Cours Divers

Support d Introduction à la programmation en R


Télécharger Support d Introduction à la programmation en R

★★★★★★★★★★3.5 étoiles sur 5 basé sur 1 votes.
Votez ce document:

Télécharger aussi :


Introduction à la programmation en R

Vincent Goulet

École d’actuariat, Université Laval

Troisième édition

© 2012 Vincent Goulet

Cette création est mise à disposition selon le contrat Paternité-Partage à l’identique 2.5 Canada de Creative Commons. En vertu de ce contrat, vous êtes libre de : ? partager — reproduire, distribuer et communiquer l’œuvre;

? remixer — adapter l’œuvre;

? utiliser cette œuvre à des fins commerciales.

Selon les conditions suivantes :

Attribution — Vous devez attribuer l’œuvre de la manière indiquée par l’auteur de l’œuvre ou le titulaire des droits (mais pas d’une manière qui suggérerait qu’ils vous soutiennent ou approuvent votre utilisation de l’œuvre).

Partage à l’identique — Si vous modifiez, transformez ou adaptez cette œuvre, vous n’avez le droit de distribuer votre création que sous une licence identique ou similaire à celle-ci.

Code source

Le code source LATEX et R de ce document est disponible dans le dépôt Subversion

ou en communiquant directement avec l’auteur.

ISBN 978-2-9811416-2-0

Dépôt légal – Bibliothèque et Archives nationales du Québec, 2012

Dépôt légal – Bibliothèque et Archives Canada, 2012

Couverture

Le hibou en couverture est un harfang des neiges (Bubo scandiacus), l’emblème aviaire du Québec. Ce choix relève également d’un clin d’œil à la couverture de Braun et Murdoch (2007).

Crédits photo : David G. Hemmings via Wikimedia Commons

Introduction

Depuis maintenant plus d’une décennie, le système R connaît une progression remarquable dans ses fonctionnalités, dans la variété de ses domaines d’application ou, plus simplement, dans le nombre de ses utilisateurs. La documentation disponible a suivi la même tangente, plusieurs maisons d’édition ayant démarré des collections dédiées spécifiquement aux utilisations que l’on fait de R en sciences naturelles, en sciences sociales, en finance, etc. Néanmoins, peu d’ouvrages se concentrent sur l’apprentissage de R en tant que langage de programmation sous-jacent aux fonctions statistiques. C’est la niche que nous tâchons

d’occuper.

Cette troisième édition de l’ouvrage se distingue de la précédente (Goulet, 2007) à plusieurs égards. Tout d’abord, le nouveau titre indique déjà que nous ne traitons plus du système S-PLUS. S’il y a eu lutte d’importance et d’influence entre le logiciel libre R et le logiciel commercial S-PLUS, la cause est aujourd’hui entendue : R a gagné. Ensuite, l’ensemble du texte a fait l’objet d’une révision et d’une mise à jour en profondeur, en particulier les trois premiers chapitres. Enfin, même si nous conservons un biais en faveur du tandem GNU Emacs et ESS pour interagir avec R, la présentation est moins liée à ces outils.

L’ouvrage est basé sur des notes de cours et des exercices utilisés à l’École d’actuariat de l’Université Laval. L’enseignement du langage R est axé sur l’exposition à un maximum de code — que nous avons la prétention de croire bien écrit — et sur la pratique de la programmation. C’est pourquoi les chapitres sont rédigés de manière synthétique et qu’ils comportent peu d’exemples au fil du texte. En revanche, le lecteur est appelé à lire et à exécuter le code informatique se trouvant dans les sections d’exemples à la fin de chacun des chapitres. Ce code et les commentaires qui l’accompagnent reviennent sur l’essentiel des concepts du chapitre et les complémentent souvent. Nous considérons l’exercice d’«étude active» consistant à exécuter du code et à voir ses effet comme essentielle à l’apprentissage du langage R.

Le texte des sections d’exemples est disponible en format électronique sous la rubrique de la documentation par des tiers (Contributed) du site Comprehensive R

v

vi                                                                                                                                                                  Introduction

Archive Network :

Certains exemples et exercices trahissent le premier public de ce document : on y fait à l’occasion référence à des concepts de base de la théorie des probabilités et des mathématiques financières. Les contextes actuariels demeurent néanmoins peu nombreux et ne devraient généralement pas dérouter le lecteur pour qui ces notions sont moins familières.

Nous tenons à remercier M. Mathieu Boudreault pour sa collaboration dans la rédaction des exercices et Mme Mireille Côté pour la révision linguistique de la seconde édition.

Vincent Goulet Québec, avril 2012

Table des matières

Introduction                                                                                                                                        v

1    Présentation du langage R         1

1.1     Bref historique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        1

1.2     Description sommaire de R    . . . . . . . . . . . . . . . . . . . . . . .                2

1.3     Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           3

1.4     Stratégies de travail . . . . . . . . . . . . . . . . . . . . . . . . . . . .     4

1.5     Éditeurs de texte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      5

1.6     Anatomie d’une session de travail . . . . . . . . . . . . . . . . . . . .             8

1.7     Répertoire de travail . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9

1.8     Consulter l’aide en ligne          . . . . . . . . . . . . . . . . . . . . . . . . .            9

1.9     Où trouver de la documentation . . . . . . . . . . . . . . . . . . . . .              9

1.10  Exemples    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         10

1.11  Exercices    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         11

2    Bases du langage R      13

2.1     Commandes R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         13

2.2     Conventions pour les noms d’objets     . . . . . . . . . . . . . . . . . .           15

2.3     Les objets R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         16

2.4     Vecteurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .          20

2.5     Matrices et tableaux . . . . . . . . . . . . . . . . . . . . . . . . . . . .    21

2.6     Listes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .            24

2.7     Data frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .        26

2.8     Indiçage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .           26

2.9     Exemples    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         28

2.10  Exercices    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .         39

3    Opérateurs et fonctions             41

3.1     Opérations arithmétiques       . . . . . . . . . . . . . . . . . . . . . . . .              41

vii

viii                                                                                                                                                    Table des matières

                                                3.2      Opérateurs                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          42

                                                3.3                        Appels de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          43

                                                3.4                      Quelques fonctions utiles . . . . . . . . . . . . . . . . . . . . . . . . .                        44

                                                3.5                       Structures de contrôle . . . . . . . . . . . . . . . . . . . . . . . . . . .                        50

                                                3.6                       Fonctions additionnelles . . . . . . . . . . . . . . . . . . . . . . . . .                         51

                                                3.7      Exemples                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          52

                                                3.8      Exercices                         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          60

4       Exemples résolus                                                                                                                     63

                                                4.1                      Calcul de valeurs présentes . . . . . . . . . . . . . . . . . . . . . . . .                       63

                                                4.2         Fonctions de masse de probabilité                  . . . . . . . . . . . . . . . . . . .                 64

                                                4.3                   Fonction de répartition de la loi gamma . . . . . . . . . . . . . . . .                    66

                                                4.4        Algorithme du point fixe                     . . . . . . . . . . . . . . . . . . . . . . . . .                     68

                                                4.5                         Suite de Fibonacci . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          69

                                                4.6      Exercices                         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          70

5        Fonctions définies par l’usager                                                                                            73

                                                5.1                       Définition d’une fonction . . . . . . . . . . . . . . . . . . . . . . . . .                        73

                                                5.2                       Retourner des résultats . . . . . . . . . . . . . . . . . . . . . . . . . .                        74

                                                5.3        Variables locales et globales                   . . . . . . . . . . . . . . . . . . . . . . .                    74

                                                5.4                        Exemple de fonction . . . . . . . . . . . . . . . . . . . . . . . . . . . .                         75

                                                5.5        Fonctions anonymes                      . . . . . . . . . . . . . . . . . . . . . . . . . . .                      76

                                                5.6                        Débogage de fonctions . . . . . . . . . . . . . . . . . . . . . . . . . .                         76

                                                5.7                         Styles de codage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          77

                                                5.8      Exemples                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          78

                                                5.9      Exercices                         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          82

6       Concepts avancés                                                                                                                     87

                                                6.1                           Argument ‘ ’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            87

                                                6.2                          Fonction apply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           88

                                                6.3                         Fonctions lapply et sapply . . . . . . . . . . . . . . . . . . . . . . .                           90

                                                6.4                          Fonction mapply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                           92

                                                6.5                           Fonction replicate . . . . . . . . . . . . . . . . . . . . . . . . . . . .                            93

                                                6.6                     Classes et fonctions génériques . . . . . . . . . . . . . . . . . . . . .                       94

                                                6.7      Exemples                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                          95

                                                6.8      Exercices                         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                        102

7        Fonctions d’optimisation                                                                                                    107

                                                7.1                           Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .                         107

                                                7.2          Fonctions d’optimisation et de calcul de racines               . . . . . . . . . . .          108

Table des matières

ix

        7.3       Pour en savoir plus                      . . . . . . . . . . . . . . . . . . . . . . . . . . . .

109

        7.4      Exemples                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

109

        7.5      Exercices                         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

113

8         Générateurs de nombres aléatoires

115

        8.1                    Générateurs de nombres aléatoires . . . . . . . . . . . . . . . . . . .

115

        8.2            Fonctions de simulation de variables aléatoires non uniformes            . .

116

        8.3      Exemples                        . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

118

        8.4      Exercices                         . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

119

A        GNU Emacs et ESS : la base

121

       A.1                         Mise en contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

121

       A.2                           Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

122

       A.3        Description sommaire                      . . . . . . . . . . . . . . . . . . . . . . . . . .

122

       A.4                      Emacs-ismes et Unix-ismes . . . . . . . . . . . . . . . . . . . . . . . .

123

       A.5       Commandes de base                      . . . . . . . . . . . . . . . . . . . . . . . . . . .

124

       A.6                   Anatomie d’une session de travail (bis) . . . . . . . . . . . . . . . . .

127

       A.7        Configuration de l’éditeur                    . . . . . . . . . . . . . . . . . . . . . . . .

128

       A.8                        Aide et documentation . . . . . . . . . . . . . . . . . . . . . . . . . .

128

B          Planification d’une simulation en R

129

        B.1                           Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

129

        B.2                   Première approche : avec une boucle . . . . . . . . . . . . . . . . . .

130

        B.3                       Seconde approche : avec sapply . . . . . . . . . . . . . . . . . . . .

130

        B.4        Variante de la seconde approche                   . . . . . . . . . . . . . . . . . . . .

134

        B.5                         Gestion des fichiers . . . . . . . . . . . . . . . . . . . . . . . . . . . .

134

        B.6       Exécution en lot                       . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

135

        B.7                           Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

136

C         Installation de packages dans R

137

Réponses des exercices

139

Chapitre 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

139

Chapitre 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

140

Chapitre 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

141

Chapitre 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

142

Chapitre 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

147

Chapitre 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

148

Chapitre 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

149

Bibliographie

151

Index

153

1    Présentation du langage R

Objectifs du chapitre

? Connaître la provenance du langage R et les principes ayant guidé son développement.

? Comprendre ce qu’est un langage de programmation interprété.

? Savoir démarrer une session R et exécuter des commandes simples.

? Comprendre l’utilité des fichiers de script R et savoir les utiliser de manière interactive.

? Savoir créer, modifier et sauvegarder ses propres fichiers de script R.

1.1      Bref historique

À l’origine fut le S, un langage pour «programmer avec des données» développé chez Bell Laboratories à partir du milieu des années 1970 par une équipe de chercheurs menée par John M. Chambers. Au fil du temps, le S a connu quatre principales versions communément identifiées par la couleur du livre dans lequel elles étaient présentées : version «originale» (Brown Book ; Becker et Chambers, 1984), version 2 (Blue Book ; Becker et collab., 1988), version 3 (White Book ; Chambers et Hastie, 1992) et version 4 (Green Book ; Chambers, 1998); voir aussi Chambers (2000) et Becker (1994) pour plus de détails.

