResource contai ner

@ELETE

@Pat h("containers/{id}")

@r oduces({ Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})
publ i ¢ Response di sposeCont ai ner(@pathParam("id") String id);

@GosT

@rat h("containers/{id}")

@onsunes({ Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})

@r oduces({Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})

publ i ¢ Response execute(@PathParam("id") String id, String cndPayl oad);

@EET

@Pat h("contai ners/{id}/rel ease-id")

@r oduces({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})
publ i c Response get Rel easel d(@at hParan{"id") String id);

@GosT

@Pat h("contai ners/{id}/rel ease-id")

@onsunes({ Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})

@r oduces({Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})

publ i ¢ Response updat eRel easel d(@at hParan("id") String id, Releaseld releaseld);

@EET

@rat h("cont ai ners/{id}/scanner")

@r oduces({Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})
publ i ¢ Response get Scanner| nfo(@PathParanm("id") String id);

@osT

@Pat h("cont ai ners/{id}/scanner")

@Consunes({ Medi aType. APPLI CATI ON_XM., Medi aType. APPLI CATI ON_JSON})

@r oduces({ Medi aType. APPLI CATI ON_XM_, Medi aType. APPLI CATI ON_JSON})

publ i ¢ Response updat eScanner(@Pat hParam("id") String id, KieScannerResource resource);

45

Chapter 2. Release Notes

Figure 2.17. Kie Server interface
2.3. What is New and Noteworthy in Drools 6.1.0

2.3.1. IMX support for KieScanner

Added support for IMX monitoring and management on KieScanner and KieContainer. To enable,
set the property:

KieScannerMBean will register under the name:

It exposes the following properties:

» Scanner Release Id: the release ID the scanner was configured with. May include maven range
versions and special keywords like LATEST, SNAPSHOT, etc.

* Current Release Id: the actual release ID the artifact resolved to.
e Status: STARTING, SCANNING, UPDATING, RUNNING, STOPPED, SHUTDOWN

It also exposes the following operations:

« scanNow(): forces an immediate scan of the maven repository looking for artifact updates

« start(): starts polling the maven repository for artifact updates based on the polling interval
parameter

» stop(): stops automatically polling the maven repository
2.4. New and Noteworthy in KIE Workbench 6.1.0

2.4.1. Data Modeler - round trip and source code preservation

Full round trip between Data modeler and Java source code is now supported. No matter where
the Java code was generated (e.g. Eclipse, Data modeller), data modeler will only update the
necessary code blocks to maintain the model updated.

2.4.2. Data Modeler - improved annotations

New annotations @TypeSafe, @ClassReactive, @PropertyReactive, @ Timestamp, @Duration
and @Expires were added in order enrich current Drools annotations manged by the data modeler.

2.4.3. Standardization of the display of tabular data

We have standardized the display of tabular data with a new table widget.

46

Standardization of the display of tabular data

The new table supports the following features:

* Selection of visible columns
* Resizable columns

+ Moveable columns

— s |
— wr
Open Format Name Created Date
Open Dummy rule.drl 2014 Jun 10 14:50:34
ApplicantDsl.dsl 2014 Jun 10 14:50:35
Open
Open credit ratings.enumeration 2014 Jun 10 14:50:36
Bt il .
Pricing loans.gdst 2014 Jun 10 14:50:37
Open
Open Bankruptcy history.rdrl 2014 Jun 10 14:50:39

M W MW MW 1-100f15

Figure 2.18. New table

The table is used in the following scenarios:

 Inbox (Incoming changes)
 Inbox (Recently edited)
 Inbox (Recently opened)

* Project Problems summary

« Artifact Repository browser

» Project Editor Dependency grid
* Project Editor KSession grid

» Project Editor Work Item Handlers Configuration grid

47

Chapter 2. Release Notes

 Project Editor Listeners Configuration grid

e Search Results grid

2.4.4. Generation of nodify(x) {...} blocks

The Guided Rule Editor, Guided Template Editor and Guided Decision Table Editor have been
changed to generate nodi fy(x){...}

Historically these editors supported the older updat e(x) syntax and hence rules created within
the Workbench would not respond correctly to @r opert yReact i ve and associated annotations
within a model. This has now been rectified with the use of nodi fy(x){...} blocks.

2.5. New and Noteworthy in KIE API1 6.0.0

2.5.1. New KIE name

KIE is the new umbrella name used to group together our related projects; as the family continues
to grow. KIE is also used for the generic parts of unified API; such as building, deploying and
loading. This replaces the droolsjbpm and knowledge keywords that would have been used before.

/\

[OptaPlanner Drools [UberFire] jBPM

[Guvnor

[Drools WB

)

S
Y /
\ KIE-WB |

Figure 2.19. KIE Anatomy

48

Maven aligned projects and modules and Maven Deployment

2.5.2. Maven aligned projects and modules and Maven
Deployment

One of the biggest complaints during the 5.x series was the lack of defined methodology for
deployment. The mechanism used by Drools and jBPM was very flexible, but it was too flexible.
A big focus for 6.0 was streamlining the build, deploy and loading (utilization) aspects of the
system. Building and deploying activities are now aligned with Maven and Maven repositories.
The utilization for loading rules and processess is now convention and configuration oriented,
instead of programmatic, with sane defaults to minimise the configuration.

Projects can be built with Maven and installed to the local M2_REPO or remote Maven
repositories. Maven is then used to declare and build the classpath of dependencies, for KIE to
access.

2.5.3. Configuration and convention based projects

The 'kmodule.xml' provides declarative configuration for KIE projects. Conventions and defaults
are used to reduce the amount of configuration needed.

Example 2.1. Declare KieBases and KieSessions

<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ knodul e" >
<kbase nane="kbasel" packages="org. mypackages>
<ksessi on name="ksessionl"/>
</ kbase>
</ knmodul e>

Example 2.2. Utilize the KieSession

Ki eServices ks = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA |l Rul es();

2.5.4. KieBase Inclusion

It is possible to include all the KIE artifacts belonging to a KieBase into a second KieBase. This
means that the second KieBase, in addition to all the rules, function and processes directly defined
into it, will also contain the ones created in the included KieBase. This inclusion can be done
declaratively in the kmodule.xml file

49

Chapter 2. Release Notes

Example 2.3. Including a KieBase into another declaratively

<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ knodul e" >
<kbase nane="kbase2" incl udes="kbasel">
<ksessi on nane="ksessi on2"/>
</ kbase>
</ knmodul e>

or programmatically using the Ki eModul eModel .

Example 2.4. Including a KieBase into another programmatically

Ki eModul eMbdel knmobdul e = Ki eServi ces. Factory. get (). newki eModul eModel () ;
Ki eBaseMbdel ki eBaseMbdel 1 = knodul e. newKi eBaseModel (" KBase2"). addl ncl ude(" KBasel") ;

2.5.5. KieModules, KieContainer and KIE-CI

Any Maven produced JAR with a 'kmodule.xml'in it is considered a KieModule. This can be loaded
from the classpath or dynamically at runtime from a Resource location. If the kie-ci dependency
is on the classpath it embeds Maven and all resolving is done automatically using Maven and can
access local or remote repositories. Settings.xml is obeyed for Maven configuration.

The KieContainer provides a runtime to utilize the KieModule, versioning is built in throughout,
via Maven. Kie-ci will create a classpath dynamically from all the Maven declared dependencies
for the artifact being loaded. Maven LATEST, SNAPSHOT, RELEASE and version ranges are
supported.

Example 2.5. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (
ks. newRel easel d("org. nygroup", "nyartefact", "1.0"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA |l Rul es();

KieContainers can be dynamically updated to a specific version, and resolved through Maven
if KIE-CI is on the classpath. For stateful KieSessions the existing sessions are incrementally
updated.

50

KieScanner

Example 2.6. Dynamically Update - Java

Ki eCont ai ner kCont ai ner. updat eToVer si on(
ks. newRel easel d("org. nygroup", "nyartefact", "1.1"));

2.5.6. KieScanner

The Ki eScanner is a Maven-oriented replacement of the KnowledgeAgent present in Drools 5.
It continuously monitors your Maven repository to check if a new release of a Kie project has
been installed and if so, deploys it in the Ki eCont ai ner wrapping that project. The use of the
Ki eScanner requires kie-ci.jar to be on the classpath.

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 2.7. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory.get();

Rel easel d rel easeld = ki eServi ces. newRel easel d("org.acne", "nyartifact", "1.0-
SNAPSHOT") ;

Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(releaseld);

Ki eScanner kScanner = ki eServices. newKi eScanner (kCont ai ner);

/1 Start the KieScanner polling the Maven repository every 10 seconds
kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possible
to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds, in the Maven
repository, an updated version of the Kie project used by that Ki eCont ai ner it automatically
downloads the new version and triggers an incremental build of the new project. From this moment
all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the new project
version.

2.5.7. Hierarchical ClassLoader

The CompositeClassLoader is no longer used; as it was a constant source of performance
problems and bugs. Traditional hierarchical classloaders are now used. The root classloader is
at the KieContext level, with one child ClassLoader per namespace. This makes it cleaner to add
and remove rules, but there can now be no referencing between namespaces in DRL files; i.e.
functions can only be used by the namespaces that declared them. The recommendation is to
use static Java methods in your project, which is visible to all namespaces; but those cannot (like
other classes on the root KieContainer ClassLoader) be dynamically updated.

51

Chapter 2. Release Notes

2.5.8. Legacy API Adapter

The 5.x API for building and running with Drools and jBPM is still available through
Maven dependency "knowledge-api-legacy5-adapter”. Because the nature of deployment has
significantly changed in 6.0, it was not possible to provide an adapter bridge for the
KnowledgeAgent. If any other methods are missing or problematic, please open a JIRA, and we'll
fix for 6.1

2.5.9. KIE Documentation

While a lot of new documentation has been added for working with the new KIE API, the entire
documentation has not yet been brought up to date. For this reason there will be continued
references to old terminologies. Apologies in advance, and thank you for your patience. We hope
those in the community will work with us to get the documentation updated throughout, for 6.1

2.6. What is New and Noteworthy in Drools 6.0.0

2.6.1. PHREAK - Lazy rule matching algorithm

The main work done for Drools in 6.0 involves the new PREAK algorithm. This is a lazy algorithm
that should enable Drools to handle a larger number of rules and facts. AngendaGroups can now
help improvement performance, as rules are not evaluated until it attempts to fire them.

Sequential mode continues to be supported for PHREAK but now 'modify’ is allowed. While there is
no 'inference' with sequential configuration, as rules are lazily evaluated, any rule not yet evaluated
will see the more recent data as a result of 'modify’. This is more inline with how people intuitively
think sequential works.

The conflict resolution order has been tweaked for PHREAK, and now is ordered by salience and
then rule order; based on the rule position in the file.. Prior to Drools 6.0.0, after salience, it was
considered arbitrary. When KieModules and updateToVersion are used for dynamic deployment,
the rule order in the file is preserved via the diff processing.

2.6.2. Automatically firing timed rule in passive mode

When the rule engine runs in passive mode (i.e.: using fireAllRules) by default it doesn't fire
consequences of timed rules unless fireAllRules isn't invoked again. Now it is possible to change
this default behavior by configuring the KieSession with a Ti medRul eExecti onOpt i on as shown
in the following example.

Example 2.8. Configuring a KieSession to automatically execute timed rules

Ki eSessi onConfi gurati on ksconf = Ki eServi ces. Factory. get (). newKi eSessi onConfi guration();
ksconf . set Opti on(Ti medRul eExecti onOpti on. YES);

52

Expression Timers

KSessi on ksession = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 2.9. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi guration ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
conf.set Option(new Ti medRul eExecti onOpti on. FI LTERED(new Ti medRul eExecutionFilter() {
publi ¢ bool ean accept(Rul e[] rules) {
return rul es[0]. get Nane() . equal s("M/Rul e");

}
1)

2.6.3. Expression Timers

Itis now possible to define both the delay and interval of an interval timer as an expression instead
of a fixed value. To do that it is necessary to declare the timer as an expression one (indicated
by "expr:") as in the following example:

Example 2.10. An Expression Timer Example

decl are Bean
del ay : String = "30s"
period : long = 60000
end

rule "Expression timer"
timer(expr: $d, $p)
when
Bean($d : delay, $p : period)
t hen
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition

53

Chapter 2. Release Notes

must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 2.11. An Interval Timer with a start and an end

tinmer (int: 30s 10s; start=3-JAN 2010, end=5-JAN 2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

Conversely the repeat-limit can be only an integer and it defines the maximum number of
repetitions allowed by the timer. If both the end and the repeat-limit parameters are set the timer
will stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

timer (int: 30s 1m start="3-JAN- 2010")

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't
be scheduled immediately but will preserve the phase defined by the timer and so it will be
scheduled for the first time 30 seconds after the midnight. If for some reason the system is paused
(e.g. the session is serialized and then deserialized after a while) the rule will be scheduled only
once to recover from missing activations (regardless of how many activations we missed) and
subsequently it will be scheduled again in phase with the timer.

2.6.4. RuleFowGroup and AgendaGroups are merged

These two groups have been merged and now RuleFlowGroup's behave the same as
AgendaGroups. The get methods have been left, for deprecation reasons, but both return the

54

New and Noteworthy in KIE Workbench 6.0.0

same underlying data. When jBPM activates a group it now just calls setFocus. RuleFlowGroups
and AgendaGroups when used together was a continued source of errors. It also aligns the
codebase, towards PHREAK and the multi-core explotation that is planned in the future.

2.7. New and Noteworthy in KIE Workbench 6.0.0

The workbench has had a big overhaul using a new base project called UberFire. UberFire is
inspired by Eclipse and provides a clean, extensible and flexible framework for the workbench.
The end result is not only a richer experience for our end users, but we can now develop more
rapidly with a clean component based architecture. If you like he Workbench experience you can
use UberFire today to build your own web based dashboard and console efforts.

As well as the move to a UberFire the other biggest change is the move from JCR to Git; there
is an utility project to help with migration. Git is the most scalable and powerful source repository
bar none. JGit provides a solid OSS implementation for Git. This addresses the continued
performance problems with the various JCR implementations, which would slow down once the
number of files and number of versions become too high. There has been a big "low tech" drive,
to remove complexity. Everything is now stored as a file, including meta data. The database is
only there to provide fast indexing and search. So importing and exporting is all standard Git and
external sites, like GitHub, can be used to exchange repositories.

In 5.x developers would work with their own source repository and then push JCR, via the team
provider. This team provider was not full featured and not available outside Eclipse. Git enables
our repository to work any existing Git tool or team provider. While not yet supported in the Ul, this
will be added over time, it is possible to connect to the repo and tag and branch and restore things.

55

Chapter 2. Release Notes

File Edit View History Bookmarks Tools Accessibility Help

{J KIE Drools Workbench
@& @ localhost MR N Q @ " - }f

Drools Workbench

Explore ~ Newliem ~ Tools = Q
Project Explorer o Guided Editor [Bankruptcy history] Save || Dekte | Rename | Copy | Valdate | X ||~
EXTENDS None selected o
demo ~ uf-playground ~ mortgages ~ =]
WHEN [
B <default> 1. Thereis a LoanApplication [a]
The following exists:
& org There is a Bankruptcy with:
& morigages any of the following:
2, yearofoccurence greater than j 1990
amountOwed greater than j 10000
@ DRL THEN
I 1. delete LoanApplication [a]
(5 DOMAIN SPECIFIC LANGUAGE DEFINITION
Setvalue of LoanApplication [a] approved false j:
2. e e g =
(© ENUMERATION DEFINITION)

Edit Source Config Metadata
#/ GUIDED DECISION TABLE

® GUIDED RULE Problems =
Bankruptcy history Level Text File Column Line
No bad credit checks [ERR 102] Line
no NINJAs 7:0 mismatched
] . . Dummy rule.drl o 7
Underage input ‘then' in rule

"Dummy rule”

Figure 2.20. Workbench

The Guvnor brand leaked too much from its intended role; such as the authoring metaphors,
like Decision Tables, being considered Guvnor components instead of Drools components. This
wasn't helped by the monolithic projects structure used in 5.x for Guvnor. In 6.0 Guvnor 's focus
has been narrowed to encapsulates the set of UberFire plugins that provide the basis for building
a web based IDE. Such as Maven integration for building and deploying, management of Maven
repositories and activity notifications via inboxes. Drools and jBPM build workbench distributions
using Uberfire as the base and including a set of plugins, such as Guvnor, along with their own
plugins for things like decision tables, guided editors, BPMN2 designer, human tasks.

The "Model Structure" diagram outlines the new project anatomy. The Drools workbench is called
KIE-Drools-WB. KIE-WB is the uber workbench that combines all the Guvnor, Drools and jBPM
plugins. The BPM-WB is ghosted out, as it doesn't actually exist, being made redundant by KIE-
WB.

56

New and Noteworthy in KIE Workbench 6.0.0

- N
Uberfire
|ong.uberfire]
hitps gt comdneokibpeyutarfin L j
- N
* Maven Reposilory
Guvnor * Projact Sarvics
[org guvnorguynod * Inbo
* WarkNew
hiips¥githuls. comicrooishpeiguamor [
"y
7 ™y
. * Hame page
kig-wh-commaon * Projact Explonar
[rg lokex kig-wb-common] * Diata Madaller
* Mata Data
; - > * Search
g gtk gl e CY e e =
\ l—//—) . {.'
— T
l"’f -""...r ——— _“_"'a-. ______
* DAL : '; * JBPM Console
drools-wb " Guided Edilor i jbpm-wb y " IEPM Desigrer
[mrg.drools:droals-wh] 'H':;Hl Scenarnas : [org.opmijbom-wb] |
1
L — F
|ﬂ]llhillllj}{l:lll'lhlkil‘l‘l%b\\ e ‘__-'"
~ % - .
i e = e
b
e 7 N i
| |
kie-drools-wb kie-wb I kie-jopm-wb !
g e ka-drools-wh] forg.kie:kie-ath] : [org kiekie-bpm-wh] :
Y e e e o +
sie-wh-dminbusors | hiigs:\gthub comidrooisbpmikie-wh-distrizutions:

p

o

Figure 2.21. Module Structure

Important

KIE Drools Workbench and KIE Workbench share a common set of components

for generic workbench functionality such as Project navigation, Project definitions,
Maven based Projects, Maven Artifact Repository. These common features are
described in more detail throughout this documentation.

The two primary distributions consist of:

 KIE Drools Workbench
 Drools Editors, for rules and supporting assets.
¢ jBPM Designer, for Rule Flow and supporting assets.

» KIE Workbench

57

Chapter 2. Release Notes

Drools Editors, for rules and supporting assets.

jBPM Designer, for BPMN2 and supporting assets.

jBPM Console, runtime and Human Task support.
e jBPM Form Builder.
e BAM.

Workbench highlights:

New flexible Workbench environment, with perspectives and panels.

* New packaging and build system following KIE API.

» Maven based projects.

» Maven Artifact Repository replaces Global Area, with full dependency support.

« New Data Modeller replaces the declarative Fact Model Editor; bringing authoring of Java
classes to the authoring environment. Java classes are packaged into the project and can be
used within rules, processes etc and externally in your own applications.

« Virtual File System replaces JCR with a default Git based implementation.
» Default Git based implementation supports remote operations.
» External modifications appear within the Workbench.

* Incremental Build system showing, near real-time validation results of your project and assets.
The editors themselves are largely unchanged; however of note imports have moved from the
package definition to individual editors so you need only import types used for an asset and not
the package as a whole.

2.8. New and Noteworthy in Integration 6.0.0

2.8.1. CDI

CDl is now tightly integrated into the KIE API. It can be used to inject versioned KieSession and
KieBases.

@ nj ect
@XSessi on("kbasel")
@XRel easel d(groupld = "jarl", rtifactld = "artl1", version = "1.0")

private Ki eBase kbaselv10;

@ nj ect

58

Spring

@KBase(" kbasel")
@XRel easel d(groupld = "jarl1", rtifactld = "art1", version = "1.1")
private Ki eBase kbaselv10;

Figure 2.22. Side by side version loading for 'jarl.KBasel' KieBase

@ nj ect

@KSessi on("ksessi onl")

@XRel easel d(groupld = "jarl", rtifactld = "art1", version = "1.0")
private Ki eSession ksessi onv10;

@ nj ect

@XSessi on(" ksessi onl")

@XRel easel d(groupld = "jarl", rtifactld = "art1", version = "1.1")

private Ki eSession ksessionvll;

Figure 2.23. Side by side version loading for 'jar1.KBasel' KieBase

2.8.2. Spring

Spring has been revamped and now integrated with KIE. Spring can replace the 'kmodule.xml'
with a more powerful spring version. The aim is for consistency with kmodule.xml

2.8.3. Aries Blueprints

Aries blueprints is now also supported, and follows the work done for spring. The aim is for
consistency with spring and kmodule.xml

2.8.4. OSGi Ready

All modules have been refactored to avoid package splitting, which was a problem in 5.x. Testing
has been moved to PAX.

59

60

Chapter 3.

Chapter 3. Compatibility matrix

Starting from KIE 6.0, Drools (including workbench), jBPM (including designer and console) and
OptaPlanner follow the same version numbering.

61

62

Part Il. KIE

KIE is the shared core for Drools and jBPM.It provides a unified methodology and programming
model for building, deploying and utilizing resources.

Chapter 4.

Chapter 4. KIE

4.1. Overview

4.1.1. Anatomy of Projects

The process of researching an integration knowledge solution for Drools and jBPM has simply
used the "droolsjbpm" group name. This name permeates GitHub accounts and Maven POMs.
As scopes broadened and new projects were spun KIE, an acronym for Knowledge Is Everything,
was chosen as the new group name. The KIE name is also used for the shared aspects of the
system; such as the unified build, deploy and utilization.

KIE currently consists of the following subprojects:

)
/ <

[OptaPlanner Drools [UberFire] jBPM

[
(omows]

Figure 4.1. KIE Anatomy

OptaPlanner, a local search and optimization tool, has been spun off from Drools Planner and is
now a top level project with Drools and jBPM. This was a natural evolution as Optaplanner, while
having strong Drools integration, has long been independant of Drools.

65

Chapter 4. KIE

From the Polymita acquisition, along with other things, comes the powerful Dashboard Builder
which provides powerful reporting capabities. Dashboard Builder is currently a temporary name
and after the 6.0 release a new name will be chosen. Dashboard Builder is completely independant
of Drools and jBPM and will be used by many projects at JBoss, and hopefully outside of JBoss :)

UberFire is the new base workbench project, spun off from the ground up rewrite. UberFire
provides Eclipse-like workbench capabilities, with panels and perspectives from plugins. The
project is independant of Drools and jBPM and anyone can use it as a basis of building flexible and
powerful workbenches. UberFire will be used for console and workbench development throughout
JBoss.

It was determined that the Guvnor brand leaked too much from its intended role; such as the
authoring metaphors, like Decision Tables, being considered Guvnor components instead of
Drools components. This wasn't helped by the monolithic projects structure used in 5.x for Guvnor.
In 6.0 Guvnor's focus has been narrowed to encapsulate the set of UberFire plugins that provide
the basis for building a web based IDE. Such as Maven integration for building and deploying,
management of Maven repositories and activity notifications via inboxes. Drools and jBPM build
workbench distributions using Uberfire as the base and including a set of plugins, such as Guvnor,
along with their own plugins for things like decision tables, guided editors, BPMN2 designer,
human tasks. The Drools workbench is called Drools-WB. KIE-WB is the uber workbench that
combined all the Guvnor, Drools and jBPM plugins. The jBPM-WB is ghosted out, as it doesn't
actually exist, being made redundant by KIE-WB.

4.1.2. Lifecycles

The different aspects, or life cycles, of working with KIE system, whether it's Drools or jBPM, can
typically be broken down into the following:

« Author

» Authoring of knowledge using a Ul metaphor, such as: DRL, BPMN2, decision table, class
models.

* Build

* Builds the authored knowledge into deployable units.

* For KIE this unitis a JAR.
* Test

» Test KIE knowedge before it's deployed to the application.
« Deploy

» Deploys the unit to a location where applications may utilize (consume) them.

66

Build, Deploy, Utilize and Run

» KIE uses Maven style repository.
« Utilize

» The loading of a JAR to provide a KIE session (KieSession), for which the application can
interact with.

» KIE exposes the JAR at runtime via a KIE container (KieContainer).

» KieSessions, for the runtime's to interact with, are created from the KieContainer.
* Run

» System interaction with the KieSession, via API.
* Work

» User interaction with the KieSession, via command line or UI.
* Manage

* Manage any KieSession or KieContainer.

4.2. Build, Deploy, Utilize and Run

4.2.1. Introduction

6.0 introduces a new configuration and convention approach to building knowledge bases, instead
of using the programmatic builder approach in 5.x. The builder is still available to fall back on, as
it's used for the tooling integration.

Building now uses Maven, and aligns with Maven practices. A KIE project or module is simply
a Maven Java project or module; with an additional metadata file META-INF/kmodule.xml. The
kmodule.xml file is the descriptor that selects resources to knowledge bases and configures those
knowledge bases and sessions. There is also alternative XML support via Spring and OSGi
BluePrints.

While standard Maven can build and package KIE resources, it will not provide validation at build
time. There is a Maven plugin which is recommended to use to get build time validation. The plugin
also generates many classes, making the runtime loading faster too.

The example project layout and Maven POM descriptor is illustrated in the screenshot

67

Chapter 4. KIE

- e T
v [ldrools-examples-api
¥ [idefault-kiesession
v Clsrc
v CImain
v [Cjava
v org.drools.example.api.defaultkiesession
' & DefaultKieSessionExample
£ ' Message
¥ [Zresources
v defaultkiesession
Hall.drl
v META-INF
= kmodule.xml
= logback.xml
: test
v [java
v org.drools.example. api.defaultkiesession
& & DefaultkieSessionExampleTest
&4 DefaultKieSessionFromFSExampleTest
.gitignore
Il default-kiesession.im!
m pom.xml
¥ [ldefault-kiesession-from-file
v DOsrc
> Bl main
¥ Cltest
v Bjava

<?xml version="1.8" encoding="UTF-8"7>
J=project xmlns="http://maven.apache.org/POM/4.0.08"

xmlns:xsi="http://www.w3.0rg/2081/XMLSchema-instance"
xsi:schemalocation="http://maven.apache.org/POM/4.0.0
http://maven.apache.org/xsd/maven—4.0.0.xsd">
=modelVersion=4.8.8</modelVersion=
<parent>
<groupIld>org.drools</groupld>
<artifactId>drools-examples-api</artifactId-
<version=6.8.0=/version>
=/parent=>

<artifactId>default-kiesession</artifactId>
<name>Drools API examples - Default KieSession</name>

<dependencies>
=dependency=
<groupld=org.drools</groupld=
<artifactld=drools-compiler</artifactId>
</dependency>
</dependencies>

<build>
<plugins=
<plugin=>
<groupld=org.drools</groupId>
<artifactId-drools-maven-plugin</artifactld>
<version=h.@.2</version=
<extensions>true</extensions>
</plugin>
</plugins=
</build=

</project>

Figure 4.2. Example project layout and Maven POM

KIE uses defaults to minimise the amount of configuration. With an empty kmodule.xml being the
simplest configuration. There must always be a kmodule.xml file, even if empty, as it's used for

discovery of the JAR and its contents.

Maven can either 'mvn install' to deploy a KieModule to the local machine, where all other
applications on the local machine use it. Or it can 'mvn deploy' to push the KieModule to a remote
Maven repository. Building the Application will pull in the KieModule and populate the local Maven

repository in the process.

68

Introduction

—_ —_
-,.,_‘_‘___-___-___._F,.,- 'H-._____________,_F-‘
Maven Maven
Repository [*| Repository
(remote) " (local)

— — " — —

X
mvn deploy mvn install
Froject Application

Figure 4.3. Example project layout and Maven POM

JARs can be deployed in one of two ways. Either added to the classpath, like any other JAR
in a Maven dependency listing, or they can be dynamically loaded at runtime. KIE will scan the
classpath to find all the JARs with a kmodule.xml in it. Each found JAR is represented by the
KieModule interface. The terms classpath KieModule and dynamic KieModule are used to refer to
the two loading approaches. While dynamic modules supports side by side versioning, classpath
modules do not. Further once a module is on the classpath, no other version may be loaded
dynamically.

Detailed references for the API are included in the next sections, the impatient can jump straight
to the examples section, which is fairly self-explanatory on the different use cases.

69

Chapter 4. KIE

4.2.2. Building

org.kie.api.builder

Include KieBuilder
KieFileSystem KieModule
KieRepository KieScanner
Message Releaseld
Results

Message.Level

yviworks UML Doclet

Figure 4.4. org.kie.api.core.builder

4.2.2.1. Creating and building a Kie Project

A Kie Project has the structure of a normal Maven project with the only peculiarity of including
a kmodule.xml file defining in a declaratively way the Ki eBases and Ki eSessi ons that can be
created from it. This file has to be placed in the resources/META-INF folder of the Maven project
while all the other Kie artifacts, such as DRL or a Excel files, must be stored in the resources
folder or in any other subfolder under it.

70

Building

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

Example 4.1. An empty kmodule.xml file

<?xm version="1.0" encodi ng="UTF- 8" ?>
<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ kmodul e"/ >

In this way the kmodule will contain one single default Ki eBase. All Kie assets stored under the
resources folder, or any of its subfolders, will be compiled and added to it. To trigger the building

of these artifacts it is enough to create a Ki eCont ai ner for them.

org.kie.api.runtime

KieContainer

% getClassLoader(] . ClassLoader

“ getKieBase(] : KieBase

. getkKieBase(String) : KieBase

“ getReleaseld() : Releasald

newkieBase(String, KieBaseConfiguration) : KieBase
newKieBase(KieBaseConfiguration) : KieBase

newkieSession(] : KieSession

newkieSession({String) ; KieSession

newkieSession(5tring, Environment) : KieSession

newkieSession(String, Environment, KieSessionConfiguration) : KieSession
newKieSession(String, KieSessionConfiguration) : KieSession
newKieSession{Environment) . KieSession
newkieSession{KieSessionConfiguration) : KieSession
newStatelesskieSession() : StatelessKieSession
newStatelesskieSession(String) « StatelesskKieSession
newStatelessKieSession(String, KieSessionConfiguration) : StatelessKieSession
newStatelessKieSession(KieSessionConfiguration) : StatelessKieSession
updateToVersion(Releaseid) : void

verify() : Results

LA AR AN A A

yWorks UML Doclet

Figure 4.5. KieContainer

java.lang

ClasslLoader

String

org.kie.api
KieBase

KieBaseConfiguration

org.kie.api.builder

Releaseld

Results

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

For this simple case it is enough to create a Ki eCont ai ner that reads the files to be built from

the classpath:

71

Chapter 4. KIE

Example 4.2. Creating a KieContainer from the classpath

Ki eServi ces ki eServices
Ki eCont ai ner kCont ai ner

Ki eServi ces is the interface from where it possible to access all the Kie building and runtime

facilities:

Ki eServi ces. Factory. get ();
ki eServi ces. get Ki eCl asspat hCont ai ner () ;

72

Building

org.kie.api java.io

KieServices File

“ getCommands(] : KieCommands
. getkieClasspathContainer(] : KieContainer

“ getloggers() : KieLoggers java.lang
% getMarshallers() : KieMarshallers
. getRepasitory(] : KieRepository ClassLoader
“ getResources(] : KleResources -
. getStoreServices() : KieStoreServices String
% newErvironment() : Environment
% newkKieBaseConfiguration() : KieBaseConfiguration
“ newkKieBaseConfiguration(Properties, ClassLoader] : KieBaseConfiguration java.util
‘. newkKieBuilder{File) : KieBuilder
. newkieBuilder(kKieFileSystem) : KieBuilder Properties
% newkKieContainer(Releaseld) : KieContainer
“ hewkKieFileSystemi) : KieFileSystem
“ newkKieMaduleModel() : KieModuleMode! org.kie.api
“ newkieScanner(KieContainer) : KieScanner
“ newkieSessionConfiguration() : KieSessionConfiguration KieBaseConfiguration
% newkKieSessionConfiguration(Properties) : KieSessionConfiguration
“ newReleaseld(String, String, String) : Releaseld
org.kie.api.builder
KieBuilder
KieFileSystem
KieRepository
KieScanner
Releaseld
org.kie.api.builder.model
KieModuleModel
org.kie.api.command
KieCommands
org.kie.api.io
KieResources
org.kie.api.logger
KieLoggers
org.kie.api.marshalling
KieMarshallers
Figure 4.6. KieServices org.kie.api.persistence.jpa

KieStoreServices

org.kie.api.runtime

Environment

Chapter 4. KIE

In this way all the Java sources and the Kie resources are compiled and deployed into the
KieContainer which makes its contents available for use at runtime.

4.2.2.2. The kmodule.xml file

As explained in the former section, the kmodule.xml file is the place where it is possible to
declaratively configure the Ki eBase(s) and Ki eSessi on(s) that can be created from a KIE project.

In particular a Ki eBase is a repository of all the application's knowledge definitions. It will contain
rules, processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. Creating the Ki eBase can be heavy, whereas session creation is very
light, so it is recommended that Ki eBase be cached where possible to allow for repeated session
creation. However end-users usually shouldn't worry about it, because this caching mechanism
is already automatically provided by the Ki eCont ai ner .

74

Building

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.7. KieBase

Conversely the Ki eSessi on stores and executes on the runtime data. It is created from the
Ki eBase or more easily can be created directly from the Ki eCont ai ner if it has been defined in
the kmodule.xml file

75

Chapter 4. KIE

org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule

' CommandExecutor | | KieRuntime | | statefulProcessSession | | statefulRuleSession |

T I T T

org.kie/api.runtime

KieSession
. destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.8. KieSession

The kmodule.xml allows to define and configure one or more Ki eBases and for each Ki eBase all
the different Ki eSessi ons that can be created from it, as showed by the follwing example:

Example 4.3. A sample kmodule.xml file

<knodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Scherna- i nst ance"
xm ns="http://jboss.org/kiel/6.0.0/ knmodul e" >
<kbase nane="KBasel" defaul t="true" eventProcessi ngMbde="cl oud" equal sBehavi or="equal ity" dec
<ksessi on nane="KSession2_1" type="stateful" default="true/">
<ksessi on name="KSessi on2_1" type="st at el ess" defaul t ="fal se/
" beliefSystem="jtns">
</ kbase>
kKBats e2thaPsetessi ngvbdeeysat eBehavi or =" dquahbr ty 1 veAgenda=panabged=" or g. domai n. pkg2
or g. domai n. pkg3" i ncl udes="KBasel" >

<ksessi on nane="KSessi on2_1" type="stateful" default="fal se" clockType="realtine">
<filelLogger file="drools.log" threaded="true" interval ="10"/>
<wor kI t emHandl er s>
<wor kIl t enHandl er nane="nanme" type="org. donui n. Wr Kkl tenHandl er"/ >
</ wor kl t emHand| er s>
<l isteners>
<rul eRunti neEvent Li st ener type="org. domai n. Rul eRunti neLi stener"/>
<agendaEvent Li st ener type="org. donui n. Fi r st Agendali st ener"/ >
<agendaEvent Li st ener type="org. donai n. SecondAgendali st ener"/ >
<processEvent Li st ener type="org. donmai n. ProcessLi stener"/>
</listeners>
</ ksessi on>
</ kbase>
</ knmodul e>

76

Building

Here 2 Ki eBases have been defined and it is possible to instance 2 different types of Ki eSessi ons
from the first one, while only one from the second. A list of the attributes that can be defined on
the kbase tag, together with their meaning and default values follows:

Table 4.1. kbase Attributes

Attribute name Default value Admitted values Meaning

name none any The name with
which retrieve this
KieBase from the
KieContainer. This is
the only mandatory

attribute.
includes none any comma separated A comma separated
list list of other KieBases

contained in this
kmodule. The artifacts
of all these KieBases
will be also included in

this one.
packages all any comma separated By default all
list the Drools artifacts

under the resources
folder, at any level,
are included into
the KieBase. This
attribute allows to limit
the artifacts that will
be compiled in this
KieBase to only the
ones belonging to the
list of packages.

default false true, false Defines if this KieBase
is the default one
for this module, so
it can be created
from the KieContainer
without passing any
name to it. There
can be at most one
default KieBase in
each module.

equalsBehavior identity identity, equality Defines the behavior
of Drools when a

77

Chapter 4. KIE

Attribute name Default value Admitted values
eventProcessingMode cloud cloud, stream
declarativeAgenda disabled disabled, enabled

Meaning

new fact is inserted
into the Working
Memory. With identity
it always create a new
FactHandle unless the
same object isn't
already present in
the Working Memory,
while with equality
only if the newly
inserted object is not
equal (according to its
equal method) to an
already existing fact.

When compiled in
cloud mode the
KieBase treats events
as normal facts, while
in stream mode allow
temporal reasoning on
them.

Defines if the
Declarative Agenda is
enabled or not.

Similarly all attributes of the ksession tag (except of course the name) have meaningful default.

They are listed and described in the following table:

Table 4.2. ksession Attributes

Attribute name Default value Admitted values
name none any
type stateful stateful, stateless

Meaning

Unique name of
this KieSession. Used
to fetch the
KieSession from the
KieContainer. This is
the only mandatory
attribute.

A stateful session
allows to iteratively
work with the Working
Memory, while a
stateless one is a

78

Building

Attribute name Default value Admitted values Meaning
one-off execution of a
Working Memory with
a provided data set.

default false true, false Defines if this
KieSession is the
default one for this
module, so it can
be created from the
KieContainer without
passing any name to
it. In each module
there can be at
most one default
KieSession for each

type.
clockType realtime realtime, pseudo Defines if events
timestamps are

determined by the
system clock or
by a psuedo clock
controlled by the
application. This clock
is specially useful for
unit testing temporal

rules.
beliefSystem simple simple, jtms, Defines the type of
defeasible belief system used by

the KieSession.

As outlined in the former kmodule.xml sample, it is also possible to declaratively create on
each Ki eSession a file (or a console) logger, one or more WrkltenHandl ers and some
listeners that can be of 3 different types: ruleRuntimeEventListener, agendaEventListener and
processEventListener

Having defined a kmodule.xml like the one in the former sample, it is now possible to simply
retrieve the KieBases and KieSessions from the KieContainer using their names.

Example 4.4. Retriving KieBases and KieSessions from the KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eCl asspat hCont ai ner () ;

Ki eBase kBasel = kCont ai ner. get Ki eBase(" KBasel");

79

Chapter 4. KIE

Ki eSessi on ki eSessi onl = kCont ai ner. newKi eSessi on(" KSessi on2_1");
St at el essKi eSessi on ki eSessi on2 = kCont ai ner. newSt at el essKi eSessi on(" KSessi on2_2");

It has to be noted that since KSession2_1 and KSession2_2 are of 2 different types (the first
is stateful, while the second is stateless) it is necessary to invoke 2 different methods on the
Ki eCont ai ner according to their declared type. If the type of the Ki eSessi on requested to the
Ki eCont ai ner doesn't correspond with the one declared in the kmodule.xml file the Ki eCont ai ner
will throw a Runt i meExcept i on. Also since a Ki eBase and a Ki eSessi on have been flagged as
default is it possible to get them from the Ki eCont ai ner without passing any name.

Example 4.5. Retriving default KieBases and KieSessions from the
KieContainer

Ki eCont ai ner kContai ner = ...

Ki eBase kBasel = kCont ai ner. getKi eBase(); // returns KBasel
Ki eSessi on ki eSessionl = kCont ai ner. newKi eSession(); // returns KSession2_1

Since a Kie project is also a Maven project the groupld, artifactld and version declared in the
pom.xml file are used to generate a Rel easel d that uniquely identifies this project inside your
application. This allows creation of a new KieContainer from the project by simply passing its
Rel easel d to the Ki eSer vi ces.

Example 4.6. Creating a KieContainer of an existing project by Releaseld

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Rel easel d rel easeld = ki eServi ces. newRrel easel d("org.acne", "nyartifact”, "1.0");
Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner(rel easeld);

4.2.2.3. Building with Maven

The KIE plugin for Maven ensures that artifact resources are validated and pre-compiled, it is
recommended that this is used at all times. To use the plugin simply add it to the build section
of the Maven pom.xml

Example 4.7. Adding the KIE plugin to a Maven pom.xml

<bui | d>
<pl ugi ns>
<pl ugi n>

<gr oupl d>or g. ki e</ gr oupl d>

80

Building

<artifact!|d>ki e-maven-pl ugin</artifactld>
<versi on>${proj ect.version}</version>
<ext ensi ons>tr ue</ ext ensi ons>
</ pl ugi n>
</ pl ugi ns>
</ bui | d>

Building a KIE module without the Maven plugin will copy all the resources, as is, into the resulting
JAR. When that JAR is loaded by the runtime, it will attempt to build all the resources then. If there
are compilation issues it will return a null KieContainer. It also pushes the compilation overhead
to the runtime. In general this is not recommended, and the Maven plugin should always be used.

4.2.2.4. Defining a KieModule programmatically

It is also possible to define the Ki eBases and Ki eSessions belonging to a KieModule
programmatically instead of the declarative definition in the kmodule.xml file. The same
programmatic API also allows in explicitly adding the file containing the Kie artifacts instead of
automatically read them from the resources folder of your project. To do that it is necessary to
create a Ki eFi | eSyst em a sort of virtual file system, and add all the resources contained in your
project to it.

org.kie.api.builder java.lang

KieFileSystem string

% delete(String...) : void

generateAndWritePomXML(Releaseld) : KieFileSystem

read(String) : byte[] org.kie.api.builder
write(String, bytel]) : KieFileSystem

write(String. String) : KieFileSystem Releaseld
write(String, Resource) : KieFileSystem

write(Resource] : KieFlleSystem

writeKModuleXMLibytel]) : KieFileSystem org.kie.api.io
writeKModule XML{String) : KieFileSystem

writePomXML(bytel]) : KieFileSystem Resource
writePomXML(String) : KieFileSystem

A AR AR A AR

ywWaorks UML Doclet

Figure 4.9. KieFileSystem

Like all other Kie core components you can obtain an instance of the Ki eFi | eSyst emfrom the
Ki eServi ces. The kmodule.xml configuration file must be added to the filesystem. This is a
mandatory step. Kie also provides a convenient fluent API, implemented by the Ki eMbdul eModel ,
to programmatically create this file.

81

Chapter 4. KIE

org.kie.api.builder.model java.lang

KieModuleModel String

“ getkieBaseModels() : Map=5String, KieBaseModel=
“ newkieBaseModel(String) : KieBaseMaode!
. removekieBaseModel{String) : void java.util

% feXML() : String
Map<K, V>

org.kie.api.builder.model

KieBaseModel

yWorks LML Doclet

Figure 4.10. KieModuleModel

To do this in practice it is necessary to create a Ki eModul eMbdel from the Ki eSer vi ces, configure
it with the desired Ki eBases and Ki eSessi ons, convert it in XML and add the XML to the
Ki eFi | eSyst em This process is shown by the following example:

Example 4.8. Creating a kmodule.xm| programmatically and adding it to a
KieFileSystem

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eMbdul eMbdel ki eModul eMbdel = ki eServi ces. newKi eMbdul eMbdel () ;

Ki eBaseMbdel ki eBaseMbdel 1 = ki eModul eModel . newKi eBaseModel (" KBasel ")
.setDefault(true)
. set Equal sBehavi or (Equal i t yBehavi or Opti on. EQUALI TY)
. set Event Processi ngMbde(Event Processi ngOpti on. STREAM) ;

Ki eSessi onvbdel ksessi onModel 1 = ki eBaseMbdel 1. newKi eSessi onModel (" KSessi onl")
.setDefault(true)
.set Type(Ki eSessi onModel . Ki eSessi onType. STATEFUL)
.set d ockType(C ockTypeOption.get("realtine"));

Ki eFi | eSystem kfs = ki eServi ces. newKi eFi | eSystem();
At this point it is also necessary to add to the Ki eFi | eSyst em through its fluent API, all others

Kie artifacts composing your project. These artifacts have to be added in the same position of a
corresponding usual Maven project.

