1^{ère} partie

Chapitre VI

Influence électrostatique et condensateurs

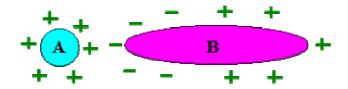
I. Phénomène d'influence

I.1 Influence subie par un conducteur isolé

B un conducteur isolé ne porte aucune charge : Q = 0, V = 0, $\vec{E} = \vec{0}$.

On approche de B un corps A chargé positivement.

 action de A sur B => B influencé par A : des charges - apparaissent sur la partie de B proche de A et des charges + sur la partie la plus éloignée.



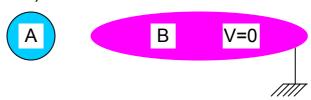
- modification de la répartition des charges sur la surface de B,
- B étant isolé → sa charge reste constante égale à sa valeur initiale.

<u>Conclusion</u>: le phénomène d'influence ne modifie pas la charge totale d'un conducteur isolé, mais modifie uniquement la répartition de cette charge sur sa surface et donc son potentiel.

<u>Remarque</u> : si le conducteur B était <u>initialement chargé</u>, il <u>conserve la même</u> <u>charge</u> mais <u>la répartition en surface est modifiée</u>.

I.2 Influence subie par un conducteur maintenu à un potentiel constant

Le conducteur B est relié à un générateur qui maintient son potentiel constant ou bien à la terre dont le potentiel est nul. Lorsqu'on approche de B le corps A chargé positivement, il apparaît que des charges – sur B, alors qu'il y'a déplacement des charges + vers la terre (c .à.d déplacement des e de la Terre vers B).

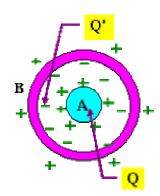


Conclusion : Dans ce cas, le phénomène d'influence ne modifie pas le potentiel du conducteur, mais modifie sa charge totale et la répartition de cette charge.

I.3 L'influence totale.

L'influence totale apparaît lorsque le conducteur influencé B entoure le conducteur influençant A. On a le phénomène suivant :

- Il apparaît, <u>par influence totale</u>, une charge Q' = Q sur la surface intérieure de B.
- La charge de la face extérieure de B dépend de sa charge initiale, et de son état (isolé ou maintenu à V constant). On distingue 3 cas :



 $\underline{1^{\text{\'er}} \, \text{cas}}$: B isolé et initialement neutre. Puisque la charge totale doit rester nulle, il apparaît sur la face externe la charge +Q

 $\underline{2^{\text{ème}} \text{ cas}}$: B isolé et porte initialement une charge Q' \rightarrow il apparaît sur sa face externe la charge Q + Q'

 $3^{\text{ème}}$ cas : B relié au sol \rightarrow aucune charge sur sa face externe.

II. <u>Capacités et coefficients d'influence d'un système de conducteurs en</u> équilibre électrostatique

Considérons n conducteurs portés aux potentiels V_1, V_2, \ldots, V_n ; et portant les charges Q_1, Q_2, \ldots, Q_n . On montre que les charges Q_1, Q_2, \ldots, Q_n sont des fonctions linéaires des potentiels des conducteurs :

$$Q_1 = C_{11}V_{1+}C_{12}V_2 + C_{1n}V_n$$

$$Q_2 = C_{21}V_{2+}C_{22}V_2 + C_{2n}V_n$$
 $Q_n = C_{n1}V_{1+}C_{n2}V_2 + C_{nn}V_n$

Les coefficients C_{ij} sont les coefficients d'influences entre conducteurs :

 $C_{ij} = C_{ji} < 0$, les coefficients C_{ii} sont les capacités des conducteurs en présence des autres conducteurs : $C_{ii} > 0$.

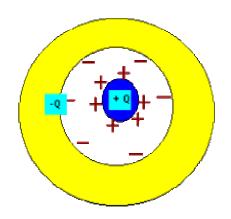
Remarque : La capacité C_{ii} du conducteur i en présence des autres conducteurs est différente de sa capacité C_i lorsqu'il est seul.

III. Les condensateurs

III.1 Définitions

- Un condensateur est formé de deux conducteurs en influence totale. Les deux conducteurs sont appelés armatures du condensateur.
- On appelle charge du condensateur, la charge Q de son armature interne.

Soient V_1 et V_2 les potentiels respectifs des des armatures interne et externe.



Le rapport $C = \frac{Q}{V_1 - V_2}$ est appelé capacité du condensateur.

Représentation symbolique :

III.2 Calcul de capacités

a / Méthode générale

- On calcul le champ E entre les armatures (en utilisant le théorème de Gauss),
- On calcul la circulation du champ d'une armature à l'autre, $V_1 V_2 = \int_1^2 \vec{E}.d\vec{l}$

- Connaissant la charge
$$Q=\iint\limits_{S}\sigma.dS$$
, on $calcul$ $C=rac{\mathcal{Q}}{V_1-V_2}$

b / Le condensateur plan

Il est constitué de deux plans infinis portés aux potentiels V₁ et V₂ et distant de e.