Dès la fin des années 1980 et pendant près de vingt ans, le S a principalement été popularisé par une mise en œuvre commerciale nommée S-PLUS. En 2008, Lucent Technologies a vendu le langage S à Insightful Corporation, ce qui a effectivement stoppé le développement du langage par ses auteurs originaux. Aujourd’hui, le S est commercialisé de manière relativement confidentielle sous le nom Spotfire S+ par TIBCO Software.

Ce qui a fortement contribué à la perte d’influence de S-PLUS, c’est une nouvelle mise en œuvre du langage développée au milieu des années 1990. Inspirés à

1

la fois par le S et par Scheme (un dérivé du Lisp), Ross Ihaka et Robert Gentleman proposent un langage pour l’analyse de données et les graphiques qu’ils nomment R (Ihaka et Gentleman, 1996). À la suggestion de Martin Maechler de l’ETH de Zurich, les auteurs décident d’intégrer leur nouveau langage au projet GNU, faisant de R un logiciel libre.

Ainsi disponible gratuitement et ouvert aux contributions de tous, R gagne rapidement en popularité là même où S-PLUS avait acquis ses lettres de noblesse, soit dans les milieux académiques. De simple dérivé «not unlike S», R devient un concurrent sérieux à S-PLUS, puis le surpasse lorsque les efforts de développement se rangent massivement derrière le projet libre. D’ailleurs John Chambers place aujourd’hui ses efforts de réflexion et de développement dans le projet R (Chambers, 2008).

1.2      Description sommaire de R

R est un environnement intégré de manipulation de données, de calcul et de préparation de graphiques. Toutefois, ce n’est pas seulement un «autre» environnement statistique (comme SPSS ou SAS, par exemple), mais aussi un langage de programmation complet et autonome.

Tel que mentionné précédemment, le R est un langage principalement inspiré du S et de Scheme (Abelson et collab., 1996). Le S était à son tour inspiré de plusieurs langages, dont l’APL (autrefois un langage très prisé par les actuaires) et le Lisp. Comme tous ces langages, le R est interprété, c’est-à-dire qu’il requiert un autre programme — l’interprète — pour que ses commandes soient exécutées. Par opposition, les programmes de langages compilés, comme le C ou le C++, sont d’abord convertis en code machine par le compilateur puis directement exécutés par l’ordinateur.

Le programme que l’on lance lorsque l’on exécute R est en fait l’interprète. Celui-ci attend que l’on lui soumette des commandes dans le langage R, commandes qu’il exécutera immédiatement, une à une et en séquence.

Par analogie, Excel est certes un logiciel de manipulation de données, de mise en forme et de préparation de graphiques, mais c’est aussi au sens large un langage de programmation interprété. On utilise le langage de programmation lorsque l’on entre des commandes dans une cellule d’une feuille de calcul. L’interprète exécute les commandes et affiche les résultats dans la cellule.

Le R est un langage particulièrement puissant pour les applications mathématiques et statistiques (et donc actuarielles) puisque précisément développé dans ce but. Parmi ses caractéristiques particulièrement intéressantes, on note :

1.3. Interfaces

FIG. 1.1: Fenêtre de la console sous Mac OS X au démarrage de R

? langage basé sur la notion de vecteur, ce qui simplifie les calculs mathématiques et réduit considérablement le recours aux structures itératives (boucles for, while, etc.);

? pas de typage ni de déclaration obligatoire des variables; ? programmes courts, en général quelques lignes de code seulement; ? temps de développement très court.

1.3      Interfaces

R est d’abord et avant tout une application n’offrant qu’une invite de commande du type de celle présentée à la figure 1.1. En soi, cela n’est pas si différent d’un tableur tel que Excel : la zone d’entrée de texte dans une cellule n’est rien d’autre qu’une invite de commande, par ailleurs aux capacités d’édition plutôt réduites.

? Sous Unix et Linux, R n’est accessible que depuis la ligne de commande du système d’exploitation (terminal). Aucune interface graphique n’est offerte avec la distribution de base de R.

? Sous Windows, une interface graphique plutôt rudimentaire est disponible. Elle facilite certaines opérations tel que l’installation de packages externes, mais elle offre autrement peu de fonctionnalités additionnelles pour l’édition de code R. ? L’interface graphique de R sous Mac OS X est la plus élaborée. Outre la console présentée à la figure 1.1, l’application R.app comporte de nombreuses fonctionnalités, dont un éditeur de code assez complet.

1.4      Stratégies de travail

Dans la mesure où R se présente essentiellement sous forme d’une invite de commande, il existe deux grandes stratégies de travail avec cet environnement statistique.

1.    On entre des expressions à la ligne de commande pour les évaluer immédiatement :

> 2 + 3

[1] 5

On peut également créer des objets contenant le résultat d’un calcul. Ces objets sont stockés en mémoire dans l’espace de travail de R :

> x

> x

[1] 7.389056

Lorsque la session de travail est terminée, on sauvegarde une image de l’espace de travail sur le disque dur de l’ordinateur afin de pouvoir conserver les objets pour une future séance de travail :

> save.image()

Par défaut, l’image est sauvegardée dans un fichier nommé .RData dans le dossier de travail actif (voir la section 1.7) et cette image est automatiquement chargée en mémoire au prochain lancement de R, tel qu’indiqué à la fin du message d’accueil :

[Sauvegarde de la session précédente restaurée]

1.5. Éditeurs de texte

Cette approche, dite de «code virtuel et objets réels» a un gros inconvénient : le code utilisé pour créer les objets n’est pas sauvegardé entre les sessions de travail. Or, celui-ci est souvent bien plus compliqué que l’exemple ci-dessus. De plus, sans accès au code qui a servi à créer l’objet x, comment savoir ce que la valeur 7,389056 représente au juste?

2.    L’approche dite de «code réel et objets virtuels» considère que ce qu’il importe de conserver d’une session de travail à l’autre n’est pas tant les objets que le code qui a servi à les créer. Ainsi, on sauvegardera dans ce que l’on nommera des fichiers de script nos expressions R et le code de nos fonctions personnelles. Par convention, on donne aux fichiers de script un nom se terminant avec l’extension .R.

Avec cette approche, les objets sont créés au besoin en exécutant le code des fichiers de script. Comment? Simplement en copiant le code du fichier de script et en le collant dans l’invite de commande de R. La figure 1.2 illustre schématiquement ce que le programmeur R a constamment sous les yeux : d’un côté son fichier de script et, de l’autre, l’invite de commande R dans laquelle son code a été exécuté.

La méthode d’apprentissage préconisée dans cet ouvrage suppose que le lecteur utilisera cette seconde approche d’interaction avec R.

1.5      Éditeurs de texte

Dans la mesure où l’on a recours à des fichiers de script tel qu’expliqué à la section précédente, l’édition de code R bénéficie grandement d’un bon éditeur de texte pour programmeur. Dans certains cas, l’éditeur peut même réduire l’opération de copier-coller à un simple raccourci clavier.

? Un éditeur de texte est différent d’un traitement de texte en ce qu’il s’agit d’un logiciel destiné à la création, l’édition et la sauvegarde de fichiers textes purs, c’est-à-dire dépourvus d’information de présentation et de mise en forme. Les applications Bloc-notes sous Windows ou TextEdit sous Mac OS X sont deux exemples d’éditeurs de texte simples.

? Un éditeur de texte pour programmeur saura en plus reconnaître la syntaxe d’un langage de programmation et assister à sa mise en forme : indentation automatique du code, coloration syntaxique, manipulation d’objets, etc.

Le lecteur peut utiliser l’éditeur de texte de son choix pour l’édition de code R. Certains éditeurs offrent simplement plus de fonctionnalités que d’autres.

## Fichier de script simple contenant des expressions R pour ## faire des calculs et créer des objets.

2 + 3

## Probabilité d'une loi de Poisson(10) x

10^x * exp(-10) / factorial(x)

## Petite fonction qui fait un calcul trivial f

## Évaluation de la fonction f(2)

R version 2.15.0 (2012-03-30)

Copyright (C) 2012 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

Platform: x86_64-apple-darwin9.8.0/x86_64 (64-bit)

[ ]

> ## Fichier de script simple contenant des expressions R pour

> ## faire des calculs et créer des objets. > 2 + 3

[1] 5

> ## Probabilité d'une loi de Poisson(10)

> x

> 10^x * exp(-10) / factorial(x)

[1] 0.09007923

> ## Petite fonction qui fait un calcul trivial

> f

> ## Évaluation de la fonction > f(2)

[1]    4

FIG. 1.2: Fichier de script (en haut) et invite de commande R dans laquelle les expressions R ont été exécutées (en bas). Les lignes débutant par # dans le fichier de script sont des commentaires ignorés par l’interprète de commandes.

1.5. Éditeurs de texte

FIG. 1.3: Fenêtre de GNU Emacs sous OS X en mode d’édition de code R. Dans la partie du haut, on retrouve le fichier de script de la figure 1.2 et dans la partie du bas, l’invite de commandes R.

? GNU Emacs est un très ancien, mais aussi très puissant éditeur pour programmeur. À la question 6.2 de la foire aux questions de R (Hornik, 2011), «Devrais-je utiliser R à l’intérieur de Emacs?», la réponse est : «Oui, absolument.»

En effet, combiné avec le mode ESS (Emacs Speaks Statistics), Emacs offre un environnement de développement aussi riche qu’efficace. Entre autres fonctionnalités uniques à cet éditeur, le fichier de script et l’invite de commandes R sont regroupés dans la même fenêtre, comme on peut le voir à la figure 1.3.

Emblême du logiciel libre, Emacs est disponible gratuitement et à l’identique sur toutes les plateformes supportées par R, dont Windows, OS X et Linux.

? Consulter l’annexe A pour en savoir plus sur GNU Emacs et apprendre les commandes essentielles pour y faire ses premiers pas.

? Malgré tous ses avantages (ou à cause de ceux-ci), Emacs est un logiciel difficile à apprivoiser, surtout pour les personnes moins à l’aise avec l’informatique. ? Il existe plusieurs autres options que Emacs pour éditer efficacement du code R — et le Bloc-notes de Windows n’en fait pas partie! Nous recommandons plutôt :

–    sous Windows, l’éditeur Notepad++ additionné de l’extension NppToR (Redd, 2010), tous deux des logiciels libres;

–    toujours sous Windows, le partagiciel WinEdt muni de l’extension libre RWinEdt (Ligges, 2003);

–    sous OS X, tout simplement l’éditeur de texte très complet intégré à l’application R.app, ou alors l’éditeur de texte commercial TextMate (essai gratuit de 30 jours);

–    sous Linux, Vim et Kate semblent les choix les plus populaires après Emacs dans la communauté R.

1.6       Anatomie d’une session de travail

Dans ses grandes lignes, toute session de travail avec R se réduit aux étapes ci-dessous.

1.    Ouvrir un fichier de script existant ou en créer un nouveau à l’aide de l’éditeur de texte de son choix.

2.    Démarrer une session R en cliquant sur l’icône de l’application si l’on utilise une interface graphique, ou alors en suivant la procédure expliquée à l’annexe A si l’on utilise GNU Emacs.

3.    Au cours de la phase de développement, on fera généralement de nombreux aller-retours la ligne de commande où l’on testera des commandes et le fichier de script où l’on consignera le code R que l’on souhaite sauvegarder et les commentaires qui nous permettront de s’y retrouver plus tard.