82

Building

Example 4.9. Adding Kie artifacts to a KieFileSystem

Ki eFi | eSystem kfs = ...
kfs.wite("src/ mai n/ resour ces/ KBasel/
ruleSetl.drl", stringContainingAVali dDRL)
.write("src/main/resources/dtable.xls",
ki eServi ces. get Resour ces(). new nput St r eanResource(dtableFileStream));

This example shows that it is possible to add the Kie artifacts both as plain Strings and as
Resour ces. In the latter case the Resour ces can be created by the Ki eResour ces factory, also
provided by the Ki eSer vi ces. The Ki eResour ces provides many convenient factory methods to
convert an I nput Stream a URL, a Fi |l e, or a Stri ng representing a path of your file system to a
Resour ce that can be managed by the Ki eFi | eSyst em

83

Chapter 4. KIE

org.kie.api

Service

org.kie.api.io

B AR AR AR A A O A A O

KieResources

newBytedrrayResource(byte(]) : Resource
newClassPathResource(String) ; Resource
newClassPathResource(String, Class=?7=) : Resource
newClassPathResource(5String, Classloader) : Resource
newClassPathResource(String, String) : Resource
newClassPathResource(String, Stning, Class=7=) : Resource
newClassPathResource(String, String, Classloader) : Resource
newDescrResource{KieDescr) ; Resource
newFileSystemResource(File) : Resource
newFileSystemResource(String) : Resource
newlnputStreamResource(inputStream) . Resource
newinputStreamResource(lnputStream, String) : Resource
newReaderResource(Reader) : Resource
newReaderResource(Reader, String) : Resource
newlriResource(String) ; Resource

newlriResource(URL) : Resource

yWorks UML Doclet

Figure 4.11. KieResources

java.io
File
InputStream

Reader

java.lang

Class<T>
Classl oader

String

java.net

URL

org.kie.api.definition

KieDescr

org.kie,api.io

Resource

Normally the type of a Resource can be inferred from the extension of the name used to add
it to the Ki eFi | eSyst em However it also possible to not follow the Kie conventions about file
extensions and explicitly assign a specific Resour ceType to a Resour ce as shown below:

84

Building

Example 4.10. Creating and adding a Resource with an explicit type

Ki eFi | eSystem kfs = ..
kfs.wite("src/main/resources/myDrl.txt",
ki eServi ces. get Resources() . new nput St reanResource(drl Stream)
. set Resour ceType(ResourceType. DRL));

Add all the resources to the Ki eFi | eSyst emand build it by passing the Ki eFi | eSystemto a
Ki eBui | der

org.kie.api.builder org.kie.api.builder

KieBuilder KieModule

W buildAll() : KieBuilder

W getkieMaodule() : KieModule Results

“w getResults() : Results

. setDependencies(KieModule...) : KieBuilder

«. setDependencies(Resource...) : KieBuilder org.kie.api.io

Resource

yWorks UML Doclet

Figure 4.12. KieBuilder

When the contents of a Ki eFi | eSyst em are successfully built, the resulting Ki eMbdul e is
automatically added to the Ki eRepository. The Ki eRepository is a singleton acting as a
repository for all the available Ki eMbdul es.

85

Chapter 4. KIE

org.kie.api.builder org.kie.api.builder

KieRepository KieModule

. addKieModule(KieModule) : void

. addkieModule(Resource, Resource...) : KieModule
. getDefaultReleaseld(] : Releasald

. getkieModule(Releaseld) : KieModule

Releaseld

org.kie.api.io

Resource

yWorks UML Doclet

Figure 4.13. KieRepository

After this it is possible to create through the Ki eSer vi ces anew Ki eCont ai ner for that Ki eMbdul e
using its Rel easel d. However, since in this case the Ki eFi | eSystem doesn't contain any
pom.xml file (it is possible to add one using the Ki eFi | eSyst em wri t ePomXM. method), Kie
cannot determine the Rel easel d of the Ki eMbdul e and assign to it a default one. This default
Rel easel d can be obtained from the Ki eReposi t ory and used to identify the Ki eMbdul e inside
the Ki eReposi t ory itself. The following example shows this whole process.

Example 4.11. Building the contents of a KieFileSystem and creating a
KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();

Ki eFi | eSystem kfs = ...

ki eServi ces. newKi eBui | der (kfs).buildAII ();

Ki eCont ai ner ki eCont ai ner = ki eServi ces. newKi eCont ai ner (ki eServi ces. get Repository().getDefaul t]

At this point it is possible to get Ki eBases and create new Ki eSessi ons from this Ki eCont ai ner
exactly in the same way as in the case of a Ki eCont ai ner created directly from the classpath.

It is a best practice to check the compilation results. The Ki eBui | der reports compilation results
of 3 different severities: ERROR, WARNING and INFO. An ERROR indicates that the compilation
of the project failed and in the case no Ki eMbdul e is produced and nothing is added to the
Ki eReposi t ory. WARNING and INFO results can be ignored, but are available for inspection.

Example 4.12. Checking that a compilation didn't produce any error

Ki eBui | der ki eBuil der = ki eServices. newKi eBui |l der(kfs). buil dAII ();

86

Deploying

assert Equal s(0, kieBuilder.getResults().getMessages(Message. Level . ERROR). size());

4.2.2.5. Changing the Default Build Result Severity

In some cases, it is possible to change the default severity of a type of build result. For instance,
when a new rule with the same name of an existing rule is added to a package, the default behavior
is to replace the old rule by the new rule and report it as an INFO. This is probably ideal for most
use cases, but in some deployments the user might want to prevent the rule update and report
it as an error.

Changing the default severity for a result type, configured like any other option in Drools, can be
done by API calls, system properties or configuration files. As of this version, Drools supports
configurable result severity for rule updates and function updates. To configure it using system
properties or configuration files, the user has to use the following properties:

Example 4.13. Setting the severity using properties

/]l sets the severity of rule updates

drool s. kbui | der. severity. duplicateRul e = <I NFQ WARNI N§ ERROR>

/] sets the severity of function updates

drool s. kbui | der. severity. duplicateFuncti on = <l NFQ WARNI NG ERROR>

4.2.3. Deploying

4.2.3.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

87

Chapter 4. KIE

org.kie.api.event.kiebase

KieBaseEventManager

org.kie.api java.lang

KieBase String

“ getEntryPoint!ds() : Set<String=>
“ getFactType(String, String) : FactType

‘. getkiePackage(String) : KiePackage java. util

% getKiePackages() : Collection=KiePackage=

. getkieSessions() : Collection=? extends KieSession= Collection<E=>
% getProcess(String) : Process

% getProcesses() : Collection<Process= Set<E>

“ getQuery(String, String) : Query
“ getRule(String, String) : Rule

“ newkieSessian() : KieSession org.kie.api.definition

“ newkieSession(KieSessionConfiguration, Environment)] : KieSession

. newStatelessKieSession() : StatelessKieSession KiePackage

% newstatelessKieSession(KieSessionConfiguration) : StatelessKieSession

% removeFunction(String, String) : void

% removeKiePackage(String) : void org.kie.api.definition.process
% removeProcess(String) : void

% removeQuery(String, String) : void Process

S

removeRule(String, String) : vaid

org.kie.api.definition.rule
Query

Rule

org.kie.api.definition.type

FactType

org.kie.api.runtime

Environment
KieSession
KieSessionConfiguration

StatelessKieSession

yWorks UML Doclet

Figure 4.14. KieBase

Sometimes, for instance in a OSGi environment, the Ki eBase needs to resolve types that are not
in the default class loader. In this case it will be necessary to create a Ki eBaseConfi gurati on
with an additional class loader and pass it to Ki eCont ai ner when creating a new Ki eBase from it.

88

Deploying

Example 4.14. Creating a new KieBase with a custom ClassLoader

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eBaseConfi gurati on kbaseConf = ki eServi ces. newKi eBaseConfiguration(null, MType.class.getd :
Ki eBase kbase = ki eCont ai ner. newKi eBase(kbaseConf);

4.2.3.2. KieSessions and KieBase Modifications

KieSessions will be discussed in more detail in section "Running". The Ki eBase creates and
returns Ki eSessi on objects, and it may optionally keep references to those. When Ki eBase
modifications occur those modifications are applied against the data in the sessions. This
reference is a weak reference and it is also optional, which is controlled by a boolean flag.

4.2.3.3. KieScanner

The Ki eScanner allows continuous monitoring of your Maven repository to check whether a new
release of a Kie project has been installed. A new release is deployed in the Ki eCont ai ner
wrapping that project. The use of the Ki eScanner requires kie-ci.jar to be on the classpath.

org.kie.api.builder

KieScanner

% scanNowl() : void
% start(long) : void
% stop() : void

yWorks UML Doclet

Figure 4.15. KieScanner

A Ki eScanner can be registered on a Ki eCont ai ner as in the following example.

Example 4.15. Registering and starting a KieScanner on a KieContainer

Ki eServi ces ki eServices = Ki eServices. Factory. get();

Rel easel d rel easeld = ki eServi ces. newRel easel d("org.acne", "nyartifact”, "1.0-
SNAPSHOT") ;

Ki eCont ai ner kCont ai ner = ki eServi ces. newKi eCont ai ner(releaseld);

Ki eScanner kScanner = ki eServi ces. newKi eScanner (kCont ai ner);

/1 Start the KieScanner polling the Maven repository every 10 seconds

89

Chapter 4. KIE

kScanner.start(10000L);

In this example the Ki eScanner is configured to run with a fixed time interval, but it is also possible
to run it on demand by invoking the scanNow() method on it. If the Ki eScanner finds in the
Maven repository an updated version of the Kie project used by that Ki eCont ai ner it automatically
downloads the new version and triggers an incremental build of the new project. From this moment
all the new Ki eBases and Ki eSessi ons created from that Ki eCont ai ner will use the new project
version.

The Ki eScanner will only pickup changes to deployed jars if it is using a SNAPSHOT, version
range, or the LATEST setting. Fixed versions will not automatically update at runtime.

4.2.3.4. Maven Versions and Dependencies

Maven supports a number of mechanisms to manage versioning and dependencies within
applications. Modules can be published with specific version numbers, or they can use the
SNAPSHOT suffix. Dependencies can specify version ranges to consume, or take avantage of
SNAPSHOT mechanism.

StackOverflow provides a very good description for this, which is reproduced below.

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-
dependency [http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-
version-of-a-dependency]

If you always want to use the newest version, Maven has two keywords you can use as an
alternative to version ranges. You should use these options with care as you are no longer in
control of the plugins/dependencies you are using.

When you depend on a plugin or a dependency, you can use the a version value of LATEST
or RELEASE. LATEST refers to the latest released or snapshot version of a particular artifact,
the most recently deployed artifact in a particular repository. RELEASE refers to the last non-
snapshot release in the repository. In general, it is not a best practice to design software which
depends on a non-specific version of an artifact. If you are developing software, you might want
to use RELEASE or LATEST as a convenience so that you don't have to update version numbers
when a new release of a third-party library is released. When you release software, you should
always make sure that your project depends on specific versions to reduce the chances of your
build or your project being affected by a software release not under your control. Use LATEST
and RELEASE with caution, if at all.

See the POM Syntax section of the Maven book for more details.

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
[http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html]

http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-
dependencies.html

90

http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://stackoverflow.com/questions/30571/how-do-i-tell-maven-to-use-the-latest-version-of-a-dependency
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-pom-syntax.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html
http://books.sonatype.com/mvnref-book/reference/pom-relationships-sect-project-dependencies.html

Deploying

Here's an example illustrating the various options. In the Maven repository, com.foo:my-foo has
the following metadata:

<nmet adat a>
<gr oupl d>com f oo</ gr oupl d>
<artifactld>ny-foo</artifactld>
<ver si on>2. 0. 0</ ver si on>
<ver si oni ng>
<rel ease>1. 1. 1</ rel ease>
<versi ons>
<ver si on>1. 0</ ver si on>
<versi on>1. 0. 1</ ver si on>
<versi on>1. 1</ ver si on>
<version>1.1. 1</ version>
<ver si on>2. 0. 0</ ver si on>
</ versi ons>
<l ast Updat ed>20090722140000</ | ast Updat ed>
</ versi oni ng>
</ net adat a>

If a dependency on that artifact is required, you have the following options (other version ranges
can be specified of course, just showing the relevant ones here): Declare an exact version (will
always resolve to 1.0.1):

<version>[1.0. 1] </ versi on>

Declare an explicit version (will always resolve to 1.0.1 unless a collision occurs, when Maven
will select a matching version):

<versi on>1. 0. 1</ versi on>

Declare a version range for all 1.x (will currently resolve to 1.1.1):

<version>[1.0.0,2.0.0)</versi on>

Declare an open-ended version range (will resolve to 2.0.0):

<version>[1.0.0,)</version>

Declare the version as LATEST (will resolve to 2.0.0):

91

Chapter 4. KIE

<ver si on>LATEST</ ver si on>

Declare the version as RELEASE (will resolve to 1.1.1):
<ver si on>RELEASE</ ver si on>

Note that by default your own deployments will update the "latest”" entry in the Maven metadata,
but to update the "release” entry, you need to activate the "release-profile” from the Maven super
POM. You can do this with either "-Prelease-profile" or "-DperformRelease=true"

4.2.3.5. Settings.xml and Remote Repository Setup

The maven settings.xml is used to configure Maven execution. Detailed instructions can be found
at the Maven website:

http://maven.apache.org/settings.html

The settings.xml file can be located in 3 locations, the actual settings used is a merge of those
3 locations.

e The Maven install: $M2_HOVE/ conf/ set ti ngs. xni

e Auser'sinstall: ${user. home}/. n2/ setti ngs. xni

 Folder location specified by the system property ki e. maven. set ti ngs. cust om

The settings.xml is used to specify the location of remote repositories. It is important that
you activate the profile that specifies the remote repository, typically this can be done using
"activeByDefault":

<profil es>
<profil e>
<id>profile-1</id>
<activation>
<act i veByDef aul t >t rue</ acti veByDef aul t >
</ activation>

</profile>
</profiles>

Maven provides detailed documentation on using multiple remote repositories:

http://maven.apache.org/guides/mini/guide-multiple-repositories.html

92

http://maven.apache.org/settings.html
http://maven.apache.org/guides/mini/guide-multiple-repositories.html

Running

4.2.4. Running

4.2.4.1. KieBase

The Ki eBase is a repository of all the application's knowledge definitions. It will contain rules,
processes, functions, and type models. The Ki eBase itself does not contain data; instead,
sessions are created from the Ki eBase into which data can be inserted and from which process
instances may be started. The Ki eBase can be obtained from the Ki eCont ai ner containing the
Ki eMbdul e where the Ki eBase has been defined.

Example 4.16. Getting a KieBase from a KieContainer

Ki eBase kBase = kCont ai ner. get Ki eBase() ;

4.2.4.2. KieSession
The Ki eSessi on stores and executes on the runtime data. It is created from the Ki eBase.

org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule

CommandExecutor | | KieRuntime StatefulProcessSession StatefulRuleSession

org.kie/api.runtime

KieSession

< destroy() : void
. dispose() : void
% getld(] . int

yWorks UML Doclet

Figure 4.16. KieSession

Example 4.17. Create a KieSession from a KieBase

Ki eSessi on ksessi on = kbase. newKi eSessi on();

4.2.4.3. KieRuntime

4.2.4.3.1. KieRuntime

The Ki eRunt i me provides methods that are applicable to both rules and processes, such as setting
globals and registering channels. ("Exit point" is an obsolete synonym for "channel".)

93

Chapter 4. KIE

org.kie.api.event org.kie.api.runtime.process org.kie.api.runtime.rule

KieRuntimeEventManager ProcessRuntime RuleRuntime

org.kie.api.runtime

KieRuntime

. getCalendars() : Calendars

. getChannels() : Map=5String, Channel=

‘% getErvironment() : Environment

“ getGlobal(String) : Object

. getGlobals() : Globals

“ getkieBase() : KieBase

% getSessionClock() . =T extends SessionClock= T
“ getSessionConfiguration() : KieSessionConfiguration
“ registerChannel(String, Channel) : void

«. setGlobal(String, Object] : void

“ unregisterChannel{String) : void

yWorks UML Doclet

Figure 4.17. KieRuntime

4.2.4.3.1.1. Globals

java.lang
Object

String

java.util

Map<K, V=

org.kie.api

KieBase

org.kie.api.runtime

Calendars
Channel
Environment
Globals

KieSessionConfiguration

Globals are named objects that are made visible to the rule engine, but in a way that is
fundamentally different from the one for facts: changes in the object backing a global do not trigger
reevaluation of rules. Still, globals are useful for providing static information, as an object offering
services that are used in the RHS of a rule, or as a means to return objects from the rule engine.
When you use a global on the LHS of a rule, make sure it is immutable, or, at least, don't expect

changes to have any effect on the behavior of your rules.

A global must be declared in a rules file, and then it needs to be backed up with a Java object.

global java.util.List |ist

94

Running

With the Knowledge Base now aware of the global identifier and its type, it is now possible to call
ksessi on. set d obal () with the global's name and an object, for any session, to associate the
object with the global. Failure to declare the global type and identifier in DRL code will result in
an exception being thrown from this call.

List list = new ArrayList();
ksessi on.setd obal ("list", list);

Make sure to set any global before it is used in the evaluation of a rule. Failure to do so results
in a Nul | Poi nt er Except i on.

4.2.4.4. Event Model

The event package provides means to be notified of rule engine events, including rules firing,
objects being asserted, etc. This allows separation of logging and auditing activities from the main
part of your application (and the rules).

The Ki eRunti meEvent Manager interface is implemented by the Ki eRunti ne which provides
two interfaces, Rul eRunt i neEvent Manager and Pr ocessEvent Manager . We will only cover the
Rul eRunt i meEvent Manager here.

org.kie.api.event.process org.kie.api.event.rule
ProcessEventManager RuleRuntimeEventManager
org.kie.api.event org.kie.api.logger
KieRuntimeEventManager KieRuntimeLogger

w getlogger() : KieRuntimelLogger

yWorks UML Doclet

Figure 4.18. KieRuntimeEventManager

The Rul eRunt i meEvent Manager allows for listeners to be added and removed, so that events for
the working memory and the agenda can be listened to.

95

Chapter 4. KIE

org.kie.api.event.rule java. util

RuleRuntimeEventManager Collection<E>

. addEventListener(AgendaEventListener) : void
“ addEventListener(RuleRuntimeEventListener) : void

“ getdgendaEventlisteners() : Collection=AgendaEventlistener= org.kie.api.event.rule
“ getRuleRuntimeEventLlistenersi) : Collection=RuleRuntimeEventListener=
. removeEventListener(AgendaEventListener) : void AgendaEventListener

. removeEventlistener(RuleRuntimeEventlistaner) : void - :
RuleRuntimeEventListener

yWorks UML Doclet

Figure 4.19. RuleRuntimeEventManager

The following code snippet shows how a simple agenda listener is declared and attached to a
session. It will print matches after they have fired.

Example 4.18. Adding an AgendaEventListener

ksessi on. addEvent Li st ener (new Def aul t AgendaEvent Li st ener () {
public void afterMatchFired(AfterMtchFiredEvent event) ({
super. after Mat chFi red(event);
Systemout.println(event);

1),

Drools also provides DebugRul eRunt i meEvent Li st ener and DebugAgendaEvent Li st ener which
implement each method with a debug print statement. To print all Working Memory events, you
add a listener like this:

Example 4.19. Adding a DebugRuleRuntimeEventListener

ksessi on. addEvent Li st ener (new DebugRul eRunt i neEvent Li stener ());

All emitted events implement the Ki eRunt i meEvent interface which can be used to retrieve the
actual Know egeRunt i me the event originated from.

96

Running

org.kie.api.event

KieRuntimeEvent

“ getkKieRuntime(] : KieRuntime

yWorks UML Doclet

Figure 4.20. KieRuntimeEvent

The events currently supported are:

* MatchCreatedEvent

» MatchCancelledEvent

» BeforeMatchFiredEvent

+ AfterMatchFiredEvent

» AgendaGroupPushedEvent
» AgendaGroupPoppedEvent
* ObjectinsertEvent

« ObjectDeletedEvent

* ObjectUpdatedEvent

» ProcessCompletedEvent

* ProcessNodeLeftEvent

» ProcessNodeTriggeredEvent

¢ ProcessStartEvent

4.2.4.5. KieRuntimeLogger

org.kie.api.runtime

KieRuntime

The KieRuntimeLogger uses the comprehensive event system in Drools to create an audit log
that can be used to log the execution of an application for later inspection, using tools such as

the Eclipse audit viewer.

97

Chapter 4. KIE

org.kie.api.logger java.lang

KieLoggers String

. newConsoleLogger(KieRuntimeEventManager) : KieRuntimeLogger
“ newFileLogger(KieRuntimeEventManager, String) . KieRuntimelLogger
< newThreadedFileLogger(KieRuntimeEventManager, String, int) : KieRuntimelLogger org.kie.api.event

KieRuntimeEventManager

org.kie,api.logger

KieRuntimeLogger

yWorks UML Doclet

Figure 4.21. KieLoggers

Example 4.20. FileLogger
Ki eRunti neLogger | ogger =
Ki eServi ces. Factory. get (). newFi | eLogger (ksession, "logdir/nylogfile");

| ogger. cl ose();

4.2.4.6. Commands and the CommandExecutor

KIE has the concept of stateful or stateless sessions. Stateful sessions have already been
covered, which use the standard KieRuntime, and can be worked with iteratively over time.
Stateless is a one-off execution of a KieRuntime with a provided data set. It may return some
results, with the session being disposed at the end, prohibiting further iterative interactions. You
can think of stateless as treating an engine like a function call with optional return results.

The foundation for this is the CommandExecut or interface, which both the stateful and stateless
interfaces extend. This returns an Execut i onResul t s:

org.kie.api.runtime org.kie.api.command

CommandExecutor Command<T>

W execute(Command=T=>) : <T>T

yWorks UML Doclet

Figure 4.22. CommandExecutor

98

Running

org.kie.api.runtime java.lang

ExecutionResults Object
% getFactHandle(5tring) : Object

% getldentifiers() : Collection<Stning= String
“ getValue(String) : Object
java.util
Collection<E=>

yWorks UML Doclet

Figure 4.23. ExecutionResults

The CommandExecut or allows for commands to be executed on those sessions, the only difference
being that the StatelessKieSession executes fireAl | Rul es() at the end before disposing the
session. The commands can be created using the CormandExecut or .The Javadocs provide the
full list of the allowed comands using the ConmandExecut or .

setGlobal and getGlobal are two commands relevant to both Drools and jBPM.

Set Global calls setGlobal underneath. The optional boolean indicates whether the command
should return the global's value as part of the Execut i onResul t s. If true it uses the same name
as the global name. A String can be used instead of the boolean, if an alternative name is desired.

Example 4.21. Set Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on();
ExecutionResults bresults =

ksessi on. execut e(CommandFact ory. newSet d obal ("stilton", new Cheese("stilton"
Cheese stilton = bresults.getValue("stilton");

Allows an existing global to be returned. The second optional String argument allows for an
alternative return name.

Example 4.22. Get Global Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

99

).

true);

Chapter 4. KIE

ExecutionResults bresults =
ksessi on. execut e(CommandFactory. getd obal ("stilton");
Cheese stilton = bresults.getValue("stilton");

All the above examples execute single commands. The Bat chExecut i on represents a composite
command, created from a list of commands. It will iterate over the list and execute each command
in turn. This means you can insert some objects, start a process, call fireAllRules and execute a
query, all in a single execut e(. . .) call, which is quite powerful.

The StatelessKieSession will execute fireAl | Rul es() automatically at the end. However the
keen-eyed reader probably has already noticed the Fi r eAl | Rul es command and wondered how
that works with a StatelessKieSession. The Fi r eAl | Rul es command is allowed, and using it will
disable the automatic execution at the end; think of using it as a sort of manual override function.

Any command, in the batch, that has an out identifier set will add its results to the returned
Execut i onResul t s instance. Let's look at a simple example to see how this works. The example
presented includes command from the Drools and jBPM, for the sake of illustration. They are
covered in more detail in the Drool and jBPM specific sections.

Example 4.23. BatchExecution Command

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

Li st cnds = new ArraylList();

cnds. add(CommandFact ory. newl nsert Obj ect (new Cheese("stilton", 1), "stilton")
cmds. add(CommandFact ory. newSt art Process("process cheeses"));

cmds. add(CommandFact ory. newQuery("cheeses"));

ExecutionResults bresults = ksession. execute(ComandFact ory. newBat chExecuti on(
Cheese stilton = (Cheese) bresults.getValue("stilton");

QueryResults gresults = (QueryResults) bresults.getValue("cheeses");

In the above example multiple commands are executed, two of which populate the
Execut i onResul t s. The query command defaults to use the same identifier as the query name,
but it can also be mapped to a different identifier.

All commands support XML and jSON marshalling using XStream, as well as JAXB marshalling.
This is covered in section Commands API.

4.2.4.7. StatelessKieSession

The St at el essKi eSessi on wraps the Ki eSessi on, instead of extending it. Its main focus is on the
decision service type scenarios. It avoids the need to call di spose() . Stateless sessions do not
support iterative insertions and the method call f i r eAl | Rul es() from Java code; the act of calling
execut e() is a single-shot method that will internally instantiate a Ki eSessi on, add all the user
data and execute user commands, call fi r eAl | Rul es(), and then call di spose() . While the main

100

cmds));

Running

way to work with this class is via the Bat chExecut i on (a subinterface of Command) as supported by
the CommandExecut or interface, two convenience methods are provided for when simple object
insertion is all that's required. The CommandExecut or and Bat chExecut i on are talked about in
detail in their own section.

org.kie.api.event org.kie.api.runtime org.kie.api.runtime.process org.kie.api.runtime.rule
KieRuntimeEventManager CommandExecutor StatelessProcessSession StatelessRuleSession
org.kie,api.runtime java.lang
StatelessKieSession Object
. getChannels() : Map=String. Channel= .
. getGlobals() : Globals String

. getkieBase() : KieBase
“ registerChannel(String, Channel] : void
 setGlobal(String, Object) : void java.util

. unregisterChannel(String) : void
Map<K, V>

org.kie,api

KieBase

org.kie,api.runtime

Channel

Globals

yWorks UML Doclet

Figure 4.24. StatelessKieSession

Our simple example shows a stateless session executing a given collection of Java objects using
the convenience API. It will iterate the collection, inserting each element in turn.

Example 4.24. Simple StatelessKieSession execution with a Collection

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;
ksessi on. execute(collection);

If this was done as a single Command it would be as follows:

Example 4.25. Simple StatelessKieSession execution with InsertElements
Command

ksessi on. execut e(ConmandFact ory. newl nsert El ements(coll ection));

101

Chapter 4. KIE

If you wanted to insert the collection itself, and the collection's individual elements, then
CommandFact ory. newl nsert (col | ecti on) would do the job.

Methods of the CommandFact or y create the supported commands, all of which can be marshalled
using XStream and the Bat chExecut i onHel per . Bat chExecut i onHel per provides details on the
XML format as well as how to use Drools Pipeline to automate the marshalling of Bat chExecut i on
and Execut i onResul ts.

St at el essKi eSessi on supports globals, scoped in a number of ways. We cover the non-
command way first, as commands are scoped to a specific execution call. Globals can be resolved
in three ways.

e The StatelessKieSession method get d obal s() returns a Globals instance which provides
access to the session's globals. These are shared for all execution calls. Exercise caution
regarding mutable globals because execution calls can be executing simultaneously in different
threads.

Example 4.26. Session scoped global

St at el essKi eSessi on ksessi on = kbase. newSt at el essKi eSessi on() ;

/'l Set a gl obal hbnSession, that can be used for DB interactions in the rules.
ksessi on. set d obal ("hbnSessi on", hibernateSession);

/| Execute while being able to resolve the "hbnSession" identifier.

ksessi on. execute(collection);

* Using a delegate is another way of global resolution. Assigning a value to a global (with
set d obal (String, Object)) results in the value being stored in an internal collection
mapping identifiers to values. Identifiers in this internal collection will have priority over any
supplied delegate. Only if an identifier cannot be found in this internal collection, the delegate
global (if any) will be used.

« The third way of resolving globals is to have execution scoped globals. Here, a Command to set
a global is passed to the CommandExecut or .

The CommandExecut or interface also offers the ability to export data via "out" parameters. Inserted
facts, globals and query results can all be returned.

Example 4.27. Out identifiers

/[l Set up a list of commands

Li st cnds = new ArraylList();

cnds. add(ConmandFact ory. newSet G obal ("list1", new ArrayList(), true));
cnds. add(CommandFact ory. newi nsert(new Person("jon", 102), "person"));
cnmds. add(CommandFact ory. newQuery("Get People" "get People");

102

Running

/'l Execute the |ist
ExecutionResults results =
ksessi on. execut e(CommandFact ory. newBat chExecution(cnds));

/1l Retrieve the ArraylLi st

results.getValue("listl");

/'l Retrieve the inserted Person fact

resul ts. getVal ue("person");

/]l Retrieve the query as a QueryResults instance.
results. getVal ue("Get People");

4.2.4.8. Marshalling

The Ki eMar shal | er s are used to marshal and unmarshal KieSessions.

org.kie.api
Service
org.kie.api.marshalling java.lang
KieMarshallers String

“ newClassFilterAcceptor(Stringl]) : ObjectMarshallingStrategyAcceptor
< newldentityMarshallingStrategy() : ObjectMarshallingStrategy

< newldentityMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy org.kie.api
. newMarshaller(KieBase) : Marshaller -
 newMarshaller{KieBase, ObjectMarshallingStrategyll) : Marshaller KieBase

. newSenalizeMarshallingStrategy() : ObjectMarshallingStrategy
% newSerializeMarshallingStrategy(ObjectMarshallingStrategyAcceptor) : ObjectMarshallingStrategy

org.kie.api.marshalling
Marshaller
ObjectMarshallingStrategy

ObjectMarshallingStrategyAcceptor

yWorks UML Doclet

Figure 4.25. KieMarshallers

An instance of the Ki eMar shal | er s can be retrieved from the Ki eSer vi ces. A simple example
is shown below:

Example 4.28. Simple Marshaller Example

/'l ksession is the KieSession

/'l kbase is the KieBase

Byt eArrayCut put St ream baos = new Byt eArrayQut put Strean() ;

Marshal | er marshall er = Ki eServices. Factory. get().getMrshallers().newarshaller(kbase);
mar shal | er. marshal | (baos, ksession);

103

Chapter 4. KIE

baos. cl ose();

However, with marshalling, you will need more flexibility when dealing with
referenced user data. To achieve this use the bjectMarshallingStrategy interface.
Two implementations are provided, but users can implement their own. The two
supplied strategies are | dent i t yMar shal | i ngStrat egy and Seri al i zeMar shal | i ngSt r at egy.
SerializeMarshal lingStrategy is the default, as shown in the example above, and
it just calls the Serializable or Externalizable methods on a user instance.
I dentityMarshal lingStrategy creates an integer id for each user object and stores them
in a Map, while the id is written to the stream. When unmarshalling it accesses the
I dentityMarshal | i ngStrategy map to retrieve the instance. This means that if you use the
I dentityMarshal | i ngStrat egy, itis stateful for the life of the Marshaller instance and will create
ids and keep references to all objects that it attempts to marshal. Below is the code to use an
Identity Marshalling Strategy.

Example 4.29. IdentityMarshallingStrategy

Byt eArrayQut put St ream baos = new Byt eArrayQut put Stream() ;
Ki eMarshal | ers kMarshal |l ers = Ki eServi ces. Factory. get().get Marshal |l ers()
Ooj ect Marshal | i ngStrategy ons = kMarshal | ers. new denti tyMarshal | i ngStrategy()
Marshal | er marshal l er =

kMar shal | ers. newvar shal | er (kbase, new Obj ect Marshal lingStrategy[]{ onms });
mar shal | er. marshal | (baos, ksession);
baos. cl ose();

Im most cases, a single strategy is insufficient. For added flexibility, the
Obj ect Mar shal | i ngSt r at egyAccept or interface can be used. This Marshaller has a chain of
strategies, and while reading or writing a user object it iterates the strategies asking if they
accept responsibility for marshalling the user object. One of the provided implementations is
Cl assFi | t er Accept or . This allows strings and wild cards to be used to match class names. The
default is "*.*", so in the above example the Identity Marshalling Strategy is used which has a
default "*.*" acceptor.

Assuming that we want to serialize all classes except for one given package, where we will use
identity lookup, we could do the following:

Example 4.30. IdentityMarshallingStrategy with Acceptor

Byt eArrayCQut put St ream baos = new Byt eArrayQut put Stream() ;
Ki eMarshal | ers kMarshal | ers = Ki eServi ces. Factory. get().getMarshal |l ers()
hj ect Marshal | i ngStrat egyAcceptor identityAcceptor =
kMar shal | ers. newCl assFi | ter Acceptor(new String[] { "org.donain.pkgl.*" });
Ohj ect Marshal | i ngStrategy identityStrategy =
kMarshal | ers. newl dentityMarshal | i ngStrategy(identityAcceptor);

104

Running

hj ect Marshal | i ngStrategy snms = kMarshal | ers. newSeri al i zeMarshal | i ngStrat egy();
Mar shal | er marshal ler =
kMar shal | ers. newvar shal | er (kbase,
new Obj ect Marshal | i ngStrategy[]{ identityStrategy, sns });
mar shal | er. marshal | (baos, ksession);
baos. cl ose();

Note that the acceptance checking order is in the natural order of the supplied elements.

Also note that if you are using scheduled matches (i.e. some of your rules use timers or calendars)
they are marshallable only if, before you use it, you configure your KieSession to use a trackable
timer job factory manager as follows:

Example 4.31. Configuring a trackable timer job factory manager

Ki eSessi onConfi gurati on ksconf = Ki eServi ces. Factory. get().newKi eSessi onConfi guration();
ksconf . set Opti on(Ti mer JobFact oryOpti on. get ("trackabl e"));
KSessi on ksession = kbase. newKi eSessi on(ksconf, null);

4.2.4.9. Persistence and Transactions

Longterm out of the box persistence with Java Persistence API (JPA) is possible with Drools.
It is necessary to have some implementation of the Java Transaction APl (JTA) installed. For
development purposes the Bitronix Transaction Manager is suggested, as it's simple to set up and
works embedded, but for production use JBoss Transactions is recommended.

Example 4.32. Simple example using transactions

Ki eServi ces ki eServices = Ki eServices. Factory.get();
Envi ronnment env = ki eServi ces. newEnvi ronnent () ;
env. set (Envi ronnent Name. ENTI TY_MANAGER FACTCRY,
Per si st ence. creat eEnti t yManager Factory("enf-nane"));
env. set (Envi r onnent Narme. TRANSACTI ON_MANAGER,
Transact i onManager Ser vi ces. get Tr ansact i onManager ());

/1 Ki eSessi onConfiguration may be null, and a default will be used
Ki eSessi on ksession =
ki eServi ces. get StoreServi ces().newKi eSessi on(kbase, null, env);

int sessionld = ksession.getld();

User Transaction ut =
(User Transaction) new Initial Context ().l ookup("java:conp/UserTransaction");
ut . begi n();
ksession.insert(datal);
ksession.insert(data2);

105

Chapter 4. KIE

ksession. start Process("processl")
ut.commt();

To use a JPA, the Environment must be set with both the EntityManager Factory and the
Transact i onManager . If rollback occurs the ksession state is also rolled back, hence it is possible
to continue to use it after a rollback. To load a previously persisted KieSession you'll need the
id, as shown below:

Example 4.33. Loading a KieSession

Ki eSessi on ksession =
ki eServi ces. get StoreServi ces() .| oadKi eSessi on(sessionld, kbase, null, env);

To enable persistence several classes must be added to your persistence.xml, as in the example
below:

Example 4.34. Configuring JPA

<persi stence-unit nane="org.drool s. persi stence.jpa" transaction-type="JTA">
<provi der >org. hi ber nat e. ej b. H ber nat ePer si st ence</ provi der >
<j t a- dat a- sour ce>j dbc/ Bi t r oni xJTADat aSour ce</ | t a- dat a- sour ce>
<cl ass>or g. drool s. persi stence. i nf 0. Sessi onl nf o</ cl ass>
<cl ass>org. drool s. persi stence. i nfo. Wrkltem nfo</cl ass>
<properties>

<property nane="hi bernate. dial ect" val ue="org. hi bernate.di al ect. H2Di al ect"/ >
<property nanme="hi bernate. max_fetch_depth" val ue="3"/>
<property nane="hi bernat e. hbn2ddl . aut 0" val ue="update" />
<property name="hi bernate. show _sql" val ue="true" />
<property name="hi bernate.transaction. nanager _| ookup_cl ass"

val ue="org. hi bernate. transacti on. BTMItr ansact i onManager Lookup" />
</ properties>
</ persi stence-unit>

The jdbc JTA data source would have to be configured first. Bitronix provides a number of ways
of doing this, and its documentation should be consulted for details. For a quick start, here is the
programmatic approach:

Example 4.35. Configuring JTA DataSource

Pool i ngDat aSour ce ds = new Pool i ngDat aSour ce()
ds. set Uni queNanme("] dbc/ Bi troni xJTADat aSour ce");
ds. set G assNane("org. h2.j dbcx. JdbcDat aSour ce");

106

Running

ds. set MaxPool Si ze(3);
ds. set Al |l owLocal Transactions(true);

ds.getDriverProperties().put("user", "sa");
ds.getDriverProperties().put("password", "sasa");

ds. getDriverProperties().put("URL", "jdbc:h2: mem nydb");
ds.init();

Bitronix also provides a simple embedded JNDI service, ideal for testing. To use it, add a
jndi.properties file to your META-INF folder and add the following line to it:

Example 4.36. INDI properties

java. nam ng.factory.initial=bitronix.tmjndi.Bitronixlnitial ContextFactory

107

Chapter 4. KIE

4.2.5. Installation and Deployment Cheat Sheets

Content Structuring

There are 3 layers to structure your content.

-~

.

Organization Unit
LS

Projects
GIT GIT GIT
Reposiary Repository Haposiary

Useful GIT System Properties

Organizational Unit
This Is the top level. An installation may have
one ar more organisational units.

Repository

Each Unit can have one or more repositories.

A repository is a physical git repository, stored on disk.
Project

Each project can have one or more projects.

A project forms the deployable unit and compiles
down to a jar. A project can depend on one or more
other project.

org.uberfire.nio.git.dir: Location of the directory .niogit. Defaull: working directory
org.uberfire.nio.git.daemon.enabled: Enables/disables git daemon. Default: true
org.uberfire.nio.git.daemon.host: If daemon enabled, uses this property as local host identifier.

Default: localhost

org.uberfire.nio.git.daemon.port: Il daemon enabled, uses this property as port number. Default

9418

org.uberfire.nio.git.daemon.upload: If daemon enabled, uses this information to define if it's

possible to push (upload) data to git. Default: true
org.uberfire.metadata.index.dir: Place where lucene .index folder will be stored. Default: working

directory
ra it
"
Projecls Proge hm S m
—
3) .
Projects Frojecls Projects
GIT L "
Repository Regl ¢ =
Crgani2
* 9 GIT GIT Prajacts Projects
Repository Reposilary
\ Organization Unj
GIT GIT
Repositary Rapository
Organization Unit
. y,

KIE Installation

Figure 4.26. Installation Overview

108

Build, Deploy and Utilize Examples

s " s Ty
S
Maven Maven T Maven
Repository Repository H Repaository
(rermote) {local) {local)
& \ ;
mvn install R _ rriv install
1 w Y
v |deploy (i o
L Project Application
', Application Installation /
. KIE Installation J

Maven Repository - Server Side
Built projects are installed into the local maven repository.

Default location: <working-directory=/repositories/kie
Systemn property: org.guvnorm2repo.dir

The repository is exposed via httpd for applications to access.

URL: http:/Vlocalhost:B080/<app context=/maven?/

Example: httpi/flocalhost:B080/kie-drools-wb-6.0.0-5MNAPSHOT-boss-as7.0/
maven2/org/mydomain/prej1/1.0.0/proj1-1.0.0.jar

Maven Repository Location Configuration - Application Side
Applications may specify the remote repositories either in the applications porm.xmil
or via Maven settings.xml.

There are three locations where a settings.xml file may live:
The Maven install: $M2_HOME/conf/settings.xml

A user's install: ${userhome}/. m2/settings.xml
Systern Property for file location: kie.maven.settings.custom

Figure 4.27. Deployment Overview

4.2.6. Build, Deploy and Utilize Examples

The best way to learn the new build system is by example. The source project "drools-examples-
api" contains a number of examples, and can be found at GitHub:

109

Chapter 4. KIE

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Each example is described below, the order starts with the simplest (most of the options are
defaulted) and working its way up to more complex use cases.

The Deploy use cases shown below all involve nvn i nstal | . Remote deployment of JARs in
Maven is well covered in Maven literature. Utilize refers to the initial act of loading the resources
and providing access to the KIE runtimes. Where as Run refers to the act of interacting with those
runtimes.

4.2.6.1. Default KieSession

 Project: default-kesession.

e Summary: Empty kmodule.xml KieModule on the classpath that includes all resources in a
single default KieBase. The example shows the retrieval of the default KieSession from the
classpath.

An empty kmodule.xml will produce a single KieBase that includes all files found under resources
path, be it DRL, BPMN2, XLS etc. That single KieBase is the default and also includes a single
default KieSession. Default means they can be created without knowing their names.

Example 4.37. Author - kmodule.xml

<knmodul e xm ns="http://jboss. org/kiel/6.0.0/knmodul e"> </ knodul e>

Example 4.38. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. kContainer.newKieSession() creates the default KieSession.
Notice that you no longer need to look up the KieBase, in order to create the KieSession. The
KieSession knows which KieBase it's associated with, and use that, which in this case is the
default KieBase.

Example 4.39. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

110

https://github.com/droolsjbpm/drools/tree/6.0.x/drools-examples-api

Build, Deploy and Utilize Examples

Ki eSessi on kSession = kCont ai ner. newKi eSessi on();

kSessi on. set d obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA |l Rul es();

4.2.6.2. Named KieSession

» Project: named-kiesession.

e Summary: kmodule.xml that has one named KieBase and one named KieSession. The
examples shows the retrieval of the named KieSession from the classpath.

kmodule.xml will produce a single named KieBase, 'kbasel' that includes all files found under
resources path, be it DRL, BPMN2, XLS etc. KieSession 'ksessionl' is associated with that
KieBase and can be created by name.

Example 4.40. Author - kmodule.xml

<knmodul e xm ns="http://jboss. org/kie/6.0.0/ knmodul e">
<kbase nane="kbasel">
<ksessi on nane="ksessi onl"/>
</ kbase>
</ knmodul e>

Example 4.41. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. This time the KieSession uses the name 'ksession1'. You do not
need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with.

Example 4.42. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();

Ki eCont ai ner kCont ai ner = ks. get Ki ed asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");

kSessi on. set @ obal ("out", out);
kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));

111

Chapter 4. KIE

kSession.fireAl |l Rul es();

4.2.6.3. KieBase Inheritence

» Project: kiebase-inclusion.

e Summary: 'kmodule.xml' demonstrates that one KieBase can include the resources from
another KieBase, from another KieModule. In this case it inherits the named KieBase from the
'name-kiesession' example. The included KieBase can be from the current KieModule or any
other KieModule that is in the pom.xml dependency list.

kmodule.xml will produce a single named KieBase, 'kbase2' that includes all files found under
resources path, be it DRL, BPMN2, XLS etc. Further it will include all the resources found from the
KieBase 'kbasel', due to the use of the 'includes' attribute. KieSession 'ksession2' is associated
with that KieBase and can be created by name.

Example 4.43. Author - kmodule.xml

<kbase nane="kbase2" i ncl udes="kbasel">
<ksessi on nane="ksessi on2"/ >
</ kbase>

This example requires that the previous example, 'named-kiesession’, is built and installed to the
local Maven repository first. Once installed it can be included as a dependency, using the standard
Maven <dependencies> element.

Example 4.44. Author - pom.xml

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4.0.0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!| d>drool s-exanpl es-api </artifactld>
<versi on>6.0. 0/ ver si on>
</ parent >

<artifactld>ki ebase-inclusion</artifact!d>
<nanme>Drool s APl exanples - KieBase | ncl usion</nane>

<dependenci es>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>

112

Build, Deploy and Utilize Examples

<artifactl|d>drool s-conpiler</artifactld>
</ dependency>
<dependency>
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact| d>named- ki esessi on</artifactld>
<versi on>6. 0. 0</ ver si on>
</ dependency>
</ dependenci es>

</ proj ect >

Once 'named-kiesession' is built and installed this example can be built and installed as normal.
Again the act of installing, will force the unit tests to run, demonstrating the use case.