Entre les armatures E est uniforme : $\vec{E}=\frac{\sigma}{\varepsilon_0}\vec{n}$, Calculons la circulation de E :

$$\int_{A1}^{A2} \vec{E} \cdot d\vec{l} = \int_{V_1}^{V_2} -dV \to E \cdot e = V_1 - V_2 \to E = \frac{V_1 - V_2}{e}$$

D'autre part une portion du conqueteur ue surface o porte la charge Q - 0.0

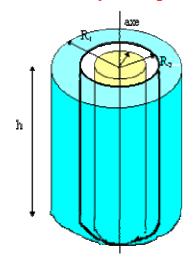
$$E = \frac{\sigma}{\varepsilon_0} = \frac{Q}{\varepsilon_0 S} = \frac{V_1 - V_2}{e} \longrightarrow C = \frac{Q}{V_1 - V_2} = \varepsilon_0 \cdot \frac{S}{e}$$

Pour

augmenter C il faut remplacer le vide par de la matière, c'est-à-dire ϵ_0 par ϵ_0 ϵ_r .

C / Les condensateurs cylindrique et sphérique

- Condensateur cylindrique :



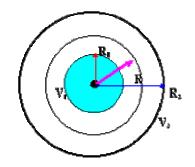
-On calcul d'abord le champ électrostatique entre les armatures : $E = \frac{Q}{2\pi\epsilon \ rh}$

- On calcul la d.d.p entre les armatures :

$$V_{_{1}}-V_{_{2}}=\frac{Q}{2\pi\epsilon_{_{0}}h}Ln\frac{R_{_{2}}}{R_{_{1}}}$$

On en déduit :
$$C = \frac{2\pi\epsilon_{_0}h}{Ln\frac{R_{_2}}{R_{_1}}}$$

- Condensateur sphérique



Dans ce cas on trouve : $C = 4\pi\epsilon_0 \, \frac{R_1 R_2}{R_2 - R_1}$

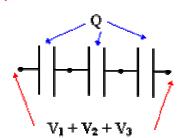
III.3 Groupements de condensateurs

Un condensateur est caractérisé par sa capacité et la d.d.p qu'il peut supporter.

Objectif du groupement de condensateurs :

- avoir un condensateur capable de supporter les d.d.p élevées,
- ou avoir un condensateur de capacité très grande,

- Groupement en série.



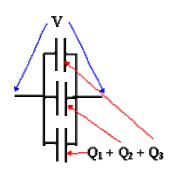
- Dans ce groupement tous les condensateurs portent la même charge Q,
- La d.d.p entre A et B est la somme des Vi : $V_A V_B = V_1 + V_2 + V_3$
- Le Condensateur équivalent aura la même charge Q sous la d.d.p V de l'ensemble en série. Sa capacité C_e est donnée par :

$$V_A - V_B = \frac{Q}{C_e} = V_1 + V_2 + V_3 = \frac{Q}{C_1} + \frac{Q}{C_2} + \frac{Q}{C_3} \rightarrow \frac{1}{C_e} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$$

Ce groupement permet de diviser la d.d.p totale en fractions supportables par chaque élément .

$$\frac{1}{C_e} = \sum_i \frac{1}{C_i}$$

- Groupement en parallèle.



- Dans ce groupement tous les condensateurs ont la même d.d.p V à leur bornes.
- Le Condensateur équivalent aura la charge
 Q = Q1 + Q2 + Q3 sous la d.d.p V. Sa capacité Ce est donnée par :

$$Q = C_e.V = Q_1 + Q_2 + Q_3 = C_1.V + C_2.V + C_3.V = (C_1 + C_2 + C_3).V \quad \rightarrow \quad C = C_1 + C_2 + C_3$$

Pour un groupement en parallèle de n condensateurs, la capacité du condensateur équivalent sera : $C = \sum_{i=1}^{n} C_i$

III.4 Condensateur avec dielectrique

En réalité entre les armatures d'un condensateur il y'a un isolant (solide, liquide ou l'air). L'expérience montre que l'utilisation de l'isolant permet d'augmenter la capacité du condensateur : $C = \varepsilon_r C_0$,

ou C est la capacité du condensateur avec un isolant entre les armatures, et C₀ sa capacité lorsqu'il n' y a rien entre les armatures « du vide »,

 ϵ_r sans unité, est la permittivité relative de l'isolant ou constante diélectrique, elle ne dépend que de la nature de l'isolant.

 ϵ_r = ϵ_0 ϵ_r est la permittivité absolue de l'isolant, ϵ_0 est la permittivité absolue du vide.

Exemples : Valeurs de ε_r pour quelques isolants :

Verres : ε_r de 4 à 7, mica : ε_r = 8, air : ε_r = 1,00058