4.    Sauvegarder son fichier de script et quitter l’éditeur.

5.    Si nécessaire — et c’est rarement le cas — sauvegarder l’espace de travail de la session R avec save.image(). En fait, on ne voudra sauvegarder nos objets R que lorsque ceux-ci sont très longs à créer comme, par exemple, les résultats d’une simulation.

6.    Quitter R en tapant q() à la ligne de commande ou en fermant l’interface graphique par la procédure usuelle. Encore ici, la manière de procéder est quelque peu différente dans GNU Emacs; voir l’annexe A.

1.7. Répertoire de travail

Évidemment, les étapes 1 et 2 sont interchangeables, tout comme les étapes 4, 5 et

6.

1.7      Répertoire de travail

Le répertoire de travail (workspace) de R est le dossier par défaut dans lequel le logiciel 1) va rechercher des fichiers de script ou de données; et 2) va sauvegarder l’espace de travail dans le fichier .RData. Le dossier de travail est déterminé au lancement de R. ? Les interfaces graphiques démarrent avec un répertoire de travail par défaut. Pour le changer, utiliser l’entrée appropriée dans le menu Fichier (Windows) ou Divers (Mac OS X). Consulter aussi les foires aux questions spécifiques aux interfaces graphiques (Ripley et Murdoch, 2011; Iacus et collab., 2011) pour des détails additionnels sur la gestion des répertoires de travail.

? Avec GNU Emacs, la situation est un peu plus simple puisque l’on doit spécifier un répertoire de travail chaque fois que l’on démarre un processus R; voir l’annexe A.

1.8      Consulter l’aide en ligne

Les rubriques d’aide des diverses fonctions disponibles dans R contiennent une foule d’informations ainsi que des exemples d’utilisation. Leur consultation est tout à fait essentielle.

? Pour consulter la rubrique d’aide de la fonction foo, on peut entrer à la ligne de commande

> ?foo ou

> help(foo)

1.9      Où trouver de la documentation

La documentation officielle de R se compose de six guides accessibles depuis le menu Aide des interfaces graphiques ou encore en ligne dans le site du projet R, Pour le débutant, seuls An Introduction to R et, possiblement, R Data Import/Export peuvent s’avérer des ressources utiles à court terme.

Plusieurs livres — en versions papier ou électronique, gratuits ou non — ont été publiés sur R. On en trouvera une liste exhaustive dans la section Documentation du site du projet R.

Depuis plusieurs années maintenant, les ouvrages de Venables et Ripley (2000, 2002) demeurent des références standards de facto sur les langages S et R. Plus récent, Braun et Murdoch (2007) participe du même effort que le présent ouvrage en se concentrant sur la programmation en R plutôt que sur ses applications statistiques.

1.10    Exemples

### Générer deux vecteurs de nombres pseudo-aléatoires issus ### d'une loi normale centrée réduite.

x

### Graphique des couples (x, y). plot(x, y)

### Graphique d'une approximation de la densité du vecteur x. plot(density(x))

### Générer la suite 1, 2, , 10.

1:10

### La fonction 'seq' sert à générer des suites plus générales.

seq(from = -5, to = 10, by = 3) seq(from = -5, length = 10)

### La fonction 'rep' sert à répéter des valeurs. rep(1, 5)               # répéter 1 cinq fois rep(1:5, 5)   # répéter le vecteur 1, ,5 cinq fois rep(1:5, each = 5) # répéter chaque élément du vecteur cinq fois ### Arithmétique vectorielle.

v

# initialisation d'un vecteur

v + 2

# additionner 2 à chaque élément de v

v * -12:-1

# produit élément par élément

v + 1:3

# le vecteur le plus court est recyclé

### Vecteur de nombres uniformes sur l'intervalle [1, 10].

v

v

1.11. Exercices

### Pour afficher le résultat d'une affectation, placer la ### commande entre parenthèses.

( v

### Arrondi des valeurs de v à l'entier près.

( v

### Créer une matrice 3 x 4 à partir des valeurs de

### v. Remarquer que la matrice est remplie par colonne. ( m

### Les opérateurs arithmétiques de base s'appliquent aux ### matrices comme aux vecteurs.

m + 2 m * 3 m ^ 2

### Éliminer la quatrième colonne afin d'obtenir une matrice ### carrée.

( m

### Transposée et inverse de la matrice m.

t(m) solve(m)

### Produit matriciel.

                  m %*% m                                          # produit de m avec elle-même

                     m %*% solve(m)                               # produit de m avec son inverse

round(m %*% solve(m)) # l'arrondi donne la matrice identité

### Consulter la rubrique d'aide de la fonction 'solve'.

?solve

### Liste des objets dans l'espace de travail.

ls()

### Nettoyage. rm(x, y, v, m)

1.11      Exercices

1.1 Démarrer une session R et entrer une à une les expressions ci-dessous à la ligne de commande. Observer les résultats.

> ls()

> pi

> (v

> v * 2

> x

> x

> ls()

> q()

1.2 Ouvrir dans un éditeur de texte le fichier de script contenant le code de la section précédente. Exécuter le code ligne par ligne et observer les résultats. Repéter l’exercice avec un ou deux autres éditeurs de texte afin de les comparer et de vous permettre d’en choisir un pour la suite.

1.3 Consulter les rubriques d’aide d’une ou plusieurs des fonctions rencontrées lors de l’exercice précédent. Observer d’abord comment les rubriques d’aide sont structurées — elles sont toutes identiques — puis exécuter quelques expressions tirées des sections d’exemples.

1.4 Exécuter le code de l’exemple de session de travail R que l’on trouve à l’annexe A de Venables et collab. (2011). En plus d’aider à se familiariser avec R, cet exercice permet de découvrir les fonctionnalités du logiciel en tant qu’outil statistique.

2    Bases du langage R

Objectifs du chapitre

? Connaître la syntaxe et la sémantique du langage R.

? Comprendre la notion d’objet et connaître les principaux types de données disponibles dans R.

? Comprendre et savoir tirer profit de l’arithmétique vectorielle.

? Comprendre la différence entre les divers modes d’objets (en particulier numeric, character et logical) et la conversion automatique de l’un à l’autre.

? Comprendre la différence entre un vecteur, une matrice, un tableau, une liste et un data frame et savoir créer ces divers types d’objets.

? Savoir extraire des données d’un objet ou y affecter de nouvelles valeurs à l’aide des diverses méthodes d’indiçage.

Avant de pouvoir utiliser un langage de programmation, il faut en connaître la syntaxe et la sémantique, du moins dans leurs grandes lignes. C’est dans cet esprit que ce chapitre introduit des notions de base du langage R telles que l’expression, l’affectation et l’objet. Le concept de vecteur se trouvant au cœur du langage, le chapitre fait une large place à la création et à la manipulation des vecteurs et autres types d’objets de stockage couramment employés en programmation en R.

2.1      Commandes R

Tel que vu au chapitre précédent, l’utilisateur de R interagit avec l’interprète R en entrant des commandes à l’invite de commande. Toute commande R est soit une expression, soit une affectation.

? Normalement, une expression est immédiatement évaluée et le résultat est affiché à l’écran :

> 2 + 3

13

[1] 5

> pi

[1] 3.141593

> cos(pi/4)

[1] 0.7071068

? Lors d’une affectation, une expression est évaluée, mais le résultat est stocké dans un objet (variable) et rien n’est affiché à l’écran. Le symbole d’affectation est <-, c’est-à-dire les deux caractères < et - placés obligatoirement l’un à la suite de l’autre :

> a

> a

[1] 5

> b

> b

[1] 5

? Pour affecter le résultat d’un calcul dans un objet et simultanément afficher ce résultat, il suffit de placer l’affectation entre parenthèses pour ainsi créer une nouvelle expression:

> (a

[1] 5

? Le symbole d’affectation inversé -> existe aussi, mais il est rarement utilisé.

? Éviter d’utiliser l’opérateur = pour affecter une valeur à une variable puisque cette pratique est susceptible d’engendrer de la confusion avec les constructions nom = valeur dans les appels de fonction.

Astuce. Dans les anciennes versions de S et R, l’on pouvait affecter avec le caractère de soulignement «_». C’est emploi n’est plus permis, mais la pratique subsiste dans le mode ESS de Emacs. Ainsi, taper le caractère «_» hors d’une chaîne de caractères dans Emacs génère automatiquement

Que ce soit dans les fichiers de script ou à la ligne de commande, on sépare les commandes R les unes des autres par un point-virgule ou par un retour à la ligne.

2.2. Conventions pour les noms d’objets

? On considère généralement comme du mauvais style d’employer les deux, c’està-dire de placer des points-virgules à la fin de chaque ligne de code, surtout dans les fichiers de script.

? Le point-virgule peut être utile pour séparer deux courtes expressions ou plus sur une même ligne :

> a

[1] 7

C’est le seul emploi du point-virgule que l’on rencontrera dans cet ouvrage.

On peut regrouper plusieurs commandes en une seule expression en les entourant d’accolades { }.

? Le résultat du regroupement est la valeur de la dernière commande :

> {

                      +                 a

                      +               b

                      +            b

+ }

[1] 5

? Par conséquent, si le regroupement se termine par une assignation, aucune valeur n’est retournée ni affichée à l’écran :

> {

                      +                 a

                      +               b

+ }

? Les règles ci-dessus joueront un rôle important dans la composition de fonctions; voir le chapitre 5.

? Comme on peut le voir ci-dessus, lorsqu’une commande n’est pas complète à la fin de la ligne, l’invite de commande de R change de > à + pour nous inciter à compléter notre commande.

2.2       Conventions pour les noms d’objets

Les caractères permis pour les noms d’objets sont les lettres minuscules a–z et majuscules A–Z, les chiffres 0–9, le point «.» et le caractère de soulignement «_». Selon l’environnement linguistique de l’ordinateur, il peut être permis d’utiliser des lettres accentuées, mais cette pratique est fortement découragée puisqu’elle risque de nuire à la portabilité du code.

? Les noms d’objets ne peuvent commencer par un chiffre. S’ils commencent par un point, le second caractère ne peut être un chiffre.

? Le R est sensible à la casse, ce qui signifie que foo, Foo et FOO sont trois objets distincts. Un moyen simple d’éviter des erreurs liées à la casse consiste à n’employer que des lettres minuscules.

? Certains noms sont utilisés par le système R, aussi vaut-il mieux éviter de les utiliser. En particulier, éviter d’utiliser c, q, t, C, D, I, diff, length, mean, pi, range, var. ? Certains mots sont réservés et il est interdit de les utiliser comme nom d’objet. Les mots réservés pour le système sont :

break, else, for, function, if, in, next, repeat, return, while,

TRUE, FALSE,

Inf, NA, NaN, NULL,

NA_integer_, NA_real_, NA_complex_, NA_character_, , ..1, ..2, etc.

? Les variables T et F prennent par défaut les valeurs TRUE et FALSE, respectivement, mais peuvent être réaffectées :

> T

[1] TRUE

> TRUE

Error in TRUE

> (T

[1] 3

? Nous recommandons de toujours écrire les valeurs booléennes TRUE et FALSE au long pour éviter des bogues difficiles à détecter.