Example 4.45. Build and Install - Maven

mvn install

ks.getKieClasspathContainer() returns the KieContainer that contains the KieBases deployed
onto the environment classpath. This time the KieSession uses the name 'ksession2'. You do
not need to lookup the KieBase first, as it knows which KieBase 'ksessionl' is assocaited with.
Notice two rules fire this time, showing that KieBase 'kbase?2' has included the resources from the
dependency KieBase 'kbasel'.

Example 4.46. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();

Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set @ obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

kSessi on. i nsert (new Message("Dave", "Open the pod bay doors, HAL."));
kSessi on. fireAl |l Rul es();

4.2.6.4. Multiple KieBases

* Project: 'multiple-kbases.

e Summary: Demonstrates that the 'kmodule.xml' can contain any number of KieBase or
KieSession declarations. Introduces the 'packages' attribute to select the folders for the
resources to be included in the KieBase.

113

Chapter 4. KIE

kmodule.xml produces 6 different named KieBases. 'kbasel' includes all resources from the
KieModule. The other KieBases include resources from other selected folders, via the '‘packages’
attribute. Note the use of wildcard ', to select this package and all packages below it.

Example 4.47. Author - kmodule.xml

<krmodul e xm ns="http://jboss. org/kiel/6.0.0/knodul e">

<kbase nane="kbasel">
<ksessi on nanme="ksessi onl"/>
</ kbase>

<kbase nanme="kbase2" packages="org.sone. pkg">
<ksessi on nane="ksessi on2"/>
</ kbase>

<kbase nane="kbase3" includes="kbase2" packages="org.sone. pkg2">
<ksessi on nane="ksessi on3"/>
</ kbase>

<kbase nanme="kbase4" packages="org.somne. pkg, org.other.pkg">
<ksessi on nane="ksessi on4"/>
</ kbase>

<kbase nane="kbase5" packages="org.*">
<ksessi on nane="ksessi on5"/>

</ kbase>

<kbase nane="kbase6" packages="org.sone.*">
<ksessi on nane="ksessi on6"/>

</ kbase>
</ knmodul e>

Example 4.48. Build and Install - Maven

mvn instal

Only part of the example is included below, as there is a test method per KieSession, but each
one is a repetition of the other, with different list expectations.

Example 4.49. Utilize and Run - Java

@est
public void testSinpl eKi eBase() ({

114

Build, Deploy and Utilize Examples

Li st<Integer> list = useKi eSession("ksessionl");

/'l no packages inported neans inport everything
assertEqual s(4, list.size());

assertTrue(list.containsAll(asList(0, 1, 2, 3)));

/l.. other tests for ksession2 to ksession6 here

private List<Integer> useKi eSession(String nane) {
Ki eServi ces ks = KieServices. Factory. get();
Ki eCont ai ner kCont ai ner = ks. get Ki eCl asspat hCont ai ner () ;
Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on(nane) ;

Li st<Integer> list = new ArraylLi st<Integer>();
kSession.setd obal ("list", list);
kSession.insert(1);

kSession.fireA |l Rul es();

return list;

4.2.6.5. KieContainer from KieRepository

» Project: kcontainer-from-repository

e Summary: The project does not contain a kmodule.xml, nor does the pom.xml have any
dependencies for other KieModules. Instead the Java code demonstrates the loading of a
dynamic KieModule from a Maven repository.

The pom.xml must include kie-ci as a depdency, to ensure Maven is available at runtime. As this
uses Maven under the hood you can also use the standard Maven settings.xml file.

Example 4.50. Author - pom.xml

<proj ect xm ns="http://maven. apache. or g/ POM 4. 0. 0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="http:// maven. apache. org/ POM 4.0.0 http://
maven. apache. or g/ xsd/ maven- 4. 0. 0. xsd" >
<nodel Ver si on>4. 0. 0</ nodel Ver si on>
<par ent >
<gr oupl d>or g. dr ool s</ gr oupl d>
<artifact!|d>drool s-exanpl es-api </artifactld>
<versi on>6. 0. 0</ ver si on>
</ parent >

<artifact|d>ki econtainer-fromKkierepo</artifact|d>
<nanme>Dr ool s APl exanples - Ki eContainer from Ki eRepo</nane>

115

Chapter 4. KIE

<dependenci es>
<dependency>
<gr oupl d>or g. ki e</ gr oupl d>
<artifactld>kie-ci</artifactld>
</ dependency>
</ dependenci es>

</ pr oj ect >

Example 4.51. Build and Install - Maven

mvn install

In the previous examples the classpath KieContainer used. This example creates a dynamic
KieContainer as specified by the Releaseld. The Releaseld uses Maven conventions for group id,
artifact id and version. It also obeys LATEST and SNAPSHOT for versions.

Example 4.52. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();

/1l Install exanplel in the |ocal Maven repo before to do this
Ki eCont ai ner kCont ai ner =ks. newKi eCont ai ner (ks. newRel easel d(" or g. dr ool s", "naned-
ki esession", "6.0.0- SNAPSHOT"));

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set @ obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert (msgl);
kSession.fireA |l Rul es();

4.2.6.6. Default KieSession from File

» Project: default-kiesession-from-file

« Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides default KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'default-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

116

Build, Deploy and Utilize Examples

Example 4.53. Build and Install - Maven

mvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once
deployed in the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci
are needed here. It will not set up a transitive dependency parent classloader.

Example 4.54. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eRepository kr = ks.getRepository();

Ki eModidvbeddKi eMbdul e(ks. get Resour ces() . newFi | eSyst enResource(get Fil e("defaul t -
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set @ obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert (nmsgl);

kSession.fireA |l Rul es();

4.2.6.7. Named KieSession from File

» Project: named-kiesession-from-file

« Summary: Dynamic KieModules can also be loaded from any Resource location. The loaded
KieModule provides named KieBase and KieSession definitions.

No kmodue.xml file exists. The project 'named-kiesession' must be built first, so that the resulting
JAR, in the target folder, can be referenced as a File.

Example 4.55. Build and Install - Maven

mvn install

Any KieModule can be loaded from a Resource location and added to the KieRepository. Once in
the KieRepository it can be resolved via its Releaseld. Note neither Maven or kie-ci are needed
here. It will not setup a transitive dependency parent classloader.

117

Chapter 4. KIE

Example 4.56. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eRepository kr = ks.getRepository();

Ki eMbdkMedoa@dKi eModul e(ks. get Resour ces() . newFi | eSyst enResour ce(get Fi | e(" naned-
ki esession")));

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi onl");
kSessi on. set d obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne
HAL?") ;

kSessi on.insert(msgl);

kSession.fireA |l Rul es();

4.2.6.8. KieModule with Dependent KieModule

» Project: kie-module-form-multiple-files

« Summary: Programmatically provide the list of dependant KieModules, without using Maven to
resolve anything.

No kmodue.xml file exists. The projects 'named-kiesession' and 'kiebase-include' must be built
first, so that the resulting JARS, in the target folders, can be referenced as Files.

Example 4.57. Build and Install - Maven

mvn instal

Creates two resources. One is for the main KieModule 'exRes1' the other is for the dependency
'exRes2'. Even though kie-ci is not present and thus Maven is not available to resolve the
dependencies, this shows how you can manually specify the dependent KieModules, for the
vararg.

Example 4.58. Utilize and Run - Java
Ki eServi ces ks = KieServices. Factory. get();
Ki eRepository kr = ks. get Repository();

Resource ex1Res = Kks.getResources().newril eSystenResource(getFile("kiebase-
i nclusion"));

118

Build, Deploy and Utilize Examples

Resource ex2Res = ks.getResources().newFi | eSyst enResour ce(get Fi | e(" named-
ki esession"));

Ki eMbdul e kModul e = kr. addKi eModul e(ex1Res, ex2Res);
Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kMbdul e. get Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on2");
kSessi on. set @ obal ("out", out);

hj ect nsgl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert (msgl);

kSession.fireA |l Rul es();

Ohj ect msg2 = creat eMessage(kCont ai ner, "Dave", "Open the pod bay doors, HAL.");

kSession.insert(msg2);
kSession.fireA |l Rul es();

4.2.6.9. Programmaticaly build a Simple KieModule with Defaults

» Project: kiemoduelmodel-example

e Summary: Programmaticaly buid a KieModule from just a single file. The POM and models are
all defaulted. This is the quickest out of the box approach, but should not be added to a Maven
repository.

Example 4.59. Build and Install - Maven
nmvn install
This programmatically builds a KieModule. It populates the model that represents the Releaseld

and kmodule.xml, and it adds the relevant resources. A pom.xml is generated from the Releaseld.

Example 4.60. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory. get();

Ki eRepository kr = ks.getRepository();

Ki eFi | eSystem kfs = ks. newKi eFi | eSystem();

kfs.write("src/ main/resources/org/kiel/ exanpl e5/ HAL5. drl ", getRule());

Ki eBui | der kb = ks. newkKi eBui | der (kfs);

kb. bui IdAI'l (); // kieMddule is automatically deployed to KieRepository if
successfully built.

119

Chapter 4. KIE

i f (kb.getResults().hasMessages(Level.ERROR)) ({
throw new Runti meException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (kr. get Def aul t Rel easel d());

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on();
kSessi on. set @ obal ("out", out);

kSession.insert (new Message("Dave", "Hello, HAL. Do you read ne, HAL?"));
kSession.fireA | Rul es();

4.2.6.10. Programmaticaly build a KieModule using Meta Models

» Project: kiemoduelmodel-example

e Summary: Programmaticaly build a KieModule, by creating its kmodule.xml meta model
resources.

Example 4.61. Build and Install - Maven

mvn install

This programmatically builds a KieModule. It populates the model that represents the Releaseld
and kmodule.xml, as well as add the relevant resources. A pom.xml is generated from the
Releaseld.

Example 4.62. Utilize and Run - Java

Ki eServi ces ks = KieServices. Factory.get();
Ki eFi | eSystem kfs = ks. newKi eFi | eSysten();

Resource exlRes = ks. getResources().newFi |l eSyst enResour ce(get Fi | e(" named-
ki esession"));
Resource ex2Res = Kks. getResources().newFil eSystenResource(getFil e("ki ebase-

i nclusion"));

Rel easeld rid = ks. newRel easel d("org. drool s, "ki enpdul enodel - exanpl e", "6.0.0-
SNAPSHOT") ;
kfs. generat eAndWit ePomXM.(ri d);

Ki eMbdul eMbdel kMbdul eModel = ks. newKi eModul eMvbdel () ;
kModul eModel . newKi eBaseModel (" ki enodul enpdel ")
. addl ncl ude(" ki ebasel")

120

Security

. addl ncl ude(" ki ebase2")
. newKi eSessi onMbdel (" ksessi on6");

kfs.writeKvbdul eXM_(kModul eMbdel .t oXM_()) ;
kfs.write("src/ main/resources/ki enodul enodel / HAL6. drl ", getRule());

Ki eBui | der kb = ks. newKi eBui | der (kfs);
kb. set Dependenci es(ex1Res, ex2Res);
kb. bui I dAI'l (); // kieMddule is automatically deployed to KieRepository if
successfully built.
if (kb.getResults().hasMessages(Level.ERROR)) ({
throw new Runti meException("Build Errors:\n" + kb.getResults().toString());

Ki eCont ai ner kCont ai ner = ks. newKi eCont ai ner (rid);

Ki eSessi on kSessi on = kCont ai ner. newKi eSessi on("ksessi on6");
kSessi on. set d obal ("out", out);

hj ect nmegl = createMessage(kContainer, "Dave", "Hello, HAL. Do you read ne,
HAL?") ;

kSession.insert(nmsgl);

kSession.fireA | Rul es();

hj ect msg2 = creat eMessage(kCont ai ner, "Dave", "Open the pod bay doors, HAL.");
kSession.insert(nmsg2);
kSession.fireA | Rul es();

hj ect nmeg3 = creat eMessage(kCont ai ner, "Dave", "Wat's the problenP");
kSession.insert(nmsg3);
kSession.fireA | Rul es();

4.3. Security

4.3.1. Security Manager

The KIE engine is a platform for the modelling and execution of business behavior, using a
multitude of declarative abstractions and metaphores, like rules, processes, decision tables and
etc.

Many times, the authoring of these metaphores is done by third party groups, be it a different group
inside the same company, a group from a partner company, or even anonymous third parties on
the internet.

Rules and Processes are designed to execute arbitrary code in order to do their job, but in such
cases it might be necessary to constrain what they can do. For instance, it is unlikely a rule should
be allowed to create a classloader (what could open the system to an attack) and certainly it
should not be allowed to make a call to System exit ().

121

Chapter 4. KIE

The Java Platform provides a very comprehensive and well defined security framework that allows
users to define policies for what a system can do. The KIE platform leverages that framework
and allow application developers to define a specific policy to be applied to any execution of user
provided code, be it in rules, processes, work item handlers and etc.

4.3.1.1. How to define a KIE Policy

Rules and processes can run with very restrict permissions, but the engine itself needs to perform
many complex operations in order to work. Examples are: it needs to create classloaders, read
system properties, access the file system, etc.

Once a security manager is installed, though, it will apply restrictions to all the code executing
in the JVM according to the defined policy. For that reason, KIE allows the user to define two
different policy files: one for the engine itself and one for the assets deployed into and executed
by the engine.

One easy way to setup the enviroment is to give the engine itself a very permissive policy, while
providing a constrained policy for rules and processes.

Policy files follow the standard policy file syntax as described in the Java documentation. For more
details, see:

http://docs.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html#File Syntax

A permissive policy file for the engine can look like the following:
Example 4.63. A sample engine.policy file

grant {
perm ssion java.security. Al | Perm ssion;

An example security policy for rules could be:

Example 4.64. A sample rules.policy file

grant {
perm ssion java.util.PropertyPerm ssion "*", "read";
perm ssion java. |l ang. Runti nePer m ssion "accessDecl ar edMenber s";

Please note that depending on what the rules and processes are supposed to do, many more
permissions might need to be granted, like accessing files in the filesystem, databases, etc.

In order to use these policy files, all that is necessary is to execute the application with these files
as parameters to the JVM. Three parameters are required:

122

Security Manager

Table 4.3. Parameters

-Djava.security.manager Enables the security manager
-Djava.security.policy=<jvm_policy_file> Defines the global policy file to be applied to

the whole application, including the engine

-Dkie.security.policy=<kie_policy_file> Defines the policy file to be applied to rules and
processes

For instance:

java -Dj ava. security. manager -Dj ava. security. pol i cy=gl obal . policy -
Dki e. security. policy=rules.policy foo.bar. MApp

123

124

Part Ill. Drools
Runtime and Language

Drools is a powerful Hybrid Reasoning System.

Chapter 5.

Chapter 5. Hybrid Reasoning

5.1. Artificial Intelligence

5.1.1. A Little History

Over the last few decades artificial intelligence (Al) became an unpopular term, with
the well-known "Al Winter" [http://en.wikipedia.org/wiki/Al_winter]. There were large boasts
from scientists and engineers looking for funding, which never lived up to expectations,
resulting in many failed projects. Thinking Machines Corporation [http://en.wikipedia.org/wiki/
Thinking_Machines_Corporation] and the 5th Generation Computer [http://en.wikipedia.org/wiki/
Fifth-generation_computer] (5GP) project probably exemplify best the problems at the time.

Thinking Machines Corporation was one of the leading Al firms in 1990, it had sales of nearly $65
million. Here is a quote from its brochure:

“Some day we will build a thinking machine. It will be a truly intelligent machine. One that can see
and hear and speak. A machine that will be proud of us.”

Yet 5 years later it filed for bankruptcy protection under Chapter 11. The site inc.com has
a fascinating article titled "The Rise and Fall of Thinking Machines" [http://www.inc.com/
magazine/19950915/2622.html]. The article covers the growth of the industry and how a cosy
relationship with Thinking Machines and DARPA [http://en.wikipedia.org/wikiiDARPA] over-
heated the market, to the point of collapse. It explains how and why commerce moved away from
Al and towards more practical number-crunching super computers.

The 5th Generation Computer project was a USD 400 million project in Japan to build a next
generation computer. Valves (or Tubes) was the first generation, transistors the second, integrated
circuits the third and finally microprocessors was the fourth. The fifth was intended to be a machine
capable of effective Artificial Intelligence. This project spurred an "arms" race with the UK and USA,
that caused much of the Al bubble. The 5GP would provide massive multi-cpu parallel processing
hardware along with powerful knowledge representation and reasoning software via Prolog; a
type of expert system. By 1992 the project was considered a failure and cancelled. It was the
largest and most visible commercial venture for Prolog, and many of the failures are pinned on
the problems of trying to run a logic based programming language concurrently on multi CPU
hardware with effective results. Some believe that the failure of the 5GP project tainted Prolog
and relegated it to academia, see "Whatever Happened to Prolog" [http://www.dvorak.org/blog/
whatever-happened-to-prolog/] by John C. Dvorak.

However while research funding dried up and the term Al became less used, many green shoots
where planted and continued more quietly under discipline specific names: cognitive systems,
machine learning, intelligent systems, knowledge representation and reasoning. Offshoots of
these then made their way into commercial systems, such as expert systems in the Business
Rules Management System (BRMS) market.

127

http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/AI_winter
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Thinking_Machines_Corporation
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://en.wikipedia.org/wiki/Fifth-generation_computer
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://www.inc.com/magazine/19950915/2622.html
http://en.wikipedia.org/wiki/DARPA
http://en.wikipedia.org/wiki/DARPA
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/
http://www.dvorak.org/blog/whatever-happened-to-prolog/

Chapter 5. Hybrid Reasoning

Imperative, system based languages, languages such as C, C++, Java and C#/.Net have
dominated the last 20 years, enabled by the practicality of the languages and ability to run
with good performance on commodity hardware. However many believe there is a renaissance
underway in the field of Al, spurred by advances in hardware capabilities and Al research. In
2005 Heather Havenstein authored "Spring comes to Al winter" [http://www.computerworld.com/s/
article/99691/Spring_comes_to_Al_winter] which outlines a case for this resurgence. Norvig and
Russel dedicate several pages to what factors allowed the industry to overcome it's problems and
the research that came about as a result:

Recent years have seen a revolution in both the content and the methodology of
work in artificial intelligence. It is now more common to build on existing theories
than to propose brand-new ones, to base claims on rigorous theorems or hard
experimental evidence rather than on intuition, and to show relevance to real-
world applications rather than toy examples.

—Atrtificial Intelligence: A Modern Approach

Computer vision, neural networks, machine learning and knowledge representation and reasoning
(KRR) have made great strides towards becoming practical in commercial environments. For
example, vision-based systems can now fully map out and navigate their environments with
strong recognition skills. As a result we now have self-driving cars about to enter the commercial
market. Ontological research, based around description logic, has provided very rich semantics
to represent our world. Algorithms such as the tableaux algorithm have made it possible to use
those rich semantics effectively in large complex ontologies. Early KRR systems, like Prolog in
5GP, were dogged by the limited semantic capabilities and memory restrictions on the size of
those ontologies.

5.1.2. Knowledge Representation and Reasoning

In A Little History talks about Al as a broader subject and touches on Knowledge Representation
and Reasoning (KRR) and also Expert Systems, I'll come back to Expert Systems later.

KRR is about how we represent our knowledge in symbolic form, i.e. how we describe something.
Reasoning is about how we go about the act of thinking using this knowledge. System based
object-oriented languages, like C++, Java and C#, have data definitions called classes for
describing the composition and behaviour of modeled entities. In Java we call exemplars of these
described things beans or instances. However those classification systems are limited to ensure
computational efficiency. Over the years researchers have developed increasingly sophisticated
ways to represent our world. Many of you may already have heard of OWL (Web Ontology
Language). There is always a gap between what can be theoretically represented and what can be
used computationally in practically timely manner, which is why OWL has different sub-languages
from Lite to Full. It is not believed that any reasoning system can support OWL Full. However,
algorithmic advances continue to narrow that gap and improve the expressiveness available to
reasoning engines.

There are also many approaches to how these systems go about thinking. You may have heard
discussions comparing the merits of forward chaining, which is reactive and data driven, with

128

http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter
http://www.computerworld.com/s/article/99691/Spring_comes_to_AI_winter

Rule Engines and Production Rule Systems (PRS)

backward chaining, which is passive and query driven. Many other types of reasoning techniques
exist, each of which enlarges the scope of the problems we can tackle declaratively. To list just a
few: imperfect reasoning (fuzzy logic, certainty factors), defeasible logic, belief systems, temporal
reasoning and correlation. You don't need to understand all these terms to understand and use
Drools. They are just there to give an idea of the range of scope of research topics, which is
actually far more extensive, and continues to grow as researchers push new boundaries.

KRR is often referred to as the core of Artificial Intelligence. Even when using biological
approaches like neural networks, which model the brain and are more about pattern recognition
than thinking, they still build on KRR theory. My first endeavours with Drools were engineering
oriented, as | had no formal training or understanding of KRR. Learning KRR has allowed me to
get a much wider theoretical background. Allowing me to better understand both what I've done
and where I'm going, as it underpins nearly all of the theoretical side to our Drools R&D. It really
is a vast and fascinating subject that will pay dividends for those who take the time to learn. |
know it did and still does for me. Bracham and Levesque have written a seminal piece of work,
called "Knowledge Representation and Reasoning" that is a must read for anyone wanting to build
strong foundations. | would also recommend the Russel and Norvig book "Artificial Intelligence,
a modern approach” which also covers KRR.

5.1.3. Rule Engines and Production Rule Systems (PRS)

We've now covered a brief history of Al and learnt that the core of Al is formed around KRR.
We've shown than KRR is a vast and fascinating subject which forms the bulk of the theory driving
Drools R&D.

The rule engine is the computer program that delivers KRR functionality to the developer. At a
high level it has three components:

* Ontology
* Rules
e Data

As previously mentioned the ontology is the representation model we use for our "things". It could
use records or Java classes or full-blown OWL based ontologies. The rules perform the reasoning,
i.e., they facilitate "thinking". The distinction between rules and ontologies blurs a little with OWL
based ontologies, whose richness is rule based.

The term "rules engine" is quite ambiguous in that it can be any system that uses rules, in any form,
that can be applied to data to produce outcomes. This includes simple systems like form validation
and dynamic expression engines. The book "How to Build a Business Rules Engine" (2004) by
Malcolm Chisholm exemplifies this ambiguity. The book is actually about how to build and alter
a database schema to hold validation rules. The book then shows how to generate Visual Basic
code from those validation rules to validate data entry. While perfectly valid, this is very different
to what we are talking about.

129

Chapter 5. Hybrid Reasoning

Drools started life as a specific type of rule engine called a Production Rule System (PRS) and was
based around the Rete algorithm (usually pronounced as two syllables, e.g., REH-te or RAY-tay).
The Rete algorithm, developed by Charles Forgy in 1974, forms the brain of a Production Rule
System and is able to scale to a large number of rules and facts. A Production Rule is a two-part
structure: the engine matches facts and data against Production Rules - also called Productions
or just Rules - to infer conclusions which result in actions.

when

<condi ti ons>
t hen

<actions>;

The process of matching the new or existing facts against Production Rules is called pattern
matching, which is performed by the inference engine. Actions execute in response to changes
in data, like a database trigger; we say this is a data driven approach to reasoning. The actions
themselves can change data, which in turn could match against other rules causing them to fire;
this is referred to as forward chaining

Drools 5.x implements and extends the Rete algorithm. This extended Rete algorithm is named
ReteOO, signifying that Drools has an enhanced and optimized implementation of the Rete
algorithm for object oriented systems. Other Rete based engines also have marketing terms
for their proprietary enhancements to Rete, like RetePlus and Rete Ill. The most common
enhancements are covered in "Production Matching for Large Learning Systems™ (1995) by Robert
B. Doorenbos' thesis, which presents Rete/UL. Drools 6.x introduces a new lazy algorithm named
PHREAK; which is covered in more detail in the PHEAK algorithm section.

The Rules are stored in the Production Memory and the facts that the Inference Engine matches
against are kept in the Working Memory. Facts are asserted into the Working Memory where they
may then be modified or retracted. A system with a large number of rules and facts may result in
many rules being true for the same fact assertion; these rules are said to be in conflict. The Agenda
manages the execution order of these conflicting rules using a Conflict Resolution strategy.

130

Hybrid Reasoning Systems (HRS)

Inference Engine
{Rete0O0 / Leaps)

Pattern

ﬁ-
Matcher

mory

les)

Agenda

Figure 5.1. High-level View of a Production Rule System

5.1.4. Hybrid Reasoning Systems (HRS)

You may have read discussions comparing the merits of forward chaining (reactive and data
driven) or backward chaining (passive query). Here is a quick explanation of these two main types
of reasoning.

Forward chaining is "data-driven" and thus reactionary, with facts being asserted into working
memory, which results in one or more rules being concurrently true and scheduled for execution
by the Agenda. In short, we start with a fact, it propagates through the rules, and we end in a
conclusion.

131

Chapter 5. Hybrid Reasoning

Fule
Base ““-.I
A Detarmine
- possible rules to
.-'f fire
Working '
Memory
Conflict Set
Y
Conflict
. Rule Selact ,
| Fire Rule |-'l Found @ Eg;gli::[gr?rn
Mo Fule
Found

¥
—Exit If specified by rule ';I et l

Figure 5.2. Forward Chaining

Backward chaining is "goal-driven”, meaning that we start with a conclusion which the engine
tries to satisfy. If it can't, then it searches for conclusions that it can satisfy. These are known as
subgoals, that will help satisfy some unknown part of the current goal. It continues this process
until either the initial conclusion is proven or there are no more subgoals. Prolog is an example
of a Backward Chaining engine. Drools can also do backward chaining, which we refer to as
derivation queries.

132

Hybrid Reasoning Systems (HRS)

retums trua?

Rule
Base “~1
l'-.\ Examine working memaory
e _| and goals to see if goals Working
e . are “"known’” true in Memmory
{ knowledge base
|
Gaal J
I 9
@
=]
£la
2l Retum Do goals
i o True ™ yes match?
R
Al
|2 |
g |= |
8|2 |
3|5 |
m —
| B | Retum
=] F=1 Palee [~ —————1 Mo
a False .
= | (retum false to recursive procedurs)
w |
|
| Detarmine next possible
For each rule | rules to fire by checking
condition, recursively 1 conclusions and goals
backchain with
condition as goal.
Conflict
Fiﬂl:d Resolution
Strategy
Mo Rule
Found
¥ Exit

All rec$

One or maore goals failed, Check next matching rule

als found to be true, axist, retuming true true

L

Figure 5.3. Backward Chaining

133

Chapter 5. Hybrid Reasoning

Historically you would have to make a choice between systems like OPS5 (forward) or Prolog
(backward). Nowadays many modern systems provide both types of reasoning capabilities. There
are also many other types of reasoning techniques, each of which enlarges the scope of the
problems we can tackle declaratively. To list just a few: imperfect reasoning (fuzzy logic, certainty
factors), defeasible logic, belief systems, temporal reasoning and correlation. Modern systems
are merging these capabilities, and others not listed, to create hybrid reasoning systems (HRS).

While Drools started out as a PRS, 5.x introduced Prolog style backward chaining reasoning
as well as some functional programming styles. For this reason we now prefer the term Hybrid
Reasoning System when describing Drools.

Drools currently provides crisp reasoning, but imperfect reasoning is almost ready. Initially this
will be imperfect reasoning with fuzzy logic; later we'll add support for other types of uncertainty.
Work is also under way to bring OWL based ontological reasoning, which will integrate with our
traits system. We also continue to improve our functional programming capabilities.

5.1.5. Expert Systems

You will often hear the terms expert systems used to refer to production rule systems or Prolog-
like systems. While this is normally acceptable, it's technically incorrect as these are frameworks
to build expert systems with, rather than expert systems themselves. It becomes an expert system
once there is an ontological model to represent the domain and there are facilities for knowledge
acquisition and explanation.

Mycin is the most famous expert system, built during the 70s. It is still heavily covered in academic
literature, such as the recommended book "Expert Systems" by Peter Jackson.

134

Recommended Reading

Dendral

1970s @@
[Teiresias]f: Emycin] [WM J
[Wheeze] [Clot]
1;805 [Neomycin] [Oncocin}

Figure 5.4. Early History of Expert Systems

5.1.6. Recommended Reading

General Al, KRR and Expert System Books

For those wanting to get a strong theoretical background in KRR and expert systems, I'd strongly
recommend the following books. "Atrtificial Intelligence: A Modern Approach” is a must have, for
anyone's bookshelf.

* Introduction to Expert Systems

» Peter Jackson

» Expert Systems: Principles and Programming

135

Chapter 5. Hybrid Reasoning

» Joseph C. Giarratano, Gary D. Riley

» Knowledge Representation and Reasoning

* Ronald J. Brachman, Hector J. Levesque

« Artificial Intelligence : A Modern Approach.

» Stuart Russell and Peter Norvig

"~ Expert Systems

EXPERT BRI

| Feler bchrea |

KNOWLEDGE Artificial Inteligence
REPRESENTATION pireleindovien

AND REASONING

Frmald |. Brachman
Hector . Levesque -

itilacel Tl |||.:-r|' o

- I JETRTS % Alisdere Npgrrua
—— st H"" = = vl Lia

Figure 5.5. Recommended Reading

136

Recommended Reading

Papers

Here are some recommended papers that cover interesting areas in rule engine research:

* Production Matching for Large Learning Systems: Rete/UL (1993)
* Robert B. Doorenbos
» Advances In Rete Pattern Matching

e Marshall Schor, Timothy P. Daly, Ho Soo Lee, Beth R. Tibbitts (AAAI 1986)

Collection-Oriented Match
e Anurag Acharya and Milind Tambe (1993)
* The Leaps Algorithm

« Don Batery (1990)

Gator: An Optimized Discrimination Network for Active Database Rule Condition Testing
e Eric Hanson , Mohammed S. Hasan (1993)
Drools Books

There are currently three Drools books, all from Packt Publishing.

» JBoss Drools Business Rules
» Paul Browne

» Drools JBoss Rules 5.0 Developers Guide
* Michal Bali

» Drools Developer's Cookbook

* Lucas Amador

137

Chapter 5. Hybrid Reasoning

JBoss Drools Business Rules Drools JBoss Rules 3.0
Developer's Guide

Drools Developer's
Cookbook

Lucas Amador PACKY ot

Figure 5.6. Recommended Reading

5.2. Rete Algorithm

The Rete algorithm was invented by Dr. Charles Forgy and documented in his PhD thesis in
1978-79. A simplified version of the paper was published in 1982 (http://citeseer.ist.psu.edu/
context/505087/0). The latin word "rete” means "net" or "network". The Rete algorithm can be
broken into 2 parts: rule compilation and runtime execution.

138

http://citeseer.ist.psu.edu/context/505087/0
http://citeseer.ist.psu.edu/context/505087/0

Rete Algorithm

The compilation algorithm describes how the Rules in the Production Memory are processed to
generate an efficient discrimination network. In non-technical terms, a discrimination network is
used to filter data as it propagates through the network. The nodes at the top of the network would
have many matches, and as we go down the network, there would be fewer matches. At the very
bottom of the network are the terminal nodes. In Dr. Forgy's 1982 paper, he described 4 basic
nodes: root, 1-input, 2-input and terminal.

ObjectTypeNode ReteMNode

AlphaNode JoinNode

LeftinputAdapterNode

{ \ MotMode
EvalNode

 NON N

TerminalNode

Figure 5.7. Rete Nodes

The root node is where all objects enter the network. From there, it immediately goes to the
ObjectTypeNode. The purpose of the ObjectTypeNode is to make sure the engine doesn't do
more work than it needs to. For example, say we have 2 objects: Account and Order. If the rule
engine tried to evaluate every single node against every object, it would waste a lot of cycles. To
make things efficient, the engine should only pass the object to the nodes that match the object
type. The easiest way to do this is to create an ObjectTypeNode and have all 1-input and 2-input
nodes descend from it. This way, if an application asserts a new Account, it won't propagate to
the nodes for the Order object. In Drools when an object is asserted it retrieves a list of valid
ObjectTypesNodes via a lookup in a HashMap from the object's Class; if this list doesn't exist
it scans all the ObjectTypeNodes finding valid matches which it caches in the list. This enables
Drools to match against any Class type that matches with an i nst anceof check.

139

Chapter 5. Hybrid Reasoning

ReteNode

Cheese T~ Person

-.f..

Figure 5.8. ObjectTypeNodes

ObjectTypeNodes can propagate to AlphaNodes, LeftinputAdapterNodes and BetaNodes.
AlphaNodes are used to evaluate literal conditions. Although the 1982 paper only covers equality
conditions, many RETE implementations support other operations. For example, Account . nane
== "M Trout" is a literal condition. When a rule has multiple literal conditions for a single object
type, they are linked together. This means that if an application asserts an Account object, it must
first satisfy the first literal condition before it can proceed to the next AlphaNode. In Dr. Forgy's
paper, he refers to these as IntraElement conditions. The following diagram shows the AlphaNode
combinations for Cheese(name == "cheddar", strength == "strong"):

Cheese

name == “cheddar”

strength == "strong

Figure 5.9. AlphaNodes

140

Rete Algorithm

Drools extends Rete by optimizing the propagation from ObjectTypeNode to AlphaNode using
hashing. Each time an AlphaNode is added to an ObjectTypeNode it adds the literal value as a key
to the HashMap with the AlphaNode as the value. When a new instance enters the ObjectType
node, rather than propagating to each AlphaNode, it can instead retrieve the correct AlphaNode
from the HashMap,thereby avoiding unnecessary literal checks.

There are two two-input nodes, JoinNode and NotNode, and both are types of BetaNodes.
BetaNodes are used to compare 2 objects, and their fields, to each other. The objects may be the
same or different types. By convention we refer to the two inputs as left and right. The left input for
a BetaNode is generally a list of objects; in Drools this is a Tuple. The right input is a single object.
Two Nodes can be used to implement 'exists' checks. BetaNodes also have memory. The left
input is called the Beta Memory and remembers all incoming tuples. The right input is called the
Alpha Memory and remembers all incoming objects. Drools extends Rete by performing indexing
on the BetaNodes. For instance, if we know that a BetaNode is performing a check on a String
field, as each object enters we can do a hash lookup on that String value. This means when facts
enter from the opposite side, instead of iterating over all the facts to find valid joins, we do a lookup
returning potentially valid candidates. At any point a valid join is found the Tuple is joined with the
Object; which is referred to as a partial match; and then propagated to the next node.

141

Chapter 5. Hybrid Reasoning

Cheese Person

name == "cheddar’

Person. favouriteCheese ==
Cheese.name

Figure 5.10. JoinNode
To enable the first Object, in the above case Cheese, to enter the network we use a

LeftinputNodeAdapter - this takes an Object as an input and propagates a single Object Tuple.

Terminal nodes are used to indicate a single rule having matched all its conditions; at this point we
say the rule has a full match. A rule with an 'or' conditional disjunctive connective results in subrule
generation for each possible logically branch; thus one rule can have multiple terminal nodes.

Drools also performs node sharing. Many rules repeat the same patterns, and node sharing allows
us to collapse those patterns so that they don't have to be re-evaluated for every single instance.

The following two rules share the first pattern, but not the last:

rule

when
Cheese($cheddar : nanme == "cheddar")
$person : Person(favouriteCheese == $cheddar)

142

Rete Algorithm

t hen
Systemout.println($person.getNane() + " |ikes cheddar");
end
rul e
when
Cheese($cheddar : name == "cheddar")
$person : Person(favouriteCheese != $cheddar)
t hen

Systemout. println($person.getNanme() + " does not |ike cheddar")
end

As you can see below, the compiled Rete network shows that the alpha node is shared, but the
beta nodes are not. Each beta node has its own TerminalNode. Had the second pattern been the
same it would have also been shared.

143

Chapter 5. Hybrid Reasoning

Person

name == “cheddar”

Person. favouriteCheese == |
Cheese.name |
|

/

System.out.printin{ person.getName() + " likes cheddar")
/
)
/S
o
o~

—

Ferson.favouriteCheesea =
Cheesa.name

Figure 5.11. Node Sharing

System.out.printin{ person.getName() + " does not like
cheddar")

ReteOO Algorithm

5.3. ReteOO Algorithm

The ReteOO was developed throughout the 3, 4 and 5 series releases. It takes the RETE algorithm
and applies well known enhancements, all of which are covered by existing academic literature:

Node sharing
« Sharing is applied to both the alpha and beta network. The beta network sharing is always from
the root pattern.

Alpha indexing

» Alpha Nodes with many children use a hash lookup mechanism, to avoid testing each result.

Beta indexing

« Join, Not and Exist nodes indexing their memories using a hash. This reduces the join attempts
for equal checks. Recently range indexing was added to Not and Exists.

Tree based graphs

« Join matches did not contain any references to their parent or children matches. Deletions would
have to recalculate all join matches again, which involves recreating all those join match objects,
to be able to find the parts of the network where the tuples should be deleted. This is called
symmetrical propagation. A tree graph provides parent and children references, so a deletion
is just a matter of following those references. This is asymmetrical propagation. The result is
faster and less impact on the GC, and more robust because changes in values will not cause
memory leaks if they happen without the engine being notified.

Modify-in-place
« Traditional RETE implements a modify as a delete + insert. This causes all join tuples to be GC'd,

many of which are recreated again as part of the insert. Modify-in-place instead propagates as
a single pass, every node is inspected

Property reactive
« Also called "new trigger condition”. Allows more fine grained reactivity to updates. A Pattern can

react to changes to specific properties and ignore others. This alleviates problems of recursion
and also helps with performance.

Sub-networks

* Not, Exists and Accumulate can each have nested conditional elements, which forms sub
networks.

145

Chapter 5. Hybrid Reasoning

Backward Chaining

» Prolog style derivation trees for backward chaining are supported. The implementation is stack
based, so does not have method recursion issues for large graphs.

Lazy Truth Maintenance

« Truth maintenance has a runtime cost, which is incurred whether TMS is used or not. Lazy TMS
only turns it on, on first use. Further it's only turned on for that object type, so other object types
do not incur the runtime cost.

Heap based agenda

« The agenda uses a binary heap queue to sort rule matches by salience, rather than any linear
search or maintenance approach.

Dynamic Rules

* Rules can be added and removed at runtime, while the engine is still populated with data.

5.4. PHREAK Algorithm

Drools 6 introduces a new algorithm, that attempts to address some of the core issues of RETE.
The algorithm is not a rewrite form scratch and incorporates all of the existing code from ReteOO,
and all its enhancements. While PHREAK is an evolution of the RETE algorithm, it is no longer
classified as a RETE implementation. In the same way that once an animal evolves beyond a
certain point and key characteristics are changed, the animal becomes classified as new species.
There are two key RETE characteristics that strongly identify any derivative strains, regardless of
optimizations. That it is an eager, data oriented algorithm. Where all work is doing done the insert,
update or delete actions; eagerly producing all partial matches for all rules. PHREAK in contrast is
characterised as a lazy, goal oriented algorithm; where partial matching is aggressively delayed.

This eagerness of RETE can lead to a lot of churn in large systems, and much wasted work.
Where wasted work is classified as matching efforts that do not result in a rule firing.

PHREAK was heavily inspired by a number of algorithms; including (but not limited to) LEAPS,
RETE/UL and Collection-Oriented Match. PHREAK has all enhancements listed in the ReteOO
section. In addition it adds the following set of enhancements, which are explained in more detail
in the following paragraphs.

» Three layers of contextual memory; Node, Segment and Rule memories.

¢ Rule, segment and node based linking.

* Lazy (delayed) rule evaluation.

146

PHREAK Algorithm

« Isolated rule evaluation.
« Set oriented propagations.
» Stack based evaluations, with pause and resume.

When the PHREAK engine is started all rules are said to be unlinked, no rule evaluation can
happen while rules are unlinked. The insert, update and deletes actions are queued before
entering the beta network. A simple heuristic, based on the rule most likely to result in firings, is
used to select the next rule for evaluation; this delays the evaluation and firing of the other rules.
Only once a rule has all right inputs populated will the rule be considered linked in, although no
work is yet done. Instead a goal is created, that represents the rule, and placed into a priority
gueue; which is ordered by salience. Each queue itself is associated with an AgendaGroup. Only
the active AgendaGroup will inspect its queue, popping the goal for the rule with the highest
salience and submitting it for evaluation. So the work done shifts from the insert, update, delete
phase to the fireAllIRules phase. Only the rule for which the goal was created is evaluated, other
potential rule evaluations from those facts are delayed. While individual rules are evaluated, node
sharing is still achieved through the process of segmentation, which is explained later.

Each successful join attempt in RETE produces a tuple (or token, or partial match) that will be
propagated to the child nodes. For this reason it is characterised as a tuple oriented algorithm.
For each child node that it reaches it will attempt to join with the other side of the node, again each
successful join attempt will be propagated straight away. This creates a descent recursion effect.
Thrashing the network of nodes as it ripples up and down, left and right from the point of entry
into the beta network to all the reachable leaf nodes.

PHREAK propagation is set oriented (or collection-oriented), instead of tuple oriented. For the rule
being evaluated it will visit the first node and process all queued insert, update and deletes. The
results are added to a set and the set is propagated to the child node. In the child node all queued
inset, update and deletes are processed, adding the results to the same set. Once finished that set
is propagated to the next child node, and so on until the terminal node is reached. This creates a
single pass, pipeline type effect, that is isolated to the current rule being evaluated. This creates a
batch process effect which can provide performance advantages for certain rule constructs; such
as sub-networks with accumulates. In the future it will leans itself to being able to exploit multi-
core machines in a number of ways.

The Linking and Unlinking uses a layered bit mask system, based on a network segmentation.
When the rule network is built segments are created for nodes that are shared by the same set
of rules. A rule itself is made up from a path of segments, although if there is no sharing that will
be a single segment. A bit-mask offset is assigned to each node in the segment. Also another
bit mask (the layering) is assigned to each segment in the rule's path. When there is at least
one input (data propagation) the node's bit is set to on. When each node has its bit set to on the
segment's bit is also set to on. Conversely if any node's bit is set to off, the segment is then also
set to off. If each segment in the rule's path is set to on, the rule is said to be linked in and a goal
is created to schedule the rule for evaluation. The same bit-mask technique is used to also track
dirty node, segments and rules; this allows for a rule already link in to be scheduled for evaluation
if it's considered dirty since it was last evaluated.

147

Chapter 5. Hybrid Reasoning

This ensures that no rule will ever evaluate partial matches, if it's impossible for it to result in rule
instances because one of the joins has no data. This is possible in RETE and it will merrily churn
away producing martial match attempts for all nodes, even if the last join is empty.

While the incremental rule evaluation always starts from the root node, the dirty bit masks are
used to allow nodes and segments that are not dirty to be skipped.

Using the existence of at at least one items of data per node, is a fairly basic heuristic. Future
work would attempt to delay the linking even further; using techniques such as arc consistency to
determine whether or not matching will result in rule instance firings.

Where as RETE has just a singe unit of memory, the node memory, PHREAK has 3 levels of
memory. This allows for much more contextual understanding during evaluation of a Rule.

rHul»e Memory

r.'E‘.-.E-q:_;ment Memory

Node Node Node
Memory Memaory Memory

% "

F.E‘.-.egment Memory

Node Node Node
Memory Memaory Memory
: :
segment Memory
Node Node Node
Memory Memaory Memory

Figure 5.12. PHREAK 3 Layered memory system

Example 1 shows a single rule, with three patterns; A, B and C. It forms a single segment, with
bits 1, 2 and 4 for the nodes. The single segment has a bit offset of 1.

148

PHREAK Algorithm

R1=ABC

1

1

[
el

Y N [T —

1

1

1

I
N S |

Figure 5.13. Examplel: Single rule, no sharing

Example 2 demonstrates what happens when another rule is added that shares the pattern A.
A is placed in its own segment, resulting in two segments per rule. Those two segments form a
path, for their respective rules. The first segment is shared by both paths. When A is linked the
segment becomes linked, it then iterates each path the segment is shared by, setting the bit 1 to
on. If B and C are later turned on, the second segment for path R1 is linked in; this causes bhit 2 to
be turned on for R1. With bit 1 and bit 2 set to on for R1, the rule is now linked and a goal created
to schedule the rule for later evaluation and firing.

When a rule is evaluated it is the segments that allow the results of matching to be shared. Each
segment has a staging memory to queue all insert, update and deletes for that segment. If R1 was
to evaluated it would process A and result in a set of tuples. The algorithm detects that there is a
segmentation split and will create peered tuples for each insert, update and delete in the set and
add them to R2's staging memory. Those tuples will be merged with any existing staged tuples
and wait for R2 to eventually be evaluated.

149

Chapter 5. Hybrid Reasoning

R1=ABC
R2=ADE

1
[l
[

1 P

e m\] mmm————————————————

N —)

Figure 5.14. Example 2: Two rules, with sharing

Example 3 adds a third rule and demonstrates what happens when A and B are shared. Only
the bits for the segments are shown this time. Demonstrating that R4 has 3 segments, R3 has
3 segments and R1 has 2 segments. A and B are shared by R1, R3 and R4. While D is shared
by R3 and R4.

150

PHREAK Algorithm

R1=ABC
R3=ABDE
R4=ABDFG

e Y Y, T Y

Figure 5.15. Example 3: Three rules, with sharing

Sub-networks are formed when a Not, Exists or Accumulate node contain more than one element.
In Example 4 "B not(C)" forms the sub network, note that "not(C)" is a single element and does
not require a sub network and is merged inside of the Not node.

The sub network gets its own segment. R1 still has a path of two segments. The sub network
forms another "inner" path. When the sub network is linked in, it will link in the outer segment.

151

Chapter 5. Hybrid Reasoning

Ri=Anot(Bnot(C))D
®
—

S I

T

Figure 5.16. Example 4 : Single rule, with sub-network and no sharing

Example 5 shows that the sub-network nodes can be shard by a rule that does not have a sub-
network. This results in the sub-network segment being split into two.

152

PHREAK Algorithm

(]
.

Figure 5.17. Example 5: Two rules, one with a sub-network and sharing

4

H

Not nodes with constraints and accumulate nodes have special behaviour and can never unlink
a segment, and are always considered to have their bits on.

All rule evaluations are incremental, and will not waste work recomputing matches that it has
already produced.

The evaluation algorithm is stack based, instead of method recursion. Evaluation can be paused
and resumed at any time, via the use of a StackEntry to represent current node being evaluated.

When a rule evaluation reaches a sub-network a StackEntry is created for the outer path segment
and the sub-network segment. The sub-network segment is evaluated first, when the set reaches
the end of the sub-network path it is merged into a staging list for the outer node it feeds into. The
previous StackEntry is then resumed where it can process the results of the sub network. This
has the added benefit that all work is processed in a batch, before propagating to the child node;
which is much more efficient for accumulate nodes.

The same stack system can be used for efficient backward chaining. When a rule evaluation
reaches a query node it again pauses the current evaluation, by placing it on the stack. The query
is then evaluated which produces a result set, which is saved in a memory location for the resumed
StackEntry to pick up and propagate to the child node. If the query itself called other queries the

153

Chapter 5. Hybrid Reasoning

process would repeat, with the current query being paused and a new evaluation setup for the
current query node.

One final point on performance. One single rule in general will not evaluate any faster with
PHREAK than it does with RETE. For a given rule and same data set, which using a root context
object to enable and disable matching, both attempt the same amount of matches and produce
the same number of rule instances, and take roughly the same time. Except for the use case with
subnetworks and accumulates.

PHREAK can however be considered more forgiving that RETE for poorly written rule bases and
with a more graceful degradation of performance as the number of rules and complexity increases.

RETE will also churn away producing partial machines for rules that do not have data in all the
joins; where as PHREAK will avoid this.

So it's not that PHREAK is faster than RETE, it just won't slow down as much as your system
grows :)

AgendaGroups did not help in RETE performance, as all rules where evaluated at all times,
regardless of the group. The same is true for salience. Which is why root context objects are often
used, to limit matching attempts. PHREAK only evaluates rules for the active AgendaGroup, and
within that group will attempt to avoid evaluation of rules (via salience) that do not result in rule
instance firings.

With PHREAK AgendaGroups and salience now become useful performance tools. The root
context objects are no longer needed and potentially counter productive to performance, as they
force the flushing and recreation of matches for rules.

154

Chapter 6.

Chapter 6. User Guide

6.1. The Basics

6.1.1. Stateless Knowledge Session

So where do we get started? There are so many use cases and so much functionality in a
rule engine such as Drools that it becomes beguiling. Have no fear my intrepid adventurer, the
complexity is layered and you can ease yourself in with simple use cases.

Stateless session, not utilising inference, forms the simplest use case. A stateless session can be
called like a function passing it some data and then receiving some results back. Some common
use cases for stateless sessions are, but not limited to:

* Validation
« Is this person eligible for a mortgage?
 Calculation
« Compute a mortgage premium.
* Routing and Filtering
* Filter incoming messages, such as emails, into folders.
» Send incoming messages to a destination.

So let's start with a very simple example using a driving license application.

public class Applicant {
private String nane;
private int age;
private bool ean vali d;
/1 getter and setter nethods here

Now that we have our data model we can write our first rule. We assume that the application uses
rules to reject invalid applications. As this is a simple validation use case we will add a single rule
to disqualify any applicant younger than 18.

package com conpany. | icense

rule "Is of valid age"
when

155

Chapter 6. User Guide

$a : Applicant(age < 18)
t hen

$a.setValid(false);
end

To make the engine aware of data, so it can be processed against the rules, we have to insert
the data, much like with a database. When the Applicant instance is inserted into the engine it
is evaluated against the constraints of the rules, in this case just two constraints for one rule.
We say two because the type Applicant is the first object type constraint, and age < 18 is the
second field constraint. An object type constraint plus its zero or more field constraints is referred
to as a pattern. When an inserted instance satisfies both the object type constraint and all the field
constraints, it is said to be matched. The $a is a binding variable which permits us to reference the
matched object in the consequence. There its properties can be updated. The dollar character ('$")
is optional, but it helps to differentiate variable names from field names. The process of matching
patterns against the inserted data is, not surprisingly, often referred to as pattern matching.

To use this rule it is necessary to put it a Drools file, just a plain text file with .drl extension , short
for "Drools Rule Language". Let's call this file licenseApplication.drl, and store it in a Kie Project.
A Kie Project has the structure of a normal Maven project with an additional file (kmodule.xml)
defining the Ki eBases and Ki eSessi ons that can be created. This file has to be placed in the
resources/META-INF folder of the Maven project while all the other Drools artifacts, such as the
licenseApplication.drl containing the former rule, must be stored in the resources folder or in any
other subfolder under it.

Since meaningful defaults have been provided for all configuration aspects, the simplest

kmodule.xml file can contain just an empty kmodule tag like the following:

<?xm version="1.0" encodi ng="UTF- 8" ?>
<knodul e xm ns="http://] boss. org/ ki e/ 6. 0.0/ knmodul e"/ >

At this point it is possible to create a Ki eCont ai ner that reads the files to be built, from the
classpath.

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki ed asspat hCont ai ner () ;

The above code snippet compiles all the DRL files found on the classpath and put the result of
this compilation, a Ki eMbdul e, in the Ki eCont ai ner . If there are no errors, we are now ready to
create our session from the Ki eCont ai ner and execute against some data:

St at el essKi eSessi on kSessi on = kCont ai ner. newSt at el essKi eSessi on() ;
Appl i cant applicant = new Applicant("M John Smith", 16);

156

Stateless Knowledge Session

assertTrue(applicant.isValid());
ksessi on. execute(applicant);
assertFal se(applicant.isValid());

The preceding code executes the data against the rules. Since the applicant is under the age of
18, the application is marked as invalid.

So far we've only used a single instance, but what if we want to use more than one? We can
execute against any object implementing Iterable, such as a collection. Let's add another class
called Appl i cat i on, which has the date of the application, and we'll also move the boolean valid
field to the Appl i cati on class.

public class Applicant {
private String nane;
private int age;
/'l getter and setter nethods here

public class Application {
private Date dateApplied;
private bool ean vali d;
/1 getter and setter nethods here

We will also add another rule to validate that the application was made within a period of time.

package com conpany. | icense

rule "Is of valid age"
when
Applicant(age < 18)
$a : Application()
t hen
$a.setValid(false);
end

rule "Application was made this year"
when
$a : Application(dateApplied > "01-jan-2009")
t hen
$a.setValid(false);
end

157

Chapter 6. User Guide

Unfortunately a Java element does not implement the |t er abl e interface, so we have to use
the JDK converter method Arrays. asLi st (...). The code shown below executes against an
iterable list, where all collection elements are inserted before any matched rules are fired.

St at el essKi eSessi on kSessi on = kCont ai ner. newsSt at el essKi eSessi on();

Appl i cant applicant = new Applicant("M John Smith", 16);

Application application = new Application();

assert True(application.isValid());

ksessi on. execute(Arrays. asList(new Cbject[] { application, applicant }));
assertFal se(application.isValid());

The two execute methods execut e(Chj ect object) and execute(lterable objects) are
actually convenience methods for the interface Bat chExecut or's method execut e(Conmand
comand) .

The Ki eConmmands commands factory, obtainable from the Ki eSer vi ces like all other factories of
the KIE API, is used to create commands, so that the following is equivalent to execut e(I t er abl e
it):

ksessi on. execut e(ki eServi ces. get Commands(). newl nsert El enents(Arrays. asList(new Object[] { aj

Batch Executor and Command Factory are particularly useful when working with multiple
Commands and with output identifiers for obtaining results.

Ki eCommands ki eCommands = ki eServi ces. get Conmands() ;
Li st <Conmand> cnds = new Arrayli st <Command>();

cnds. add(ki eCommands. newl nsert (new Per son("M John
Smth"), "mrSmth", true, null));
cnds. add(ki eCommands. newl nsert (new Per son("M John

Doe"), "nrDoe", true, null));
Bat chExecuti onResults results = ksessi on. execut e(ki eCommands. newBat chExecuti on(cnds));
assert Equal s(new Person("M John Smth"), results.getValue("nrSmth"));

ComandFact ory supports many other Commands that can be used in the Bat chExecut or like
St art Process, Query, and Set G obal .

6.1.2. Stateful Knowledge Session

Stateful Sessions are long lived and allow iterative changes over time. Some common use cases
for Stateful Sessions are, but not limited to:

* Monitoring

158

Stateful Knowledge Session

» Stock market monitoring and analysis for semi-automatic buying.
» Diagnostics

 Fault finding, medical diagnostics
« Logistics

 Parcel tracking and delivery provisioning
e Compliance

* Validation of legality for market trades.

In contrast to a Stateless Session, the di spose() method must be called afterwards to ensure
there are no memory leaks, as the KieBase contains references to Stateful Knowledge Sessions
when they are created. Since Stateful Knowledge Session is the most commonly used session
type it is just named Ki eSessi on in the KIE API. Ki eSessi on also supports the Bat chExecut or
interface, like St at el essKi eSessi on, the only difference being that the Fi r eAl | Rul es command
is not automatically called at the end for a Stateful Session.

We illustrate the monitoring use case with an example for raising a fire alarm. Using just four
classes, we represent rooms in a house, each of which has one sprinkler. If a fire starts in a room,
we represent that with a single Fi r e instance.

public class Room {

private String nane

/1 getter and setter nethods here
}
public class Sprinkler {

private Room room

private bool ean on;

/'l getter and setter methods here
}
public class Fire {

private Room room

/'l getter and setter methods here
}

public class Alarm{

}

In the previous section on Stateless Sessions the concepts of inserting and matching against data
were introduced. That example assumed that only a single instance of each object type was ever
inserted and thus only used literal constraints. However, a house has many rooms, so rules must
express relationships between objects, such as a sprinkler being in a certain room. This is best
done by using a binding variable as a constraint in a pattern. This "join" process results in what
is called cross products, which are covered in the next section.

159

Chapter 6. User Guide

When a fire occurs an instance of the Fi r e class is created, for that room, and inserted into the
session. The rule uses a hinding on the r oomfield of the Fi re object to constrain matching to
the sprinkler for that room, which is currently off. When this rule fires and the consequence is
executed the sprinkler is turned on.

rule "When there is a fire turn on the sprinkler”
when
Fire($room: room
$sprinkler : Sprinkler(room== $room on == false)
t hen
nodi fy($sprinkler) { setOn(true) };
Systemout.println("Turn on the sprinkler for room" + $room getNane());
end

Whereas the Stateless Session uses standard Java syntax to modify a field, in the above rule
we use the nodi fy statement, which acts as a sort of "with" statement. It may contain a series
of comma separated Java expressions, i.e., calls to setters of the object selected by the nodi fy
statement's control expression. This modifies the data, and makes the engine aware of those
changes so it can reason over them once more. This process is called inference, and it's essential
for the working of a Stateful Session. Stateless Sessions typically do not use inference, so the
engine does not need to be aware of changes to data. Inference can also be turned off explicitly
by using the sequential mode.

So far we have rules that tell us when matching data exists, but what about when it does not exist?
How do we determine that a fire has been extinguished, i.e., that there isn't a Fi r e object any
more? Previously the constraints have been sentences according to Propositional Logic, where
the engine is constraining against individual instances. Drools also has support for First Order
Logic that allows you to look at sets of data. A pattern under the keyword not matches when
something does not exist. The rule given below turns the sprinkler off as soon as the fire in that
room has disappeared.

rule "Wien the fire is gone turn off the sprinkler”

when
$room : Roon()
$sprinkler : Sprinkler(room== $room on == true)
not Fire(room == $room)

t hen

nmodi fy($sprinkler) { setOn(false) };
Systemout.println("Turn off the sprinkler for room" + $room get Name());
end

While there is one sprinkler per room, there is just a single alarm for the building. An Al ar mobject
is created when a fire occurs, but only one Al ar mis needed for the entire building, no matter how

160

Stateful Knowledge Session

many fires occur. Previously not was introduced to match the absence of a fact; now we use its
complement exi st s which matches for one or more instances of some category.

rule "Rai se the al arm when we have one or nore fires”
when
exists Fire()
t hen
insert(new Alarm());
Systemout.println("Raise the alarni);
end

Likewise, when there are no fires we want to remove the alarm, so the not keyword can be used
again.

rule "Cancel the alarmwhen all the fires have gone"
when
not Fire()
$alarm: Alarm()
t hen
delete($alarm);
Systemout. println("Cancel the alarn);
end

Finally there is a general health status message that is printed when the application first starts
and after the alarm is removed and all sprinklers have been turned off.

rule "Status output when things are ok"
when
not Al arm()
not Sprinkler(on == true)
t hen
Systemout.println("Everything is ok");
end

As we did in the Stateless Session example, the above rules should be placed in a single DRL
file and saved into the resouces folder of your Maven project or any of its subfolder. As before,
we can then obtain a Ki eSessi on from the Ki eCont ai ner. The only difference is that this time
we create a Stateful Session, whereas before we created a Stateless Session.

Ki eServi ces ki eServices = Ki eServices. Factory. get();
Ki eCont ai ner kCont ai ner = ki eServi ces. get Ki eCl asspat hCont ai ner () ;

161

Chapter 6. User Guide

Ki eSessi on ksession = kCont ai ner. newKi eSessi on();

With the session created it is now possible to iteratively work with it over time. Four Roomobjects
are created and inserted, as well as one Spri nkl er object for each room. At this point the engine
has done all of its matching, but no rules have fired yet. Calling ksessi on. fi reAl | Rul es() allows
the matched rules to fire, but without a fire that will just produce the health message.

String[] nanmes = new String[]{"kitchen", "bedroont, "office", "livingroon};
Map<Stri ng, Roon® name2r oom = new HashMap<Stri ng, Roone();
for(String nanme: names){

Room room = new Roon(nane);

nanme2r oom put (nane, room);

ksession.insert(room);

Sprinkl er sprinkler = new Sprinkler(room);

ksession.insert(sprinkler);

ksession.fireAl |l Rul es();

> Everything is ok

We now create two fires and insert them; this time a reference is kept for the returned Fact Handl e.
A Fact Handle is an internal engine reference to the inserted instance and allows instances to be
retracted or modified at a later point in time. With the fires now in the engine, oncefi r eAl | Rul es()
is called, the alarm is raised and the respective sprinklers are turned on.

Fire kitchenFire = new Fire(nane2roomget("kitchen"));
Fire officeFire = new Fire(name2roomget("office"));

Fact Handl e ki tchenFireHandl e = ksession.insert(kitchenFire);
Fact Handl e of fi ceFi reHandl e = ksession.insert(officeFire);

ksession.fireAl |l Rul es();

> Rai se the alarm
> Turn on the sprinkler for roomkitchen
> Turn on the sprinkler for roomoffice

162

Methods versus Rules

After a while the fires will be put out and the Fi r e instances are retracted. This results in the
sprinklers being turned off, the alarm being cancelled, and eventually the health message is printed
again.

ksessi on. del et e(kitchenFireHandl e);
ksession. del ete(officeFireHandl e);

ksession.fireAl |l Rul es();

Cancel the alarm
Turn off the sprinkler for roomoffice
Turn off the sprinkler for roomkitchen
Everything is ok

V V V V

Everyone still with me? That wasn't so hard and already I'm hoping you can start to see the value
and power of a declarative rule system.

6.1.3. Methods versus Rules

People often confuse methods and rules, and new rule users often ask, "How do | call a rule?"
After the last section, you are now feeling like a rule expert and the answer to that is obvious, but
let's summarize the differences nonetheless.

public void hell owrl d(Person person) {
if (person.getName().equal s("Chuck")) {
Systemout.printin("Hello Chuck");

Methods are called directly.
» Specific instances are passed.

* One call results in a single execution.

rule "Hello Worl d" when

Per son(nane == " Chuck")
t hen

Systemout.println("Hello Chuck");
end

* Rules execute by matching against any data as long it is inserted into the engine.

163

Chapter 6. User Guide

* Rules can never be called directly.
 Specific instances cannot be passed to a rule.

» Depending on the matches, a rule may fire once or several times, or not at all.
6.1.4. Cross Products

Earlier the term "cross product" was mentioned, which is the result of a join. Imagine for a moment
that the data from the fire alarm example were used in combination with the following rule where
there are no field constraints:

rul e "Show Sprinkl ers" when
$room : Room()
$sprinkler : Sprinkler()
t hen
Systemout.println("room" + $room get Nane() +
" sprinkler:" + $sprinkler.getRoon().getName());
end

In SQL terms this would be like doing sel ect * from Room Sprinkl er and every row in the
Room table would be joined with every row in the Sprinkler table resulting in the following output:

room of fi ce sprinkler:office

room of fi ce sprinkler:kitchen
room of fice sprinkler:livingroom
room of fice sprinkl er: bedroom
room kit chen sprinkl er:office
room kit chen sprinkl er:kitchen
room kit chen sprinkl er:livingroom
room ki t chen sprinkl er: bedroom
room | i vi ngroom sprinkler:office
room | i vi ngroom spri nkl er: ki tchen
room | i vi ngroom sprinkl er:livingroom
room | i vi ngroom spri nkl er: bedroom
room bedroom spri nkl er: of fice
room bedr oom spri nkl er: kit chen
room bedr oom spri nkl er:1ivi ngroom
room bedr oom spri nkl er: bedr oom

These cross products can obviously become huge, and they may very well contain spurious data.
The size of cross products is often the source of performance problems for new rule authors. From
this it can be seen that it's always desirable to constrain the cross products, which is done with
the variable constraint.

164

Execution Control

rul e
when

$room : Room()

$sprinkler : Sprinkler(room== $room)
t hen

Systemout.printlin("room" + $room get Name() +

" sprinkler:" + $sprinkler.getRoom().getNanme());

end

This results in just four rows of data, with the correct Sprinkler for each Room. In SQL (actually
HQL) the corresponding query would be sel ect * from Room Sprinkler where Room ==
Spri nkl er.room

room of fi ce sprinkler:office

room ki t chen sprinkl er:kitchen

room | i vingroom sprinkler:livingroom
room bedr oom spri nkl er: bedr oom

6.2. Execution Control

6.2.1. Agenda

The Agenda is a Rete feature. It maintains set of rules that are able to execute, its job is to schedule
that execution in a deterministic order.

During actions on the Rul eRunt i me, rules may become fully matched and eligible for execution;
a single Rule Runtime Action can result in multiple eligible rules. When a rule is fully matched a
Rule Match is created, referencing the rule and the matched facts, and placed onto the Agenda.
The Agenda controls the execution order of these Matches using a Conflict Resolution strategy.

The engine cycles repeatedly through two phases:

1. Rule Runtime Actions. This is where most of the work takes place, either in the Consequence
(the RHS itself) or the main Java application process. Once the Consequence has finished or
the main Java application process calls fi reAl | Rul es() the engine switches to the Agenda
Evaluation phase.

2. Agenda Evaluation. This attempts to select a rule to fire. If no rule is found it exits, otherwise it
fires the found rule, switching the phase back to Rule Runtime Actions.

165

Chapter 6. User Guide

Determine
possible rules to
fire

" Agenda Evaluation

. Working Memory Action

k.
- Rule
Found AEE‘J
Fire Rule | %ﬂa Fire

Mo Rule
Found

axit

Figure 6.1. Two Phase Execution

The process repeats until the agenda is clear, in which case control returns to the calling
application. When Rule Runtime Actions are taking place, no rules are being fired.

6.2.2. Rule Matches and Conflict Sets.

6.2.2.1. Cashflow Example

So far the data and the matching process has been simple and small. To mix things up a bit a
new example will be explored that handles cashflow calculations over date periods. The state of
the engine will be illustratively shown at key stages to help get a better understanding of what
is actually going on under the hood. Three classes will be used, as shown below. This will help
us grow our understanding of pattern matching and joins further. We will then use this to illustate
different techniques for execution control.

public class CashFl ow {
private Date dat e;
private doubl e anmount;
private int type;
| ong account No;
/1 getter and setter methods here

166

Rule Matches and Conflict Sets.

public class Account {
private |ong account No
private doubl e bal ance
/1 getter and setter nethods here

publ i ¢ Account Period {
private Date start;
private Date end
[l getter and setter nethods here

By now you already know how to create KieBases and how to instantiate facts to populate the
Ki eSessi on, so tables will be used to show the state of the inserted data, as it makes things
clearer for illustration purposes. The tables below show that a single fact was inserted for the
Account . Also inserted are a series of debits and credits as CashFl ow objects for that account,

extending over two quarters.

Figure 6.2. CashFlows and Account

Two rules can be used to determine the debit and credit for that quarter and update the Account
balance. The two rules below constrain the cashflows for an account for a given time period. Notice
the "&&" which use short cut syntax to avoid repeating the field name twice.

rul e "increase bal ance for credits”
when
ap : Account Period()
acc : Account($account No
account No)
CashFl om(type == CREDIT,
account No == $account No,
date >= ap. start && <= ap. end
$anount : anount)
t hen
acc. bal ance += $anount;

when

ap :

rul e "decrease bal ance for debits"
Account Peri od()
acc : Account($account No

account No)
CashFl om(type == DEBIT,
No == $account No,

account

date >= ap.start

ap. end,

t hen

$anount

anount)

&& <=

167

CashFlow Account
date amount type accountMo accountMo balance
12-Jan-07 100|CREDIT 1 1 0
2-Feb-07 200DEBIT 1
18-May-07 50|{CREDIT 1
9-Mar-07 75|(CREDIT 1

Chapter 6. User Guide

end acc. bal ance -= $anount;
end

Earlier we showed how rules would equate to SQL, which can often help people with an SQL
background to understand rules. The two rules above can be represented with two views and a
trigger for each view, as below:

Table 6.1.
select * from Account acc, sel ect * from Account acc,
Cashf | ow cf, Cashfl ow cf,
Account Peri od ap Account Peri od ap
where acc.accountNo == cf.accountN where acc.accountNo == cf.accountNo
and and
cf.type == CREDIT and cf.type == DEBI T and
cf.date >= ap.start and cf.date >= ap.start and
cf.date <= ap.end cf.date <= ap. end
trigger : acc.bal ance += cf.anount trigger : acc.bal ance -= cf. anount

If the Account Peri od is set to the first quarter we constrain the rule "increase balance for credits
to fire on two rows of data and "decrease balance for debits" to act on one row of data.

Figure 6.3. AccountingPeriod, CashFlows and Account

The two cashflow tables above represent the matched data for the two rules. The data is matched
during the insertion stage and, as you discovered in the previous chapter, does not fire straight
away, butonly afterfi reAl | Rul es() is called. Meanwhile, the rule plus its matched data is placed
on the Agenda and referred to as an Rule Match or Rule Instance. The Agenda is a table of Rule
Matches that are able to fire and have their consequences executed, as soon as fireAllRules()
is called. Rule Matches on the Agenda are referred to as a conflict set and their execution is
determine by a conflict resolution strategy. Notice that the order of execution so far is considered
arbitrary.

168

AccountingP eriod
start end
01-Jan-07 31-Mar-07
CashFlow CashFlow
date amaount type date amount type
12-Jan-07 TO0[CREDIT 2-Feb-07 200|DEBIT
O-Mar-07 THICREDIT

Rule Matches and Conflict Sets.

Agenda
1 Increase balance
2 decrease balance arbitrary
3 Increase balance

Figure 6.4. CashFlows and Account

After all of the above activations are fired, the account has a balance of -25.

Account
accountMo balance
1 -25

Figure 6.5. CashFlows and Account

If the Account Peri od is updated to the second quarter, we have just a single matched row of
data, and thus just a single Rule Match on the Agenda.

The firing of that Activation results in a balance of 25.

AccountingPeriod
stan end
01-Apr-07 30-Jun07
CashFlow
date amount type
18-May-07 L0|CREDIT

Figure 6.6. CashFlows and Account

accountMo balance
1 25

Figure 6.7. CashFlows and Account

6.2.2.2. Conflict Resolution

What if you don't want the order of rule execution to be arbitrary? When there is one or more Rule
Match on the Agenda they are said to be in conflict, and a conflict resolution strategy is used to

169

Chapter 6. User Guide

determine the order of execution. The Drools strategy is very simple and based around a salience
value, which assigns a priority to a rule. Each rule has a default value of 0, the higher the value
the higher the priority.

As a general rule, it is a good idea not to count on rules firing in any particular order, and to author
the rules without worrying about a "flow". However when a flow is needed a number of possibilities
exist beyond salience: agenda groups, rule flow groups, activation groups and control/semaphore
facts.

As of Drools 6.0 rule definition order in the source file is used to set priority after salience.

6.2.2.3. Salience

To illustrate Salience we add a rule to print the account balance, where we want this rule to be
executed after all the debits and credits have been applied for all accounts. We achieve this by
assigning a negative salience to this rule so that it fires after all rules with the default salience 0.

Table 6.2.

rule "Print bal ance for AccountPeriod"
sal i ence -50
when
ap : Account Period()
acc : Account ()
t hen
Systemout.println(acc.accountNo + " : " + acc. bal ance);
end

The table below depicts the resulting Agenda. The three debit and credit rules are shown to be in
arbitrary order, while the print rule is ranked last, to execute afterwards.

Agenda
1 Increase balance
2 decrease balance arbitrary
J Increase balance
4 print balance

Figure 6.8. CashFlows and Account

6.2.2.4. Agenda Groups

Agenda groups allow you to place rules into groups, and to place those groups onto a stack. The
stack has push/pop bevaviour. Calling "setFocus" places the group onto the stack:

170

Rule Matches and Conflict Sets.

ksessi on. get Agenda() . get AgendaG oup("G oup A").setFocus();

The agenda always evaluates the top of the stack. When all the rules have fired for a group, it is
poped from the stack and the next group is evaluated.

Table 6.3.
rule "increase bal ance for credits" rule "Print bal ance for AccountPeriod"
agenda- group “"cal cul ati on" agenda- group "report"
when when
ap : Account Peri od() ap : Account Peri od()
acc : Account($account No acc : Account ()
account No) t hen
CashFl om(type == CREDIT, Systemout. println(acc.accountNo +
account No == $account No, "t o+
date >= ap. start && <= ap. end acc. bal ance);
$anount : anount) end
t hen
acc. bal ance += $anount;
end

First set the focus to the "report" group and then by placing the focus on "calculation" we ensure
that group is evaluated first.

Agenda agenda = ksessi on. get Agenda();

agenda. get AgendaG oup("report").setFocus();
agenda. get AgendaGroup("cal cul ati on").setFocus();
ksession.fireA |l Rul es();

6.2.2.5. Rule Flow

Drools also features ruleflow-group attributes which allows workflow diagrams to declaratively
specify when rules are allowed to fire. The screenshot below is taken from Eclipse using the Drools
plugin. It has two ruleflow-group nodes which ensures that the calculation rules are executed
before the reporting rules.

171

Chapter 6. User Guide

a2 *banking.rf 7

[;g Select

r

L

L Marquee

—t i_onneckion Creation

2 start

[~ Components *

. Start

[& End

[RuleFlowGroup
2 split

=+ Jiin

(7) Milestone

e SubFlow

calculation

Bckion

[#| End

The use of the ruleflow-group attribute in a rule is shown below.

Table 6.4.

rule "increase bal ance for credits"
rul efl owgroup "cal cul ati on”
when
ap : Account Period()
acc Account (
account No)
CashFl om(type == CREDIT,
account No == $account No,
date >= ap. start && <= ap. end
$anount anount)

$account No

t hen
acc. bal ance += $anount;

end

rule "Print bal ance for Account Peri od"
rul efl ow-group "report"”

when
ap : Account Period()
acc : Account ()

t hen

System out. println(acc.accountNo +
.o o
acc. bal ance);
end

172

Declarative Agenda

6.2.3. Declarative Agenda

Warning

Declarative Agenda is experimental, and all aspects are highly likely to change
in the future. @Eager and @Direct are temporary annotations to control the
behaviour of rules, which will also change as Declarative Agenda evolves.
Annotations instead of attributes where chosen, to reflect their experimental nature.

The declarative agenda allows to use rules to control which other rules can fire and when. While
this will add a lot more overhead than the simple use of salience, the advantage is it is declarative
and thus more readable and maintainable and should allow more use cases to be achieved in
a simpler fashion.

This feature is off by default and must be explicitly enabled, that is because it is considered highly
experimental for the moment and will be subject to change, but can be activated on a given
KieBase by adding the declarativeAgenda='enabled' attribute in the corresponding kbase tag of
the kmodule.xml file as in the following example.

Example 6.1. Enabling the Declarative Agenda

<knmodul e xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns="http://jboss. org/kiel/6.0.0/ knodul e" >
<kbase nane="Decl ar ati veKBase" decl ar ati veAgenda="enabl ed" >
<ksessi on nane="KSessi on">
</ kbase>
</ knmodul e>

The basic idea is:

« All rule's Matches are inserted into WorkingMemory as facts. So you can now do pattern
matching against a Match. The rule's metadata and declarations are available as fields on the
Match object.

« You can use the kcontext.blockMatch(Match match) for the current rule to block the selected
match. Only when that rule becomes false will the match be eligible for firing. If it is already
eligible for firing and is later blocked, it will be removed from the agenda until it is unblocked.

« A match may have multiple blockers and a count is kept. All blockers must became false for the
counter to reach zero to enable the Match to be eligible for firing.

 kcontext.unblockAllMatches(Match match) is an over-ride rule that will remove all blockers
regardless

173

Chapter 6. User Guide

* An activation may also be cancelled, so it never fires with cancelMatch

« An unblocked Match is added to the Agenda and obeys normal salience, agenda groups,
ruleflow groups etc.

* The @Direct annotations allows a rule to fire as soon as it's matched, this is to be used for rules
that block/unblock matches, it is not desirable for these rules to have side effects that impact
else where.

Example 6.2. New RuleContext methods

voi d bl ockMat ch(Mat ch nat ch)
voi d unbl ockAl | Mat ches(Mat ch mat ch);
voi d cancel Mat ch(Match natch);

Here is a basic example that will block all matches from rules that have metadata
@department('sales'). They will stay blocked until the blockerAllSalesRules rule becomes false,
i.e. "go2" is retracted.

Example 6.3. Block rules based on rule metadata

rule rul el @ager @epartnent (' sales') when

$s : String(this == 'gol')
t hen
list.add(kcontext.rule.nane + ':' + $s);
end
rule rul e2 @ager @epartnent (' sales') when
$s : String(this == 'gol')
t hen
list.add(kcontext.rule.nane + ':' + $s);
end
rul e bl ocker Al | Sal esRul es @irect @ager when
$s : String(this == 'go2')
$i : Match(departnent == 'sales')
t hen
list.add($i.rule.nane + ':' + $s);
kcont ext . bl ockMatch($i);
end

Warning

Further than annotate the blocking rule with @Direct, it is also necessary to
annotate all the rules that could be potentially blocked by it with @Eager. This
is because, since the Match has to be evaluated by the pattern matching of the

174

Inference

blocking rule, the potentially blocked ones cannot be evaluated lazily, otherwise

won't be any Match to be evaluated.

This example shows how you can use active property to count the number of active or inactive
(already fired) matches.

Example 6.4. Count the number of active/inactive Matches

rule rulel @ager @lepartnent (' sales') when
$s : String(this == 'gol')
t hen
|ist.add(kcontext.rule.nane + ':' + $s);
end
rule rul e2 @ager @lepartnent (' sales') when

$s : String(this == 'gol')
t hen
list.add(kcontext.rule.nane + ':' + $s);
end
rule rul e3 @ager @epartnent (' sales') when
$s : String(this == 'gol')
t hen
list.add(kcontext.rule.name + ':' + $s);
end
rul e count Acti vatel nActive @irect @Eager when
$s : String(this == 'go2')
$active : Nunber(this == 1) from accunulate($a : Mtch(departnent ==
'sales', active == true), count($a))
$inActive : Nunmber(this == 2) from accunulate($a : Match(depart nent
== 'sales', active == false), count($a))
t hen
kcontext.halt();

end

6.3. Inference

6.3.1. Bus Pass Example

Inference has a bad name these days, as something not relevant to business use cases and
just too complicated to be useful. It is true that contrived and complicated examples occur with
inference, but that should not detract from the fact that simple and useful ones exist too. But more
than this, correct use of inference can crate more agile and less error prone business rules, which
are easier to maintain.

So what is inference? Something is inferred when we gain knowledge of something from using
previous knowledge. For example, given a Person fact with an age field and a rule that provides
age policy control, we can infer whether a Person is an adult or a child and act on this.

175

Chapter 6. User Guide

rule "Infer Adult"

when

$p : Person(age >= 18)
t hen

insert(new IsAdult($p))
end

Due to the preceding rule, every Person who is 18 or over will have an instance of IsAdult inserted
for them. This fact is special in that it is known as a relation. We can use this inferred relation
in any rule:

$p : Person()
I sAdul t (person == $p)

So now we know what inference is, and have a basic example, how does this facilitate good rule
design and maintenance?

Let's take a government department that are responsible for issuing ID cards when children
become adults, henceforth referred to as ID department. They might have a decision table that
includes logic like this, which says when an adult living in London is 18 or over, issue the card:

ae ¥ g
CONDITION CONDITION ACTION
p i Person
bocation age == 51 EmueldCard! 517
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London 18 P

However the ID department does not set the policy on who an adult is. That's done at a central
government level. If the central government were to change that age to 21, this would initiate a
change management process. Someone would have to liaise with the ID department and make
sure their systems are updated, in time for the law going live.

This change management process and communication between departments is not ideal for an
agile environment, and change becomes costly and error prone. Also the card department is
managing more information than it needs to be aware of with its "monolithic” approach to rules
management which is "leaking" information better placed elsewhere. By this | mean that it doesn't
care what explicit "age >= 18" information determines whether someone is an adult, only that they
are an adult.

176

Bus Pass Example

In contrast to this, let's pursue an approach where we split (de-couple) the authoring
responsibilities, so that both the central government and the ID department maintain their own
rules.

It's the central government's job to determine who is an adult. If they change the law they just
update their central repository with the new rules, which others use:

COMDITION ACTION
p ¢ Person
g == 51 insart| £1)
Adult Age Policy Add Adult Relation
Infer Adult 18
new [sAdult(p)

The IsAdult fact, as discussed previously, is inferred from the policy rules. It encapsulates the
seemingly arbitrary piece of logic "age >= 18" and provides semantic abstractions for its meaning.
Now if anyone uses the above rules, they no longer need to be aware of explicit information that
determines whether someone is an adult or not. They can just use the inferred fact:

aD|e 1 =gt
CONDITION CONDITION ACTION
p : Person Isfdult
location person == 51 EmeldCardl £1)
Select Person Select Adults Issue ID Card
Issue ID Card to Adults London p

While the example is very minimal and trivial it illustrates some important points. We started with a
monolithic and leaky approach to our knowledge engineering. We created a single decision table
that had all possible information in it and that leaks information from central government that the
ID department did not care about and did not want to manage.

We first de-coupled the knowledge process so each department was responsible for only what it
needed to know. We then encapsulated this leaky knowledge using an inferred fact IsAdult. The
use of the term IsAdult also gave a semantic abstraction to the previously arbitrary logic "age >=
18"

So a general rule of thumb when doing your knowledge engineering is:

* Bad

* Monolithic

177

Chapter 6. User Guide

* Leaky

» Good
» De-couple knowledge responsibilities
» Encapsulate knowledge

» Provide semantic abstractions for those encapsulations

6.4. Truth Maintenance with Logical Objects

6.4.1. Overview

After regular inserts you have to retract facts explicitly. With logical assertions, the fact that was
asserted will be automatically retracted when the conditions that asserted it in the first place are
no longer true. Actually, it's even cleverer then that, because it will be retracted only if there isn't
any single condition that supports the logical assertion.

Normal insertions are said to be stated, i.e., just like the intuitive meaning of "stating a fact" implies.
Using a HashMap and a counter, we track how many times a particular equality is stated; this
means we count how many different instances are equal.

When we logically insert an object during a RHS execution we are said to justify it, and it is
considered to be justified by the firing rule. For each logical insertion there can only be one equal
object, and each subsequent equal logical insertion increases the justification counter for this
logical assertion. A justification is removed by the LHS of the creating rule becoming untrue, and
the counter is decreased accordingly. As soon as we have no more justifications the logical object
is automatically retracted.

If we try to logically insert an object when there is an equal stated object, this will fail and return
null. If we state an object that has an existing equal object that is justified we override the Fact;
how this override works depends on the configuration setting WM BEHAVI OR_PRESERVE. When the
property is set to discard we use the existing handle and replace the existing instance with the
new Object, which is the default behavior; otherwise we override it to stated but we create an
new Fact Handl e.

This can be confusing on a first read, so hopefully the flow charts below help. When it says that it
returns a new Fact Handl e, this also indicates the Obj ect was propagated through the network.

178

Overview

Is there an
existing Equal
Object?

Return new
FactHandle

yes

Return new

FactHandle

JUSTIFIED

Crerride JUSTIFIED,
and set to STATED,
set existing handle to
fhe new Ohject,

Discard Logical
Assertion?

no

!

yes

Is the Ofject
STATED or

JUSTIFED?

Return existing

STATED FactHandle.

JUSTIFIED

Override JUSTIFIED
and set to STATED,
resnove justifications
and retum existing
FactHandle

Cwemide JUSTIFIED
and set to STATED,
remove justifications
and return existing
FactHandle

Figure 6.9. Stated Insertion

179

Chapter 6. User Guide

Add first
justification and

Is there an
existing Equal

return mews Ghjact?

FactHandle

yES

Can't Justify a
STATED fact,
return null. JUSTIFE?

JUSTIFIED

Add first
justification and

retuUrm e
FactHandle

Figure 6.10. Logical Insertion

[oes the Object
already exist?

yes

Can't Justify a

& the Object

STATED o STATED 2:' Lf;: iiﬁfg
JUSTIFED? FaciHandle,

JUSTIFIED

Add additional
justification and

return existing
FactHandle

6.4.1.1. Bus Pass Example With Inference and TMS

The previous example was issuing ID cards to over 18s, in this example we now issue bus passes,

either a child or adult pass.

rule "lssue Child Bus Pass" when

$p : Person(age < 16)
t hen

i nsert (new Chi |l dBusPass($p));
end

rule "lIssue Adult Bus Pass" when
$p : Person(age >= 16)
t hen
i nsert (new Adul t BusPass($p));

180

Overview

end

As before the above example is considered monolithic, leaky and providing poor separation of
concerns.

As before we can provide a more robust application with a separation of concerns using inference.
Notice this time we don't just insert the inferred object, we use "insertLogical":

rule "Infer Child" when

$p : Person(age < 16)
t hen

i nsertLogical (new IsChild($p))
end
rule "Infer Adult" when

$p : Person(age >= 16)
t hen

i nsertLogical (new IsAdult($p))
end

A "insertLogical" is part of the Drools Truth Maintenance System (TMS). When a fact is logically
inserted, this fact is dependant on the truth of the "when" clause. It means that when the rule
becomes false the fact is automatically retracted. This works particularly well as the two rules are
mutually exclusive. So in the above rules if the person is under 16 it inserts an IsChild fact, once
the person is 16 or over the IsChild fact is automatically retracted and the IsAdult fact inserted.

Returning to the code to issue bus passes, these two rules can + logically insert the ChildBusPass
and AdultBusPass facts, as the TMS + supports chaining of logical insertions for a cascading set
of retracts.

rule "lIssue Child Bus Pass" when
$p : Person()
I sChild(person == $p)
t hen
i nsert Logi cal (new Chi | dBusPass($p));
end

rule "lIssue Adult Bus Pass" when
$p : Person(age >= 16)
I sAdul t (person =$p)
t hen
i nsert Logi cal (new Adul t BusPass($p));
end

181

Chapter 6. User Guide

Now when a person changes from being 15 to 16, not only is the IsChild fact automatically
retracted, so is the person's ChildBusPass fact. For bonus points we can combine this with the
'not' conditional element to handle notifications, in this situation, a request for the returning of the
pass. So when the TMS automatically retracts the ChildBusPass object, this rule triggers and
sends a request to the person:

rule "Return Chil dBusPass Request "when
$p : Person()
not (Chi |l dBusPass(person == $p))
t hen
request Chi | dBusPass($p);
end

6.4.1.2. Important note: Equality for Java objects

It is important to note that for Truth Maintenance (and logical assertions) to work at all, your
Fact objects (which may be JavaBeans) must override equals and hashCode methods (from
java.lang.Object) correctly. As the truth maintenance system needs to know when two different
physical objects are equal in value, both equals and hashCode must be overridden correctly, as
per the Java standard.

Two objects are equal if and only if their equals methods return true for each other and if their
hashCode methods return the same values. See the Java API for more details (but do keep in
mind you MUST override both equals and hashCode).

TMS behaviour is not affected by theruntime configuration of Identity vs Equality, TMS is always
equality.

6.5. Decision Tables in Spreadsheets

Decision tables are a "precise yet compact” (ref. Wikipedia) way of representing conditional logic,
and are well suited to business level rules.

Drools supports managing rules in a spreadsheet format. Supported formats are Excel (XLS),
and CSV, which means that a variety of spreadsheet programs (such as Microsoft Excel,
OpenOffice.org Calc amongst others) can be utilized. It is expected that web based decision table
editors will be included in a near future release.

Decision tables are an old concept (in software terms) but have proven useful over the years. Very
briefly speaking, in Drools decision tables are a way to generate rules driven from the data entered
into a spreadsheet. All the usual features of a spreadsheet for data capture and manipulation can
be taken advantage of.

182

When to Use Decision Tables

6.5.1. When to Use Decision Tables

Consider decision tables as a course of action if rules exist that can be expressed as rule templates
and data: each row of a decision table provides data that is combined with a template to generate
arule.

Many businesses already use spreadsheets for managing data, calculations, etc. If you are happy
to continue this way, you can also manage your business rules this way. This also assumes you are
happy to manage packages of rules in . x| s or . csv files. Decision tables are not recommended
for rules that do not follow a set of templates, or where there are a small number of rules (or if there
is a dislike towards software like Excel or OpenOffice.org). They are ideal in the sense that there
can be control over what parameters of rules can be edited, without exposing the rules directly.

Decision tables also provide a degree of insulation from the underlying object model.

6.5.2. Overview

Here are some examples of real world decision tables (slightly edited to protect the innocent).