2.3      Les objets R

Tout dans le langage R est un objet : les variables contenant des données, les fonctions, les opérateurs, même le symbole représentant le nom d’un objet est lui-même un objet. Les objets possèdent au minimum un mode et une longueur et certains peuvent être dotés d’un ou plusieurs attributs ? Le mode d’un objet est obtenu avec la fonction mode :

2.3. Les objets R

Mode

Contenu de l’objet

numeric

nombres réels

complex

nombres complexes

logical

valeurs booléennes (vrai/faux)

character

chaînes de caractères

function

fonction

list

données quelconques

expression

expressions non évaluées

TAB. 2.1: Modes disponibles et contenus correspondants

> v

> mode(v)

[1] "numeric"

? La longueur d’un objet est obtenue avec la fonction length :

> length(v)

[1] 4

2.3.1      Modes et types de données

Le mode prescrit ce qu’un objet peut contenir. À ce titre, un objet ne peut avoir qu’un seul mode. Le tableau 2.1 contient la liste des principaux modes disponibles en R. À chacun de ces modes correspond une fonction du même nom servant à créer un objet de ce mode.

? Les objets de mode "numeric", "complex", "logical" et "character" sont des objets simples (atomic en anglais) qui ne peuvent contenir que des données d’un seul type.

? En revanche, les objets de mode "list" ou "expression" sont des objets récursifs qui peuvent contenir d’autres objets. Par exemple, une liste peut contenir une ou plusieurs autres listes; voir la section 2.6 pour plus de détails.

La fonction typeof permet d’obtenir une description plus précise de la représentation interne d’un objet (c’est-à-dire au niveau de la mise en œuvre en C). Le mode et le type d’un objet sont souvent identiques.

2.3.2     Longueur

La longueur d’un objet est égale au nombre d’éléments qu’il contient. ? La longueur, au sens R du terme, d’une chaîne de caractères est toujours 1. Un objet de mode character doit contenir plusieurs chaînes de caractères pour que sa longueur soit supérieure à 1 :

> v1 <- "actuariat" > length(v1)

[1] 1

> v2 length(v2)

[1] 9

? On obtient le nombre de caractères dans un chaîne avec la fonction nchar :

> nchar(v1)

[1] 9

> nchar(v2)

[1] 1 1 1 1 1 1 1 1 1

? Un objet peut être de longueur 0 et doit alors être interprété comme un contenant qui existe, mais qui est vide :

> v length(v)

[1] 0

2.3.3     L’objet spécialNULL

L’objet spécial NULL représente «rien», ou le vide.

? Son mode est NULL.

? Sa longueur est 0.

? Toutefois différent d’un objet vide : – un objet de longueur 0 est un contenant vide; – NULL est «pas de contenant».

? La fonction teste si un objet est NULL ou non.

2.3. Les objets R

2.3.4       Valeurs manquantes, indéterminées et infinies

Dans les applications statistiques, il est souvent utile de pouvoir représenter des données manquantes. Dans R, l’objet spécial NA remplit ce rôle.

? Par défaut, le mode de NA est logical, mais NA ne peut être considéré ni comme TRUE, ni comme FALSE.

? Toute opération impliquant une donnée NA a comme résultat NA.

? Certaines fonctions (sum, mean, par exemple) ont par conséquent un argument qui, lorsque TRUE, élimine les données manquantes avant de faire un calcul.

? La valeur NA n’est égale à aucune autre, pas même elle-même (selon la règle ci-dessus, le résultat de la comparaison est NA) :

> NA == NA

[1] NA

? Par conséquent, pour tester si les éléments d’un objet sont NA ou non il faut utiliser la fonction :

> (NA)

[1] TRUE

La norme IEEE 754 régissant la représentation interne des nombres dans un ordinateur (IEEE, 2003) prévoit les valeurs mathématiques spéciales +? et ?? ainsi que les formes indéterminées du type  ou inf?inf. R dispose d’objets spéciaux pour représenter ces valeurs.

? Inf représente +?.

? -Inf représente ??.

? NaN (Not a Number) représente une forme indéterminée.

? Ces valeurs sont testées avec les fonctions is.infinite, is.finite et .

2.3.5     Attributs

Les attributs d’un objet sont des éléments d’information additionnels liés à cet objet. La liste des attributs les plus fréquemment rencontrés se trouve au tableau 2.2. Pour chaque attribut, il existe une fonction du même nom servant à extraire l’attribut correspondant d’un objet.

Plus généralement, la fonction attributes permet d’extraire ou de modifier la liste des attributs d’un objet. On peut aussi travailler sur un seul attribut à la fois avec la fonction attr.

Attribut

Utilisation

class

affecte le comportement d’un objet

dim

dimensions des matrices et tableaux

dimnames

étiquettes des dimensions des matrices et tableaux

names

étiquettes des éléments d’un objet

TAB. 2.2: Attributs les plus usuels d’un objet ? On peut ajouter à peu près ce que l’on veut à la liste des attributs d’un objet. Par exemple, on pourrait vouloir attacher au résultat d’un calcul la méthode de calcul utilisée :

> x

> attr(x, "methode") <- "au pif" > attributes(x)

$methode

[1] "au pif"

? Extraire un attribut qui n’existe pas retourne NULL :

> dim(x)

NULL

? À l’inverse, donner à un attribut la valeur NULL efface cet attribut :

> attr(x, "methode") attributes(x)

NULL

2.4     Vecteurs

En R, à toutes fins pratiques, tout est un vecteur. Contrairement à certains autres langages de programmation, il n’y a pas de notion de scalaire en R; un scalaire est simplement un vecteur de longueur 1. Comme nous le verrons au chapitre 3, le vecteur est l’unité de base dans les calculs.

? Dans un vecteur simple, tous les éléments doivent être du même mode. Nous nous restreignons à ce type de vecteurs pour le moment.

? Les fonctions de base pour créer des vecteurs sont :

–    c (concaténation);

2.5. Matrices et tableaux

–    numeric (vecteur de mode numeric);

–    logical (vecteur de mode logical);

–    character (vecteur de mode character).

? Il est possible (et souvent souhaitable) de donner une étiquette à chacun des

éléments d’un vecteur.

> (v

> v

> names(v)

> v a b c 1 2 5

Ces étiquettes font alors partie des attributs du vecteur.

? L’indiçage dans un vecteur se fait avec [ ]. On peut extraire un élément d’un vecteur par sa position ou par son étiquette, si elle existe (auquel cas cette approche est beaucoup plus sûre).

> v[3] c 5 > v["c"]

c

5

La section 2.8 traite plus en détail de l’indiçage des vecteurs et des matrices.

2.5       Matrices et tableaux

Le R étant un langage spécialisé pour les calculs mathématiques, il supporte tout naturellement et de manière intuitive — à une exception près, comme nous le verrons — les matrices et, plus généralement, les tableaux à plusieurs dimensions.

Les matrices et tableaux ne sont rien d’autre que des vecteurs dotés d’un attribut dim. Ces objets sont donc stockés, et peuvent être manipulés, exactement comme des vecteurs simples.

Une matrice est un vecteur avec un attribut dim de longueur 2. Cela change implicitement la classe de l’objet pour "matrix" et, de ce fait, le mode d’affichage de l’objet ainsi que son interaction avec plusieurs opérateurs et fonctions.

? La fonction de base pour créer des matrices est matrix :

> matrix(1:6, nrow = 2, ncol = 3)

[,1] [,2] [,3]

                             [1,]            1          3          5

                             [2,]            2          4          6

> matrix(1:6, nrow = 2, ncol = 3, byrow = TRUE)

[,1] [,2] [,3]

                             [1,]            1          2          3

                             [2,]            4          5          6

? La généralisation d’une matrice à plus de deux dimensions est un tableau (ar-

ray). Le nombre de dimensions du tableau est toujours égal à la longueur de l’attribut dim. La classe implicite d’un tableau est "array".

? La fonction de base pour créer des tableaux est array :

> array(1:24, dim = c(3, 4, 2))

, , 1

[,1] [,2] [,3] [,4]

                             [1,]            1          4          7        10

                             [2,]            2          5          8        11

                             [3,]            3          6          9        12

, , 2

[,1] [,2] [,3] [,4]

                             [1,]          13        16        19        22

                             [2,]          14        17        20        23

                             [3,]          15        18        21        24

B

On remarquera ci-dessus que les matrices et tableaux sont remplis en faisant d’abord varier la première dimension, puis la seconde, etc. Pour les matrices, cela revient à remplir par colonne. On conviendra que cette convention, héritée du Fortran, n’est pas des plus intuitives.

La fonction matrix a un argument byrow qui permet d’inverser l’ordre de remplissage, mais il vaut mieux s’habituer à la convention de R que d’essayer constamment de la contourner.

2.5. Matrices et tableaux

                               (a) trois dimensions                                                   (b) quatre dimensions

FIG. 2.1: Représentation schématique de tableaux. Les chiffres encerclés identifient l’ordre de remplissage.

L’ordre de remplissage inhabituel des tableaux rend leur manipulation difficile si on ne les visualise pas correctement. Imaginons un tableau de dimensions 3× 4×5.

? Il faut voir le tableau comme cinq matrices 3×4 (remplies par colonne!) les unes derrière les autres. ? Autrement dit, le tableau est un prisme rectangulaire haut de 3 unités, large de 4 et profond de 5.

? Si l’on ajoute une quatrième dimension, cela revient à aligner des prismes les uns derrière les autres, et ainsi de suite.

La figure 2.1 fournit une représentation schématique des tableaux à trois et quatre dimensions.

Comme pour les vecteurs, l’indiçage des matrices et tableaux se fait avec [ ]. ? On extrait un élément d’une matrice en précisant ses positions dans chaque dimension de celle-ci, séparées par des virgules :

> (m

[,1] [,2] [,3]

[1,]            40

45

55

[2,]            80

> m[1, 2]

21

32

[1] 45

? On peut aussi ne donner que la position de l’élément dans le vecteur sousjacent :

> m[3]

[1] 45

? Lorsqu’une dimension est omise dans les crochets, tous les éléments de cette dimension sont extraits :

> m[2, ]

[1] 80 21 32

? Les idées sont les mêmes pour les tableaux.

? Pour le reste, les règles d’indiçage de vecteurs exposées à la section 2.8 s’appliquent à chaque position de l’indice d’une matrice ou d’un tableau.

Des fonctions permettent de fusionner des matrices et des tableaux ayant au moins une dimension identique.

? La fonction rbind permet de fusionner verticalement deux matrices (ou plus) ayant le même nombre de colonnes.

> n

> rbind(m, n)

[,1] [,2] [,3]

[1,]

40

45

55

[2,]

80

21

32

[3,]

1

4

7

[4,]

2

5

8

[5,]

3

6

9

? La fonction cbind permet de fusionner horizontalement deux matrices (ou plus) ayant le même nombre de lignes.

> n

> cbind(m, n)

[,1] [,2] [,3] [,4] [,5]

                             [1,]          40        45        55          1          3

                             [2,]          80        21        32          2          4

2.6     Listes

La liste est le mode de stockage le plus général et polyvalent du langage R. Il s’agit d’un type de vecteur spécial dont les éléments peuvent être de n’importe quel mode, y compris le mode list. Cela permet donc d’emboîter des listes, d’où le qualificatif de récursif pour ce type d’objet.

2.6. Listes

? La fonction de base pour créer des listes est list :

> (x

$size

[1] 1 5 2

$user

[1] "Joe"

$new

[1] TRUE

Dans l’exemple ci-dessus, le premier élément de la liste est de mode "numeric", le second de mode "character" et le troisième de mode "logical". ? Nous recommandons de nommer les éléments d’une liste. En effet, les listes contiennent souvent des données de types différents et il peut s’avérer difficile d’identifier les éléments s’ils ne sont pas nommés. De plus, comme nous le verrons ci-dessous, il est très simple d’extraire les éléments d’une liste par leur étiquette.

? La liste demeure un vecteur. On peut donc l’indicer avec l’opérateur [ ]. Cependant, cela retourne une liste contenant le ou les éléments indicés. C’est rarement ce que l’on souhaite.