@ Microsoft Excel - TeamAllocationExample_TYPICAL_EXAMPLE.xls g@
: @J Fle Edit View Insert Format Tools Data Window Help Typeaquestionforhelp = - & x
[@} Tahoma -7 -[B]Z U |E[E|=HS % » %
B17 - # Catastrophic Claim
] ™
1 B | C | D | E
£
+ Type of New Claim Is case catastrophic Allocation code Claim 1
16
1 7 Catastrophic Claim v
New Claim with previous Accident num 2
18
Previous Open claim 1 P
19
20 Dependency Claim &
2 1 Dependency Claim 3
22 Interstate Claim A
23 Interstate Claim o
24 Interstate Claim N
25 Interstate Claim : 5 .v L
M 4 » »[\Tables, Lsts / < 5
Ready NUM

Figure 6.11. Using Excel to edit a decision table

183

Chapter 6. User Guide

J | L
mer Allocate to Team Stop processing Log reason
Team Red)]]
Stop processing The claim was catastrophic

Figure 6.12. Multiple actions for a rule row

i;l TeamAllocationExample_TYPICAL_EXAMPLE - OpenOffice.org Calc Q@
File Edit View Insert Format Tools Data Window Help x
B sEe BRSSP eR-¢ &N v HOBEQ @,
i bd |Tahoma ~| |7 v BT U =|=== % sk G ow == O 0 - A
B17 ¥ f 2 = |Catastruph|c Claim
:'| -
z
il B [c b E F G
4 8
L]
16 Type of New Claim 1Is case catastrophic Allocation code Claim Type | Insurance Class |Date of accident is after Da
17 Catastrophic Claim

19 [lew Claim with previous Accident

19 Previous Open claim 1 P
20 Dependency Claim 8
21 Dependency Claim 9
22 Interstate Claim A
23 Interstate Claim D
24 Interstate Claim N
25 Interstate Claim s
26 Interstate Claim T il
', Tables / Lists / B >
Sheet1/2 PageStyle_Tables 100% STD Sum=0

Figure 6.13. Using OpenOffice.org

In the above examples, the technical aspects of the decision table have been collapsed away
(using a standard spreadsheet feature).

The rules start from row 17, with each row resulting in a rule. The conditions are in columns C, D,
E, etc., the actions being off-screen. The values in the cells are quite simple, and their meaning
is indicated by the headers in Row 16. Column B is just a description. It is customary to use color
to make it obvious what the different areas of the table mean.

Note

Note that although the decision tables look like they process top down, this is not
necessarily the case. Ideally, rules are authored without regard for the order of

184

How Decision Tables Work

rows, simply because this makes maintenance easier, as rows will not need to be
shifted around all the time.

As each row is a rule, the same principles apply. As the rule engine processes the facts, any rules
that match may fire. (Some people are confused by this. It is possible to clear the agenda when a
rule fires and simulate a very simple decision table where only the first match effects an action.)
Also note that you can have multiple tables on one spreadsheet. This way, rules can be grouped
where they share common templates, yet at the end of the day they are all combined into one rule
package. Decision tables are essentially a tool to generate DRL rules automatically.

1 I H [3 I [I 5 &

Module
RuleSet Control Cajas[1]

1.validarAperturaCaja (Caja, Registro Estado Sucursal, Transacdon)

Prioridades de

ID_Caso de Uso| Caso de Uso Identificadores de las Reglas las Reghs Nombres de las Reglas Descripciones
1
Esta Regla tiene por Mision Validar que la sucursal de k
se encuentre abierta
ValidarAperturaCajasucursal
1 2000 P] Trabaja sobre la Caja que se intenta abrir, la Sucurs:

Abiert: .
era corresponde a esa caja y la Transaccion de Ca;

L] apertura

Esta Regla tiene por Mision Validar que en la sucursal
caja se encuentre abierta para la misma fecha de ape
ValdarAperturaCajaMismaFe |de la caja.

2 2000
cha Trabaja sobre la Caja que se intenta abrir, la Sucursz
corresponde a esa caja y la Transaccion de Ca
i apertura
6
7
[l 2.validarCierreCajasSucursal(Registro Estado Sucursal, TransaccionCaja)
ID_Caso de Uso| Caso de Uso Identificadores de las Reglas prg;":::;fsde Nombres de las Reglas Descripciones
2
Esta Regla tiene por Misidn Valdar que al moment
C_PRSC_503 efectuarse el Clerre Conta?le de una sucursal de FOI
C_PRSC_504 1 1000 ValidarCierreCajassucursal todas las Cajas de esta (iftima se encuentren en E
C_PRSC 513 Cerrado, es decir la Fecha de Cierre de Caja debe ser

a la Fecha de cierre de la entidad Registro_Cierre_Suc

3.validarTransaccionCaja(Caja, Transacdon_Caja)

RuleTable[3] ValidarTransaccdonCaja(CajaVO caja, MovimientoCajaVO movimientoCaja)
ID_Casode Uso Caso de Uso Identificador Nombre

Figure 6.14. A real world example using multiple tables for grouping like
rules

6.5.3. How Decision Tables Work

The key point to keep in mind is that in a decision table each row is a rule, and each column in
that row is either a condition or action for that rule.

185

Chapter 6. User Guide

o

112 B C

D

31

E F G

+ Type of Nex Claim Is case catastrophic

Allocation code

Each column Insurance Class Date of accident is after
may be a

Catastrophic Claim
17

condition, or

action etc

Mew Claim with previous Accident num

Each row results in a rule

21 Dependency Claim

22 Interstate Claim

23 Interstate Claim

24

aim

25 Interstate
M 4 » »]\Tables/ Lists /

Figure 6.15. Rows and columns

< b

The spreadsheet looks for the RuleTable keyword to indicate the start of a rule table (both the
starting row and column). Other keywords are also used to define other package level attributes
(covered later). It is important to keep the keywords in one column. By convention the second
column ("B") is used for this, but it can be any column (convention is to leave a margin on the
left for notes). In the following diagram, C is actually the column where it starts. Everything to the

left of this is ignored.

If we expand the hidden sections, it starts to make more sense how it works; note the keywords

in column C.

186

How Decision Tables Work

IntegrationExampleTest — OpenOffice.org Calc

File Edit View |Insert Format Tools Data Window Help X
. . 3
B-elia FEES TY KB 2 @b 2 [
H [rtahoma |~ [7 I~ RAE BEEB i I I =
G17 -] fo 2 = |
Al2| B | c | D E [[=
Fi
8
ﬂ) RulaSet Some business rules
10 mp ort org.drools.decisiontable. Cheese, org.drools. decfl |
L= | s |
2
- [15 RuleTable Cheesetans | |
14 CONDITION COMDITION ACTION [
15 Person Cheese list
16
(descriptions) ange [ty pe add(Fparam”)
17 Case Persons age Cheese type Log |
18 o1 guy 42 stilton 0ld man stilton
19 Young guy
21 cheddar Young man cheddar
20
_'_I 21 hariahle; java.util List list]
22 =1
73 L]
Tables { Lists 1] 4] [I |
Sheet 1/ 2 PageStyle_Tables 100% STD Sum=0 Average=

Figure 6.16. Expanded for rule templates

Now the hidden magic which makes it work can be seen. The RuleSet keyword indicates the name
to be used in the rule package that will encompass all the rules. This name is optional, using a
default, but it must have the RuleSet keyword in the cell immediately to the right.

The other keywords visible in Column C are Import and Sequential which will be covered later. The
RuleTable keyword is important as it indicates that a chunk of rules will follow, based on some rule
templates. After the RuleTable keyword there is a name, used to prefix the names of the generated
rules. The sheet name and row numbers are appended to guarantee unique rule names.

Warning

The RuleTable name combined with the sheet name must be unique across all
spreadsheet files in the same KieBase. If that's not the case, some rules might
have the same name and only 1 of them will be applied. To show such ignored
rules, raise the severity of such rule name conflicts.

The column of RuleTable indicates the column in which the rules start; columns to the left are
ignored.

187

Chapter 6. User Guide

@ Note
In general the keywords make up name-value pairs.

Referring to row 14 (the row immediately after RuleTable), the keywords CONDITION and
ACTION indicate that the data in the columns below are for either the LHS or the RHS parts of a
rule. There are other attributes on the rule which can also be optionally set this way.

Row 15 contains declarations of ObjectTypes. The content in this row is optional, but if this option
is not in use, the row must be left blank; however this option is usually found to be quite useful.
When using this row, the values in the cells below (row 16) become constraints on that object type.
In the above case, it generates Per son(age=="42") and Cheese(type=="stilton"), where 42
and "stilton" come from row 18. In the above example, the "=="is implicit; if just a field name is
given the translator assumes that it is to generate an exact match.

@ Note
An ObjectType declaration can span columns (via merged cells), meaning that all
columns below the merged range are to be combined into one set of constraints
within a single pattern matching a single fact at a time, as opposed to non-merged
cells containing the same ObjectType, but resulting in different patterns, potentially
matching different or identical facts.

Row 16 contains the rule templates themselves. They can use the "$param" placeholder to
indicate where data from the cells below should be interpolated. (For multiple insertions, use "$1",
"$2", etc., indicating parameters from a comma-separated list in a cell below.) Row 17 is ignored;
it may contain textual descriptions of the column'’s purpose.

Rows 18 and 19 show data, which will be combined (interpolated) with the templates in row 15, to
generate rules. If a cell contains no data, then its template is ignored. (This would mean that some
condition or action does not apply for that rule row.) Rule rows are read until there is a blank row.
Multiple RuleTables can exist in a sheet. Row 20 contains another keyword, and a value. The row
positions of keywords like this do not matter (most people put them at the top) but their column
should be the same one where the RuleTable or RuleSet keywords should appear. In our case
column C has been chosen to be significant, but any other column could be used instead.

In the above example, rules would be rendered like the following (as it uses the "ObjectType" row):

//row 18
rul e "Cheese_fans_18"
when

Per son(age=="42")
Cheese(type=="stilton")
t hen

188

Spreadsheet Syntax

list.add("A d man stilton");
end

@ Note
The constraints age=="42" and type=="stilton" are interpreted as single
constraints, to be added to the respective ObjectType in the cell above. If the cells
above were spanned, then there could be multiple constraints on one "column®.

Warning

Very large decision tables may have very large memory requirements.

6.5.4. Spreadsheet Syntax

6.5.4.1. Spreadsheet Structure

There are two types of rectangular areas defining data that is used for generating a DRL file. One,
marked by a cell labelled Rul eSet , defines all DRL items except rules. The other one may occur
repeatedly and is to the right and below a cell whose contents begin with Rul eTabl e. These areas
represent the actual decision tables, each area resulting in a set of rules of similar structure.

A Rule Set area may contain cell pairs, one below the Rul eSet cell and containing a keyword
designating the kind of value contained in the other one that follows in the same row.

The columns of a Rule Table area define patterns and constraints for the left hand sides of the
rules derived from it, actions for the consequences of the rules, and the values of individual rule
attributes. Thus, a Rule Table area should contain one or more columns, both for conditions and
actions, and an arbitrary selection of columns for rule attributes, at most one column for each of
these. The first four rows following the row with the cell marked with Rul eTabl e are earmarked
as header area, mostly used for the definition of code to construct the rules. It is any additional
row below these four header rows that spawns another rule, with its data providing for variations
in the code defined in the Rule Table header.

All keywords are case insensitive.

Only the first worksheet is examined for decision tables.

6.5.4.2. Rule Set Entries

Entries in a Rule Set area may define DRL constructs (except rules), and specify rule attributes.
While entries for constructs may be used repeatedly, each rule attribute may be given at most
once, and it applies to all rules unless it is overruled by the same attribute being defined within
the Rule Table area.

189

Chapter 6. User Guide

Entries must be given in a vertically stacked sequence of cell pairs. The first one contains a
keyword and the one to its right the value, as shown in the table below. This sequence of cell
pairs may be interrupted by blank rows or even a Rule Table, as long as the column marked by
Rul eSet is upheld as the one containing the keyword.

Table 6.5. Entries in the Rule Set area

Keyword Value Usage

RuleSet The package name for the Must be First entry.
generated DRL file. Optional,
the defaultisrul e_t abl e.

Sequential "true" or "false". If "true", then Optional, at most once. If
salience is used to ensure that omitted, no firing order is
rules fire from the top down. imposed.

EscapeQuotes "true" or "false". If "true", then Optional, at most once. If

guotation marks are escaped omitted, quotation marks are
so that they appear literally in escaped.

the DRL.

Import A comma-separated list of Optional, may be used
Java classes to import. repeatedly.

Variables Declarations of DRL globals, Optional, may be used

i.e., a type followed by a repeatedly.
variable name. Multiple global

definitions must be separated

with a comma.

Functions One or more function Optional, may be used
definitions, according to DRL repeatedly.
syntax.

Queries One or more query definitions, Optional, may be used
according to DRL syntax. repeatedly.

Declare One or more declarative types, Optional, may be used
according to DRL syntax. repeatedly.

Warning

In some locales, MS Office, LibreOffice and OpenOffice will encode a double quoth
" differently, which will cause a compilation error. The difference is often hard to
see. For example: “ A” will fail, but " A" will work.

For defining rule attributes that apply to all rules in the generated DRL file you can use any of the
entries in the following table. Notice, however, that the proper keyword must be used. Also, each
of these attributes may be used only once.

190

Spreadsheet Syntax

Important

Rule attributes specified in a Rule Set area will affect all rule assets in the same
package (not only in the spreadsheet). Unless you are sure that the spreadsheet
is the only one rule asset in the package, the recommendation is to specify rule
attributes not in a Rule Set area but in a Rule Table columns for each rule instead.

Table 6.6. Rule attribute entries in the Rule Set area

Keyword Initial Value
PRIORITY P An integer defining the
"salience” value for the
rule. Overridden by the

"Sequential” flag.

DURATION D A long integer value defining
the "duration" value for the
rule.

TIMER T A timer definition. See "Timers

and Calendars".

ENABLED B A Boolean value. "true"
enables the rule; "false"
disables the rule.

CALENDARS E A calendars definition. See
"Timers and Calendars".

NO-LOOP U A Boolean value. "true"
inhibits looping of rules due
to changes made by its
conseqguence.

LOCK-ON-ACTIVE L A Boolean value. "true" inhibits
additional activations of all
rules with this flag set within
the same ruleflow or agenda
group.

AUTO-FOCUS F A Boolean value. "true" for a
rule within an agenda group
causes activations of the rule
to automatically give the focus
to the group.

ACTIVATION-GROUP X A string identifying an
activation (or XOR) group.
Only one rule within an

191

Chapter 6. User Guide

Value

activation group will fire, i.e.,
the first one to fire cancels any
existing activations of other
rules within the same group.

A string identifying an agenda
group, which has to be
activated by giving it the
"focus"”, which is one way of
controlling the flow between
groups of rules.

Keyword Initial
AGENDA-GROUP G
RULEFLOW-GROUP R

A string identifying a rule-flow
group.

6.5.4.3. Rule Tables

All Rule Tables begin with a cell containing "RuleTable", optionally followed by a string within the
same cell. The string is used as the initial part of the name for all rules derived from this Rule
Table, with the row number appended for distinction. (This automatic naming can be overridden
by using a NAME column.) All other cells defining rules of this Rule Table are below and to the

right of this cell.

The next row defines the column type, with each column resulting in a part of the condition or
the consequence, or providing some rule attribute, the rule name or a comment. The table below
shows which column headers are available; additional columns may be used according to the table
showing rule attribute entries given in the preceding section. Note that each attribute column may
be used at most once. For a column header, either use the keyword or any other word beginning

with the letter given in the "Initial" column of these tables.

Table 6.7. Column Headers in the Rule Table

Keyword Initial

NAME N

DESCRIPTION I

Usage

the name At most one column
for the rule generated

from that row. The

default is constructed

from the text following

the RuleTable tag and

the row number.

A text, resulting in a At most one column
comment within the
generated rule.

CONDITION C

interpolated

and At least one per rule
values table

192

Spreadsheet Syntax

Keyword Initial Value Usage
for constructing a
constraint within a
pattern in a condition.

ACTION A Code snippet and At least one per rule
interpolated values for table
constructing an action
for the consequence
of the rule.

METADATA @ Code snippet and Optional, any number
interpolated values of columns
for constructing a
metadata entry for the
rule.

Given a column headed CONDITION, the cells in successive lines result in a conditional element.

e Text in the first cell below CONDITION develops into a pattern for the rule condition, with
the snippet in the next line becoming a constraint. If the cell is merged with one or more
neighbours, a single pattern with multiple constraints is formed: all constraints are combined
into a parenthesized list and appended to the text in this cell. The cell may be left blank, which
means that the code snippet in the next row must result in a valid conditional element on its own.

To include a pattern without constraints, you can write the pattern in front of the text for another
pattern.

The pattern may be written with or without an empty pair of parentheses. A "from" clause may
be appended to the pattern.

If the pattern ends with "eval”, code snippets are supposed to produce boolean expressions for
inclusion into a pair of parentheses after "eval".

» Textin the second cell below CONDITION is processed in two steps.

1. The code snippet in this cell is modified by interpolating values from cells farther down in
the column. If you want to create a constraint consisting of a comparison using "==" with
the value from the cells below, the field selector alone is sufficient. Any other comparison
operator must be specified as the last item within the snippet, and the value from the cells
below is appended. For all other constraint forms, you must mark the position for including
the contents of a cell with the symbol $par am Multiple insertions are possible by using the
symbols $1, $2, etc., and a comma-separated list of values in the cells below.

A text according to the pattern f or al | (delimiter) { snippet} is expanded by repeating the
shippet once for each of the values of the comma-separated list of values in each of the cells
below, inserting the value in place of the symbol $ and by joining these expansions by the
given delimiter. Note that the forall construct may be surrounded by other text.

193

Chapter 6. User Guide

2

. T

. If the cell in the preceding row is not empty, the completed code snippet is added to the
conditional element from that cell. A pair of parentheses is provided automatically, as well as
a separating comma if multiple constraints are added to a pattern in a merged cell.

If the cell above is empty, the interpolated result is used as is.

ext in the third cell below CONDITION is for documentation only. It should be used to indicate

the column's purpose to a human reader.

. F

rom the fourth row on, non-blank entries provide data for interpolation as described above. A

blank cell results in the omission of the conditional element or constraint for this rule.

Given a column headed ACTION, the cells in successive lines result in an action statement.

. T

. T

1

ext in the first cell below ACTION is optional. If present, it is interpreted as an object reference.
ext in the second cell below ACTION is processed in two steps.

. The code snippet in this cell is modified by interpolating values from cells farther down in the
column. For a singular insertion, mark the position for including the contents of a cell with
the symbol $par am Multiple insertions are possible by using the symbols $1, $2, etc., and a
comma-separated list of values in the cells below.

A method call without interpolation can be achieved by a text without any marker symbols.
In this case, use any non-blank entry in a row below to include the statement.

The forall construct is available here, too.

. If the first cell is not empty, its text, followed by a period, the text in the second cell and a

terminating semicolon are stringed together, resulting in a method call which is added as an
action statement for the consequence.

If the cell above is empty, the interpolated result is used as is.

« Textin the third cell below ACTION is for documentation only. It should be used to indicate the
column’s purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the action statement for this rule.

@ Note
Using $1 instead of $par amworks in most cases, but it will fail if the replacement
text contains a comma: then, only the part preceding the first comma is inserted.
Use this "abbreviation" judiciously.

Given a column headed METADATA, the cells in successive lines result in a metadata annotation
for the generated rules.

194

Spreadsheet Syntax

» Text in the first cell below METADATA is ignored.

« Textin the second cell below METADATA is subject to interpolation, as described above, using
values from the cells in the rule rows. The metadata marker character @is prefixed automatically,
and thus it should not be included in the text for this cell.

e Textin the third cell below METADATA is for documentation only. It should be used to indicate
the column's purpose to a human reader.

« From the fourth row on, non-blank entries provide data for interpolation as described above. A
blank cell results in the omission of the metadata annotation for this rule.

6.5.4.4. Examples

The various interpolations are illustrated in the following example.

Example 6.5. Interpolating cell data
If the template is Foo(bar == $paran) and the cell is 42, then the result is Foo(bar == 42).

If the template is Foo(bar < $1, baz == $2) and the cell contains 42, 43, the result will be
Foo(bar < 42, baz ==43).

The template foral | (&) {bar != $} with a cell containing 42, 43 results in bar = 42 &&
bar = 43.

The next example demonstrates the joint effect of a cell defining the pattern type and the code
shippet below it.

RuleTable Cheese fans
15 [Person
16
dge ype
17 Persons age Cheese type
18)
42 stilton
19
21 cheddar

195

Chapter 6. User Guide

This spreadsheet section shows how the Per son type declaration spans 2 columns, and thus both
constraints will appear as Person(age == ..., type == ...). Since only the field names are
present in the snippet, they imply an equality test.

In the following example the marker symbol $par amis used.

[CONDITION
Person

_|pge=="§param’

Persons age

42
The result of this column is the pattern Per son(age == "42")). You may have noticed that the
marker and the operator "==" are redundant.

The next example illustrates that a trailing insertion marker can be omitted.

[CONDITION 1
Person

Persons age

42

Here, appending the value from the cell is implied, resulting in Per son(age < "42")).

You can provide the definition of a binding variable, as in the example below. .

196

Spreadsheet Syntax

W

c: Cheese

type

Cheese type

stilton

Here, the result is c: Cheese(type == "stilton"). Note that the quotes are provided
automatically. Actually, anything can be placed in the object type row. Apart from the definition of
a binding variable, it could also be an additional pattern that is to be inserted literally.

A simple construction of an action statement with the insertion of a single value is shown below.

ACTION

list.add("$ param®);

Log

Old man stilton

The cell below the ACTION header is left blank. Using this style, anything can be placed in
the consequence, not just a single method call. (The same technique is applicable within a
CONDITION column as well.)

Below is a comprehensive example, showing the use of various column headers. It is not an error
to have no value below a column header (as in the NO-LOOP column): here, the attribute will not
be applied in any of the rules.

197

Chapter 6. User Guide

RuleSat 3/ arg.acme.insurar base
import import org acme.insurance.base.Approve, import org.acme.insurance.base. Driver
Packags org.acme.insurance.base

RuleTahle Otd Driver)

P = VRSP P

CONDITION CONDITION RULEFLOW-GROUP NO-LOOP ACTION ACTION
8 Sdriver: Driver
9 iptions) ficenceYears oriorClaims insertinew Aporave("$param”l}; system.out.println| “Sp
10 aes Terrpa Prior Claima e
1L d guy 30 1 risk asssssment Safe and matura Old driver Approved
12

13
14
15
16

Figure 6.17. Example usage of keywords for imports, headers, etc.

And, finally, here is an example of Import, Variables and Functions.

[Control Cajas[1]

Import foo.Bar, bar.Baz

Variables Parameters parametros, RulesResult resultado,
EvalDate fecha

Functions function boolean isRango(int iValor, int iRangoInicio, T
int iRangoFinal) {

if (IRangoInicio <= iValor && Valor <= iRangoFinal)
return true;

return false;

¥

function boolean isIgualTipo(TipoVO tipoVO, int
p_ftipo, boolean isMNull) {

if (tipovO == null)

return isMull;

return tipoV0.getSecuendia().intValue() == p_tipo;
¥

Figure 6.18. Example usage of keywords for functions, etc.

Multiple package names within the same cell must be separated by a comma. Also, the pairs of
type and variable names must be comma-separated. Functions, however, must be written as they
appear in a DRL file. This should appear in the same column as the "RuleSet" keyword; it could
be above, between or below all the rule rows.

@ Note

It may be more convenient to use Import, Variables, Functions and Queries
repeatedly rather than packing several definitions into a single cell.

198

Creating and integrating Spreadsheet based Decision Tables

6.5.5. Creating and integrating Spreadsheet based Decision
Tables

The API to use spreadsheet based decision tables is in the drools-decisiontables module. There
is really only one class to look at: Spreadsheet Conpi | er. This class will take spreadsheets in
various formats, and generate rules in DRL (which you can then use in the normal way). The
Spr eadsheet Conpi | er can just be used to generate partial rule files if it is wished, and assemble
it into a complete rule package after the fact (this allows the separation of technical and non-
technical aspects of the rules if needed).

To get started, a sample spreadsheet can be used as a base. Alternatively, if the plug-in is being
used (Rule Workbench IDE), the wizard can generate a spreadsheet from a template (to edit it an
xls compatible spreadsheet editor will need to be used).

‘*'fv :ﬁ;v@v%v 'gtﬂ?@?
| New Rule Project
New Rule resource
MNew Domain Specific Language
New Decision Table

1 N s

Figure 6.19. Wizard in the IDE
6.5.6. Managing Business Rules in Decision Tables

6.5.6.1. Workflow and Collaboration

Spreadsheets are well established business tools (in use for over 25 years). Decision tables lend
themselves to close collaboration between IT and domain experts, while making the business
rules clear to business analysts, it is an ideal separation of concerns.

Typically, the whole process of authoring rules (coming up with a new decision table) would be
something like:

1. Business analyst takes a template decision table (from a repository, or from IT)

2. Decision table business language descriptions are entered in the table(s)

3. Decision table rules (rows) are entered (roughly)

4. Decision table is handed to a technical resource, who maps the business language
(descriptions) to scripts (this may involve software development of course, if it is a new
application or data model)

5. Technical person hands back and reviews the modifications with the business analyst.

6. The business analyst can continue editing the rule rows as needed (moving columns around
is also fine etc).

199

Chapter 6. User Guide

7. In parallel, the technical person can develop test cases for the rules (liaising with business
analysts) as these test cases can be used to verify rules and rule changes once the system
is running.

6.5.6.2. Using spreadsheet features

Features of applications like Excel can be used to provide assistance in entering data into
spreadsheets, such as validating fields. Lists that are stored in other worksheets can be used to
provide valid lists of values for cells, like in the following diagram.

<title> Wizard in the IDE </title>

9
w

& .
—0 |
—N -
_15 |

T
—y |
J— 'III'III' —
— v‘ e
Figure 6.20.

Some applications provide a limited ability to keep a history of changes, but it is recommended to
use an alternative means of revision control. When changes are being made to rules over time,
older versions are archived (many open source solutions exist for this, such as Subversion or Git).

6.5.7. Rule Templates

Related to decision tables (but not necessarily requiring a spreadsheet) are "Rule Templates” (in
the drools-templates module). These use any tabular data source as a source of rule data -
populating a template to generate many rules. This can allow both for more flexible spreadsheets,
but also rules in existing databases for instance (at the cost of developing the template up front
to generate the rules).

With Rule Templates the data is separated from the rule and there are no restrictions on which
part of the rule is data-driven. So whilst you can do everything you could do in decision tables
you can also do the following:

 store your data in a database (or any other format)
« conditionally generate rules based on the values in the data
 use data for any part of your rules (e.g. condition operator, class name, property name)

« run different templates over the same data

200

Rule Templates

As an example, a more classic decision table is shown, but without any hidden rows for the rule
meta data (so the spreadsheet only contains the raw data to generate the rules).

Case Persons age Cheese type Log
old
gL] 42 stilton Old man stilton
Young guy
21 cheddar ¥oung man cheddar

Figure 6.21. Template data
See the Exanpl eCheese. x| s in the examples download for the above spreadsheet.

If this was a regular decision table there would be hidden rows before row 1 and between rows
1 and 2 containing rule metadata. With rule templates the data is completely separate from the
rules. This has two handy consequences - you can apply multiple rule templates to the same data
and your data is not tied to your rules at all. So what does the template look like?

1 tenpl ate header

2 age

3 type

4 |og

5

6 package org.drool s. exanpl es. t enpl at es;
7

8 global java.util.List list;

9

10 tenpl ate "cheesef ans"

11

12 rul e "Cheese fans_@row. r omNunber}"
13 when

14 Person(age == @ age})

15 Cheese(type == "@type}")

16 then

17 list.add("@]Il og}");

18 end

19

20 end tenpl ate

Annotations to the preceding program listing:

 Line 1: All rule templates start with t enpl at e header .

201

Chapter 6. User Guide

« Lines 2-4: Following the header is the list of columns in the order they appear in the data. In
this case we are calling the first column age, the second t ype and the third | og.

* Line 5: An empty line signifies the end of the column definitions.

 Lines 6-9: Standard rule header text. This is standard rule DRL and will appear at the top of the
generated DRL. Put the package statement and any imports and global and function definitions
into this section.

e Line 10: The keyword t enpl at e signals the start of a rule template. There can be more than
one template in a template file, but each template should have a unique name.

e Lines 11-18: The rule template - see below for details.
 Line 20: The keywords end t enpl at e signify the end of the template.

The rule templates rely on MVEL to do substitution using the syntax @{token_name}. There is
currently one built-in expression, @{row.rowNumber} which gives a unique number for each row of
data and enables you to generate unique rule names. For each row of data a rule will be generated
with the values in the data substituted for the tokens in the template. With the example data above
the following rule file would be generated:

package org. drool s. exanpl es. t enpl at es;
gl obal java.util.List Iist;

rul e "Cheese fans_1"

when
Person(age == 42)
Cheese(type == "stilton")
t hen
list.add("A d man stilton");
end

rul e "Cheese fans_2"

when

Per son(age == 21)

Cheese(type == "cheddar")
t hen

|'ist.add("Young man cheddar");
end

The code to run this is simple:

Deci si onTabl eConfi gurati on dtabl econfiguration =

202

Logging

Know edgeBui | der Fact ory. newDeci si onTabl eConfi guration();
dt abl econfi gurati on. set | nput Type(Deci si onTabl el nput Type. XLS);

Knowl edgeBui | der kbuil der = Knowl edgeBui | der Fact ory. newkKnow edgeBui | der () ;

kbui | der. add(ResourceFactory. newCl assPat hResour ce(get Spreadsheet Nane(),
getd ass()),
Resour ceType. DTABLE
dt abl econfiguration);

6.6. Logging

One way to illuminate the black box that is a rule engine, is to play with the logging level.

Everything is logged to SLF4J [http://www.slf4j.org/], which is a simple logging facade that
can delegate any log to Logback, Apache Commons Logging, Log4j or java.util.logging. Add a
dependency to the logging adaptor for your logging framework of choice. If you're not using any
logging framework yet, you can use Logback by adding this Maven dependency:

<dependency>
<groupl d>ch. qos. | ogback</ gr oupl d>
<artifactld>l ogback-cl assic</artifactld>
<ver si on>1. x</ ver si on>

</ dependency>

@ Note
If you're developing for an ultra light environment, use sl f 4j - nop or sl f 4j - si npl e
instead.

Configure the logging level on the package or g. dr ool s. For example:

In Logback, configure it in your | ogback. xm file:

<configuration>

<l ogger nane="org. drool s" | evel ="debug"/>

<configuration>

In Log4J, configure it in your | og4j . xm file:

203

http://www.slf4j.org/
http://www.slf4j.org/

Chapter 6. User Guide

<l 0g4j : configuration xmns:|og4j="http://]akarta.apache.org/log4j/">
<cat egory nane="org. drool s">

<priority val ue="debug" />
</ cat egory>

</l og4j: configuration>

204

Chapter 7.

Chapter 7. Rule Language
Reference

7.1. Overview

Drools has a "native" rule language. This format is very light in terms of punctuation, and supports
natural and domain specific languages via "expanders" that allow the language to morph to your
problem domain. This chapter is mostly concerted with this native rule format. The diagrams used
to present the syntax are known as "railroad" diagrams, and they are basically flow charts for the
language terms. The technically very keen may also refer to DRL. g which is the Antlr3 grammar
for the rule language. If you use the Rule Workbench, a lot of the rule structure is done for you with
content assistance, for example, type "ru" and press ctrl+space, and it will build the rule structure
for you.

7.1.1. A rule file

A rule file is typically a file with a .drl extension. In a DRL file you can have multiple rules, queries
and functions, as well as some resource declarations like imports, globals and attributes that
are assigned and used by your rules and queries. However, you are also able to spread your
rules across multiple rule files (in that case, the extension .rule is suggested, but not required) -
spreading rules across files can help with managing large numbers of rules. A DRL file is simply
a text file.

The overall structure of a rule file is:

Example 7.1. Rules file

package package- nane

i mports

gl obal s

functions

queries

rul es

The order in which the elements are declared is not important, except for the package name that,

if declared, must be the first element in the rules file. All elements are optional, so you will use
only those you need. We will discuss each of them in the following sections.

205

Chapter 7. Rule Language Refe...

7.1.2. What makes a rule

For the inpatients, just as an early view, a rule has the following rough structure:

rule "nane"
attributes
when
LHS
t hen
RHS
end

It's really that simple. Mostly punctuation is not needed, even the double quotes for "name" are
optional, as are newlines. Attributes are simple (always optional) hints to how the rule should
behave. LHS is the conditional parts of the rule, which follows a certain syntax which is covered
below. RHS is basically a block that allows dialect specific semantic code to be executed.

It is important to note that white space is not important, except in the case of domain specific
languages, where lines are processed one by one and spaces may be significant to the domain
language.

7.2. Keywords

Drools 5 introduces the concept of hard and soft keywords.

Hard keywords are reserved, you cannot use any hard keyword when naming your domain objects,
properties, methods, functions and other elements that are used in the rule text.

Here is the list of hard keywords that must be avoided as identifiers when writing rules:

e true
e fal se
e null

Soft keywords are just recognized in their context, enabling you to use these words in any other
place if you wish, although, it is still recommended to avoid them, to avoid confusions, if possible.
Here is a list of the soft keywords:

* | ock-on-active

* date-effective

e date-expires

* no-| oop

206

Keywords

aut o- f ocus
activati on-group
agenda- gr oup
rul ef | ow group
entry- poi nt
duration
package

i mport

di al ect
sal i ence
enabl ed
attributes
rule

ext end

when

then

tenpl ate
query

decl are
function

gl obal

eval

not

or
and

exi sts

207

Chapter 7. Rule Language Refe...

e forall

e accumulate
 collect

o from

e action

* reverse

* result

* end

e over

* init

Of course, you can have these (hard and soft) words as part of a method name in camel case,
like notSomething() or accumulateSomething() - there are no issues with that scenario.

Although the 3 hard keywords above are unlikely to be used in your existing domain models, if
you absolutely need to use them as identifiers instead of keywords, the DRL language provides
the ability to escape hard keywords on rule text. To escape a word, simply enclose it in grave
accents, like this:

Hol i day(“true’ == "yes") // please note that Drools will resolve that reference
to the nethod Holiday.isTrue()

7.3. Comments

Comments are sections of text that are ignored by the rule engine. They are stripped out when
they are encountered, except inside semantic code blocks, like the RHS of a rule.

7.3.1. Single line comment

To create single line comments, you can use '//'. The parser will ignore anything in the line after
the comment symbol. Example:

rule "Testing Comments"
when

/Il this is a single |line conment

eval (true) // this is a comment in the same |line of a pattern
t hen

/Il this is a comment inside a semantic code bl ock

208

Multi-line comment

end

A Warning

'#' for comments has been removed.

7.3.2. Multi-line comment

O~ —0

Figure 7.1. Multi-line comment

Multi-line comments are used to comment blocks of text, both in and outside semantic code blocks.
Example:

rule "Test Multi-Iline Coments"
when
/* this is a multi-line coment
inthe left hand side of a rule */
eval (true)
t hen
/* and this is a multi-line coment
in the right hand side of a rule */
end

7.4. Error Messages

Drools 5 introduces standardized error messages. This standardization aims to help users to find
and resolve problems in a easier and faster way. In this section you will learn how to identify and
interpret those error messages, and you will also receive some tips on how to solve the problems
associated with them.

7.4.1. Message format

The standardization includes the error message format and to better explain this format, let's use
the following example:

[ERR 101] Line 6:35 no wiable alternative at input *)* in rule “test rule® in pattern WorkerPerformanceContext

1st Z2nd

Block Block 3rd Block 4th Block 5th Block

Figure 7.2. Error Message Format

209

Chapter 7. Rule Language Refe...

1st Block: This area identifies the error code.
2nd Block: Line and column information.
3rd Block: Some text describing the problem.

4th Block: This is the first context. Usually indicates the rule, function, template or query where
the error occurred. This block is not mandatory.

5th Block: Identifies the pattern where the error occurred. This block is not mandatory.
7.4.2. Error Messages Description

7.4.2.1. 101: No viable alternative

Indicates the most common errors, where the parser came to a decision point but couldn't identify
an alternative. Here are some examples:

Example 7.2.

rul e one
when
exi sts Foo()
exits Bar()
t hen
end

& W2 ®RE

The above example generates this message:

* [ERR 101] Line 4:4 no viable alternative at input 'exits' in rule one

At first glance this seems to be valid syntax, but it is not (exits != exists). Let's take a look at next
example:

Example 7.3.

package org. drool s. exanpl es;
rul e
when
oj ect ()
t hen
Systemout.println("A RHS");

T2 RIRE

end

Now the above code generates this message:

210

Error Messages Description

* [ERR 101] Line 3:2 no viable alternative at input "WHEN'

This message means that the parser encountered the token WHEN, actually a hard keyword, but
it's in the wrong place since the the rule name is missing.

The error "no viable alternative" also occurs when you make a simple lexical mistake. Here is a
sample of a lexical problem:

Example 7.4.

1: rule sinple_rule

2: when

3: St udent (na == "Andy)
4 t hen

5: end

The above code misses to close the quotes and because of this the parser generates this error
message:

* [ERR 101] Line 0:-1 no viable alternative at input '<eof>" in rule simple_rule in pattern Student

@ Note
Usually the Line and Column information are accurate, but in some cases (like
unclosed quotes), the parser generates a 0:-1 position. In this case you should
check whether you didn't forget to close quotes, apostrophes or parentheses.

7.4.2.2. 102: Mismatched input

This error indicates that the parser was looking for a particular symbol that it didn't #nd at the
current input position. Here are some samples:

Example 7.5.

1: rule sinple_rule
: when
3: foo3 : Bar(

The above example generates this message:

* [ERR 102] Line 0:-1 mismatched input '<eof>' expecting)" in rule simple_rule in pattern Bar

211

Chapter 7. Rule Language Refe...

To fix this problem, it is necessary to complete the rule statement.

The following code generates more than one error message:

Example 7.6.

1. package org. drool s. exanpl es;

2:

3: rule "Avoid NPE on wong syntax"

4: when

5: not (Cheese((type == "stilton", price == 10) || (type == "brie",
price == 15)) from $cheeselLi st)

6: t hen

7: Systemout. println("OK");

8: end

These are the errors associated with this source:

* [ERR 102] Line 5:36 mismatched input '," expecting)" in rule "Avoid NPE on wrong syntax" in
pattern Cheese

* [ERR 101] Line 5:57 no viable alternative at input 'type' in rule "Avoid NPE on wrong syntax"

* [ERR 102] Line 5:106 mismatched input *)' expecting 'then'in rule "Avoid NPE on wrong syntax”

Note that the second problem is related to the first. To fix it, just replace the commas (’,") by AND
operator ('&&").

7.4.2.3. 103: Failed predicate

A validating semantic predicate evaluated to false. Usually these semantic predicates are used to
identify soft keywords. This sample shows exactly this situation:

Error Messages Description

Example 7.7.

package nesti ng;
di al ect "nvel "

import org.drools.conpiler.Person
i mport org.drools.conpiler.Address

f dsf dsfds

PRI E

rule "test sonething"
when
p: Person(nane=="M chael ")
t hen
p. nane = "ot her";
System out . printl n(p. nane) ;
end

e o o
BHEERRES

With this sample, we get this error message:

* [ERR 103] Line 7:0 rule rule_key' failed predicate:
{(validateldentifierKey(DroolsSoftKeywords.RULE))}? in rule

The fdsfdsfds text is invalid and the parser couldn't identify it as the soft keyword r ul e.

7.4.2.4. 104: Trailing semi-colon not allowed

This error is associated with the eval clause, where its expression may not be terminated with
a semicolon. Check this example:

Example 7.8.

rule sinple_rule
when
eval (abc();)
t hen
end

e @R E

213

Chapter 7. Rule Language Refe...

Due to the trailing semicolon within eval, we get this error message:

* [ERR 104] Line 3:4 trailing semi-colon not allowed in rule simple_rule

This problem is simple to fix: just remove the semi-colon.

7.4.2.5. 105: Early Exit

The recognizer came to a subrule in the grammar that must match an alternative at least once,
but the subrule did not match anything. Simply put: the parser has entered a branch from where
there is no way out. This example illustrates it:

Example 7.9.

1: tenplate test_error
2. aa s 11;
3: end

This is the message associated to the above sample:

* [ERR 105] Line 2:2 required (...)+ loop did not match anything at input ‘aa’ in template test_error

To fix this problem it is necessary to remove the numeric value as it is neither a valid data type
which might begin a new template slot nor a possible start for any other rule file construct.

7.4.3. Other Messages

Any other message means that something bad has happened, so please contact the development
team.

7.5. Package

A package is a collection of rules and other related constructs, such as imports and globals. The
package members are typically related to each other - perhaps HR rules, for instance. A package
represents a namespace, which ideally is kept unique for a given grouping of rules. The package
name itself is the namespace, and is not related to files or folders in any way.

It is possible to assemble rules from multiple rule sources, and have one top level package
configuration that all the rules are kept under (when the rules are assembled). Although, it is not
possible to merge into the same package resources declared under different names. A single
Rulebase may, however, contain multiple packages built on it. A common structure is to have
all the rules for a package in the same file as the package declaration (so that is it entirely self-
contained).

214

import

The following railroad diagram shows all the components that may make up a package. Note that
a package must have a namespace and be declared using standard Java conventions for package
names; i.e., no spaces, unlike rule names which allow spaces. In terms of the order of elements,
they can appear in any order in the rule file, with the exception of the package statement, which
must be at the top of the file. In all cases, the semicolons are optional.

B S S T

function 3
L I
query
[|
)
EQF -

Figure 7.3. package

Notice that any rule attribute (as described the section Rule Attributes) may also be written at
package level, superseding the attribute's default value. The modified default may still be replaced
by an attribute setting within a rule.

7.5.1. import

il
e ¥ .

Ot o J— L0

Figure 7.4. import

Import statements work like import statements in Java. You need to specify the fully qualified paths
and type names for any objects you want to use in the rules. Drools automatically imports classes
from the Java package of the same name, and also from the package j ava. | ang.

215

Chapter 7. Rule Language Refe...

7.5.2. global

@
O’['glnbal'_] b[class }b[name]J @

Figure 7.5. global

With gl obal you define global variables. They are used to make application objects available
to the rules. Typically, they are used to provide data or services that the rules use, especially
application services used in rule consequences, and to return data from the rules, like logs or
values added in rule consequences, or for the rules to interact with the application, doing callbacks.
Globals are not inserted into the Working Memory, and therefore a global should never be used to
establish conditions in rules except when it has a constantimmutable value. The engine cannot be
notified about value changes of globals and does not track their changes. Incorrect use of globals
in constraints may yield surprising results - surprising in a bad way.

If multiple packages declare globals with the same identifier they must be of the same type and
all of them will reference the same global value.

In order to use globals you must:

1. Declare your global variable in your rules file and use it in rules. Example:

gl obal java.util.List nyd obal List;

rule "Using a gl obal "
when
eval (true)
t hen
nmyd obal List.add("Hello World");
end

2. Set the global value on your working memory. It is a best practice to set all global values before
asserting any fact to the working memory. Example:

List list = new ArrayList();
Ki eSessi on ki eSessi on = ki ebase. newKi eSessi on() ;
ki eSessi on. setd obal ("nmyd obal List", list);

Note that these are just named instances of objects that you pass in from your application to
the working memory. This means you can pass in any object you want: you could pass in a

216

Function

service locator, or perhaps a service itself. With the new f r omelement it is now common to pass
a Hibernate session as a global, to allow f r omto pull data from a named Hibernate query.

One example may be an instance of a Email service. In your integration code that is calling the
rule engine, you obtain your emailService object, and then set it in the working memory. In the
DRL, you declare that you have a global of type EmailService, and give it the name "email". Then
in your rule consequences, you can use things like email.sendSMS(number, message).

Globals are not designed to share data between rules and they should never be used for that
purpose. Rules always reason and react to the working memory state, so if you want to pass data
from rule to rule, assert the data as facts into the working memory.

It is strongly discouraged to set or change a global value from inside your rules. We recommend
to you always set the value from your application using the working memory interface.

7.6. Function

)
e — \
G- —m

o

Figure 7.6. function

Functions are a way to put semantic code in your rule source file, as opposed to in normal Java
classes. They can't do anything more than what you can do with helper classes. (In fact, the
compiler generates the helper class for you behind the scenes.) The main advantage of using
functions in a rule is that you can keep the logic all in one place, and you can change the functions
as needed (which can be a good or a bad thing). Functions are most useful for invoking actions
on the consequence (t hen) part of a rule, especially if that particular action is used over and over
again, perhaps with only differing parameters for each rule.