? Pour indicer un élément d’une liste et n’obtenir que cet élément, et non une liste contenant l’élément, il faut utiliser l’opérateur d’indiçage [[ ]]. Comparer

> x[1]

$size

[1] 1 5 2

et

> x[[1]]

[1] 1 5 2

? Évidemment, on ne peut extraire qu’un seul élément à la fois avec les crochets doubles [[ ]].

? Petite subtilité peu employée, mais élégante. Si l’indice utilisé dans [[ ]] est un vecteur, il est utilisé récursivement pour indicer la liste : cela sélectionnera la composante de la liste correspondant au premier élément du vecteur, puis l’élément de la composante correspondant au second élément du vecteur, et ainsi de suite.

? Une autre — et, en fait, la meilleure — façon d’indicer un seul élément d’une liste est par le biais de l’opérateur $, avec une construction x$etiquette :

> x$size

[1] 1 5 2

? La fonction unlist convertit une liste en un vecteur simple. Elle est surtout utile pour concaténer les éléments d’une liste lorsque ceux-ci sont des scalaires. Attention, cette fonction peut être destructrice si la structure interne de la liste est importante.

2.7      Dataframes

Les vecteurs, les matrices, les tableaux et les listes sont les types d’objets les plus fréquemment utilisés en programmation en R. Toutefois, un grand nombre de procédures statistiques — pensons à la régression linéaire, par exemple — repose davantage sur les data frames pour le stockage des données.

? Un data frame est une liste de classe "data.frame" dont tous les éléments sont de la même longueur (ou comptent le même nombre de lignes si les éléments sont des matrices). ? Il est généralement représenté sous la forme d’un tableau à deux dimensions. Chaque élément de la liste sous-jacente correspond à une colonne.

? Bien que visuellement similaire à une matrice un data frame est plus général puisque les colonnes peuvent être de modes différents; pensons à un tableau avec des noms (mode character) dans une colonne et des notes (mode numeric) dans une autre.

? On crée un data frame avec la fonction data.frame ou, pour convertir un autre type d’objet en data frame, avec .frame.

? Le data frame peut être indicé à la fois comme une liste et comme une matrice.

? Les fonctions rbind et cbind peuvent être utilisées pour ajouter des lignes ou des colonnes à un data frame.

? On peut rendre les colonnes d’un data frame (ou d’une liste) visibles dans l’espace de travail avec la fonction attach, puis les masquer avec detach.

2.8      Indiçage

L’indiçage des vecteurs et matrices a déjà été brièvement présenté aux sections 2.4 et 2.5. La présente section contient plus de détails sur cette procédure

2.8. Indiçage

des plus communes lors de l’utilisation du langage R. On se concentre toutefois sur le traitement des vecteurs.

L’indiçage sert principalement à deux choses : extraire des éléments d’un objet avec la construction x[i] ou les remplacer avec la construction x[i]

? De même, les opérations d’extraction et de remplacement d’un élément d’une liste de la forme x$etiquette et x$etiquette

Il existe quatre façons d’indicer un vecteur dans le langage R. Dans tous les cas, l’indiçage se fait à l’intérieur de crochets [ ].

1.    Avec un vecteur d’entiers positifs. Les éléments se trouvant aux positions correspondant aux entiers sont extraits du vecteur, dans l’ordre. C’est la technique la plus courante :

> x

> x[c(1, 3)]

A     C

2 -1

2.    Avec un vecteur d’entiers négatifs. Les éléments se trouvant aux positions correspondant aux entiers négatifs sont alors éliminés du vecteur :

> x[c(-2, -3)]

A     D E

2 -5 8

3.    Avec un vecteur booléen. Le vecteur d’indiçage doit alors être de la même longueur que le vecteur indicé. Les éléments correspondant à une valeur TRUE sont extraits du vecteur, alors que ceux correspondant à FALSE sont éliminés :

> x > 0

                A            B            C            D            E

TRUE TRUE FALSE FALSE TRUE

> x[x > 0]

A     B E

2 4 8

4.    Avec un vecteur de chaînes de caractères. Utile pour extraire les éléments d’un vecteur à condition que ceux-ci soient nommés :

> x[c("B", "D")]

B D

4 -5

5. L’indice est laissé vide. Tous les éléments du vecteur sont alors sélectionnés :

> x[]

A B C D E

2 4 -1 -5 8

Remarquer que cela est différent d’indicer avec un vecteur vide; cette opération retourne un vecteur vide.

2.9      Exemples

###

### COMMANDES R ###

## Les expressions entrées à la ligne de commande sont ## immédiatement évaluées et le résultat est affiché à ## l'écran, comme avec une grosse calculatrice.

                       1                                                             # une constante

                            (2 + 3 * 5)/7                                             # priorité des opérations

                       3^5                                                        # puissance

                         exp(3)                                                        # fonction exponentielle

sin(pi/2) + cos(pi/2)   # fonctions trigonométriques gamma(5)      # fonction gamma

## Lorsqu'une expression est syntaxiquement incomplète, ## l'invite de commande change de '> ' à '+ '.

                        2 -                                                             # expression incomplète

                        5 *                                                            # toujours incomplète

                       3                                                           # complétée

## Taper le nom d'un objet affiche son contenu. Pour une ## fonction, c'est son code source qui est affiché.

pi             # constante numérique intégrée letters       # chaîne de caractères intégrée LETTERS     # version en majuscules matrix   # fonction

## Ne pas utiliser '=' pour l'affectation. Les opérateurs



## d'affectation standard en R sont '<-' et '->'.

x

# affecter 5 à l'objet 'x'

5 -> x

# idem, mais peu usité

x

# voir le contenu

(x

# affecter et afficher

y

# affecter la valeur de 'x' à 'y'

x

# idem, en une seule expression

y

# 5

x

# changer la valeur de 'x'

y

# ne change pas celle de 'y'

## Pour regrouper plusieurs expressions en une seule commande, ## il faut soit les séparer par un point-virgule ';', soit les ## regrouper à l'intérieur d'accolades { } et les séparer par ## des retours à la ligne.

x # compact; éviter dans les scripts x # éviter les ';' superflus

{                                                                # début d'un groupe

x # première expression du groupe y # seconde expression du groupe x + y          # résultat du groupe

}                                                                     # fin du groupe et résultat

{x # valide, mais redondant

###

### NOMS D'OBJETS ###

## Quelques exemples de noms valides et invalides.

foo # valide foo.123 # valide foo_123 # valide

123foo # invalide; commence par un chiffre

.foo # valide

.123foo # invalide; point suivi d'un chiffre

## Liste des objets dans l'espace de travail. Les objets dont ## le nom commence par un point sont considérés cachés.

ls()            # l'objet '.foo' n'est pas affiché ls(all.names = TRUE)     # objets cachés aussi affichés

## R est sensible à la casse foo

Foo

FOO

###

### LES OBJETS R ###

## MODES ET TYPES DE DONNÉES

## Le mode d'un objet détermine ce qu'il peut contenir. Les ## vecteurs simples ("atomic") contiennent des données d'un ## seul type.

mode(c(1, 4.1, pi))     # nombres réels mode(c(2, 1 + 5i))              # nombres complexes

mode(c(TRUE, FALSE, TRUE)) # valeurs booléennes

                          mode("foobar")                                        # chaînes de caractères

## Si l'on mélange dans un même vecteur des objets de mode

## différents, il y a conversion automatique vers le mode pour

## lequel il y a le moins de perte d'information, c'est-à-dire ## vers le mode qui permet le mieux de retrouver la valeur ## originale des éléments.

c(5, TRUE, FALSE)       # conversion en mode 'numeric' c(5, "z")      # conversion en mode 'character' c(TRUE, "z")              # conversion en mode 'character' c(5, TRUE, "z")  # conversion en mode 'character'

## La plupart des autres types d'objets sont récursifs. Voici ## quelques autres modes.

                         mode(seq)                                              # une fonction

mode(list(5, "foo", TRUE)) # une liste mode(expression(x # une expression non évaluée

## LONGUEUR

## La longueur d'un vecteur est égale au nombre d'éléments ## dans le vecteur. (x

## Une chaîne de caractères ne compte que pour un seul ## élément. (x <- "foobar") length(x)

## Pour obtenir la longueur de la chaîne, il faut utiliser ## nchar().

nchar(x)

## Un objet peut néanmoins contenir plusieurs chaînes de ## caractères.

(x

## La longueur peut être 0, auquel cas on a un objet vide, ## mais qui existe.

(x

# création du contenant

length(x)

# l'objet 'x' existe

x[1]

# possible, 'x' existe

X[1]

## L'OBJET SPECIAL 'NULL'

# impossible, 'X' n'existe pas

mode(NULL)

# le mode de 'NULL' est NULL

length(NULL)

# longueur nulle

x

# s'utilise comme un objet normal

x; length(x); mode(x)

## L'OBJET SPÉCIAL 'NA'

# mais donne toujours le vide

x

# traité comme une valeur

x + 2

# tout calcul avec 'NA' donne NA

mean(x)

# voilà qui est pire

mean(x, = TRUE)

# éliminer les 'NA' avant le calcul

(x)

# tester si les données sont 'NA'

## VALEURS INFINIES ET INDÉTERMINÉES

1/0                                                         # +infini

-1/0                                                         # -infini

0/0                                                           # indétermination

x # s'utilisent comme des valeurs is.finite(x)  # quels sont les nombres réels? (x)          # lesquels ne sont «pas un nombre»?

## ATTRIBUTS

## Les objets peuvent être dotés d'un ou plusieurs attributs. data(cars)          # jeu de données intégré

attributes(cars)         # liste de tous les attributs attr(cars, "class") # extraction d'un seul attribut

## Attribut 'class'. Selon la classe d'un objet, certaines

## fonctions (dites «fonctions génériques») vont se comporter ## différemment.

x

échantillon aléatoire de 10 nombres entre 1 et 100

class(x)

classe de l'objet

plot(x)

# graphique pour cette classe

class(x) <- "ts"

# 'x' est maintenant une série

# chronologique

plot(x)

# graphique pour les séries

# chronologiques

class(x)

# suppression de l'attribut 'class'

## Attribut 'dim'. Si l'attribut 'dim' compte deux valeurs,

## l'objet est traité comme une matrice. S'il en compte plus ## de deux, l'objet est traité comme un tableau (array).

x

# un vecteur

dim(x)

# ajoute un attribut 'dim'

x

# l'objet est une matrice

dim(x)

# change les dimensions

x

# l'objet est maintenant un tableau

## Attribut 'dimnames'. Permet d'assigner des étiquettes (ou ## noms) aux dimensions d'une matrice ou d'un tableau. dimnames(x)

dimnames(x)                                                # remarquer la conversion

x               # affichage avec étiquettes attributes(x)      # tous les attributs de 'x'

attributes(x) # supprimer les attributs

## Attributs 'names'. Similaire à 'dimnames', mais pour les ## éléments d'un vecteur ou d'une liste.

names(x) # attribution d'étiquettes x    # identification facilitée

###

### VECTEURS ###

## La fonction de base pour créer des vecteurs est 'c'. Il ## peut s'avérer utile de donner des étiquettes aux éléments ## d'un vecteur.

x # création d'un vecteur

names(x)                                                                                          # extraire les étiquettes

names(x) # changer les étiquettes

x[1]

# extraction par position

x["c"]

# extraction par étiquette

x[-2]

# élimination d'un élément

## La fonction 'vector' sert à initialiser des vecteurs avec

## des valeurs prédéterminées. Elle compte deux arguments: le

## mode du vecteur et sa longueur. Les fonctions 'numeric', ## 'logical', 'complex' et 'character' constituent des ## raccourcis pour des appels à 'vector'.

vector("numeric", 5)

# vecteur initialisé avec des 0

numeric(5)

# équivalent

numeric

# en effet, voici la fonction

logical(5)

# initialisé avec FALSE

complex(5)

# initialisé avec 0 + 0i

character(5)

# initialisé avec chaînes vides

###

### MATRICES ET TABLEAUX ###

## Une matrice est un vecteur avec un attribut 'dim' de

## longueur 2 une classe implicite "matrix". La manière ## naturelle de créer une matrice est avec la fonction ## 'matrix'.