A typical function declaration looks like:

function String hello(String nane) {

217

Chapter 7. Rule Language Refe...

return "Hello "+nane+"!";

Note that the f unct i on keyword is used, even though its not really part of Java. Parameters to
the function are defined as for a method, and you don't have to have parameters if they are not
needed. The return type is defined just like in a regular method.

Alternatively, you could use a static method in a helper class, e.g., Foo. hel | o() . Drools supports
the use of function imports, so all you would need to do is:

i mport function ny. package. Foo. hel |l o

Irrespective of the way the function is defined or imported, you use a function by calling it by its
name, in the consequence or inside a semantic code block. Example:

rule "using a static function"
when
eval (true)
t hen
Systemout.println(hello("Bob"));
end

7.7. Type Declaration

O S G S G
I

Figure 7.7. meta_data

218

O

Declaring New Types

—-[‘declars’]—-[name

.
F o Rt
I |

I

rmata_data

Figure 7.8. type_declaration

Type declarations have two main goals in the rules engine: to allow the declaration of new types,
and to allow the declaration of metadata for types.

Declaring new types: Drools works out of the box with plain Java objects as facts. Sometimes,
however, users may want to define the model directly to the rules engine, without worrying about
creating models in a lower level language like Java. At other times, there is a domain model
already built, but eventually the user wants or needs to complement this model with additional
entities that are used mainly during the reasoning process.

Declaring metadata: facts may have meta information associated to them. Examples of meta
information include any kind of data that is not represented by the fact attributes and is consistent
among all instances of that fact type. This meta information may be queried at runtime by the
engine and used in the reasoning process.

7.7.1. Declaring New Types

To declare a new type, all you need to do is use the keyword decl ar e, followed by the list of fields,
and the keyword end. A new fact must have a list of fields, otherwise the engine will look for an
existing fact class in the classpath and raise an error if not found.

219

Chapter 7. Rule Language Refe...

Example 7.10. Declaring a new fact type: Address

decl are Address
nunber : int
streetName : String
city : String

end

The previous example declares a new fact type called Addr ess. This fact type will have three
attributes: nunber, street Nane and ci ty. Each attribute has a type that can be any valid Java
type, including any other class created by the user or even other fact types previously declared.

For instance, we may want to declare another fact type Per son:

Example 7.11. declaring a new fact type: Person

decl are Person
name : String
dateOBirth : java.util.Date
address : Address

end

As we can see on the previous example, dat eOf Bi rt h is of type j ava. uti | . Dat e, from the Java
API, while addr ess is of the previously defined fact type Address.

You may avoid having to write the fully qualified name of a class every time you write it by using
the i nport clause, as previously discussed.

Example 7.12. Avoiding the need to use fully qualified class names by using
import

i mport java.util.Date

decl are Person
name : String
dateOBirth : Date
address : Address
end

When you declare a new fact type, Drools will, at compile time, generate bytecode that implements
a Java class representing the fact type. The generated Java class will be a one-to-one Java Bean
mapping of the type definition. So, for the previous example, the generated Java class would be:

220

Declaring Metadata

Example 7.13. generated Java class for the previous Person fact type
declaration

public class Person inplenents Serializable {
private String name;
private java.util.Date dateOfBirth
private Address address;

[/ enpty constructor
public Person() {...}

/1 constructor with all fields
public Person(String name, Date dateO'Birth, Address address) {...}

/1 if keys are defined, constructor with keys
public Person(...keys...) {...}

/'l getters and setters
/'l equal s/ hashCode
/1 toString

Since the generated class is a simple Java class, it can be used transparently in the rules, like
any other fact.

Example 7.14. Using the declared types in rules

rule "Using a decl ared Type"
when
$p : Person(nanme == "Bob")
t hen
/1 Insert Mark, who is Bob's nate.
Person mark = new Person();
mar k. set Nane(" Mar k") ;
insert(mark);
end

7.7.2. Declaring Metadata

Metadata may be assigned to several different constructions in Drools: fact types, fact attributes
and rules. Drools uses the at sign ('@") to introduce metadata, and it always uses the form:

@ret adat a_key(netadata_val ue)

221

Chapter 7. Rule Language Refe...

The parenthesized metadata_value is optional.

For instance, if you want to declare a metadata attribute like aut hor, whose value is Bob, you
could simply write:

Example 7.15. Declaring a metadata attribute

@ut hor (Bob)

Drools allows the declaration of any arbitrary metadata attribute, but some will have special
meaning to the engine, while others are simply available for querying at runtime. Drools allows the
declaration of metadata both for fact types and for fact attributes. Any metadata that is declared
before the attributes of a fact type are assigned to the fact type, while metadata declared after an
attribute are assigned to that particular attribute.

Example 7.16. Declaring metadata attributes for fact types and attributes

i mport java.util.Date

decl are Person
@ut hor (Bob)
@lat ef Creation(01- Feb-2009)

name : String @ey @maxLength(30)
dateOBirth : Date
address : Address

end

In the previous example, there are two metadata items declared for the fact type (@ut hor and
@lat eOX Cr eat i on) and two more defined for the name attribute (@ey and @raxLengt h). Please
note that the @ey metadata has no required value, and so the parentheses and the value were
omitted.:

7.7.2.1. Predefined class level annotations

Some annotations have predefined semantics that are interpreted by the engine. The following is
a list of some of these predefined annotations and their meaning.

7.7.2.1.1. @role(<fact | event>)

The @role annotation defines how the engine should handle instances of that type: either as
regular facts or as events. It accepts two possible values:

« fact : this is the default, declares that the type is to be handled as a regular fact.

« event : declares that the type is to be handled as an event.

222

Declaring Metadata

The following example declares that the fact type StockTick in a stock broker application is to be
handled as an event.

Example 7.17. declaring a fact type as an event

i mport sone. package. St ockTi ck

decl are StockTick
@ol e(event)
end

The same applies to facts declared inline. If StockTick was a fact type declared in the DRL itself,
instead of a previously existing class, the code would be:

Example 7.18. declaring a fact type and assigning it the event role

decl are St ockTi ck
@ol e(event)

datetinme : java.util.Date
symbol : String
price : double

end

7.7.2.1.2. @typesafe(<boolean>)

By default all type declarations are compiled with type safety enabled; @typesafe(false) provides
a means to override this behaviour by permitting a fall-back, to type unsafe evaluation where all
constraints are generated as MVEL constraints and executed dynamically. This can be important
when dealing with collections that do not have any generics or mixed type collections.

7.7.2.1.3. @timestamp(<attribute name>)

Every event has an associated timestamp assigned to it. By default, the timestamp for a given
event is read from the Session Clock and assigned to the event at the time the event is inserted
into the working memory. Although, sometimes, the event has the timestamp as one of its own
attributes. In this case, the user may tell the engine to use the timestamp from the event's attribute
instead of reading it from the Session Clock.

@i nmestanp(<attributeNane>)

To tell the engine what attribute to use as the source of the event's timestamp, just list the attribute
name as a parameter to the @timestamp tag.

223

Chapter 7. Rule Language Refe...

Example 7.19. declaring the VoiceCall timestamp attribute

decl are Voi ceCal |

@ol e(event)

@i nestanp(cal |l DateTinme)
end

7.7.2.1.4. @duration(<attribute name>)

Drools supports both event semantics: point-in-time events and interval-based events. A point-in-
time event is represented as an interval-based event whose duration is zero. By default, all events
have duration zero. The user may attribute a different duration for an event by declaring which
attribute in the event type contains the duration of the event.

@lur ation(<attributeName>)

So, for our VoiceCall fact type, the declaration would be:

Example 7.20. declaring the VoiceCall duration attribute

decl are Voi ceCal |
@ol e(event)
@i nestanp(cal |l DateTi nme)
@luration(callDuration)
end

7.7.2.1.5. @expires(<time interval>)

Important

This tag is only considered when running the engine in STREAM mode. Also,
additional discussion on the effects of using this tag is made on the Memory
Management section. It is included here for completeness.

Events may be automatically expired after some time in the working memory. Typically this
happens when, based on the existing rules in the knowledge base, the event can no longer match
and activate any rules. Although, it is possible to explicitly define when an event should expire.

@xpires(<timeOfset>)

224

Declaring Metadata

The value of timeOffset is a temporal interval in the form:

[#d] [#h] [#n] [#s] [#[8]]

Where [] means an optional parameter and # means a numeric value.

So, to declare that the VoiceCall facts should be expired after 1 hour and 35 minutes after they
are inserted into the working memory, the user would write:

Example 7.21. declaring the expiration offset for the VoiceCall events

decl are Voi ceCal |
@ol e(event)
@i nmestanp(call DateTine)
@lur ation(callDuration)
@xpires(1h35m)

end

The @expires policy will take precedence and override the implicit expiration offset calculated
from temporal constraints and sliding windows in the knowledge base.

7.7.2.1.6. @propertyChangeSupport

Facts that implement support for property changes as defined in the Javabean(tm) spec, now can
be annotated so that the engine register itself to listen for changes on fact properties. The boolean
parameter that was used in the insert() method in the Drools 4 API is deprecated and does not
exist in the drools-api module.

Example 7.22. @propertyChangeSupport

decl are Person
@r oper t yChangeSuppor t
end

7.7.2.1.7. @propertyReactive
Make this type property reactive. See Fine grained property change listeners section for details.
7.7.2.2. Predefined attribute level annotations

As noted before, Drools also supports annotations in type attributes. Here is a list of predefined
attribute annotations.

225

Chapter 7. Rule Language Refe...

7.7.2.2.1. @key

Declaring an attribute as a key attribute has 2 major effects on generated types:

1. The attribute will be used as a key identifier for the type, and as so, the generated class
will implement the equals() and hashCode() methods taking the attribute into account when
comparing instances of this type.

2. Drools will generate a constructor using all the key attributes as parameters.
For instance:

Example 7.23. example of @key declarations for a type

decl are Person
firstName : String @key
| ast Nane : String @ey
age : int

end

For the previous example, Drools will generate equals() and hashCode() methods that will check
the firstName and lastName attributes to determine if two instances of Person are equal to each
other, but will not check the age attribute. It will also generate a constructor taking firstName and
lastName as parameters, allowing one to create instances with a code like this:

Example 7.24. creating an instance using the key constructor

Person person = new Person("John", "Doe");

7.7.2.2.2. @position
Patterns support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name == "mark") can be rewritten as Person("mark";).
The semicolon ';' is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese
name : String

226

Declaring Metadata

shop : String
price : int
end

The default order is the declared order, but this can be overridden using @position

decl are Cheese
name : String @osition(l)
shop : String @osition(2)
price : int @osition(0)
end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces of methods yet.

Example patterns, with two constraints and a binding. Remember semicolon ;' is used to
differentiate the positional section from the named argument section. Variables and literals and
expressions using just literals are supported in positional arguments, but not variables.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

@Position is inherited when beans extend each other; while not recommended, two fields may
have the same @position value, and not all consecutive values need be declared. If a @position
is repeated, the conflict is solved using inheritance (fields in the superclass have the precedence)
and the declaration order. If a @position value is missing, the first field without an explicit @ position
(if any) is selected to fill the gap. As always, conflicts are resolved by inheritance and declaration
order.

decl are Cheese
nanme : String
shop : String @osition(2)
price : int @osition(0)
end

decl are SeasonedCheese extends Cheese
year : Date @osition(0)
origin : String @osition(6)
country : String

227

Chapter 7. Rule Language Refe...

end

In the example, the field order would be : price (@position 0 in the superclass), year (@position
0 in the subclass), name (first field with no @position), shop (@position 2), country (second field
without @position), origin.

7.7.3. Declaring Metadata for Existing Types

Drools allows the declaration of metadata attributes for existing types in the same way as when
declaring metadata attributes for new fact types. The only difference is that there are no fields
in that declaration.

For instance, if there is a class org.drools.examples.Person, and one wants to declare metadata
for it, it's possible to write the following code:

Example 7.25. Declaring metadata for an existing type

i nport org.drools. exanpl es. Person

decl are Person

@ut hor (Bob)

@lat e Creati on(01- Feb-2009)
end

Instead of using the import, it is also possible to reference the class by its fully qualified name,
but since the class will also be referenced in the rules, it is usually shorter to add the import and
use the short class name everywhere.

Example 7.26. Declaring metadata using the fully qualified class name

decl are org. drool s. exanpl es. Per son
@ut hor (Bob)
@lat e Creati on(01- Feb-2009)
end

7.7.4. Parametrized constructors for declared types

Generate constructors with parameters for declared types.

Example: for a declared type like the following:

decl are Person
firstName : String @key

228

Non Typesafe Classes

| ast Nane : String @ey
age : int
end

The compiler will implicitly generate 3 constructors: one without parameters, one with the @key
fields, and one with all fields.

Person() // paraneterless constructor
Person(String firstNane, String |astName)
Person(String firstNanme, String |astNane, int age)

7.7.5. Non Typesafe Classes

@typesafe(<boolean>) has been added to type declarations. By default all type declarations are
compiled with type safety enabled; @typesafe(false) provides a means to override this behaviour
by permitting a fall-back, to type unsafe evaluation where all constraints are generated as MVEL
constraints and executed dynamically. This can be important when dealing with collections that
do not have any generics or mixed type collections.

7.7.6. Accessing Declared Types from the Application Code

Declared types are usually used inside rules files, while Java models are used when sharing the
model between rules and applications. Although, sometimes, the application may need to access
and handle facts from the declared types, especially when the application is wrapping the rules
engine and providing higher level, domain specific user interfaces for rules management.

In such cases, the generated classes can be handled as usual with the Java Reflection API, but,
as we know, that usually requires a lot of work for small results. Therefore, Drools provides a
simplified API for the most common fact handling the application may want to do.

The first important thing to realize is that a declared fact will belong to the package
where it was declared. So, for instance, in the example below, Person will belong to the
or g. dr ool s. exanpl es package, and so the fully qualified name of the generated class will be
org. drool s. exanpl es. Per son.

Example 7.27. Declaring a type in the org.drools.examples package

package org. drool s. exanpl es
i mport java.util.Date

decl are Person
name : String
dateOfBirth : Date
address : Address

229

Chapter 7. Rule Language Refe...

end

Declared types, as discussed previously, are generated at knowledge base compilation time, i.e.,
the application will only have access to them at application run time. Therefore, these classes are
not available for direct reference from the application.

Drools then provides an interface through which users can handle declared types from the
application code: or g. dr ool s. def i ni ti on. t ype. Fact Type. Through this interface, the user can
instantiate, read and write fields in the declared fact types.

Example 7.28. Handling declared fact types through the API

/'l get a reference to a knowl edge base with a decl ared type:
Ki eBase kbase = ...

/1l get the declared Fact Type
Fact Type personType = kbase. get Fact Type("org. drool s. exanpl es",
"Person");

/1l handl e the type as necessary:
/'l create instances:
hj ect bob = personType. new nstance();

/1 set attributes val ues

per sonType. set (bob,
"nane",
"Bob");

per sonType. set (bob,
“age”,
42);

/1 insert fact into a session
Ki eSessi on ksession = ...
ksession.insert(bob);
ksession.fireAl |l Rul es();

/'l read attributes
String nane = personType.get(bob, "nane");
int age = personType.get(bob, "age");

The API also includes other helpful methods, like setting all the attributes at once, reading values
from a Map, or reading all attributes at once, into a Map.

Although the API is similar to Java reflection (yet much simpler to use), it does not use reflection
underneath, relying on much more performant accessors implemented with generated bytecode.

230

Type Declaration 'extends’

7.7.7. Type Declaration 'extends'

Type declarations now support 'extends' keyword for inheritance
In order to extend a type declared in Java by a DRL declared subtype, repeat the supertype in
a declare statement without any fields.
b org. peopl e. Person
decl are Person end
decl are Student extends Person
school : String

end

decl are LongTer nf5t udent extends Student

years : int
course : String
end
7.7.8. Traits

WARNING : this feature is still experimental and subject to changes

The same fact may have multiple dynamic types which do not fit naturally in a class hierarchy.
Traits allow to model this very common scenario. A trait is an interface that can be applied (and
eventually removed) to an individual object at runtime. To create a trait rather than a traditional
bean, one has to declare them explicitly as in the following example:

Example 7.29.

declare trait Col denCust oner
/1 fields will map to getters/setters

code : String

bal ance : long

di scount : int

maxExpense : | ong
end

At runtime, this declaration results in an interface, which can be used to write patterns, but can
not be instantiated directly. In order to apply a trait to an object, we provide the new don keyword,
which can be used as simply as this:

231

Chapter 7. Rule Language Refe...

Example 7.30.
when

$c : Custoner()
t hen

CGol denCust omer gc = don($c, Col denCustoner.class);
end

when a core object dons a trait, a proxy class is created on the fly (one such class will be generated
lazily for each coreftrait class combination). The proxy instance, which wraps the core object and
implements the trait interface, is inserted automatically and will possibly activate other rules. An
immediate advantage of declaring and using interfaces, getting the implementation proxy for free
from the engine, is that multiple inheritance hierarchies can be exploited when writing rules. The
core classes, however, need not implement any of those interfaces statically, also facilitating the
use of legacy classes as cores. In fact, any object can don a trait, provided that they are declared
as @Traitable. Notice that this annotation used to be optional, but now is mandatory.

Example 7.31.

i mport org.drools.core.factnodel .traits. Traitable;
decl are Custoner

@raitabl e
code : String
bal ance : | ong

end

The only connection between core classes and trait interfaces is at the proxy level: a trait is not
specifically tied to a core class. This means that the same trait can be applied to totally different
objects. For this reason, the trait does not transparently expose the fields of its core object. So,
when writing a rule using a trait interface, only the fields of the interface will be available, as usual.
However, any field in the interface that corresponds to a core object field, will be mapped by the
proxy class:

Example 7.32.
when

$o: Orderlten($p : price, $code : cust Code)

$c: Col denCustonmer(code == $code, $a : bal ance, $d: discount)
t hen

$c. set Bal ance($a - $p*$d);
end

232

Traits

In this case, the code and balance would be read from the underlying Customer object. Likewise,
the setAccount will modify the underlying object, preserving a strongly typed access to the data
structures. A hard field must have the same name and type both in the core class and all donned
interfaces. The name is used to establish the mapping: if two fields have the same name, then they
must also have the same declared type. The annotation @org.drools.core.factmodel.traits.Alias
allows to relax this restriction. If an @Alias is provided, its value string will be used to resolve
mappings instead of the original field name. @Alias can be applied both to traits and core beans.

Example 7.33.

i nport org.drools.core.factnodel .traits.*;
declare trait Gol denCust oner

bal ance : long @\ ias("org.acne.foo.accountBal ance")
end

decl are Person

@raitable

name : String

savings : long @\ ias("org.acne.foo.accountBal ance")
end

when

Col denCust oner (bal ance > 1000) // will react to new Person(2000)
t hen
end

More work is being done on reaxing this constraint (see the experimental section on "logical"
traits later). Now, one might wonder what happens when a core class does NOT provide the
implementation for a field defined in an interface. We call hard fields those trait fields which are also
core fields and thus readily available, while we define soft those fields which are NOT provided
by the core class. Hidden fields, instead, are fields in the core class not exposed by the interface.

So, while hard field management is intuitive, there remains the problem of soft and hidden fields.
Hidden fields are normally only accessible using the core class directly. However, the "fields" Map
can be used on a trait interface to access a hidden field. If the field can't be resolved, null will be
returned. Notice that this feature is likely to change in the future.

Example 7.34.

when

$sc : Col denCustomer(fields["age"] > 18) [// age is declared by the
underlying core class, but not by CGol denCust oner
t hen

233

Chapter 7. Rule Language Refe...

Soft fields, instead, are stored in a Map-like data structure that is specific to each core object
and referenced by the proxy(es), so that they are effectively shared even when an object dons
multiple traits.

Example 7.35.

when
$sc : Col denCustoner($c : code, // hard getter
$nmaxExpense : maxExpense > 1000 // soft getter
)

t hen
$sc.setDiscount(...); // soft setter
end

A core object also holds a reference to all its proxies, so that it is possible to track which type(s)
have been added to an object, using a sort of dynamic "instanceof" operator, which we called isA.
The operator can accept a String, a class literal or a list of class literals. In the latter case, the
constraint is satisfied only if all the traits have been donned.

Example 7.36.

$sc : Col denCust oner ($maxExpense : maxExpense > 1000
this i sA "SeniorCustoner"”, this i sA[National Custoner.cl ass,
Onl i neCust omer . cl ass]

)

Eventually, the business logic may require that a trait is removed from a wrapped object. To this
end, we provide two options. The first is a "logical don", which will result in a logical insertion of
the proxy resulting from the traiting operation. The TMS will ensure that the trait is removed when
its logical support is removed in the first place.

Example 7.37.

t hen
don($x, // core object
Custoner.class, // trait class
true // optional flag for logical insertion

The second is the use of the "shed" keyword, which causes the removal of any type that is a
subtype (or equivalent) of the one passed as an argument. Notice that, as of version 5.5, shed
would only allow to remove a single specific trait.

234

Traits

Example 7.38.

t hen
Thing t = shed($x, Col denCustoner.class) // also renpves any trait that

This operation returns another proxy implementing the org.drools.core.factmodel.traits.Thing
interface, where the getFields() and getCore() methods are defined. Internally, in fact, all declared
traits are generated to extend this interface (in addition to any others specified). This allows to
preserve the wrapper with the soft fields which would otherwise be lost.

A trait and its proxies are also correlated in another way. Starting from version 5.6, whenever
a core object is "modified", its proxies are "modified" automatically as well, to allow trait-based
patterns to react to potential changes in hard fields. Likewise, whenever a trait proxy (mached by
a trait pattern) is modified, the modification is propagated to the core class and the other traits.
Morover, whenever a don operation is performed, the core object is also modified automatically,
to reevaluate any "isA" operation which may be triggered.

Potentially, this may result in a high number of modifications, impacting performance (and
correctness) heavily. So two solutions are currently implemented. First, whenever a core object
is modified, only the most specific traits (in the sense of inheritance between trait interfaces) are
updated and an internal blocking mechanism is in place to ensure that each potentially matching
pattern is evaluated once and only once. So, in the following situation:

declare trait Col denCustoner end
declare trait National Gol denust oner extends CGol denCustoner end
decl are trait SeniorGol denCust oner extends Gol denCust oner end

a modification of an object that is both a GoldenCustomer, a NationalGoldenCustomer and
a SeniorGoldenCustomer wold cause only the latter two proxies to be actually modified. The
first would match any pattern for GoldenCustomer and NationalGoldenCustomer; the latter
would instead be prevented from rematching GoldenCustomer, but would be allowed to match
SeniorGoldenCustomer patterns. It is not necessary, instead, to modify the GoldenCustomer
proxy since it is already covered by at least one other more specific trait.

The second method, up to the usr, is to mark traits as @PropertyReactive. Property reactivity
is trait-enabled and takes into account the trait field mappings, so to block unnecessary
propagations.

7.7.8.1. Cascading traits

WARNING : This feature is extremely experimental and subject to changes

Normally, a hard field must be exposed with its original type by all traits donned by an object, to
prevent situations such as

235

Chapter 7. Rule Language Refe...

Example 7.39.

decl are Person
@raitabl e
name : String
id: String
end

declare trait Custoner
id: String
end

declare trait Patient
id: long // Person can't don Patient, or an exception will be thrown
end

Should a Person don both Customer and Patient, the type of the hard field id would be ambiguous.
However, consider the following example, where GoldenCustomers refer their best friends so that
they become Customers as well:

Example 7.40.

decl are Person
@raitable(|ogical =true)
best Friend : Person

end

declare trait Custoner end

declare trait Col denCustoner extends Customner
refers : Custoner @\ ias("bestFriend")
end

Aside from the @Alias, a Person-as-GoldenCustomer's best friend might be compatible
with the requirements of the trait GoldenCustomer, provided that they are some kind of
Customer themselves. Marking a Person as "logically traitable" - i.e. adding the annotation
@Traitable(logical = true) - will instruct the engine to try and preserve the logical consistency
rather than throwing an exception due to a hard field with different type declarations (Person vs
Customer). The following operations would then work:

Example 7.41.

Person pl = new Person();
Person p2 = new Person();

236

Traits

pl. setBestFriend(p2);
Custoner c2 = don(p2, Customer.class);
Gol denCust oner gcl = don(pl, Col denCustoner.class);

pl. getBestFriend(); // returns p2
gcl.getRefers(); // returns c2, a Customer proxy w apping p2

Notice that, by the time pl becomes GoldenCustomer, p2 must have already become a
Customer themselves, otherwise a runtime exception will be thrown since the very definition of
GoldenCustomer would have been violated.

In some cases, however, one might want to infer, rather than verify, that p2 is a Customer by virtue
that pl is a GoldenCustomer. This modality can be enabled by marking Customer as "logical”,
using the annotation @org.drools.core.factmodel.traits. Trait(logical = true). In this case, should
p2 not be a Customer by the time that p1 becomes a GoldenCustomer, it will be automatically don
the trait Customer to preserve the logical integrity of the system.

Notice that the annotation on the core class enables the dynamic type management for its
fields, whereas the annotation on the traits determines whether they will be enforced as integrity
constraints or cascaded dynamically.

Example 7.42.

i mport org.drools.factnodel .traits. *;

declare trait Custoner
@rait(logical = true)
end

237

Chapter 7. Rule Language Refe...

7.8. Rule

O
‘ATl) e]_)

o
!

(::

o LHS |

Figure 7.9. rule

A rule specifies that when a particular set of conditions occur, specified in the Left Hand Side
(LHS), then do what queryis specified as a list of actions in the Right Hand Side (RHS). A common
question from users is "Why use when instead of if?" "When" was chosen over "if" because "if"
is normally part of a procedural execution flow, where, at a specific point in time, a condition is
to be checked. In contrast, "when" indicates that the condition evaluation is not tied to a specific
evaluation sequence or point in time, but that it happens continually, at any time during the life
time of the engine; whenever the condition is met, the actions are executed.

A rule must have a name, unique within its rule package. If you define a rule twice in the same
DRL it produces an error while loading. If you add a DRL that includes a rule name already in the
package, it replaces the previous rule. If a rule name is to have spaces, then it will need to be
enclosed in double quotes (it is best to always use double quotes).

Attributes - described below - are optional. They are best written one per line.

The LHS of the rule follows the when keyword (ideally on a new line), similarly the RHS follows
the t hen keyword (again, ideally on a newline). The rule is terminated by the keyword end. Rules
cannot be nested.

238

Rule Attributes

Example 7.43. Rule Syntax Overview

rule "<name>"
<attri but e>*

when

<condi ti onal el enent>*
t hen

<action>*
end

Example 7.44. A simple rule

rule "Approve if not rejected"
sal i ence -100
agenda- group "approval "
when
not Rejection()
p : Policy(approved == fal se, policyState:status)
exi sts Driver(age > 25)
Process(status == policyState)
t hen
| og(" APPROVED: due to no objections.")
p. set Approved(true);
end

7.8.1. Rule Attributes

Rule attributes provide a declarative way to influence the behavior of the rule. Some are quite
simple, while others are part of complex subsystems such as ruleflow. To get the most from Drools
you should make sure you have a proper understanding of each attribute.

239

Chapter 7. Rule Language Refe...

() 'no-loop’ value

—{ 'lock-on-active’ |——
—{ ‘agenda-group’ | —
o ‘audfocus’ |
— “ruleflow-group” |
—y ‘activation-group’ }—
— ‘dialect |
— 'date-effective’ ||
—{ ‘date-expires’ |
— ‘enabled’ |~
—.[“duration”]—.[duration-value (ms)]—

Figure 7.10. rule attributes

no- | oop
default value: f al se

type: Boolean

When a rule's consequence modifies a fact it may cause the rule to activate again, causing

an infinite loop. Setting no-loop to true will skip the creation of another Activation for the rule
with the current set of facts.

rul ef | ow group
default value: N/A

type: String

Ruleflow is a Drools feature that lets you exercise control over the firing of rules. Rules that
are assembled by the same ruleflow-group identifier fire only when their group is active.

240

Rule Attributes

| ock-on-active
default value: f al se

type: Boolean

Whenever a ruleflow-group becomes active or an agenda-group receives the focus, any rule
within that group that has lock-on-active set to true will not be activated any more; irrespective
of the origin of the update, the activation of a matching rule is discarded. This is a stronger
version of no-loop, because the change could now be caused not only by the rule itself. It's
ideal for calculation rules where you have a nhumber of rules that modify a fact and you don't
want any rule re-matching and firing again. Only when the ruleflow-group is no longer active or
the agenda-group loses the focus those rules with lock-on-active set to true become eligible
again for their activations to be placed onto the agenda.

sal i ence
default value: 0

type: integer

Each rule has an integer salience attribute which defaults to zero and can be negative or
positive. Salience is a form of priority where rules with higher salience values are given higher
priority when ordered in the Activation queue.

Drools also supports dynamic salience where you can use an expression involving bound
variables.

Example 7.45. Dynamic Salience

rule "Fire in rank order 1,2,.."
sal i ence(-$rank)
when
El ement ($rank : rank,...)
t hen

end

agenda- gr oup
default value: MAIN
type: String

Agenda groups allow the user to partition the Agenda providing more execution control. Only
rules in the agenda group that has acquired the focus are allowed to fire.

aut o-f ocus
default value: f al se

241

Chapter 7. Rule Language Refe...

type: Boolean

When a rule is activated where the aut o- f ocus value is true and the rule's agenda group
does not have focus yet, then it is given focus, allowing the rule to potentially fire.

activation-group
default value: N/A

type: String

Rules that belong to the same activation-group, identified by this attribute's string value, will
only fire exclusively. More precisely, the first rule in an activation-group to fire will cancel all
pending activations of all rules in the group, i.e., stop them from firing.

Note: This used to be called Xor group, but technically it's not quite an Xor. You may still hear
people mention Xor group; just swap that term in your mind with activation-group.

di al ect
default value: as specified by the package

type: String
possible values: "java" or "mvel"

The dialect species the language to be used for any code expressions in the LHS or the RHS
code block. Currently two dialects are available, Java and MVEL. While the dialect can be
specified at the package level, this attribute allows the package definition to be overridden
for arule.

date-effective
default value: N/A

type: String, containing a date and time definition
A rule can only activate if the current date and time is after date-effective attribute.

dat e- expires
default value: N/A

type: String, containing a date and time definition
A rule cannot activate if the current date and time is after the date-expires attribute.

duration
default value: no default value

type: long

The duration dictates that the rule will fire after a specified duration, if it is still true.

242

Timers and Calendars

Example 7.46. Some attribute examples

rule "ny rule"
sal i ence 42
agenda- group "nunber 1"
when ...

7.8.2. Timers and Calendars

Rules now support both interval and cron based timers, which replace the now deprecated duration
attribute.

Example 7.47. Sample timer attribute uses

timer (int: <initial delay> <repeat interval >?)
tinmer (int: 30s)
timer (int: 30s 5m)

timer (cron: <cron expression>)

tinmer (cron:* 0/15 * * * 2)

Interval (indicated by "int:") timers follow the semantics of java.util. Timer objects, with an initial
delay and an optional repeat interval. Cron (indicated by "cron:") timers follow standard Unix cron
expressions:

Example 7.48. A Cron Example

rule "Send SMS every 15 m nutes”
timer (cron:* 0/15 * * * ?)

when

$a : Alarn(on == true)
t hen

channel s["sns"].insert(new Sns($a. nobi | eNunber, "The alarmis still on");
end

A rule controlled by a timer becomes active when it matches, and once for each individual match.
Its consequence is executed repeatedly, according to the timer's settings. This stops as soon as
the condition doesn't match any more.

Consequences are executed even after control returns from a call to fireUntilHalt. Moreover, the
Engine remains reactive to any changes made to the Working Memory. For instance, removing
a fact that was involved in triggering the timer rule's execution causes the repeated execution to
terminate, or inserting a fact so that some rule matches will cause that rule to fire. But the Engine

243

Chapter 7. Rule Language Refe...

is not continually active, only after a rule fires, for whatever reason. Thus, reactions to an insertion
done asynchronously will not happen until the next execution of a timer-controlled rule. Disposing
a session puts an end to all timer activity.

Conversely when the rule engine runs in passive mode (i.e.: using fireAllRules instead of
fireUntilHalt) by default it doesn't fire consequences of timed rules unless fireAllRules isn't invoked
again. However it is possible to change this default behavior by configuring the KieSession with
a Ti medRul eExect i onOpt i on as shown in the following example.

Example 7.49. Configuring a KieSession to automatically execute timed
rules

Ki eSessi onConfi guration ksconf = KieServices. Factory. get().newKi eSessi onConfi guration();
ksconf.set Opti on(Ti nedRul eExecti onOpti on. YES);
KSessi on ksessi on = kbase. newKi eSessi on(ksconf, null);

It is also possible to have a finer grained control on the timed rules that have to be automatically
executed. To do this it is necessary to set a FI LTERED Ti medRul eExect i onOpt i on that allows to
define a callback to filter those rules, as done in the next example.

Example 7.50. Configuring a filter to choose which timed rules should be
automatically executed

Ki eSessi onConfi gurati on ksconf = Ki eServi ces. Factory. get (). newKi eSessi onConfi guration();
conf.set Option(new Ti medRul eExecti onOpti on. FI LTERED(new Ti medRul eExecutionFilter() {
publi ¢ bool ean accept (Rul e[] rules) {
return rul es[0]. get Nane() . equal s("M/Rul e");

1)

For what regards interval timers it is also possible to define both the delay and interval as an
expression instead of a fixed value. To do that it is necessary to use an expression timer (indicated
by "expr:") as in the following example:

Example 7.51. An Expression Timer Example

decl are Bean
del ay : String = "30s"
period : long = 60000
end

rule "Expression timer"
timer(expr: $d, $p)

244

Timers and Calendars

when

Bean($d : delay, $p : period)
t hen
end

The expressions, $d and $p in this case, can use any variable defined in the pattern matching
part of the rule and can be any String that can be parsed in a time duration or any numeric value
that will be internally converted in a long representing a duration expressed in milliseconds.

Both interval and expression timers can have 3 optional parameters named "start", "end" and
"repeat-limit". When one or more of these parameters are used the first part of the timer definition
must be followed by a semicolon ';' and the parameters have to be separated by a comma ', as
in the following example:

Example 7.52. An Interval Timer with a start and an end

timer (int: 30s 10s; start=3-JAN 2010, end=5-JAN 2010)

The value for start and end parameters can be a Date, a String representing a Date or a long,
or more in general any Number, that will be transformed in a Java Date applying the following
conversion:

new Date(((Nunber) n).longVal ue())

Conversely the repeat-limit can be only an integer and it defines the maximum number of
repetitions allowed by the timer. If both the end and the repeat-limit parameters are set the timer
will stop when the first of the two will be matched.

The using of the start parameter implies the definition of a phase for the timer, where the beginning
of the phase is given by the start itself plus the eventual delay. In other words in this case the
timed rule will then be scheduled at times:

start + delay + n*period

for up to repeat-limit times and no later than the end timestamp (whichever first). For instance the
rule having the following interval timer

timer (int: 30s 1m start="3-JAN- 2010")

245

Chapter 7. Rule Language Refe...

will be scheduled at the 30th second of every minute after the midnight of the 3-JAN-2010. This
also means that if for example you turn the system on at midnight of the 3-FEB-2010 it won't
be scheduled immediately but will preserve the phase defined by the timer and so it will be
scheduled for the first time 30 seconds after the midnight. If for some reason the system is paused
(e.g. the session is serialized and then deserialized after a while) the rule will be scheduled only
once to recover from missing activations (regardless of how many activations we missed) and
subsequently it will be scheduled again in phase with the timer.

Calendars are used to control when rules can fire. The Calendar APl is modelled on Quartz [http://
www.quartz-scheduler.org/]:

Example 7.53. Adapting a Quartz Calendar

Cal endar weekDayCal = QuartzHel per. quartzCal endar Adapt er (org. quartz. Cal endar quartzCal)

Calendars are registered with the KieSession:

Example 7.54. Registering a Calendar

ksessi on. get Cal endars().set("weekday", weekDayCal);

They can be used in conjunction with normal rules and rules including timers. The rule attribute
"calendars" may contain one or more comma-separated calendar names written as string literals.

Example 7.55. Using Calendars and Timers together

rul e "weekdays are high priority"
cal endars "weekday"
timer (int:0 1h)
when
Al arnm()
t hen
send("priority high - we have an alarn#);
end

rule "weekend are low priority"

cal endars "weekend"

tinmer (int:0 4h)
when

Al arm()
t hen

send("priority low - we have an alarn#);

end

246

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

Left Hand Side (when) syntax

7.8.3. Left Hand Side (when) syntax

7.8.3.1. What is the Left Hand Side?

The Left Hand Side (LHS) is a common name for the conditional part of the rule. It consists of zero
or more Conditional Elements. If the LHS is empty, it will be considered as a condition element
that is always true and it will be activated once, when a new WorkingMemory session is created.

O { c'l::-rrdﬁr.l'c'r?;fEn'arr?&nt _]—"l O

Figure 7.11. Left Hand Side

Example 7.56. Rule without a Conditional Element

rule "no CEs"
when

/] enpty
t hen

/1 actions (executed once)
end

/'l The above rule is internally rewmitten as

rule "eval (true)"

when
eval (true)
t hen
/1 actions (executed once)
end

Conditional elements work on one or more patterns (which are described below). The most
common conditional element is "and" . Therefore it is implicit when you have multiple patterns in
the LHS of a rule that are not connected in any way:

Example 7.57. Implicit and

rule "2 unconnected patterns"”
when
Patternl()
Patt er n2()
t hen
/] actions
end

247

Chapter 7. Rule Language Refe...

/1 The above rule is internally rewitten as:

rule "2 and connected patterns"
when
Patternl()
and Pattern2()
t hen
/'l actions
end

/1 Conpile error
$person : (Person(name == "Roneo") and Person(name == "Juliet"))

7.8.3.2. Pattern (conditional element)

7.8.3.2.1. What is a pattern?

A pattern element is the most important Conditional Element. It can potentially match on each fact
that is inserted in the working memory.

A pattern contains of zero or more constraints and has an optional pattern binding. The railroad
diagram below shows the syntax for this.

OB)\)— ()T} —O

Figure 7.12. Pattern

In its simplest form, with no constraints, a pattern matches against a fact of the given type. In
the following case the type is Cheese, which means that the pattern will match against all Per son
objects in the Working Memory:

Per son()

248

Left Hand Side (when) syntax

The type need not be the actual class of some fact object. Patterns may refer to superclasses or
even interfaces, thereby potentially matching facts from many different classes.

oject() // matches all objects in the working menory

Inside of the pattern parenthesis is where all the action happens: it defines the constraints for that
pattern. For example, with a age related constraint:

Person(age == 100)

@ Note
For backwards compatibility reasons it's allowed to suffix patterns with the ;
character. But it is not recommended to do that.

7.8.3.2.2. Pattern binding

For referring to the matched object, use a pattern binding variable such as $p.

Example 7.58. Pattern with a binding variable

rule ...
when
$p : Person()
t hen
Systemout.println("Person " + $p);
end

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields, but it is not mandatory.

7.8.3.3. Constraint (part of a pattern)

7.8.3.3.1. What is a constraint?

A constraint is an expression that returns t r ue or f al se. This example has a constraint that states
5 is smaller than 6:

Person(5 <6) // just an exanple, as constraints like this would be usel ess
in a real pattern

249

Chapter 7. Rule Language Refe...

In essence, it's a Java expression with some enhancements (such as property access) and a few
differences (such as equal s() semantics for ==). Let's take a deeper look.

7.8.3.3.2. Property access on Java Beans (POJO's)

Any bean property can be used directly. A bean property is exposed using a standard Java bean
getter: a method get MyProperty() (ori sMyProperty() for a primitive boolean) which takes no
arguments and return something. For example: the age property is written as age in DRL instead
of the getter get Age() :

Person(age == 50)
// this is the sane as:

Person(get Age() == 50)

Drools uses the standard JDK I nt r ospect or class to do this mapping, so it follows the standard
Java bean specification.

@ Note

We recommend using property access (age) over using getters explicitly
(get Age()) because of performance enhancements through field indexing.

Warning

Property accessors must not change the state of the object in a way that may
effect the rules. Remember that the rule engine effectively caches the results of its
matching in between invocations to make it faster.

250

Left Hand Side (when) syntax

To solve this latter case, insert a fact that wraps the current date into working

memory and update that fact between fi r eAl | Rul es as needed.

@ Note

The following fallback applies: if the getter of a property cannot be found, the
compiler will resort to using the property name as a method name and without
arguments:

Person(age == 50)

/1 1f Person.get Age() does not exists, this falls back to:
Person(age() == 50)

Nested property access is also supported:

Per son(address. houseNurmber == 50)

// this is the sanme as:
Per son(get Address() . get HouseNunber() == 50)

Nested properties are also indexed.

Warning

In a stateful session, care should be taken when using nested accessors as the
Working Memory is not aware of any of the nested values, and does not know when
they change. Either consider them immutable while any of their parent references
are inserted into the Working Memory. Or, instead, if you wish to modify a nested
value you should mark all of the outer facts as updated. In the above example,
when the houseNunber changes, any Per son with that Addr ess must be marked
as updated.

7.8.3.3.3. Java expression

You can use any Java expression that returns a bool ean as a constraint inside the parentheses of
a pattern. Java expressions can be mixed with other expression enhancements, such as property
access:

251

Chapter 7. Rule Language Refe...

Person(age == 50)

It is possible to change the evaluation priority by using parentheses, as in any logic or
mathematical expression:

Person(age > 100 && (age %10 == 0))

It is possible to reuse Java methods:

Person(Math.round(weight / (height * height)) < 25.0)

Warning

As for property accessors, methods must not change the state of the object in a
way that may affect the rules. Any method executed on a fact in the LHS should
be a read only method.

Warning

The state of a fact should not change between rule invocations (unless those facts
are marked as updated to the working memory on every change):

Normal Java operator precedence applies, see the operator precedence list below.

Important

All operators have normal Java semantics except for == and ! =.

The == operator has null-safe equal s() semantics:

252

Left Hand Side (when) syntax

The ! = operator has null-safe ! equal s() semantics:

Type coercion is always attempted if the field and the value are of different types; exceptions will
be thrown if a bad coercion is attempted. For instance, if "ten" is provided as a string in a numeric
evaluator, an exception is thrown, whereas "10" would coerce to a numeric 10. Coercion is always
in favor of the field type and not the value type:

Person(age == "10") // "10" is coerced to 10

7.8.3.3.4. Comma separated AND

The comma character (',) is used to separate constraint groups. It has implicit AND connective
semantics.

/1l Person is at |least 50 and wei ghs at |east 80 kg
Person(age > 50, weight > 80)

/'l Person is at |east 50, weighs at least 80 kg and is taller than 2 neter
Person(age > 50, weight > 80, height > 2)

@ Note

Although the && and , operators have the same semantics, they are resolved with
different priorities: The && operator precedes the | | operator. Both the && and | |
operator precede the , operator. See the operator precedence list below.

253

Chapter 7. Rule Language Refe...

The comma (,) operator cannot be embedded in a composite constraint expression, such as
parentheses:

Person((age > 50, weight >80) || height > 2) // Do NOT do this: conpile error

/'l Use this instead
Person((age > 50 && weight > 80) || height > 2)

7.8.3.3.5. Binding variables

A property can be bound to a variable:

/1 2 persons of the sane age
Person($firstAge : age) // binding
Person(age == $firstAge) // constraint expression

The prefixed dollar symbol ($) is just a convention; it can be useful in complex rules where it helps
to easily differentiate between variables and fields.

/1 Not
Person($age :

reconmended
age * 2 < 100)

/'l Recommended (separates bindings and constraint expressions)
Person(age * 2 < 100, $age : age)

Bound variable restrictions using the operator == provide for very fast execution as it use hash
indexing to improve performance.

254

Left Hand Side (when) syntax

7.8.3.3.6. Unification

Drools does not allow bindings to the same declaration. However this is an important aspect to
derivation query unification. While positional arguments are always processed with unification
a special unification symbol, "=', was introduced for named arguments named arguments. The
following "unifies" the age argument across two people.

Person($age := age)
Person($age : = age)

In essence unification will declare a binding for the first occurrence and constrain to the same
value of the bound field for sequence occurrences.

7.8.3.3.7. Grouped accessors for nested objects

Often it happens that it is necessary to access multiple properties of a nested object as in the
following example

Person(name == "mark", address.city == "l ondon", address.country == "uk")

These accessors to nested objects can be grouped with a '.(...)' syntax providing more readable
rules as in

Person(nane== "nmark", address.(city == "london", country == "uk"))

Note the "." prefix, this is necessary to differentiate the nested object constraints from a method call.

7.8.3.3.8. Inline casts and coercion

When dealing with nested objects, it also quite common the need to cast to a subtype. It is possible
to do that via the # symbol as in:

Person(nane=="nmar k", address#lLongAddress.country == "uk")

This example casts Address to LongAddress, making its getters available. If the cast is not possible
(instanceof returns false), the evaluation will be considered false. Also fully qualified names are
supported:

Per son(name=="mar k", address#org. donai n. LongAddr ess. country == "uk")

255

Chapter 7. Rule Language Refe...

It is possible to use multiple inline casts in the same expression:

Person(name == "nark", address#LongAddress. country#Detail edCountry. popul ation
> 10000000)

moreover, since we also support the instanceof operator, if that is used we will infer its results for
further uses of that field, within that pattern:

Person(nanme=="mar k", address instanceof LongAddress, address.country == "uk")

7.8.3.3.9. Special literal support
Besides normal Java literals (including Java 5 enums), this literal is also supported:
7.8.3.3.9.1. Date literal

The date format dd- mmm yyyy is supported by default. You can customize this by providing an
alternative date format mask as the System property named dr ool s. dat ef or mat . If more control
is required, use a restriction.

Example 7.59. Date Literal Restriction

Cheese(bestBefore < "27-Cct-2009")

7.8.3.3.10. List and Map access

It's possible to directly access a Li st value by index:

/1 Same as chil dList(0).getAge() == 18
Person(childList[0].age == 18)

It's also possible to directly access a Map value by key:

/] Same as credential Map.get("jsmth").isValid()
Person(credential Map["jsnmith"].valid)

7.8.3.3.11. Abbreviated combined relation condition

This allows you to place more than one restriction on a field using the restriction connectives &&
or | | . Grouping via parentheses is permitted, resulting in a recursive syntax pattern.

256

Left Hand Side (when) syntax

—-—b{ rastrichion
O— —{ &1 f—
|—u|| r&srrﬁcﬂﬂn-ﬂrﬂup]—l—f

Figure 7.13. Abbreviated combined relation condition

(O « o muttiRestriction }—{ v |—+{")

Figure 7.14. Abbreviated combined relation condition with parentheses

/1 Sinple abbreviated conbined relation condition using a single &
Person(age > 30 && < 40)

/| Conpl ex abbrevi ated conbi ned rel ati on using groupi ngs
Person(age ((> 30 && < 40) ||
(> 20 && < 25)))

/1 M xing abbrevi ated conbined relation with constraint connectives
Person(age > 30 & < 40 || location == "london")

7.8.3.3.12. Special DRL operators

| et | | ==t | ==t = | 'containg” | 'not contains' |
‘memberot | ‘mot membercf’ | ‘'matches” | “'not matches'

Figure 7.15. Operators

Coercion to the correct value for the evaluator and the field will be attempted.
7.8.3.3.12.1. The operators < <= > >=

These operators can be used on properties with natural ordering. For example, for Date fields, <
means before, for St ri ng fields, it means alphabetically lower.

Person(firstNanme < $ot her Fi rst Nanme)

257

Chapter 7. Rule Language Refe...

Person(birthDate < $otherBirthDate)

Only applies on Conpar abl e properties.
7.8.3.3.12.2. Null-safe dereferencing operator

The !. operator allows to derefencing in a null-safe way. More in details the matching algorithm
requires the value to the left of the !. operator to be not null in order to give a positive result for
pattern matching itself. In other words the pattern:

Person($streetNane : address!.street)
will be internally translated in:

Person(address != null, $streetNane : address.street)

7.8.3.3.12.3. The operator nat ches

Matches a field against any valid Java Regular Expression. Typically that regexp is a string literal,
but variables that resolve to a valid regexp are also allowed.

Example 7.60. Regular Expression Constraint

Cheese(type matches "(Buffal o) ?\\ S*Mzarella")

@ Note
Like in Java, regular expressions written as string literals need to escape '\ ".

Only applies on St ri ng properties. Using mat ches against a nul | value always evaluates to false.
7.8.3.3.12.4. The operator not mat ches

The operator returns true if the String does not match the regular expression. The same rules
apply as for the mat ches operator. Example:

Example 7.61. Regular Expression Constraint

Cheese(type not matches " (Bufful o) ?\\ S*Mzarella")

258

Left Hand Side (when) syntax

Only applies on Stri ng properties. Using not mat ches against a nul | value always evaluates
to true.

7.8.3.3.12.5. The operator cont ai ns

The operator cont ai ns is used to check whether a field that is a Collection or elements contains
the specified value.

Example 7.62. Contains with Collections

CheeseCount er (cheeses contains "stilton") // contains with a String literal
CheeseCount er (cheeses contains $var) // contains with a variable

Only applies on Col | ecti on properties.
7.8.3.3.12.6. The operator not contai ns

The operator not cont ai ns is used to check whether a field that is a Collection or elements does
not contain the specified value.

Example 7.63. Literal Constraint with Collections

CheeseCount er (cheeses not contains "cheddar”) // not contains with a String
literal
CheeseCount er (cheeses not contains $var) // not contains with a variable

Only applies on Col | ect i on properties.

G] Note
For backward compatibility, the excl udes operator is supported
as a synonym for not cont ai ns.

7.8.3.3.12.7. The operator menber O

The operator menber O is used to check whether a field is a member of a collection or elements;
that collection must be a variable.

Example 7.64. Literal Constraint with Collections

CheeseCount er (cheese nmenber O $nmat ur eCheeses)

259

Chapter 7. Rule Language Refe...

7.8.3.3.12.8. The operator not menber Of

The operator not nmenber O is used to check whether a field is not a member of a collection or
elements; that collection must be a variable.

Example 7.65. Literal Constraint with Collections

CheeseCount er (cheese not nenber O $mat ur eCheeses)

7.8.3.3.12.9. The operator soundsl i ke

This operator is similar to mat ches, but it checks whether a word has almost the same sound
(using English pronunciation) as the given value. This is based on the Soundex algorithm (see
http://en.wi ki pedi a. or g/ w ki / Soundex).

Example 7.66. Test with soundslike

/1 match cheese "fubar" or "foobar"
Cheese(nane soundslike 'foobar')

7.8.3.3.12.10. The operator str

This operator str is used to check whether a field that is a Stri ng starts with or ends with a
certain value. It can also be used to check the length of the String.

Message(routingVal ue str[startsWth] "R1")

Message(routingVal ue str[endsWth] "R2")

Message(routingValue str[length] 17)

7.8.3.3.12.11. The operators in and not in (compound value restriction)

The compound value restriction is used where there is more than one possible value to match.
Currently only the i n and not i n evaluators support this. The second operand of this operator
must be a comma-separated list of values, enclosed in parentheses. Values may be given as
variables, literals, return values or qualified identifiers. Both evaluators are actually syntactic sugar,
internally rewritten as a list of multiple restrictions using the operators ! = and ==.

260

O

Left Hand Side (when) syntax

P vanabia "

o in'| motin’) = literal | ' | (

variable il

raturm\Value

| qualifisdidentifier |— -f

+ qualifiedidentifier }—

g

Figure 7.16. compoundValueRestriction

Example 7.67. Compound Restriction using "in"

Person($cheese : favouriteCheese)
Cheese(type in ("stilton", "cheddar", $cheese))

7.8.3.3.13. Inline eval operator (deprecated)

‘aval(’ BXpression T

Figure 7.17. Inline Eval Expression

An inline eval constraint can use any valid dialect expression as long as it results to a primitive
boolean. The expression must be constant over time. Any previously bound variable, from the
current or previous pattern, can be used; autovivification is also used to auto-create field binding
variables. When an identifier is found that is not a current variable, the builder looks to see if the
identifier is a field on the current object type, if it is, the field binding is auto-created as a variable
of the same name. This is called autovivification of field variables inside of inline eval's.

This example will find all male-female pairs where the male is 2 years older than the female; the
variable age is auto-created in the second pattern by the autovivification process.

Example 7.68. Return Value operator

Person(girl Age : age, sex = "F")
Person(eval (age == girlAge + 2), sex ='M) // eval() is actually obsolete
in this exanple

261

Chapter 7. Rule Language Refe...

@ Note
Inline eval's are effectively obsolete as their inner syntax is now directly supported.
It's recommended not to use them. Simply write the expression without wrapping

eval() around it.

7.8.3.3.14. Operator precedence

The operators are evaluated in this precedence:

Table 7.1. Operator precedence

Operator type Operators Notes
(nested / null safe) property . !. Not normal Java semantics
access
List/Map access [1 Not normal Java semantics
constraint binding Not normal Java semantics
multiplicative *| %
additive +-
shift << >> >>>
relational <> <=>=jnst anceof
equality === Does not use normal

Java (not) same semantics:
uses (not) equals semantics
instead.

non-short circuiting AND

non-short circuiting exclusive
OR

non-short circuiting inclusive
OR

logical AND
logical OR

ternary

Comma separated AND

Not normal Java semantics

7.8.3.4. Positional Arguments

Patterns now support positional arguments on type declarations.

Positional arguments are ones where you don't need to specify the field name, as the position
maps to a known named field. i.e. Person(name == "mark") can be rewritten as Person("mark";).

262

Left Hand Side (when) syntax

The semicolon ';' is important so that the engine knows that everything before it is a positional
argument. Otherwise we might assume it was a boolean expression, which is how it could be
interpreted after the semicolon. You can mix positional and named arguments on a pattern by
using the semicolon ;' to separate them. Any variables used in a positional that have not yet been
bound will be bound to the field that maps to that position.

decl are Cheese
nane : String
shop : String
price : int
end

Example patterns, with two constraints and a binding. Remember semicolon ';' is used to
differentiate the positional section from the named argument section. Variables and literals and
expressions using just literals are supported in positional arguments, but not variables. Positional
arguments are always resolved using unification.

Cheese("stilton", "Cheese Shop", p;)

Cheese("stilton", "Cheese Shop"; p : price)

Cheese("stilton"; shop == "Cheese Shop", p : price)

Cheese(name == "stilton"; shop == "Cheese Shop", p : price)

Positional arguments that are given a previously declared binding will constrain against that using
unification; these are referred to as input arguments. If the binding does not yet exist, it will create
the declaration binding it to the field represented by the position argument; these are referred to
as output arguments.

7.8.3.5. Fine grained property change listeners

When you call modify() (see the modify statement section) on a given object it will trigger a
revaluation of all patterns of the matching object type in the knowledge base. This can can lead
to unwanted and useless evaluations and in the worst cases to infinite recursions. The only
workaround to avoid it was to split up your objects into smaller ones having a 1 to 1 relationship
with the original object.

This feature allows the pattern matching to only react to modification of properties actually
constrained or bound inside of a given pattern. That will help with performance and recursion and
avoid artificial object splitting.

By default this feature is off in order to make the behavior of the rule engine backward compatible
with the former releases. When you want to activate it on a specific bean you have to annotate it
with @propertyReactive. This annotation works both on DRL type declarations:

decl are Person

263

Chapter 7. Rule Language Refe...

@ropertyReacti ve
firstName : String
| ast Nane : String

end

and on Java classes:

@r opertyReacti ve
public static class Person {
private String firstNane;
private String | astNane;

In this way, for instance, if you have a rule like the following:

rule "Every person naned Mario is a nale" when
$person : Person(firstName == "Mari 0")
t hen
nodi fy ($person) { setMale(true) }
end

you won't have to add the no-loop attribute to it in order to avoid an infinite recursion because the
engine recognizes that the pattern matching is done on the ‘firstName' property while the RHS of
the rule modifies the 'male’ one. Note that this feature does not work for update(), and this is one of
the reasons why we promote modify() since it encapsulates the field changes within the statement.
Moreover, on Java classes, you can also annotate any method to say that its invocation actually
modifies other properties. For instance in the former Person class you could have a method like:

@nbdifies({ "firstNanme", "l astName" })

public void set Nane(String name) {
String[] nanmes = nane.split("\\s");
this.firstNane = nanes[0];
this. |l ast Nane = nanes[1];

That means that if a rule has a RHS like the following:

nodi fy($person) { set Nane("Mario Fusco") }

264

Left Hand Side (when) syntax

it will correctly recognize that the values of both properties ‘firstName' and 'lastName' could
have potentially been modified and act accordingly, not missing of reevaluating the patterns
constrained on them. At the moment the usage of @Maodifies is not allowed on fields but only on
methods. This is coherent with the most common scenario where the @Modifies will be used for
methods that are not related with a class field as in the Person.setName() in the former example.
Also note that @Modifies is not transitive, meaning that if another method internally invokes
the Person.setName() one it won't be enough to annotate it with @Modifies({ "name" }), but it

is necessary to use @Modifies({ "firstName", "lastName" }) even on it. Very likely @Modifies
transitivity will be implemented in the next release.

For what regards nested accessors, the engine will be notified only for top level fields. In other
words a pattern matching like:

Person (address.city.name == "London)

will be revaluated only for modification of the ‘address' property of a Person object. In the same
way the constraints analysis is currently strictly limited to what there is inside a pattern. Another
example could help to clarify this. An LHS like the following:

$p : Person()
Car (owner = $p.nane)

will not listen on modifications of the person's name, while this one will do:

Person($nanme : nane)
Car (owner = $nane)

To overcome this problem it is possible to annotate a pattern with @watch as it follows:

$p : Person() @watch (nane)
Car(owner = $p.nane)

Indeed, annotating a pattern with @watch allows you to modify the inferred set of properties for
which that pattern will react. Note that the properties named in the @watch annotation are actually
added to the ones automatically inferred, but it is also possible to explicitly exclude one or more
of them prepending their name with a ! and to make the pattern to listen for all or none of the
properties of the type used in the pattern respectively with the wildcrds * and !*. So, for example,
you can annotate a pattern in the LHS of a rule like:

Il listens for changes on both firstNanme (inferred) and | astNane

265

Chapter 7. Rule Language Refe...

Person(firstNane == $expectedFirstNane) @watch(| astNane)

/1 listens for all the properties of the Person bean
Person(firstNane == $expectedFirstNane) @watch(*)

/1 listens for changes on | astNane and explicitly exclude firstName
Person(firstNane == $expectedFirstNane) @watch(|astNane, !firstNane)

/1 listens for changes on all the properties except the age one
Person(firstName == $expectedFirstName) @watch(*, !age)

Since doesn't make sense to use this annotation on a pattern using a type not annotated with
@PropertyReactive the rule compiler will raise a compilation error if you try to do so. Also the
duplicated usage of the same property in @watch (for example like in: @watch(firstName, !
firstName)) will end up in a compilation error. In a next release we will make the automatic
detection of the properties to be listened smarter by doing analysis even outside of the pattern.

It also possible to enable this feature by default on all the types of your model or to completely
disallow it by using on option of the KnowledgeBuilderConfiguration. In particular this new
PropertySpecificOption can have one of the following 3 values:

- DI SABLED => the feature is turned off and all the other related annotations
are just ignored

- ALLOWED => this is the default behavior: types are not property reactive unl ess
they are not annotated w th @PropertySpecific

- ALVWAYS => all types are property reactive by default

So, for example, to have a KnowledgeBuilder generating property reactive types by default you
could do:

Know edgeBui | der Confi gurati on config =
Knowl edgeBui | der Fact ory. newKnow edgeBui | der Confi gurati on();

config. set Option(PropertySpecificOption. ALVAYS);

Knowl edgeBui | der kbui | der =
Know edgeBui | der Fact ory. newKnow edgeBui | der (confi g);

In this last case it will be possible to disable the property reactivity feature on a specific type by
annotating it with @ClassReactive.

266

Left Hand Side (when) syntax

7.8.3.6. Basic conditional elements

7.8.3.6.1. Conditional Element and

The Conditional Element "and" is used to group other Conditional Elements into a logical
conjunction. Drools supports both prefix and and infix and.

:{- m
O { ¢t) O

Figure 7.18. infixAnd

Traditional infix and is supported:

//infixAnd
Cheese(cheeseType : type) and Person(favouriteCheese == cheeseType)

Explicit grouping with parentheses is also supported:

/1infixAnd with grouping
(Cheese(cheeseType : type) and
(Person(favouriteCheese == cheeseType) or
Person(favouriteCheese == cheeseType))

O—(D—E@D)—-E > —{—C

Figure 7.19. prefixAnd

Prefix and is also supported:

(and Cheese(cheeseType : type)
Person(favouriteCheese == cheeseType))

The root element of the LHS is an implicit prefix and and doesn't need to be specified:

267

Chapter 7. Rule Language Refe...

Example 7.69. implicit root prefixAnd

when

Cheese(cheeseType : type)

Person(favouriteCheese == cheeseType)
t hen

7.8.3.6.2. Conditional Element or

The Conditional Element or is used to group other Conditional Elements into a logical disjunction.
Drools supports both prefix or and infix or .

o fE==" @

Figure 7.20. infixOr

Traditional infix or is supported:

/1infixOr
Cheese(cheeseType : type) or Person(favouriteCheese == cheeseType)

Explicit grouping with parentheses is also supported:

/1infixOr with grouping
(Cheese(cheeseType : type) or
(Person(favouriteCheese == cheeseType) and
Person(favouriteCheese == cheeseType))

L o (e @

Figure 7.21. prefixOr

268

Left Hand Side (when) syntax

Prefix or is also supported:

(or Person(sex == "f", age > 60)
Person(sex == "nl', age > 65)

The Conditional Element or also allows for optional pattern binding. This means that each resulting
subrule will bind its pattern to the pattern binding. Each pattern must be bound separately, using
eponymous variables:

pensioner : (Person(sex == "f", age > 60) or Person(sex == "n{', age > 65))
(or pensioner : Person(sex == "f", age > 60)
pensi oner : Person(sex == "ni, age > 65))

Since the conditional element or results in multiple subrule generation, one for each possible
logically outcome, the example above would result in the internal generation of two rules. These
two rules work independently within the Working Memory, which means both can match, activate
and fire - there is no shortcutting.

The best way to think of the conditional element or is as a shortcut for generating two or more
similar rules. When you think of it that way, it's clear that for a single rule there could be multiple
activations if two or more terms of the disjunction are true.

269

Chapter 7. Rule Language Refe...

7.8.3.6.3. Conditional Element not

|_. ._| AT

Figure 7.22. not

¥ 1| & k "
conditionalElermant] O

The CE not is first order logic's non-existential quantifier and checks for the non-existence of
something in the Working Memory. Think of "not" as meaning "there must be none of...".

The keyword not may be followed by parentheses around the CEs that it applies to. In the simplest
case of a single pattern (like below) you may optionally omit the parentheses.

Example 7.70. No Busses

not Bus()

Example 7.71. No red Busses

/'l Brackets are optional:

not Bus(color == "red")
/'l Brackets are optional:
not (Bus(color == "red", nunber == 42))

/1l "not" with nested infix and - two patterns,
/'l brackets are requires:
not (Bus(color == "red") and

Bus(col or == "blue"))

7.8.3.6.4. Conditional Element exi sts

(O—A{(exists’}+———{conditionalElement | - 0

Figure 7.23. exists

The CE exi st s is first order logic's existential quantifier and checks for the existence of something
in the Working Memory. Think of "exists" as meaning "there is at least one..". It is different from
just having the pattern on its own, which is more like saying "for each one of...". If you use exi st s
with a pattern, the rule will only activate at most once, regardless of how much data there is in
working memory that matches the condition inside of the exi st s pattern. Since only the existence
matters, no bindings will be established.

270

Left Hand Side (when) syntax

The keyword exi st s must be followed by parentheses around the CEs that it applies to. In the
simplest case of a single pattern (like below) you may omit the parentheses.

Example 7.72. At least one Bus

exi sts Bus()

Example 7.73. At least one red Bus

exi sts Bus(color == "red")
/1 brackets are optional
exists (Bus(color == "red", nunber == 42))

/1l "exists" with nested infix and

/'l brackets are required

exists (Bus(color == "red") and
Bus(col or == "blue"))

7.8.3.7. Advanced conditional elements

7.8.3.7.1. Conditional Element foral |

O o) ()t - O

Figure 7.24. forall

The Conditional Element forall completes the First Order Logic support in Drools. The
Conditional Element f or al | evaluates to true when all facts that match the first pattern match all
the remaining patterns. Example:

rule "All English buses are red"
when
forall ($bus : Bus(type == 'english')
Bus(this == $bus, color = 'red))
t hen
/1 all English buses are red
end

In the above rule, we "select" all Bus objects whose type is "english". Then, for each fact that
matches this pattern we evaluate the following patterns and if they match, the forall CE will
evaluate to true.

271

Chapter 7. Rule Language Refe...

To state that all facts of a given type in the working memory must match a set of constraints,
foral |l can be written with a single pattern for simplicity. Example:

Example 7.74. Single Pattern Forall

rule "All Buses are Red"

when

forall (Bus(color == "'red"))
t hen

/1 all Bus facts are red
end

Another example shows multiple patterns inside the foral | :

Example 7.75. Multi-Pattern Forall

rul e

when
forall ($enp : Enpl oyee()

Heal t hCare(enpl oyee == $enp)

Dent al Care(enpl oyee == $enp)

all enpl oyees have health and dental care prograns

t hen
/1 all enployees have health and dental care
end

Forall can be nested inside other CEs. For instance, f oral | can be used inside a not CE. Note
that only single patterns have optional parentheses, so that with a nested foral | parentheses
must be used:

Example 7.76. Combining Forall with Not CE

rule "not all enployees have health and dental care"
when
not (forall($enp : Enpl oyee()
Heal t hCare(enpl oyee == $enp)
Dent al Care(enpl oyee == $enp))

t hen

/1l not all enployees have health and dental care
end

As a side note, foral | (p1 p2 p3...) is equivalent to writing:

272

Left Hand Side (when) syntax

not (p1 and not(and p2 p3...))

Also, it is important to note that f or al | is a scope delimiter. Therefore, it can use any previously
bound variable, but no variable bound inside it will be available for use outside of it.

7.8.3.7.2. Conditional Element from

O o O

Figure 7.25. from

The Conditional Element f r omenables users to specify an arbitrary source for data to be matched
by LHS patterns. This allows the engine to reason over data not in the Working Memory. The
data source could be a sub-field on a bound variable or the results of a method call. It is a
powerful construction that allows out of the box integration with other application components
and frameworks. One common example is the integration with data retrieved on-demand from
databases using hibernate named queries.

The expression used to define the object source is any expression that follows regular MVEL
syntax. Therefore, it allows you to easily use object property navigation, execute method calls and
access maps and collections elements.

Here is a simple example of reasoning and binding on another pattern sub-field:

rule "validate zi pcode"

when

Per son($personAddress : address)

Addr ess(zi pcode == "23920W) from $per sonAddress
t hen

Il zip code is ok
end

With all the flexibility from the new expressiveness in the Drools engine you can slice and dice this
problem many ways. This is the same but shows how you can use a graph notation with the 'from":

rule "validate zi pcode"

when

$p : Person()

$a : Address(zi pcode == "23920W) from $p. address
t hen

/'l zip code is ok
end

273

Chapter 7. Rule Language Refe...

Previous examples were evaluations using a single pattern. The CE fromalso support object
sources that return a collection of objects. In that case, fromwill iterate over all objects in the
collection and try to match each of them individually. For instance, if we want a rule that applies
10% discount to each item in an order, we could do:

rule "apply 10% di scount to all itens over US$ 100,00 in an order"
when
$order : Order()
$item : Oderltem value > 100) from $order.itens
t hen
/'l apply discount to $item
end

The above example will cause the rule to fire once for each item whose value is greater than 100
for each given order.

You must take caution, however, when using f r om especially in conjunction with the | ock- on-
act i ve rule attribute as it may produce unexpected results. Consider the example provided earlier,
but now slightly modified as follows:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test"
| ock-on-active true
when
$p : Person()
$a : Address(state == "NC') from $p. address
t hen
nodi fy ($p) {} // Assign person to sales region 1 in a nodify block
end

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test"
| ock-on-active true
when
$p : Person()
$a : Address(city == "Raleigh") from $p. addr ess
t hen
modi fy ($p) {} // Apply discount to person in a nodify bl ock
end

In the above example, persons in Raleigh, NC should be assigned to sales region 1 and receive
a discount; i.e., you would expect both rules to activate and fire. Instead you will find that only
the second rule fires.

274

Left Hand Side (when) syntax

If you were to turn on the audit log, you would also see that when the second rule fires, it
deactivates the first rule. Since the rule attribute | ock- on- act i ve prevents a rule from creating
new activations when a set of facts change, the first rule fails to reactivate. Though the set of facts
have not changed, the use of f romreturns a new fact for all intents and purposes each time it
is evaluated.

First, it's important to review why you would use the above pattern. You may have many rules
across different rule-flow groups. When rules modify working memory and other rules downstream
of your RuleFlow (in different rule-flow groups) need to be reevaluated, the use of nodify is
critical. You don't, however, want other rules in the same rule-flow group to place activations on
one another recursively. In this case, the no- | oop attribute is ineffective, as it would only prevent
a rule from activating itself recursively. Hence, you resort to | ock- on- acti ve.

There are several ways to address this issue:

« Avoid the use of fr omwhen you can assert all facts into working memory or use nested object
references in your constraint expressions (shown below).

» Place the variable assigned used in the modify block as the last sentence in your condition
(LHS).

« Avoid the use of | ock-on-acti ve when you can explicitly manage how rules within the same
rule-flow group place activations on one another (explained below).

The preferred solution is to minimize use of f r omwhen you can assert all your facts into working
memory directly. In the example above, both the Person and Address instance can be asserted
into working memory. In this case, because the graph is fairly simple, an even easier solution is
to modify your rules as follows:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test”
| ock-on-active true
when
$p : Person(address.state == "NC')
t hen
nmodi fy ($p) {} // Assign person to sales region 1 in a nodify bl ock
end

rule "Apply a discount to people in the city of Ral eigh”
rul efl ow-group "test"
| ock-on-active true
when
$p : Person(address.city == "Ral eigh")
t hen
nmodi fy ($p) {} //Apply discount to person in a nodify bl ock
end

275

Chapter 7. Rule Language Refe...

Now, you will find that both rules fire as expected. However, it is not always possible to access
nested facts as above. Consider an example where a Person holds one or more Addresses and
you wish to use an existential quantifier to match people with at least one address that meets
certain conditions. In this case, you would have to resort to the use of fromto reason over the
collection.

There are several ways to use f r omto achieve this and not all of them exhibit an issue with the use
of | ock- on- act i ve. For example, the following use of f r omcauses both rules to fire as expected:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test"
| ock-on-active true
when
$p : Person($addresses : addresses)
exists (Address(state == "NC') from $addresses)
t hen
nmodi fy ($p) {} // Assign person to sales region 1 in a nodify bl ock
end

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test”
| ock-on-active true
when
$p : Person($addresses : addresses)
exi sts (Address(city == "Ral ei gh") from $addresses)
t hen
nodi fy ($p) {} // Apply discount to person in a nodify bl ock
end

However, the following slightly different approach does exhibit the problem:

rule "Assign people in North Carolina (NC) to sales region 1"
rul efl ow-group "test”
| ock-on-active true
when

$assessment : Assessnent ()

$p : Person()

$addresses : List() from $p. addresses

exi sts (Address(state == "NC') from $addresses)
t hen

nodi fy ($assessnent) {} // Mdify assessnent in a nodify bl ock
end

rule "Apply a discount to people in the city of Raleigh”
rul efl ow-group "test"
| ock-on-active true

276

Left Hand Side (when) syntax

when

$assessment : Assessnent ()

$p : Person()

$addresses : List() from $p. addresses

exists (Address(city == "Ral ei gh") from $addresses)
t hen

nodi fy ($assessnent) {} // Mdify assessnent in a nodify bl ock
end

In the above example, the $addresses variable is returned from the use of from The example
also introduces a new object, assessment, to highlight one possible solution in this case. If the
$assessment variable assigned in the condition (LHS) is moved to the last condition in each rule,
both rules fire as expected.

Though the above examples demonstrate how to combine the use of f r omwith | ock- on- acti ve
where no loss of rule activations occurs, they carry the drawback of placing a dependency on the
order of conditions on the LHS. In addition, the solutions present greater complexity for the rule
author in terms of keeping track of which conditions may create issues.

A better alternative is to assert more facts into working memory. In this case, a person's addresses
may be asserted into working memory and the use of f r omwould not be necessary.

There are cases, however, where asserting all data into working memory is not practical and we
need to find other solutions. Another option is to reevaluate the need for | ock- on-acti ve. An
alternative to | ock- on- acti ve is to directly manage how rules within the same rule-flow group
activate one another by including conditions in each rule that prevent rules from activating each
other recursively when working memory is modified. For example, in the case above where a
discount is applied to citizens of Raleigh, a condition may be added to the rule that checks whether
the discount has already been applied. If so, the rule does not activate.

7.8.3.7.3. Conditional Element col I ect

O—{pattem)—(rom }—{Teates }—{T

g8l 3] B
j

' accumulate 4
Figure 7.26. collect

The Conditional Element col | ect allows rules to reason over a collection of objects obtained
from the given source or from the working memory. In First Oder Logic terms this is the cardinality
quantifier. A simple example:

277

Chapter 7. Rule Language Refe...

i mport java.util.Arraylist

rule "Raise priority if systemhas nore than 3 pending al arns"
when

$system : Systen()

$alarms : Arraylist(size >= 3)

fromcollect(Alarm system == $system status == 'pending'))

t hen

/! Raise priority, because system $system has

/'l 3 or nmore alarns pending. The pendi ng al arms

/'l are $al arns.
end

In the above example, the rule will look for all pending alarms in the working memory for each
given system and group them in ArrayLists. If 3 or more alarms are found for a given system,
the rule will fire.

The result pattern of collect can be any concrete class that implements the
java.util.Col | ecti on interface and provides a default no-arg public constructor. This means
that you can use Java collections like ArrayList, LinkedList, HashSet, etc., or your own class, as
long as it implements the j ava. util . Col | ecti on interface and provide a default no-arg public
constructor.

Both source and result patterns can be constrained as any other pattern.

Variables bound before the col | ect CE are in the scope of both source and result patterns
and therefore you can use them to constrain both your source and result patterns. But note that
col I ect is a scope delimiter for bindings, so that any binding made inside of it is not available
for use outside of it.

Collect accepts nested f r omCEs. The following example is a valid use of "collect":

i mport java.util.LinkedList;

rule "Send a nessage to all nothers"

when
$town : Town(nane == 'Paris')
$not hers : LinkedLi st ()
fromcollect(Person(gender == 'F', children > 0)
from $t own. get Peopl e()
)
t hen

/'l send a nessage to all nothers
end

278

Left Hand Side (when) syntax

7.8.3.7.4. Conditional Element accumul ate

O—b[paﬂem]—h[“from’]—-[‘accumulate’ }7
|

e

accumwateFunclion]—

- palfem “

Figure 7.27. accumulate

The Conditional Element accunul at e is a more flexible and powerful form of col | ect , inthe sense
that it can be used to do what col | ect does and also achieve results that the CE col | ect is not
capable of achieving. Accumulate allows a rule to iterate over a collection of objects, executing
custom actions for each of the elements, and at the end, it returns a result object.

Accumulate supports both the use of pre-defined accumulate functions, or the use of inline custom
code. Inline custom code should be avoided though, as it is harder for rule authors to maintain,
and frequently leads to code duplication. Accumulate functions are easier to test and reuse.

The Accumulate CE also supports multiple different syntaxes. The preferred syntax is the top level
accumulate, as noted bellow, but all other syntaxes are supported for backward compatibility.

7.8.3.7.4.1. Accumulate CE (preferred syntax)
The top level accumulate syntax is the most compact and flexible syntax. The simplified syntax
is as follows:

accurmul at e(<source pattern>; <functions> [;<constraints>])

For instance, a rule to calculate the minimum, maximum and average temperature reading for a
given sensor and that raises an alarm if the minimum temperature is under 20C degrees and the
average is over 70C degrees could be written in the following way, using Accumulate:

279

Chapter 7. Rule Language Refe...

rul e "Rai se al arnf
when
$s : Sensor ()
accumul at e(Readi ng(sensor == $s, $tenp : tenperature);
$min : min($tenmp),
$max @ max($tenp),
$avg : average($tenp);
$min < 20, $avg > 70)
t hen
/'l raise the alarm
end

In the above example, min, max and average are Accumulate Functions and will calculate the
minimum, maximum and average temperature values over all the readings for each sensor.

Drools ships with several built-in accumulate functions, including:

e average
* min

* max

e count

e sum

» collectList

collectSet

These common functions accept any expression as input. For instance, if someone wants to
calculate the average profit on all items of an order, a rule could be written using the average
function:

rule "Average profit"
when
$order : Order()
accurul ate(Orderltem order == $order, $cost : cost, S$price : price);
$avgProfit : average(1 - $cost / $price))
t hen

280

Left Hand Side (when) syntax

/'l average profit for $order is $avgProfit
end

Accumulate Functions are all pluggable. That means that if needed, custom, domain specific
functions can easily be added to the engine and rules can start to use them without any restrictions.
To implement a new Accumulate Function all one needs to do is to create a Java class that
implements the or g. drool s. core. runti me. rul e. TypedAccunul at eFunct i on interface. As an
example of an Accumulate Function implementation, the following is the implementation of the
aver age function:

/**
* An inplementation of an accunul ator capabl e of cal cul ati ng average val ues
*/
public class AverageAccunul at eFunction inplenents org.drools.core.runtine.rul e. TypedAccunul at el

public void readExternal (Qojectlnput in) throws | CException, C assNotFoundException {

public void witeExternal (CbjectQutput out) throws |COException {

public static class AverageData inplenments Externalizable {
public int count = O;
public double total = 0;

public AverageData() {}

public void readExternal (Objectlnput in) throws | OException, C assNotFoundException {
count = in.readlnt();
t ot al = in.readDoubl e();

public void witeExternal (ObjectQutput out) throws | COException {
out.witelnt(count);
out.witeDouble(total);

/* (non-Javadoc)
* @ee org.drool s. base. accunul at ors. Accunul at eFunct i on#cr eat eCont ext ()
*/
public Serializable createContext() {
return new AverageData();

281

Chapter 7. Rule Language Refe...

/* (non-Javadoc)
& &ee
org. drool s. core. base. accunul at ors. Accunul at eFuncti on#i ni t (j ava. | ang. Obj ect)
*/
public void init(Serializable context) throws Exception {
Aver ageDat a data = (AverageData) context;
dat a. count = O;
data.total =0

}
/* (non-Javadoc)
2 @ee
j ava. | ang. Obj ect)
*/
public void accurul ate(Seri al i zabl e cont ext,
bj ect value) {
Aver ageDat a data = (AverageData) context;
dat a. count ++
data.total += ((Nunber) val ue). doubl eVval ue();
}
/* (non-Javadoc)
2 @ee
j ava. | ang. Obj ect)
*/
public void reverse(Serializable context,
bj ect value) throws Exception {
Aver ageDat a data = (AverageData) context;
dat a. count - - ;
data.total -= ((Nunber) val ue). doubl eVval ue();
}
/* (non-Javadoc)
2 @ee

org. drool s. core. base. accunul at ors. Accunmul at eFunct i on#get Resul t (j ava. | ang. Obj ect)
*/
public Object getResult(Serializable context) throws Exception {
Aver ageDat a data = (AverageData) context;
return new Doubl e(data.count == 0 ? 0 : data.total / data.count);

/* (non-Javadoc)
* @ee
org. drool s. core. base. accunul at ors. Accunul at eFunct i on#support sRever se()
*/
publi ¢ bool ean supportsReverse() {

282

Left Hand Side (when) syntax

return true;

/**

* }

S

public dass< ? > getResultType() {
return Nunber. cl ass;

The code for the function is very simple, as we could expect, as all the "dirty" integration work
is done by the engine. Finally, to use the function in the rules, the author can import it using the
"import accumulate" statement:

i nport accumul ate <cl ass_nanme> <functi on_nane>

For instance, if one implements the class sone. package. Vari anceFuncti on function that
implements the vari ance function and wants to use it in the rules, he would do the following:

Example 7.77. Example of importing and using the custom "variance"
accumulate function

i mport accumul at e sone. package. Vari anceFuncti on vari ance

rule "Cal cul ate Variance"
when
accunul ate(Test($s : score), $v : variance($s))
t hen
/] the variance of the test scores is $v
end

g Note
-

The built in functions (sum, average, etc) are imported automatically by the engine.
Only user-defined custom accumulate functions need to be explicitly imported.

283

Chapter 7. Rule Language Refe...

drool s. accunul ate. functi on. vari ance = sone. package. Vari anceFuncti on

7.8.3.7.4.2. Alternate Syntax: single function with return type

The accumulate syntax evolved over time with the goal of becoming more compact and
expressive. Nevertheless, Drools still supports previous syntaxes for backward compatibility
purposes.

In case the rule is using a single accumulate function on a given accumulate, the author may
add a pattern for the result object and use the "from" keyword to link it to the accumulate result.
Example: a rule to apply a 10% discount on orders over $100 could be written in the following way:

rule "Apply 10% di scount to orders over US$ 100, 00"
when

$order : Order()

$total : Nunber(doubl eval ue > 100)

fromaccumul ate(Orderltem order == $order, $value : value),
sun($value))

t hen

apply discount to $order
end

In the above example, the accumulate element is using only one function (sum), and so, the rules
author opted to explicitly write a pattern for the result type of the accumulate function (Number)
and write the constraints inside it. There are no problems in using this syntax over the compact
syntax presented before, except that is is a bit more verbose. Also note that it is not allowed to
use both the return type and the functions binding in the same accumulate statement.

284

Left Hand Side (when) syntax

7.8.3.7.4.3. Accumulate with inline custom code

Warning

The use of accumulate with inline custom code is not a good practice for several
reasons, including difficulties on maintaining and testing rules that use them, as
well as the inability of reusing that code. Implementing your own accumulate
functions is very simple and straightforward, they are easy to unit test and to use.
This form of accumulate is supported for backward compatibility only.

Another possible syntax for the accumulate is to define inline custom code, instead of using
accumulate functions. As noted on the previous warned, this is discouraged though for the stated
reasons.

The general syntax of the accumul at e CE with inline custom code is:

<result pattern> from accunul ate(<source pattern>,
init(<init code>),
action(<action code>),
reverse(<reverse code>),
result(<result expression>))

The meaning of each of the elements is the following:

e <source pattern>: the source pattern is a regular pattern that the engine will try to match against
each of the source objects.

* <init code>: this is a semantic block of code in the selected dialect that will be executed once
for each tuple, before iterating over the source objects.

» <action code>: this is a semantic block of code in the selected dialect that will be executed for
each of the source objects.

» <reverse code>: this is an optional semantic block of code in the selected dialect that if present
will be executed for each source object that no longer matches the source pattern. The objective
of this code block is to undo any calculation done in the <action code> block, so that the engine
can do decremental calculation when a source object is modified or deleted, hugely improving
performance of these operations.

« <result expression>: this is a semantic expression in the selected dialect that is executed after
all source objects are iterated.

« <result pattern>: this is a regular pattern that the engine tries to match against the object
returned from the <result expression>. If it matches, the accumul at e conditional element

285

Chapter 7. Rule Language Refe...

evaluates to true and the engine proceeds with the evaluation of the next CE in the rule. If it
does not matches, the accunul at e CE evaluates to false and the engine stops evaluating CEs
for that rule.

It is easier to understand if we look at an example:

rule "Apply 10% di scount to orders over US$ 100, 00"
when
$order : Order()
$total : Nunber(doubl eVal ue > 100)
fromaccurmul ate(Orderlten(order == $order, $value : value),
init(double total = 0;),
action(total += $value;),
reverse(total -= $value;),
result(total))
t hen
apply discount to $order
end

In the above example, for each Order in the Working Memory, the engine will execute the init
code initializing the total variable to zero. Then it will iterate over all Or der I t emobjects for that
order, executing the action for each one (in the example, it will sum the value of all items into
the total variable). After iterating over all Or der | t emobjects, it will return the value corresponding
to the result expression (in the above example, the value of variable t ot al). Finally, the engine
will try to match the result with the Nunber pattern, and if the double value is greater than 100,
the rule will fire.

The example used Java as the semantic dialect, and as such, note that the usage of the semicolon
as statement delimiter is mandatory in the init, action and reverse code blocks. The result is an
expression and, as such, it does not admit ';'. If the user uses any other dialect, he must comply
to that dialect's specific syntax.

As mentioned before, the reverse code is optional, but it is strongly recommended that the user
writes it in order to benefit from the improved performance on update and delete.

The accunul at e CE can be used to execute any action on source objects. The following example
instantiates and populates a custom object:

rul e "Accunul ate using custom obj ects"
when
$person : Person($likes : likes)
$cheesery : Cheesery(total Ampunt > 100)
fromaccunul ate($cheese : Cheese(type == $likes),
init(Cheesery cheesery = new Cheesery();)
action(cheesery.addCheese($cheese);),
reverse(cheesery.renpveCheese($cheese);),

286

Left Hand Side (when) syntax

result(cheesery));
t hen
/1 do sonet hi ng
end

7.8.3.8. Conditional Element eval

‘eval’ 1) expression]—-[i]_"O

Figure 7.28. eval

The conditional element eval is essentially a catch-all which allows any semantic code (that
returns a primitive boolean) to be executed. This code can refer to variables that were bound in the
LHS of the rule, and functions in the rule package. Overuse of eval reduces the declarativeness
of your rules and can result in a poorly performing engine. While eval can be used anywhere in
the patterns, the best practice is to add it as the last conditional element in the LHS of a rule.

Evals cannot be indexed and thus are not as efficient as Field Constraints. However this makes
them ideal for being used when functions return values that change over time, which is not allowed
within Field Constraints.

For folks who are familiar with Drools 2.x lineage, the old Drools parameter and condition tags are
equivalent to binding a variable to an appropriate type, and then using it in an eval node.

pl : Paraneter()
p2 : Paraneter()
eval (pl.getList().containsKey(p2.getlten()))

pl : Paraneter()

p2 : Paraneter()

// call function isValid in the LHS
eval (isvValid(pl, p2))

7.8.3.9. Railroad diagrams

ScounmlateAction

@0 = o

Accumulatel | ause

(lmmuu'}@{ Condiiomalind |- @ — [AccumsicSicpe | {D

| Accumulaie Function |-

287

Chapter 7. Rule Language Refe...

AccumulateFunction

O
RN 1 a PN

Accunmulatelnit
GO
AcounmlasteResuli

AccumulateReverse

=0

AccumulateSieps

o O

i — :,_-' R

©

A AccumubseReverse |-
‘*—l.ﬁ.n:mnhi.-]!:ml |

~| Accumubie lnit |=| Accumubie Action |—

Accumulations

©

- demifies }@1 Accumubse Funcsem |-

hddili\rtE:;E}-.I
®,

2

O

Annodation

288

Left Hand Side (when) syntax

AurranyC reatorRest

NRClo]
LoE=0- P

AmayInitializer
©

-:;‘-I\f:-hhh]r:ih]irer If_ F{_-@-:—
o -®

AssignmentOperator

®

HHOOBEE000E

b

BindingPattern

s N
o= 0

Block
o0
BaoaleanLiteral
&

289

Chapter 7. Rule Language Refe...

CompilationUnit

e I vy

Conditional And

Conditional Element Accunmulate

(Cacowmitate) (O {Comimatind - { Accomubtees |(3)-
Conditional ElemeniEval
{wnlj@»{fmﬂﬁnﬂp |>®a
Conditional ElementExists
folE==alo}
Canditional ElementForall

(EoralL) () { BindingPumeem | (3
Conditional ElementNot

===
Conditional Element
ISR O R0}

290

Left Hand Side (when) syntax

Conditional OrExpr

iy

ofclelelole

#Bi

Conditional Or
D
: J

Constraints

_.".

I {ComtmioE |15 \ | Comdiomatorbage |

s

Crested Name
.. O ..
o] |
o R

Creator
‘ | MomWikicardType Asgumenns | - . [Ay Creararien |,
| Creaedame |
[efinition
«

291

Chapter 7. Rule Language Refe...