(x # créer la matrice length(x)  # 'x' est un vecteur dim(x)        # avec un attribut 'dim' class(x)            # et classe implicite "matrix"

## Une manière moins naturelle mais équivalente --- et parfois ## plus pratique --- de créer une matrice consiste à ajouter ## un attribut 'dim' à un vecteur.

x # vecteur simple

dim(x) # ajout d'un attribut 'dim' x; class(x)            # 'x' est une matrice!

## Les matrices sont remplies par colonne par défaut. Utiliser ## l'option 'byrow' pour remplir par ligne. matrix(1:12, nrow = 3, byrow = TRUE)

## Indicer la matrice ou le vecteur sous-jacent est ## équivalent. Utiliser l'approche la plus simple selon le ## contexte.

x[1, 3]

# l'élément en position (1, 3)

x[7]

# est le 7e élément du vecteur

x[1, ]

# première ligne

x[, 2]

# deuxième colonne

nrow(x)

# nombre de lignes

dim(x)[1]                                                   idem

ncol(x)      nombre de colonnes dim(x)[2]    idem

## Fusion de matrices et vecteurs.

x # 'x' est une matrice 3 x 4 y # 'y' est une matrice 2 x 4 z # 'z' est une matrice 3 x 2 rbind(x, 1:4)           # ajout d'une ligne à 'x' rbind(x, y)               # fusion verticale de 'x' et 'y' cbind(x, 1:3)    # ajout d'une colonne à 'x' cbind(x, z)          # concaténation de 'x' et 'z' rbind(x, z)            # dimensions incompatibles cbind(x, y)        # dimensions incompatibles

## Les vecteurs ligne et colonne sont rarement nécessaires. On ## peut les créer avec les fonctions 'rbind' et 'cbind', ## respectivement.

rbind(1:3) # un vecteur ligne cbind(1:3)      # un vecteur colonne

## Un tableau (array) est un vecteur avec un attribut 'dim' de ## longueur supérieure à 2 et une classe implicite "array". ## Quant au reste, la manipulation des tableaux est en tous ## points identique à celle des matrices. Ne pas oublier: ## les tableaux sont remplis de la première dimension à la ## dernière!

x # tableau 3 x 4 x 5 length(x)       # 'x' est un vecteur dim(x)        # avec un attribut 'dim' class(x)            # une classe implicite "array" x[1, 3, 2]       # l'élément en position (1, 3, 2) x[19]        # est l'élément 19 du vecteur

## Le tableau ci-dessus est un prisme rectangulaire 3 unités

## de haut, 4 de large et 5 de profond. Indicer ce prisme avec

## un seul indice équivaut à en extraire des «tranches», alors

## qu'utiliser deux indices équivaut à en tirer des «carottes»

## (au sens géologique du terme). Il est laissé en exercice de ## généraliser à plus de dimensions

x

# les cinq matrices

x[, , 1]

# tranches de haut en bas

x[, 1, ]

# tranches d'avant à l'arrière

x[1, , ]

# tranches de gauche à droite

x[, 1, 1]

# carotte de haut en bas

x[1, 1, ]

# carotte d'avant à l'arrière

x[1, , 1]

# carotte de gauche à droite

###

### LISTES ###

## La liste est l'objet le plus général en R. C'est un objet ## récursif qui peut contenir des objets de n'importe quel ## mode et longueur.

(x # vecteur length(x)    # de quatre éléments mode(x)              # de mode "list"

is.recursive(x)                       # objet récursif

## Comme tout autre vecteur, une liste peut être concaténée ## avec un autre vecteur avec la fonction 'c'. y # liste de deux éléments

c(x, y)                                     # liste de six éléments

## Pour initialiser une liste d'une longueur déterminée, mais ## dont chaque élément est vide, uitliser la fonction ## 'vector'.

vector("list", 5)                    # liste de NULL

## Pour extraire un élément d'une liste, il faut utiliser les

## doubles crochets [[ ]]. Les simples crochets [ ] ## fonctionnent aussi, mais retournent une sous liste -- ce ## qui est rarement ce que l'on souhaite. x[[1]]    # premier élément de la liste

mode(x[[1]])              # un vecteur x[1]    # aussi le premier élément mode(x[1])      # mais une sous liste length(x[1])          # d'un seul élément x[[2]][1]    # 1er élément du 2e élément x[[c(2, 1)]]       # idem, par indiçage récursif

## Les éléments d'une liste étant généralement nommés (c'est

## une bonne habitude à prendre!), il est souvent plus simple ## et sûr d'extraire les éléments d'une liste par leur ## étiquette.

x$joueur

équivalent à a[[1]]

x$score[1]

équivalent à a[[c(2, 1)]]

x[["expert"]]

aussi valide, mais peu usité

x$level

# aussi pour l'affectation

## Une liste peut contenir n'importe quoi x[[5]] # une matrice x[[6]] # une autre liste x[[7]] # même le code d'une fonction! x # eh ben! x[[c(6, 1, 3)]]               # de quel élément s'agit-il?

## Pour supprimer un élément d'une liste, lui assigner la ## valeur 'NULL'. x[[7]] # suppression du 7e élément

## Il est parfois utile de convertir une liste en un simple

## vecteur. Les éléments de la liste sont alors «déroulés», y ## compris la matrice en position 5 (qui n'est rien d'autre ## qu'un vecteur, on s'en souviendra).

unlist(x)                                                            # remarquer la conversion

unlist(x, recursive = FALSE) # ne pas appliquer aux sous-listes unlist(x, use.names = FALSE) # éliminer les étiquettes

###

### DATA FRAMES ###

## Un data frame est une liste dont les éléments sont tous de

## même longueur. Il comporte un attribut 'dim', ce qui fait ## qu'il est représenté comme une matrice. Cependant, les ## colonnes peuvent être de modes différents.

(DF

Fumeur = c(TRUE, TRUE, FALSE)))

mode(DF)

# un data frame est une liste

class(DF)

# de classe 'data.frame'

dim(DF)

# dimensions implicites

names(DF)

# titres des colonnes

row.names(DF)

# titres des lignes (implicites)

DF[1, ]

# première ligne

DF[, 1]

# première colonne

DF$Name

# idem, mais plus simple

## Lorsque l'on doit travailler longtemps avec les différentes ## colonnes d'un data frame, il est pratique de pouvoir y

## accéder directement sans devoir toujours indicer. La

## fonction 'attach' permet de rendre les colonnes

## individuelles visibles dans l'espace de travail. Une fois ## le travail terminé, 'detach' masque les colonnes.

exists("Noms")

# variable n'existe pas

attach(DF)

# rendre les colonnes visibles

exists("Noms")

# variable existe

Noms

# colonne accessible

detach(DF)

# masquer les colonnes

exists("Noms")

# variable n'existe plus

###

### INDIÇAGE ###

## Les opérations suivantes illustrent les différentes

## techniques d'indiçage d'un vecteur pour l'extraction et

## l'affectation, c'est-à-dire que l'on utilise à la fois la ## fonction '[' et la fonction '[<-'. Les mêmes techniques ## existent aussi pour les matrices, tableaux et listes.

##

## On crée d'abord un vecteur quelconque formé de vingt ## nombres aléatoires entre 1 et 100 avec répétitions ## possibles.

(x

## On ajoute des étiquettes aux éléments du vecteur à partir ## de la variable interne 'letters'. names(x)

## On génère ensuite cinq nombres aléatoires entre 1 et 20 ## (sans répétitions). (y

## On remplace maintenant les éléments de 'x' correspondant ## aux positions dans le vecteur 'y' par des données ## manquantes. x[y]

## Les cinq méthodes d'indiçage de base.

x[1:10]      # avec des entiers positifs "["(x, 1:10)          # idem, avec la fonction '[' x[-(1:3)]              # avec des entiers négatifs

x[x < 10]

avec un vecteur booléen

x[c("a", "k", "t")]

par étiquettes

x[]

aucun indice

x[numeric(0)]

# différent d'indice vide

## Il arrive souvent de vouloir indicer spécifiquement les

## données manquantes d'un vecteur (pour les éliminer ou les

## remplacer par une autre valeur, par exemple). Pour ce

## faire, on utilise la fonction '' et l'indiçage par un

## vecteur booléen. (Note: l'opérateur '!' ci-dessous est la

## négation logique.)

(x)      # positions des données manquantes x[!(x)]          # suppression des données manquantes x[(x)] # remplace les NA par des 0 "[<-"(x, (x), 0)      # idem, mais très peu usité

## On laisse tomber les étiquettes de l'objet. names(x)

## Quelques cas spéciaux d'indiçage.

length(x)   # un rappel x[1:25]    # allonge le vecteur avec des NA x[25] # remplis les trous avec des NA

x[0]           # n'extraie rien x[0] # n'affecte rien x[c(0, 1, 2)]         # le 0 est ignoré x[c(1, NA, 5)]     # indices NA retourne NA x[2.6]  # fractions tronquées vers 0

## On laisse tomber les 5 derniers éléments et on convertit le ## vecteur en une matrice 4 x 5.

x # ou x[-(21:25)]

dim(x) # ajouter un attribut 'dim'

## Dans l'indiçage des matrices et tableaux, l'indice de

## chaque dimension obéit aux mêmes règles que ci-dessus. On

## peut aussi indicer une matrice (ou un tableau) avec une

## matrice. Si les exemples ci-dessous ne permettent pas d'en ## comprendre le fonctionnement, consulter la rubrique d'aide ## de la fonction '[' (ou de 'Extract').

x[1, 2]       # élément en position (1, 2) x[1, -2]             # 1ère rangée sans 2e colonne x[c(1, 3), ]     # 1ère et 3e rangées x[-1, ]         # supprimer 1ère rangée x[, -2]            # supprimer 2e colonne

2.10. Exercices

                         x[x[, 1] > 10, ]                                          # lignes avec 1er élément > 10

x[rbind(c(1, 1), c(2, 2))] # éléments x[1, 1] et x[2, 2] x[cbind(1:4, 1:4)]             # éléments x[i, i] (diagonale) diag(x)            # idem et plus explicite

2.10      Exercices

2.1 a) Écrire une expression R pour créer la liste suivante :

> x

[[1]]

[1] 1 2 3 4 5

$data

[,1] [,2] [,3]

                                  [1,]            1          3          5

                                  [2,]            2          4          6

[[3]]

[1] 0 0 0

$test

[1] FALSE FALSE FALSE FALSE

b)    Extraire les étiquettes de la liste.

c)  Trouver le mode et la longueur du quatrième élément de la liste.

d)    Extraire les dimensions du second élément de la liste.

e)    Extraire les deuxième et troisième éléments du second élément de la liste.

f)   Remplacer le troisième élément de la liste par le vecteur 3:8.

2.2 Soit x un vecteur contenant les valeurs suivantes d’un échantillon :

> x

[1] 9 9 3 16 1 7 1 6 13 1 18 13 4 2 12 2

[17] 18 1 10 12

Écrire une expression R permettant d’extraire les éléments suivants. a) Le deuxième élément de l’échantillon.

b)    Les cinq premiers éléments de l’échantillon.

c)  Les éléments strictement supérieurs à 14.

d)    Tous les éléments sauf les éléments en positions 6, 10 et 12.