Digit

ExplicitGenericinvocationSuffix

*{'“F“}i SuperSuffix | .
1 Tkt fier ngmum |-

ExplicitCenericinyocation

{ ¥onWikicardType Arguments | { Asgumenss |-

Exponent

©

® 0

®
ExpressionList
—

Expression

o -
5,]
P S
- " f
i [.\-.I
i b

Field

[t () {@uidiome |-

Fraction

a B
O =1

FromAcooumulsteClause

{Em}l AccumubieC o |

From{Clamse

A £rom }{ Condioma)eExge |+

FromColleaiClause

(=) (Fie=) (D) Fmrmm | (D)

292

Left Hand Side (when) syntax

FunctionDrfinition

{ function].:-'f — :| Identifier HP‘:n.mﬂ:n H Black |

Cilobal Definition

(globul)| Type |{ Tk |-
[dentifierSuffix

pologelcl
T OE=I0O

Impont Definition

InExpr

-IRehli-:rnIEqr |-'

[nlineListExpr

@».-'“
[nlineMapEspr
, o 5
© F=10F=1 ©

InnerCreator

{ ldensifier || Argamenss |-

[nstancefExpr

a{.‘iqutmfjl-i Type |-,_,,

=3

293

Chapter 7. Rule Language Refe...

[ntLiteral

& =
‘O - H

1
-

-

Literal
‘ Boakanlieral \)

ModifyStatement

OrRestriction
- i
\E2

O

—{mﬂlm@a{]&uﬁr@’“ @

Parameters

: O :

- '=| Type || Idbewificr |: B

_@ b

O}

294

Left Hand Side (when) syntax

Placehalders

QualificdName

o

295

Chapter 7. Rule Language Refe...

(uery Definition

{ query) Swingld | QueryOptions |-
CueryDptions

Relational perator

Slollolole

296

Left Hand Side (when) syntax

RuleAtiribuies

O — g

o il

RuleAtiribute

(Lock-on-active)
{rentegorw)
| [(aetivationgromp)
{:d.ntc—cffucuu:),
- t
|
| O @

RuleDwfimition

(e) Seigld |{ RukeOpsioms |-~ | MheaPast |-
RuleOptions

-{ﬂttﬂﬂlj-lﬂﬂ'lg]dl— |Am|.] Rule Amritnnes

Selactor

(O (e [Sopersir

O, [foerCrosee |1
O)l lckertifier I:- -
@ 1

297

Chapter 7. Rule Language Refe...

RingleRestriction

,| Rehtionai0perator H ShiftExpr }

[ore== 1O

EpurcePattem

Q

SuperSuffix
' Idenifier | d
ThenPan
RisSaement |
TypeArsuments

O
o =10

TypeArgument

.- .
% | & %

298

Left Hand Side (when) syntax

TypeDefinition

Field

(Gatare) [Giedoms |{Tomomm] -—— (=)-

TypeCplions

—{m:}-{ raalifedName I;«.. { Annoation | |
Type

=y OO

P ‘

[IT}FW |) _@{I};

. -| Icemifier |-f v
UnaryExprdotPlusMinus
~\ Uy Fixge
tg_ I e
. e J— .
(-m'?{%l) i"'lg])
- | Primary |- -

299

Chapter 7. Rule Language Refe...

Variablelnitializer

Arraynitialeer
Engpression

‘WhenPar

@ CondiioralCr

7.8.4. The Right Hand Side (then)

7.8.4.1. Usage

The Right Hand Side (RHS) is a common name for the consequence or action part of the rule;
this part should contain a list of actions to be executed. It is bad practice to use imperative or
conditional code in the RHS of a rule; as a rule should be atomic in nature - "when this, then
do this", not "when this, maybe do this". The RHS part of a rule should also be kept small, thus
keeping it declarative and readable. If you find you need imperative and/or conditional code in the
RHS, then maybe you should be breaking that rule down into multiple rules. The main purpose of
the RHS is to insert, delete or modify working memory data. To assist with that there are a few
convenience methods you can use to modify working memory; without having to first reference
a working memory instance.

updat e(object, handle) ; will tell the engine that an object has changed (one that has been bound
to something on the LHS) and rules may need to be reconsidered.

updat e(object) ; can also be used; here the Knowledge Helper will look up the facthandle for you,
via an identity check, for the passed object. (Note that if you provide Property Change Listeners
to your Java beans that you are inserting into the engine, you can avoid the need to call updat e()
when the object changes.). After a fact's field values have changed you must call update before
changing another fact, or you will cause problems with the indexing within the rule engine. The
modify keyword avoids this problem.

i nsert (newSomething()); will place a new object of your creation into the Working Memory.

i nsert Logi cal (new Something()); is similar to insert, but the object will be automatically
deleted when there are no more facts to support the truth of the currently firing rule.

del et e(handle) ; removes an object from Working Memory.

These convenience methods are basically macros that provide short cuts to the Know edgeHel per
instance that lets you access your Working Memory from rules files. The predefined variable
drool s of type Know edgeHel per lets you call several other useful methods. (Refer to the
Knowl edgeHel per interface documentation for more advanced operations).

e The call drool s. hal t () terminates rule execution immediately. This is required for returning
control to the point whence the current session was put to work with fi reUnti | Hal t ().

300

The Right Hand Side (then)

Methods i nsert (Obj ect 0), updat e(CObj ect 0) and del et e(hj ect o) can be called on
dr ool s as well, but due to their frequent use they can be called without the object reference.

dr ool s. get Wor ki ngMenor y() returns the Wor ki ngMenor y object.
drool s. set Focus(String s) sets the focus to the specified agenda group.
drool s. get Rul e() . get Nane(), called from a rule's RHS, returns the name of the rule.

drool s. get Tupl e() returns the Tuple that matches the currently executing rule, and
drool s. get Acti vation() delivers the corresponding Activation. (These calls are useful for
logging and debugging purposes.)

The full Knowledge Runtime API is exposed through another predefined variable, kcont ext , of
type Ki eCont ext . Its method get Ki eRunt i me() delivers an object of type Ki eRunt i me, which, in
turn, provides access to a wealth of methods, many of which are quite useful for coding RHS logic.

The call kcont ext . get Ki eRunti me() . hal t () terminates rule execution immediately.

The accessor get Agenda() returns a reference to this session's Agenda, which in turn provides
access to the various rule groups: activation groups, agenda groups, and rule flow groups. A
fairly common paradigm is the activation of some agenda group, which could be done with the
lengthy call:

/1 give focus to the agenda group C eanUp
kcont ext . get Ki eRunti ne() . get Agenda() . get AgendaG oup("C eanUp"). set Focus();

(You can achieve the same using dr ool s. set Focus(" C eanUp").)

To run a query, you call get Quer yResul t s(String query), whereupon you may process the
results, as explained in section Query.

A set of methods dealing with event management lets you, among other things, add and remove
event listeners for the Working Memory and the Agenda.

Method get Ki eBase() returns the Ki eBase object, the backbone of all the Knowledge in your
system, and the originator of the current session.

You can manage globals with set @ obal (...), getd obal (...) and get d obal s().

Method get Envi ronment () returns the runtime's Envi ronment which works much like what
you know as your operating system's environment.

7.8.4.2. The nodi fy Statement

This language extension provides a structured approach to fact updates. It combines the update

operation with a number of setter calls to change the object's fields. This is the syntax schema

for the nodi f y statement:

301

Chapter 7. Rule Language Refe...

nmodi fy (<fact-expression>) {
<expression> [, <expression>]*

The parenthesized <fact-expression> must yield a fact object reference. The expression list in
the block should consist of setter calls for the given object, to be written without the usual object
reference, which is automatically prepended by the compiler.

The example illustrates a simple fact modification.

Example 7.78. A modify statement

rule "nodify stilton”
when
$stilton : Cheese(type == "stilton")
t hen
nodi fy($stilton){
setPrice(20),
set Age("overripe")

end
The advantages in using the modify statment are particularly clear when used in conjuction with
fine grained property change listeners. See the corresponding section for more details.

7.8.5. Conditional named consequences

Sometimes the constraint of having one single consequence for each rule can be somewhat
limiting and leads to verbose and difficult to be maintained repetitions like in the following example:

rule "G ve 10% di scount to custoners ol der than 60"

when

$cust omer : Custoner(age > 60)
t hen

nodi fy($custoner) { setDiscount(0.1) };
end

rule "Gve free parking to custoners ol der than 60"
when
$custonmer : Custoner(age > 60)
$car : Car (owner == S$custoner)
t hen
nodi fy($car) { setFreeParking(true) };
end

302

Conditional named consequences

It is already possible to partially overcome this problem by making the second rule extending the
first one like in:

rule "G ve 10% di scount to custoners ol der than 60"
when
$custoner : Custoner(age > 60)
t hen
nodi fy($custoner) { setDiscount(0.1) };
end

rule "Gve free parking to custoners ol der than 60"
extends "G ve 10% di scount to customers ol der than 60"
when
$car : Car (owner == S$custoner)
t hen
nodi fy($car) { setFreeParking(true) };
end

Anyway this feature makes it possible to define more labelled consequences other than the default
one in a single rule, so, for example, the 2 former rules can be compacted in only one like it follows:

rule "G ve 10%di scount and free parking to custoners ol der than 60"
when
$cust omer : Custoner(age > 60)
do[gi veDi scount]
$car : Car (owner == S$custoner)
t hen
nodi fy($car) { setFreeParking(true) };
t hen[gi veDi scount]
nmodi fy($custoner) { setDiscount(0.1) };
end

This last rule has 2 consequences, the usual default one, plus another one named "giveDiscount"
that is activated, using the keyword do, as soon as a customer older than 60 is found in the
knowledge base, regardless of the fact that he owns a car or not. The activation of a hamed
consequence can be also guarded by an additional condition like in this further example:

rule "Gve free parking to custonmers older than 60 and 10% di scount to gol den
ones anong t hent

when
$custonmer : Custoner(age > 60)
if (type == "Golden") do[giveDi scount]
$car : Car (owner == S$custoner)

t hen

303

Chapter 7. Rule Language Refe...

nmodi fy($car) { setFreeParking(true) };
t hen[gi veDi scount]

nodi fy($custoner) { setDiscount(0.1) };
end

The condition in the if statement is always evaluated on the pattern immediately preceding it. In
the end this last, a bit more complicated, example shows how it is possible to switch over different
conditions using a nested if/else statement:

rule "G ve free parking and 10% di scount to over 60 CGolden custonmer and 5% to
Silver ones"

when
$custoner : Custoner(age > 60)
if (type == "Golden") do[giveDi scount 10]
elseif (type == "Silver") break[giveD scountb5]
$car : Car (owner == S$custoner)

t hen

nodi fy($car) { setFreeParking(true) };
t hen[gi veDi scount 10]

nmodi fy($custoner) { setDiscount(0.1) };
t hen[gi veDi scount 5]

nodi fy($custoner) { setDiscount(0.05) };
end

Here the purpose is to give a 10% discount AND a free parking to Golden customers over 60, but
only a 5% discount (without free parking) to the Silver ones. This result is achieved by activating
the consequence named "giveDiscount5" using the keyword break instead of do. In fact do just
schedules a consequence in the agenda, allowing the remaining part of the LHS to continue of
being evaluated as per normal, while break also blocks any further pattern matching evaluation.
Note, of course, that the activation of a named consequence not guarded by any condition with
break doesn't make sense (and generates a compile time error) since otherwise the LHS part
following it would be never reachable.

7.8.6. A Note on Auto-boxing and Primitive Types

Drools attempts to preserve numbers in their primitive or object wrapper form, so a variable bound
to an int primitive when used in a code block or expression will no longer need manual unboxing;
unlike Drools 3.0 where all primitives were autoboxed, requiring manual unboxing. A variable
bound to an object wrapper will remain as an object; the existing JDK 1.5 and JDK 5 rules to
handle auto-boxing and unboxing apply in this case. When evaluating field constraints, the system
attempts to coerce one of the values into a comparable format; so a primitive is comparable to
an object wrapper.

304

Query

7.9. Query

(:}]

ey) —{(mame }~—(T~
—~ :- —(

[),

Figure 7.29. query

A query is a simple way to search the working memory for facts that match the stated conditions.
Therefore, it contains only the structure of the LHS of a rule, so that you specify neither "when"
nor "then". A query has an optional set of parameters, each of which can be optionally typed. If
the type is not given, the type Obiject is assumed. The engine will attempt to coerce the values
as needed. Query names are global to the KieBase; so do not add queries of the same name to
different packages for the same RuleBase.

To return the results use ksessi on. get Quer yResul t s("nane"), where "name" is the query's
name. This returns a list of query results, which allow you to retrieve the objects that matched
the query.

The first example presents a simple query for all the people over the age of 30. The second one,
using parameters, combines the age limit with a location.

Example 7.79. Query People over the age of 30

query "people over the age of 30"
person : Person(age > 30)
end

Example 7.80. Query People over the age of x, and who liveiny

query "people over the age of x" (int x, String y)

305

Chapter 7. Rule Language Refe...

person : Person(age > x, location ==y)
end

We iterate over the returned QueryResults using a standard "for" loop. Each element is a
QueryResultsRow which we can use to access each of the columns in the tuple. These columns
can be accessed by bound declaration name or index position.

Example 7.81. Query People over the age of 30

QueryResults results = ksessi on. get QueryResul ts("peopl e over the age of 30");
Systemout.println("we have " + results.size() +" people over the age of 30");

Systemout.println("These people are are over 30:");

for (QueryResultsRow row : results) {
Person person = (Person) row. get("person");
Systemout . println(person.getName() + "\n");

Support for positional syntax has been added for more compact code. By default the declared
type order in the type declaration matches the argument position. But it possible to override these
using the @position annotation. This allows patterns to be used with positional arguments, instead
of the more verbose named arguments.

decl are Cheese
name : String @osition(1l)
shop : String @osition(2)
price : int @osition(0)
end

The @Position annotation, in the org.drools.definition.type package, can be used to annotate
original pojos on the classpath. Currently only fields on classes can be annotated. Inheritance of
classes is supported, but not interfaces or methods. The isContainedin query below demonstrates
the use of positional arguments in a pattern; Locati on(x, y;) instead of Locati on(thing ==
X, location ==y).

Queries can now call other queries, this combined with optional query arguments provides
derivation query style backward chaining. Positional and named syntax is supported for
arguments. It is also possible to mix both positional and named, but positional must come first,
separated by a semi colon. Literal expressions can be passed as query arguments, but at this
stage you cannot mix expressions with variables. Here is an example of a query that calls another
guery. Note that 'z here will always be an 'out’ variable. The '?' symbol means the query is pull only,
once the results are returned you will not receive further results as the underlying data changes.

306

Query

decl are Location
thing : String
location : String
end

query isContainedln(String x, Stringy)
Location(x, y;)
or
(Location(z, y;) and ?isContainedln(x, z;))
end

As previously mentioned you can use live "open" queries to reactively receive changes over time
from the query results, as the underlying data it queries against changes. Notice the "look" rule
calls the query without using '?".

query isContainedln(String x, Stringy)
Location(x, vy;)
or
(Location(z, y;) and isContainedln(x, z;))
end

rul e | ook when

Person($I : likes)
i sContainedln($I, 'office';)
t hen
insertLogical ($ '"is in the office');

end

Drools supports unification for derivation queries, in short this means that arguments are optional.
It is possible to call queries from Java leaving arguments unspecified using the static field
org.drools.core.runtime.rule.Variable.v - note you must use 'v' and not an alternative instance of
Variable. These are referred to as 'out' arguments. Note that the query itself does not declare at
compile time whether an argument is in or an out, this can be defined purely at runtime on each
use. The following example will return all objects contained in the office.

results = ksessi on. get QueryResul ts("isContai nedln", new Object[] { Variable.v,
"office" });
| = new ArrayList<List<String>>();
for (QueryResultsRowr : results) {
|.add(Arrays.asList(new String[] { (String) r.get("x"), (String)
roget("y") }))
}

307

Chapter 7. Rule Language Refe...

The algorithm uses stacks to handle recursion, so the method stack will not blow up.

The following is not yet supported:

« List and Map unification
* Variables for the fields of facts

» Expression unification - pred(X, X+ 1, X*Y /7)

7.10. Domain Specific Languages

Domain Specific Languages (or DSLs) are a way of creating a rule language that is dedicated to
your problem domain. A set of DSL definitions consists of transformations from DSL "sentences"
to DRL constructs, which lets you use of all the underlying rule language and engine features.
Given a DSL, you write rules in DSL rule (or DSLR) files, which will be translated into DRL files.

DSL and DSLR files are plain text files, and you can use any text editor to create and modify them.
But there are also DSL and DSLR editors, both in the IDE as well as in the web based BRMS,
and you can use those as well, although they may not provide you with the full DSL functionality.

7.10.1. When to Use a DSL

DSLs can serve as a layer of separation between rule authoring (and rule authors) and the
technical intricacies resulting from the modelling of domain object and the rule engine's native
language and methods. If your rules need to be read and validated by domain experts (such as
business analysts, for instance) who are not programmers, you should consider using a DSL; it
hides implementation details and focuses on the rule logic proper. DSL sentences can also act as
"templates” for conditional elements and consequence actions that are used repeatedly in your
rules, possibly with minor variations. You may define DSL sentences as being mapped to these
repeated phrases, with parameters providing a means for accommodating those variations.

DSLs have no impact on the rule engine at runtime, they are just a compile time feature, requiring
a special parser and transformer.

7.10.2. DSL Basics

The Drools DSL mechanism allows you to customise conditional expressions and consequence
actions. A global substitution mechanism ("keyword") is also available.

Example 7.82. Example DSL mapping
[when] Somet hi ng is {col our}=Sonet hi ng(col our=="{col our}")

In the preceding example, [when] indicates the scope of the expression, i.e., whether it is valid
for the LHS or the RHS of a rule. The part after the bracketed keyword is the expression that you

308

DSL Basics

use in the rule; typically a natural language expression, but it doesn't have to be. The part to the
right of the equal sign ("=") is the mapping of the expression into the rule language. The form of
this string depends on its destination, RHS or LHS. If it is for the LHS, then it ought to be a term
according to the regular LHS syntax; if it is for the RHS then it might be a Java statement.

Whenever the DSL parser matches a line from the rule file written in the DSL with an expression in
the DSL definition, it performs three steps of string manipulation. First, it extracts the string values
appearing where the expression contains variable names in braces (here: {col our}). Then, the
values obtained from these captures are then interpolated wherever that name, again enclosed
in braces, occurs on the right hand side of the mapping. Finally, the interpolated string replaces
whatever was matched by the entire expression in the line of the DSL rule file.

Note that the expressions (i.e., the strings on the left hand side of the equal sign) are used as
regular expressions in a pattern matching operation against a line of the DSL rule file, matching all
or part of a line. This means you can use (for instance) a '?' to indicate that the preceding character
is optional. One good reason to use this is to overcome variations in natural language phrases of
your DSL. But, given that these expressions are regular expression patterns, this also means that
all "magic" characters of Java's pattern syntax have to be escaped with a preceding backslash ('\").

Itis important to note that the compiler transforms DSL rule files line by line. In the above example,
all the text after "Something is " to the end of the line is captured as the replacement value for
"{colour}", and this is used for interpolating the target string. This may not be exactly what you
want. For instance, when you intend to merge different DSL expressions to generate a composite
DRL pattern, you need to transform a DSLR line in several independent operations. The best way
to achieve this is to ensure that the captures are surrounded by characteristic text - words or even
single characters. As a result, the matching operation done by the parser plucks out a substring
from somewhere within the line. In the example below, quotes are used as distinctive characters.
Note that the characters that surround the capture are not included during interpolation, just the
contents between them.

As a rule of thumb, use quotes for textual data that a rule editor may want to enter. You can also
enclose the capture with words to ensure that the text is correctly matched. Both is illustrated by
the following example. Note that a single line such as Sonething is "green" and another
sol i d thing is now correctly expanded.

Example 7.83. Example with quotes

[when] somet hing is "{col our}"=Sonet hi ng(col our=="{col our}")
[when] anot her {state} thing=CQ herThing(state=="{state}"

It is a good idea to avoid punctuation (other than quotes or apostrophes) in your DSL expressions
as much as possible. The main reason is that punctuation is easy to forget for rule authors
using your DSL. Another reason is that parentheses, the period and the question mark are magic
characters, requiring escaping in the DSL definition.

309

Chapter 7. Rule Language Refe...

In a DSL mapping, the braces "{" and "}" should only be used to enclose a variable definition or
reference, resulting in a capture. If they should occur literally, either in the expression or within the
replacement text on the right hand side, they must be escaped with a preceding backslash ("\"):

[then] do something= if (foo) \{ doSonething(); \}

@ Note

If braces "{" and "}" should appear in the replacement string of a DSL definition,
escape them with a backslash ('\').

Example 7.84. Examples of DSL mapping entries

This is a conment to be ignored.

[when] There is a person with nane of "{nane}"=Person(nanme=="{nane}")

[when] Person is at |east {age} years old and lives in "{location}"=
Person(age >= {age}, location=="{location}")

[then] Log "{nmessage}"=Systemout.println("{message}");

[when] And = and

Given the above DSL examples, the following examples show the expansion of various DSLR
shippets:

Example 7.85. Examples of DSL expansions

There is a person with name of "Kitty"
==> Person(nane="Kitty")
Person is at |least 42 years old and lives in "Atlanta
==> Person(age >= 42, location="Atlanta")
Log "boo"
==> Systemout. println("boo");
There is a person with name of "Bob" and Person is at |east 30 years old and
lives in "Uah"
==> Person(nane="Bob") and Person(age >= 30, |ocation="Utah")

310

Adding Constraints to Facts

@ Note
Don't forget that if you are capturing plain text from a DSL rule line and want to
use it as a string literal in the expansion, you must provide the quotes on the right
hand side of the mapping.

You can chain DSL expressions together on one line, as long as it is clear to the parser where
one ends and the next one begins and where the text representing a parameter ends. (Otherwise
you risk getting all the text until the end of the line as a parameter value.) The DSL expressions
are tried, one after the other, according to their order in the DSL definition file. After any match,
all remaining DSL expressions are investigated, too.

The resulting DRL text may consist of more than one line. Line ends are in the replacement text
are written as \ n.

7.10.3. Adding Constraints to Facts

A common requirement when writing rule conditions is to be able to add an arbitrary combination
of constraints to a pattern. Given that a fact type may have many fields, having to provide an
individual DSL statement for each combination would be plain folly.

The DSL facility allows you to add constraints to a pattern by a simple convention: if your DSL
expression starts with a hyphen (minus character, "-") it is assumed to be a field constraint and,
consequently, is is added to the last pattern line preceding it.

For an example, lets take look at class Cheese, with the following fields: type, price, age and
country. We can express some LHS condition in normal DRL like the following

Cheese(age < 5, price == 20, type=="stilton", country=="ch")

The DSL definitions given below result in three DSL phrases which may be used to create any
combination of constraint involving these fields.

[when] There is a Cheese w t h=Cheese()

[when] - age is | ess than {age}=age<{age}

[when] - type is '{type}' =type=="{type}’

[when] - country equal to '{country}'=country=="{country}’

You can then write rules with conditions like the following:

There is a Cheese with
- age is less than 42

311

Chapter 7. Rule Language Refe...

- type is 'stilton'

The parser will pick up a line beginning with "-" and add it as a constraint to the preceding pattern,
inserting a comma when it is required. For the preceding example, the resulting DRL is:

Cheese(age<42, type=='stilton')

Combining all all numeric fields with all relational operators (according to the DSL expression "age
is less than..." in the preceding example) produces an unwieldy amount of DSL entries. But you
can define DSL phrases for the various operators and even a generic expression that handles
any field constraint, as shown below. (Notice that the expression definition contains a regular
expression in addition to the variable name.)

[when][]is | ess than or equal to=<=

[when][]is less than=<

[when][]is greater than or equal to=>=

[when][]is greater than=>

[when][]is equal to===

[when] [] equal s===

[when][] There is a Cheese w t h=Cheese()

[when][]- {field:\w} {operator} {value:\d*}={field} {operator} {val ue}

Given these DSL definitions, you can write rules with conditions such as:

There is a Cheese with
- age is less than 42
- rating is greater than 50
- type equals 'stilton'

In this specific case, a phrase such as "is less than" is replaced by <, and then the line matches
the last DSL entry. This removes the hyphen, but the final result is still added as a constraint to
the preceding pattern. After processing all of the lines, the resulting DRL text is:

Cheese(age<42, rating > 50, type=="stilton")

312

Developing a DSL

@ Note

The order of the entries in the DSL is important if separate DSL expressions are
intended to match the same line, one after the other.

7.10.4. Developing a DSL

A good way to get started is to write representative samples of the rules your application requires,
and to test them as you develop. This will provide you with a stable framework of conditional
elements and their constraints. Rules, both in DRL and in DSLR, refer to entities according to
the data model representing the application data that should be subject to the reasoning process
defined in rules. Notice that writing rules is generally easier if most of the data model's types are
facts.

Given an initial set of rules, it should be possible to identify recurring or similar code snippets and
to mark variable parts as parameters. This provides reliable leads as to what might be a handy
DSL entry. Also, make sure you have a full grasp of the jargon the domain experts are using, and
base your DSL phrases on this vocabulary.

You may postpone implementation decisions concerning conditions and actions during this first
design phase by leaving certain conditional elements and actions in their DRL form by prefixing a
line with a greater sign (">"). (This is also handy for inserting debugging statements.)

During the next development phase, you should find that the DSL configuration stabilizes pretty
quickly. New rules can be written by reusing the existing DSL definitions, or by adding a parameter
to an existing condition or consequence entry.

Try to keep the number of DSL entries small. Using parameters lets you apply the same DSL
sentence for similar rule patterns or constraints. But do not exaggerate: authors using the DSL
should still be able to identify DSL phrases by some fixed text.

7.10.5. DSL and DSLR Reference

A DSL file is a text file in a line-oriented format. Its entries are used for transforming a DSLR file
into a file according to DRL syntax.

A line starting with "#" or "//" (with or without preceding white space) is treated as a comment.
A comment line starting with "#/" is scanned for words requesting a debug option, see below.

« Any line starting with an opening bracket ("[") is assumed to be the first line of a DSL entry
definition.

« Any other line is appended to the preceding DSL entry definition, with the line end replaced
by a space.

313

Chapter 7. Rule Language Refe...

A DSL entry consists of the following four parts:

e A scope definition, written as one of the keywords "when" or "condition", "then" or
"consequence", "*" and "keyword", enclosed in brackets ("[" and "]"). This indicates whether the
DSL entry is valid for the condition or the consequence of a rule, or both. A scope indication
of "keyword" means that the entry has global significance, i.e., it is recognized anywhere in a

DSLR file.

» Atype definition, written as a Java class hame, enclosed in brackets. This part is optional unless
the the next part begins with an opening bracket. An empty pair of brackets is valid, too.

« A DSL expression consists of a (Java) regular expression, with any number of embedded
variable definitions, terminated by an equal sign ("="). A variable definition is enclosed in braces
("{" and "}"). It consists of a variable name and two optional attachments, separated by colons
(":"). If there is one attachment, it is a regular expression for matching text that is to be assigned
to the variable; if there are two attachments, the first one is a hint for the GUI editor and the
second one the regular expression.

Note that all characters that are "magic" in regular expressions must be escaped with a
preceding backslash ("\") if they should occur literally within the expression.

« The remaining part of the line after the delimiting equal sign is the replacement text for any
DSLR text matching the regular expression. It may contain variable references, i.e., a variable
name enclosed in braces. Optionally, the variable name may be followed by an exclamation
mark ("!") and a transformation function, see below.

Note that braces ("{" and "}") must be escaped with a preceding backslash ("\") if they should
occur literally within the replacement string.

Debugging of DSL expansion can be turned on, selectively, by using a comment line starting with
"#/" which may contain one or more words from the table presented below. The resulting output
is written to standard output.

Table 7.2. Debug options for DSL expansion

Word Description

result Prints the resulting DRL text, with line numbers.

steps Prints each expansion step of condition and
consequence lines.

keyword Dumps the internal representation of all DSL
entries with scope "keyword".

when Dumps the internal representation of all DSL
entries with scope "when" or "*".

then Dumps the internal representation of all DSL
entries with scope "then" or "*".

314

DSL and DSLR Reference

Word Description

‘ usage Displays a usage statistic of all DSL entries. ‘

Below are some sample DSL definitions, with comments describing the language features they
illustrate.

Conment: DSL exanpl es
#/ debug: display result and usage

keyword definition: replaces "regula" by "rule"
[keyword] []regul a=rul e

conditional elenent: "T" or "t", "a" or "an", convert matched word
[when][]1[Tt]here is an? {entity:\wt}=
${entityllc}: {entitylucfirst} ()

consequence statement: convert matched word, literal braces
[then][]update {entity:\w+}=nodify(${entity!lc})\{ \}

The transformation of a DSLR file proceeds as follows:

1. The text is read into memory.

2. Each of the "keyword" entries is applied to the entire text. First, the regular expression from the
keyword definition is modified by replacing white space sequences with a pattern matching any
number of white space characters, and by replacing variable definitions with a capture made
from the regular expression provided with the definition, or with the default (".*?"). Then, the
DSLR text is searched exhaustively for occurrences of strings matching the modified regular
expression. Substrings of a matching string corresponding to variable captures are extracted
and replace variable references in the corresponding replacement text, and this text replaces
the matching string in the DSLR text.

3. Sections of the DSLR text between "when" and "then", and "then" and "end", respectively, are
located and processed in a uniform manner, line by line, as described below.

For a line, each DSL entry pertaining to the line's section is taken in turn, in the order it appears
in the DSL file. Its regular expression part is modified: white space is replaced by a pattern
matching any number of white space characters; variable definitions with a regular expression
are replaced by a capture with this regular expression, its default being ".*?". If the resulting
regular expression matches all or part of the line, the matched part is replaced by the suitably
modified replacement text.

Modification of the replacement text is done by replacing variable references with the text
corresponding to the regular expression capture. This text may be modified according to the
string transformation function given in the variable reference; see below for details.

315

Chapter 7. Rule Language Refe...

If there is a variable reference naming a variable that is not defined in the same entry, the
expander substitutes a value bound to a variable of that name, provided it was defined in one
of the preceding lines of the current rule.

4. If a DSLR line in a condition is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a pattern CE, i.e., a type name followed by a pair of
parentheses. if this pair is empty, the expanded line (which should contain a valid constraint)

is simply inserted, otherwise a comma (",") is inserted beforehand.

Ifa DSLR line in a consequence is written with a leading hyphen, the expanded result is inserted
into the last line, which should contain a "modify" statement, ending in a pair of braces ("{" and
"I"). If this pair is empty, the expanded line (which should contain a valid method call) is simply

inserted, otherwise a comma (",") is inserted beforehand.

@ Note
It is currently not possible to use a line with a leading hyphen to insert text into
other conditional element forms (e.g., "accumulate") or it may only work for the first
insertion (e.g., "eval").

All string transformation functions are described in the following table.

Table 7.3. String transformation functions

Name Description

uc Converts all letters to upper case.
Ic Converts all letters to lower case.
ucfirst Converts the first letter to upper case, and all

other letters to lower case.

num Extracts all digits and "-" from the string. If the
last two digits in the original string are preceded

by "." or ",", a decimal period is inserted in the
corresponding position.

a?blc Compares the string with string a, and if they
are equal, replaces it with b, otherwise with c.
But ¢ can be another triplet a, b, c, so that the
entire structure is, in fact, a translation table.

The following DSL examples show how to use string transformation functions.

definitions for conditions
[when][] There is an? {entity}=${entity!lc}: {entitylucfirst}()
[when][]- with an? {attr} greater than {amount}={attr} <= {anount!nun}

316

DSL and DSLR Reference

[when][]1- with a {what} {attr}={attr} {what! positive?>0/negative?%t;0/zero?==0/
ERROR}

A file containing a DSL definition has to be put under the resources folder or any of its subfolders
like any other drools artifact. It must have the extension . dsl, or alternatively be marked with
type Resour ceType. DSL. when programmatically added to a Ki eFi | eSyst em For a file using DSL
definition, the extension . dsl r should be used, while it can be added to a Ki eFi | eSyst emwith
type Resour ceType. DSLR.

For parsing and expanding a DSLR file the DSL configuration is read and supplied to the parser.
Thus, the parser can "recognize" the DSL expressions and transform them into native rule
language expressions.

317

318

Chapter 8.

Chapter 8. Complex Event
Processing

8.1. Complex Event Processing

There is no broadly accepted definition on the term Complex Event Processing. The term Event
by itself is frequently overloaded and used to refer to several different things, depending on the
context it is used. Defining terms is not the goal of this guide and as so, lets adopt a loose definition
that, although not formal, will allow us to proceed with a common understanding.

So, in the scope of this guide:

Important

Event, is a record of a significant change of state in the application domain at a
given point in time.

For instance, on a Stock Broker application, when a sale operation is executed, it causes a change
of state in the domain. This change of state can be observed on several entities in the domain,
like the price of the securities that changed to match the value of the operation, the ownership of
the traded assets that changed from the seller to the buyer, the balance of the accounts from both
seller and buyer that are credited and debited, etc. Depending on how the domain is modelled, this
change of state may be represented by a single event, multiple atomic events or even hierarchies
of correlated events. In any case, in the context of this guide, Event is the record of the change
of a particular piece of data in the domain.

Events are processed by computer systems since they were invented, and throughout the
history, systems responsible for that were given different names and different methodologies were
employed. It wasn't until the 90's though, that a more focused work started on EDA (Event Driven
Architecture) with a more formal definition on the requirements and goals for event processing.
Old messaging systems started to change to address such requirements and new systems started
to be developed with the single purpose of event processing. Two trends were born under the
names of Event Stream Processing and Complex Event Processing.

In the very beginnings, Event Stream Processing was focused on the capabilities of processing
streams of events in (near) real time, while the main focus of Complex Event Processing was on
the correlation and composition of atomic events into complex (compound) events. An important
(maybe the most important) milestone was the publishing of Dr. David Luckham's book "The
Power of Events" in 2002. In the book, Dr Luckham introduces the concept of Complex Event
Processing and how it can be used to enhance systems that deal with events. Over the years,
both trends converged to a common understanding and today these systems are all referred to
as CEP systems.

319

Chapter 8. Complex Event Proc...

This is a very simplistic explanation to a really complex and fertile field of research, but sets a high
level and common understanding of the concepts that this guide will introduce.

The current understanding of what Complex Event Processing is may be briefly described as the
following quote from Wikipedia:

Important

"Complex Event Processing, or CEP, is primarily an event
processing concept that deals with the task of processing multiple
events with the goal of identifying the meaningful events within
the event cloud. CEP employs techniques such as detection
of complex patterns of many events, event correlation and
abstraction, event hierarchies, and relationships between events
such as causality, membership, and timing, and event-driven

processes."
—Wikipedia [http://en.wikipedia.org/wiki/
Complex_event_processing]

In other words, CEP is about detecting and selecting the interesting events (and only them) from
an event cloud, finding their relationships and inferring new data from them and their relationships.

E] Note
For the remaining of this guide, we will use the terms Complex Event Processing
and CEP as a broad reference for any of the related technologies and techniques,
including but not limited to, CEP, Complex Event Processing, ESP, Event Stream
Processing and Event Processing in general.

8.2. Drools Fusion

Event Processing use cases, in general, share several requirements and goals with Business
Rules use cases. These overlaps happen both on the business side and on the technical side.

On the Business side:

» Business rules are frequently defined based on the occurrence of scenarios triggered by events.
Examples could be:

» On an algorithmic trading application: take an action if the security price increases X%
compared to the day opening price, where the price increases are usually denoted by events
on a Stock Trade application.

» On a monitoring application: take an action if the temperature on the server room increases
X degrees in Y minutes, where sensor readings are usually denoted by events.

320

http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing
http://en.wikipedia.org/wiki/Complex_event_processing

Drools Fusion

« Both business rules and event processing queries change frequently and require immediate
response for the business to adapt itself to new market conditions, new regulations and new
enterprise policies.

From a technical perspective:

« Both require seamless integration with the enterprise infrastructure and applications, specially
on autonomous governance, including, but not limited to, lifecycle management, auditing,
security, etc.

« Both have functional requirements like pattern matching and non-functional requirements like
response time and query/rule explanation.

Even sharing requirements and goals, historically, both fields were born appart and although
the industry evolved and one can find good products on the market, they either focus on event
processing or on business rules management. That is due not only because of historical reasons
but also because, even overlapping in part, use cases do have some different requirements.

Important

Drools was also born as a rules engine several years ago, but following the vision
of becoming a single platform for behavioral modelling, it soon realized that it could
only achieve this goal by crediting the same importance to the three complementary
business modelling techniques:

e Business Rules Management
» Business Processes Management

» Complex Event Processing

In this context, Drools Fusion is the module responsible for adding event processing capabilities
into the platform.

Supporting Complex Event Processing, though, is much more than simply understanding what an
event is. CEP scenarios share several common and distinguishing characteristics:

 Usually required to process huge volumes of events, but only a small percentage of the events
are of real interest.

» Events are usually immutable, since they are a record of state change.

« Usually the rules and queries on events must run in reactive modes, i.e., react to the detection
of event patterns.

321

Chapter 8. Complex Event Proc...

» Usually there are strong temporal relationships between related events.

« Individual events are usually not important. The system is concerned about patterns of related
events and their relationships.

« Usually, the system is required to perform composition and aggregation of events.

Based on this general common characteristics, Drools Fusion defined a set of goals to be achieved
in order to support Complex Event Processing appropriately:

» Support Events, with their proper semantics, as first class citizens.

« Allow detection, correlation, aggregation and composition of events.

» Support processing of Streams of events.

» Support temporal constraints in order to model the temporal relationships between events.
» Support sliding windows of interesting events.

» Support a session scoped unified clock.

« Support the required volumes of events for CEP use cases.

» Support to (re)active rules.

« Support adapters for event input into the engine (pipeline).

The above list of goals are based on the requirements not covered by Drools Expert itself, since
in a unified platform, all features of one module are leveraged by the other modules. This way,
Drools Fusion is born with enterprise grade features like Pattern Matching, that is paramount to a
CEP product, but that is already provided by Drools Expert. In the same way, all features provided
by Drools Fusion are leveraged by Drools Flow (and vice-versa) making process management
aware of event processing and vice-versa.

For the remaining of this guide, we will go through each of the features Drools Fusion adds to the
platform. All these features are available to support different use cases in the CEP world, and the
user is free to select and use the ones that will help him model his business use case.

8.3. Event Semantics

An event is a fact that present a few distinguishing characteristics:

« Usually immutables: since, by the previously discussed definition, events are a record of a
state change in the application domain, i.e., a record of something that already happened,
and the past can not be "changed", events are immutables. This constraint is an important

322

Event Processing Modes

requirement for the development of several optimizations and for the specification of the event
lifecycle. This does not mean that the Java object representing the object must be immutable.
Quite the contrary, the engine does not enforce immutability of the object model, because one
of the most common use cases for rules is event data enrichment.

E] Note
As a best practice, the application is allowed to populate un-populated event
attributes (to enrich the event with inferred data), but already populated attributes
should never be changed.

» Strong temporal constraints: rules involving events usually require the correlation of multiple
events, specially temporal correlations where events are said to happen at some point in time
relative to other events.

* Managed lifecycle: due to their immutable nature and the temporal constraints, events usually
will only match other events and facts during a limited window of time, making it possible for
the engine to manage the lifecycle of the events automatically. In other words, one an event is
inserted into the working memory, it is possible for the engine to find out when an event can no
longer match other facts and automatically delete it, releasing its associated resources.

« Use of sliding windows: since all events have timestamps associated to them, it is possible
to define and use sliding windows over them, allowing the creation of rules on aggregations of
values over a period of time. Example: average of an event value over 60 minutes.

Drools supports the declaration and usage of events with both semantics: point-in-time events
and interval-based events.

@ Note
A simplistic way to understand the unitification of the semantics is to consider a
point-in-time event as an interval-based event whose duration is zero.

8.4. Event Processing Modes

Rules engines in general have a well known way of processing data and rules and provide the
application with the results. Also, there is not many requirements on how facts should be presented
to the rules engine, specially because in general, the processing itself is time independent. That
is a good assumption for most scenarios, but not for all of them. When the requirements include
the processing of real time or near real time events, time becomes and important variable of the
reasoning process.

The following sections will explain the impact of time on rules reasoning and the two modes
provided by Drools for the reasoning process.

323

Chapter 8. Complex Event Proc...

8.4.1. Cloud Mode

The CLOUD processing mode is the default processing mode. Users of rules engine are familiar
with this mode because it behaves in exactly the same way as any pure forward chaining rules
engine, including previous versions of Drools.

When running in CLOUD mode, the engine sees all facts in the working memory, does not matter
if they are regular facts or events, as a whole. There is no notion of flow of time, although events
have a timestamp as usual. In other words, although the engine knows that a given event was
created, for instance, on January 1st 2009, at 09:35:40.767, it is not possible for the engine to
determine how "old" the event is, because there is no concept of "now".

In this mode, the engine will apply its usual many-to-many pattern matching algorithm, using the
rules constraints to find the matching tuples, activate and fire rules as usual.

This mode does not impose any kind of additional requirements on facts. So for instance:

« There is no notion of time. No requirements clock synchronization.

e There is no requirement on event ordering. The engine looks at the events as an unordered
cloud against which the engine tries to match rules.

On the other hand, since there is no requirements, some benefits are not available either. For
instance, in CLOUD mode, it is not possible to use sliding windows, because sliding windows are
based on the concept of "now" and there is no concept of "now" in CLOUD mode.

Since there is no ordering requirement on events, it is not possible for the engine to determine
when events can no longer match and as so, there is no automatic life-cycle management for
events. l.e., the application must explicitly delete events when they are no longer necessary, in
the same way the application does with regular facts.

Cloud mode is the default execution mode for Drools, but in any case, as any other configuration
in Drools, it is possible to change this behavior either by setting a system property, using
configuration property files or using the API. The corresponding property is:

Ki eBaseConfigurati on config = Ki eServices. Factory. get (). newKi eBaseConfi guration();
config.setOption(EventProcessi ngOpti on. CLOUD);

The equivalent property is:

dr ool s. event Processi ngMbde = cl oud

324

Stream Mode

8.4.2. Stream Mode

The STREAM processing mode is the mode of choice when the application needs to process
streams of events. It adds a few common requirements to the regular processing, but enables a
whole lot of features that make stream event processing a lot simpler.

The main requirements to use STREAM mode are:

« Events in each stream must be time-ordered. l.e., inside a given stream, events that happened
first must be inserted first into the engine.

» The engine will force synchronization between streams through the use of the session clock,
so, although the application does not need to enforce time ordering between streams, the use
of non-time-synchronized streams may result in some unexpected results.

Given that the above requirements are met, the application may enable the STREAM mode using

the following API:

Ki eBaseConfiguration config = KieServices. Factory. get (). newKi eBaseConfi guration();
config.setOption(EventProcessi ngOpti on. STREAM) ;

Or, the equivalent property:

dr ool s. event Processi nghbde = stream

When using the STREAM, the engine knows the concept of flow of time and the concept of "now",
i.e., the engine understands how old events are based on the current timestamp read from the
Session Clock. This characteristic allows the engine to provide the following additional features
to the application:

* Sliding Window support
» Automatic Event Lifecycle Management
« Automatic Rule Delaying when using Negative Patterns

All these features are explained in the following sections.
8.4.2.1. Role of Session Clock in Stream mode

When running the engine in CLOUD mode, the session clock is used only to time stamp the
arriving events that don't have a previously defined timestamp attribute. Although, in STREAM
mode, the Session Clock assumes an even more important role.

325

Chapter 8. Complex Event Proc...

In STREAM mode, the session clock is responsible for keeping the current timestamp, and based
on it, the engine does all the temporal calculations on event's aging, synchronizes streams from
multiple sources, schedules future tasks and so on.

Check the documentation on the Session Clock section to know how to configure and use different
session clock implementations.

8.4.2.2. Negative Patterns in Stream Mode

Negative patterns behave different in STREAM mode when compared to CLOUD mode. In
CLOUD mode, the engine assumes that all facts and events are known in advance (there is no
concept of flow of time) and so, negative patterns are evaluated immediately.

When running in STREAM mode, negative patterns with temporal constraints may require the
engine to wait for a time period before activating a rule. The time period is automatically calculated
by the engine in a way that the user does not need to use any tricks to achieve the desired res