2.3 Soit x une matrice 10×7 obtenue aléatoirement avec

> x

Écrire des expressions R permettant d’obtenir les éléments de la matrice demandés ci-dessous. a) L’élément (4,3).

b)    Le contenu de la sixième ligne.

c)  Les première et quatrième colonnes (simultanément).

d)    Les lignes dont le premier élément est supérieur à 50.

3    Opérateurs et fonctions

Objectifs du chapitre

? Connaître les règles de l’arithmétique vectorielle caractéristique du langage R.

? Savoir faire l’appel d’une fonction dans R; comprendre comment les arguments sont passés à la fonction et le traitement des valeurs par défaut.

? Connaître et savoir utiliser les opérateurs R les plus courants, notamment pour le traitement des vecteurs, le calcul de sommaires et la manipulation des matrices et tableaux

? Savoir utiliser la fonction if pour l’exécution conditionnelle de commandes R.

? Distinguer la construction if() else de la fonction ifelse.

? Savoir faire des boucles en R.

? Savoir choisir entre les opérateurs for, while et repeat lors de la construction d’une boucle R.

Ce chapitre présente les principaux opérateurs arithmétiques, fonctions mathématiques et structures de contrôle disponibles dans R. La liste est évidemment loin d’être exhaustive, surtout étant donné l’évolution rapide du langage. Un des meilleurs endroits pour découvrir de nouvelles fonctions demeure la section See Also des rubriques d’aide, qui offre des hyperliens vers des fonctions apparentées au sujet de la rubrique.

3.1   Opérations arithmétiques

L’unité de base en R est le vecteur.

? Les opérations sur les vecteurs sont effectuées élément par élément :

> c(1, 2, 3) + c(4, 5, 6)

[1] 5 7 9

> 1:3 * 4:6

41

[1] 4 10 18

? Si les vecteurs impliqués dans une expression arithmétique ne sont pas de la même longueur, les plus courts sont recyclés de façon à correspondre au plus long vecteur. Cette règle est particulièrement apparente avec les vecteurs de longueur 1 :

> 1:10 + 2

[1] 3 4 5 6 7 8 9 10 11 12

> 1:10 + rep(2, 10)

[1] 3 4 5 6 7 8 9 10 11 12

? Si la longueur du plus long vecteur est un multiple de celle du ou des autres vecteurs, ces derniers sont recyclés un nombre entier de fois :

> 1:10 + 1:5 + c(2, 4) # vecteurs recyclés 2 et 5 fois

[1] 4 8 8 12 12 11 11 15 15 19

> 1:10 + rep(1:5, 2) + rep(c(2, 4), 5) # équivalent

[1] 4 8 8 12 12 11 11 15 15 19

? Sinon, le plus court vecteur est recyclé un nombre fractionnaire de fois, mais comme ce résultat est rarement souhaité et provient généralement d’une erreur de programmation, un avertissement est affiché :

> 1:10 + c(2, 4, 6)

[1] 3 6 9 6 9 12 9 12 15 12

Message d'avis :

In 1:10 + c(2, 4, 6) : la taille d'un objet plus long n'est pas un multiple de la taille d'un objet plus court

3.2   Opérateurs

Le tableau 3.1 présente les opérateurs mathématiques et logiques les plus fréquemment employés, en ordre décroissant de priorité des opérations. Le tableau contient également les opérateurs d’assignation et d’extraction présentés au chapitre précédent; il est utile de connaître leur niveau de priorité dans les expressions R.

Les opérateurs de puissance (ˆ) et d’assignation à gauche (<-, <<-) sont évalués de droite à gauche; tous les autres de gauche à droite. Ainsi, 2 ^ 2 ^ 3 est 2 ^ 8, et non 4 ^ 3, alors que 1 - 1 - 1 vaut -1, et non 1.

3.3   Appels de fonctions

Opérateur

Fonction

$

extraction d’une liste

ˆ

puissance

-

changement de signe

:

génération de suites

%*% %% %/%

produit matriciel, modulo, division entière

* /

multiplication, division

+ -

addition, soustraction

< <= == >= > !=

plus petit, plus petit ou égal, égal, plus grand ou égal, plus grand, différent de

!

négation logique

& &&

«et» logique

| ||

«ou» logique

-> ->>

assignation

assignation

TAB. 3.1: Principaux opérateurs du langage R, en ordre décroissant de priorité

3.3       Appels de fonctions

Les opérateurs du tableau 3.1 constituent des raccourcis utiles pour accéder aux fonctions les plus courantes de R. Pour toutes les autres, il faut appeler la fonction directement. Cette section passe en revue les règles d’appels d’une fonction et la façon de spécifier les arguments, qu’il s’agisse d’une fonction interne de R ou d’une fonction personnelle (voir le chapitre 5).

? Il n’y a pas de limite pratique quant au nombre d’arguments que peut avoir une fonction.

? Les arguments d’une fonction peuvent être spécifiés selon l’ordre établi dans la définition de la fonction. Cependant, il est beaucoup plus prudent et fortement recommandé de spécifier les arguments par leur nom, avec une construction de la forme nom = valeur, surtout après les deux ou trois premiers arguments. ? L’ordre des arguments est important; il est donc nécessaire de les nommer s’ils ne sont pas appelés dans l’ordre.

? Certains arguments ont une valeur par défaut qui sera utilisée si l’argument n’est pas spécifié dans l’appel de la fonction.

Par exemple, la définition de la fonction matrix est la suivante :

matrix(data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL)

? La fonction compte cinq arguments : data, nrow, ncol, byrow et dimnames. ? Ici, chaque argument a une valeur par défaut (ce n’est pas toujours le cas). Ainsi, un appel à matrix sans argument résulte en une matrice 1×1 remplie par colonne (sans importance, ici) de l’objet NA et dont les dimensions sont dépourvues d’étiquettes :

> matrix()

[,1]

                             [1,]         NA

? Appel plus élaboré utilisant tous les arguments. Le premier argument est rarement nommé :

> matrix(1:6, nrow = 2, ncol = 3, byrow = TRUE,

                           +                                 dimnames = list(c("Gauche", "Droit"),

                           +                               c("Rouge", "Vert", "Bleu")))

Rouge Vert Bleu

                            Gauche             1          2          3

                             Droit                4          5          6

3.4      Quelques fonctions utiles

Le langage R compte un très grand nombre (des milliers!) de fonctions internes. Cette section en présente quelques-unes seulement, les fonctions de base les plus souvent utilisées pour programmer en R et pour manipuler des données.

Pour chaque fonction présentée dans les sections suivantes, on fournit un ou deux exemples d’utilisation. Ces exemples sont souvent loin de courvrir toutes les utilisations possibles d’une fonction. La section 3.7 fournit des exemples additionnels, mais il est recommandé de consulter les diverses rubriques d’aide pour connaître toutes les options des fonctions.

3.4.1     Manipulation de vecteurs

                         seq               génération de suites de nombres

> seq(1, 9, by = 2)

[1] 1 3 5 7 9

                         rep               répétition de valeurs ou de vecteurs

> rep(2, 10)

[1] 2 2 2 2 2 2 2 2 2 2

sort                 tri en ordre croissant ou décroissant

> sort(c(4, -1, 2, 6))

[1] -1 2 4 6

order ordre d’extraction des éléments d’un vecteur pour les placer en ordre

croissant ou décroissant

> order(c(4, -1, 2, 6))

[1] 2 3 1 4

rank                   rang des éléments d’un vecteur dans l’ordre croissant ou décroissant

> order(c(4, -1, 2, 6))

[1] 2 3 1 4

rev                 renverser un vecteur

> rev(1:10)

[1] 10 9 8 7 6 5 4 3 2 1

head                          extraction des n premiers éléments d’un vecteur (n > 0) ou suppression

des n derniers (n < 0)

> head(1:10, 3); head(1:10, -3)

[1] 1 2 3

[1] 1 2 3 4 5 6 7

tail                              extraction des n derniers éléments d’un vecteur (n > 0) ou suppression

des n premiers (n < 0)

> tail(1:10, 3); tail(1:10, -3)

[1] 8 9 10

[1] 4 5 6 7 8 9 10

unique extraction des éléments différents d’un vecteur

> unique(c(2, 4, 2, 5, 9, 5, 0))

[1] 2 4 5 9 0

3.4.2      Recherche d’éléments dans un vecteur

Les fonctions de cette sous-section sont toutes illustrées avec le vecteur

> x

[1] 4 -1 2 -3 6

which                       positions des valeurs TRUE dans un vecteur booléen

> which(x < 0)

[1] 2 4

position du minimum dans un vecteur

> (x)

[1] 4

position du maximum dans un vecteur

> (x)

[1] 5

                        match                     position de la première occurrence d’un élément dans un vecteur

> match(2, x)

[1] 3

                        %in%                      appartenance d’une ou plusieurs valeurs à un vecteur

> -1:2 %in% x

[1] TRUE FALSE FALSE TRUE

3.4.3     Arrondi

Les fonctions de cette sous-section sont toutes illustrées avec le vecteur

> x

[1] -3.6800000 -0.6666667 3.1415927 0.3333333

[5] 2.5200000

                         round                arrondi à un nombre défini de décimales (par défaut 0)

> round(x)

[1] -4 -1 3 0 3

> round(x, 3)

[1] -3.680 -0.667 3.142 0.333 2.520

                          floor                plus grand entier inférieur ou égal à l’argument

> floor(x)

[1] -4 -1 3 0 2

ceiling plus petit entier supérieur ou égal à l’argument

> ceiling(x)

[1] -3 0 4 1 3

                         trunc                   troncature vers zéro; différent de floor pour les nombres négatifs

> trunc(x)

[1] -3 0 3 0 2

3.4.4       Sommaires et statistiques descriptives

Les fonctions de cette sous-section sont toutes illustrées avec le vecteur

> x

[1] 14 17 7 9 3 4 25 21 24 11

sum, prod               somme et produit des éléments d’un vecteur

> sum(x); prod(x)

[1] 135

[1] 24938020800

diff                                       différences entre les éléments d’un vecteur (opérateur mathéma-

tique ?)

> diff(x)

                             [1]          3 -10            2 -6               1 21 -4              3 -13

mean                              moyenne arithmétique (et moyenne tronquée avec l’argument trim)

> mean(x)

[1] 13.5

var, sd                     variance et écart type (versions sans biais)

> var(x)

[1] 64.5

min, max                minimum et maximum d’un vecteur

> min(x); max(x)

[1] 3

[1] 25

range                        vecteur contenant le minimum et le maximum d’un vecteur

> range(x)

[1] 3 25

median                 médiane empirique

> median(x)

[1] 12.5

quantile quantiles empiriques

> quantile(x)

0% 25% 50% 75% 100%

3.0 7.5 12.5 20.0 25.0

summary                 statistiques descriptives d’un échantillon

> summary(x)

                                          Min. 1st Qu. Median                    Mean 3rd Qu.             Max.

                                       3.0              7.5            12.5            13.5            20.0            25.0

3.4.5       Sommaires cumulatifs et comparaisons élément par élément

Les fonctions de cette sous-section sont toutes illustrées avec le vecteur

> x

[1] 14 17 7 9 3

cumsum, cumprod

somme et produit cumulatif d’un vecteur

> cumsum(x); cumprod(x)

[1] 14 31 38 47 50

[1]             14               238 1666 14994 44982

cummin, cummax

minimum et maximum cumulatif

> cummin(x); cummax(x)

[1] 14 14 7 7 3

[1] 14 17 17 17 17

pmin, pmax

minimum et maximum en parallèle, c’est-à-dire élément par élément entre deux vecteurs ou plus

> pmin(x, c(16, 23, 4, 12, 3))

[1] 14 17 4 9 3

> pmax(x, c(16, 23, 4, 12, 3))

[1] 16 23 7 12 3

3.4.6     Opérations sur les matrices

Les fonctions de cette sous-section sont toutes illustrées avec la matrice

> x

[,1] [,2]

                                [1,]            2          4

                                [2,]            1          3

nrow, ncol

nombre de lignes et de colonnes d’une matrice

> nrow(x); ncol(x)

[1] 2

[1] 2

rowSums, colSums

sommes par ligne et par colonne, respectivement, des éléments d’une matrice; voir aussi la fonction apply à la section 6.2

> rowSums(x)

[1] 6 4

rowMeans, colMeans moyennes par ligne et par colonne, respectivement, des éléments d’une matrice; voir aussi la fonction apply à la section 6.2 > colMeans(x)

[1] 1.5 3.5

t                                                 transposée

> t(x)

[,1] [,2]

                                                   [1,]            2          1

[2,]           4              3 det       déterminant

> det(x)

[1] 2

solve 1) avec un seul argument (une matrice carrée) : inverse d’une matrice; 2) avec deux arguments (une matrice carrée et un vecteur) : solution du système d’équations linéaires Ax = b

> solve(x)

[,1] [,2]

                                                      [1,] 1.5             -2

                                                      [2,] -0.5              1

> solve(x, c(1, 2))

[1] -2.5 1.5

diag 1) avec une matrice en argument : diagonale de la matrice; 2) avec un vecteur en argument : matrice diagonale formée avec le vecteur; 3) avec un scalaire p en argument : matrice identité p × p

> diag(x)

[1] 2 3

3.4.7      Produit extérieur

Le produit extérieur n’est pas la fonction la plus intuitive à utiliser, mais s’avère extrêmement utile pour faire plusieurs opérations en un seul appel de fonction tout en évitant les boucles. La syntaxe de la fonction outer est outer(X, Y, FUN)

Le résultat est l’application la fonction FUN (prod par défaut) entre chacun des éléments de X et chacun des éléments de Y, autrement dit

FUN(X[i], Y[j]) pour toutes les valeurs des indices i et j.

? La dimension du résultat est par conséquent c(dim(X), dim(Y)). ? Par exemple, le résultat du produit extérieur entre deux vecteurs est une matrice contenant tous les produits entre les éléments des deux vecteurs :

> outer(c(1, 2, 5), c(2, 3, 6))

[,1] [,2] [,3]

                             [1,]            2          3          6

                             [2,]            4          6        12

                             [3,]          10        15        30

? L’opérateur %o% est un raccourci de outer(X, Y, prod).

3.5      Structures de contrôle

Les structures de contrôle sont des commandes qui permettent de déterminer le flux d’exécution d’un programme : choix entre des blocs de code, répétition de commandes ou sortie forcée.

On se contente, ici, de mentionner les structures de contrôle disponibles en R.

Se reporter à la section 3.7 pour des exemples d’utilisation.

3.5.1      Exécution conditionnelle

if (condition) else

Si condition est vraie, est exécutée, sinon ce sera . Dans le cas où l’une ou l’autre de ou comporte plus d’une expression, grouper celles-ci dans des accolades { }.

ifelse(condition, , )

Fonction vectorielle qui retourne un vecteur de la même longueur que condition formé ainsi : pour chaque élément TRUE de condition on choisit l’élément correspondant de et pour chaque élément FALSE on choisit l’élément correspondant de . L’utilisation n’est pas très intuitive, alors examiner attentivement les exemples de la rubrique

d’aide.

3.6. Fonctions additionnelles

switch(test, cas.1 = action.1, cas.2 = action.2, )

Structure utilisée plutôt rarement. Consulter la rubrique d’aide au besoin.

3.5.2     Boucles

Les boucles sont et doivent être utilisées avec parcimonie en R, car elles sont généralement inefficaces. Dans la majeure partie des cas, il est possible de vectoriser les calculs pour éviter les boucles explicites, ou encore de s’en remettre aux fonctions outer, apply, lapplysapply et mapply (section 6.2) pour réaliser les boucles de manière plus efficace.

for (variable in suite) expression

Exécuter expression successivement pour chaque valeur de variable contenue dans suite. Encore ici, on groupera les expressions dans des accolades { }. À noter que suite n’a pas à être composée de nombres consécutifs, ni même de nombres, en fait. while (condition) expression

Exécuter expression tant que condition est vraie. Si condition est fausse lors de l’entrée dans la boucle, celle-ci n’est pas exécutée. Une boucle while n’est par conséquent pas nécessairement toujours exécutée.

repeat expression

Répéter expression. Cette dernière devra comporter un test d’arrêt qui utilisera la commande break. Une boucle repeat est toujours exécutée au moins une fois. break

Sortie immédiate d’une boucle for, while ou repeat.

next

Passage immédiat à la prochaine itération d’une boucle for, while ou repeat.

3.6       Fonctions additionnelles

La bibliothèque des fonctions internes de R est divisée en ensembles de fonctions et de jeux de données apparentés nommés packages (terme que l’équipe de traduction française de R a choisi de conserver tel quel). On démarrage, R charge automatiquement quelques packages de la bibliothèque, ceux contenant les fonctions les plus fréquemment utilisées. On peut voir la liste des packages déjà en mémoire avec

> search()

                                    [1] ".GlobalEnv"                               "package:stats"

[3] "package:graphics" "package:grDevices"

                                      [5] "package:utils"                          "package:datasets"

                                    [7] "package:methods"                 "Autoloads"

[9] "package:base"

et le contenu de toute la bibliothèque avec la fonction library (résultat non montré ici).

Une des grandes forces de R est la facilité avec laquelle on peut ajouter des fonctionnalités au système par le biais de packages externes. Dès les débuts de R, les développeurs et utilisateurs ont mis sur pied le dépôt central de packages Comprehensive R Archive Network (CRAN; ). Ce site compte aujourd’hui plusieurs centaines d’extensions et le nombre ne cesse de croître.

Le système R rend simple de télécharger et d’installer de nouveaux packages avec la fonction install.packages. L’annexe C explique plus en détails comment gérer sa bibliothèque personnelle et installer des packages externes.

3.7      Exemples

###

### OPÉRATIONS ARITHMÉTIQUES

###

## L'arithmétique vectorielle caractéristique du langage R

## rend très simple et intuitif de faire des opérations

## mathématiques courantes. Là où plusieurs langages de

## programmation exigent des boucles, R fait le calcul

## directement. En effet, les règles de l'arithmétique en R ## sont globalement les mêmes qu'en algèbre vectorielle et ## matricielle.

5 * c(2, 3, 8, 10)

# multiplication par une constante

c(2, 6, 8) + c(1, 4, 9)

# addition de deux vecteurs

c(0, 3, -1, 4)^2

# élévation à une puissance

## Dans les règles de l'arithmétique vectorielle, les

## longueurs des vecteurs doivent toujours concorder. R permet

## plus de flexibilité en recyclant les vecteurs les plus

## courts dans une opération. Il n'y a donc à peu près jamais

## d'erreurs de longueur en R! C'est une arme à deux

## tranchants: le recyclage des vecteurs facilite le codage, ## mais peut aussi résulter en des réponses complètement ## erronées sans que le système ne détecte d'erreur.

8 + 1:10                                                         # 8 est recyclé 10 fois

c(2, 5) * 1:10                                                     # c(2, 5) est recyclé 5 fois

c(-2, 3, -1, 4)^1:4                                              # quatre puissances différentes

## On se rappelle que les matrices (et les tableaux) sont des

## vecteurs. Les règles ci-dessus s'appliquent donc aussi aux

## matrices, ce qui résulte en des opérateurs qui ne sont pas ## définis en algèbre linéaire usuelle.

(x

# matrice 2 x 2

(y

# autre matrice 2 x 2

5 * x

# multiplication par une constante

x + y

# addition matricielle

x * y

# produit *élément par élément*

x %*% y

# produit matriciel

x / y

# division *élément par élément*

x * c(2, 3)

# produit par colonne

###

### OPÉRATEURS

###

## Seuls les opérateurs %%, %/% et logiques sont illustrés ## ici. Premièrement, l'opérateur modulo retourne le reste ## d'une division.

5 %% 2                                                       # 5/2 = 2 reste 1

5 %% 1:5   # remarquer la périodicité 10 %% 1:15        # x %% y = x si x < y

## Le modulo est pratique dans les boucles, par exemple pour ## afficher un résultat à toutes les n itérations seulement. for (i in 1:50)

{

## Affiche la valeur du compteur toutes les 5 itérations.

if (0 == i %% 5) print(i)

}

## La division entière retourne la partie entière de la ## division d'un nombre par un autre.

5 %/% 1:5

10 %/% 1:15

## Le ET logique est vrai seulement lorsque les deux ## expressions sont vraies. c(TRUE, TRUE, FALSE) & c(TRUE, FALSE, FALSE)

## Le OU logique est faux seulement lorsque les deux ## expressions sont fausses. c(TRUE, TRUE, FALSE) | c(TRUE, FALSE, FALSE)

## La négation logique transforme les vrais en faux et vice ## versa.

! c(TRUE, FALSE, FALSE, TRUE)

## On peut utiliser les opérateurs logiques &, | et !

## directement avec des nombres. Dans ce cas, le nombre zéro ## est traité comme FALSE et tous les autres nombres comme ## TRUE.

0:5 & 5:0

0:5 | 5:0

!0:5

## Ainsi, dans une expression conditionnelle, inutile de

## vérifier si, par exemple, un nombre est égal à zéro. On

## peut utiliser le nombre directement et sauver des ## opérations de comparaison qui peuvent devenir coûteuses en ## temps de calcul.

                         x # valeur quelconque

if (x != 0) x + 1            # TRUE pour tout x != 0 if (x) x + 1               # tout à fait équivalent!

## L'exemple de boucle ci-dessus peut donc être légèrement ## modifié. for (i in 1:50)

{

## Affiche la valeur du compteur toutes les 5 itérations.

if (!i %% 5) print (i)

}

## Dans les calculs numériques, TRUE vaut 1 et FALSE vaut 0.

a

## Un mot en terminant sur l'opérateur '=='. C'est l'opérateur

## à utiliser pour vérifier si deux valeurs sont égales, et

## non '='. C'est là une erreur commune --- et qui peut être ## difficile à détecter --- lorsque l'on programme en R.

5 = 2                                                           # erreur de syntaxe

5 == 2                                                      # comparaison

###

### APPELS DE FONCTIONS ###

## Les invocations de la fonction 'matrix' ci-dessous sont

## toutes équivalentes. On remarquera, entre autres, comment ## les arguments sont spécifiés (par nom ou par position). matrix(1:12, 3, 4) matrix(1:12, ncol = 4, nrow = 3) matrix(nrow = 3, ncol = 4, data = 1:12) matrix(nrow = 3, ncol = 4, byrow = FALSE, 1:12) matrix(nrow = 3, ncol = 4, 1:12, FALSE)

###

### QUELQUES FONCTIONS UTILES ###

## MANIPULATION DE VECTEURS x # vecteur non ordonné

## Séquences de nombres.

seq(from = 1, to = 10) # équivalent à 1:10 seq(-10, 10, length = 50) # incrément automatique seq(-2, by = 0.5, along = x) # même longueur que 'x'

## Répétition de nombres ou de vecteurs complets. rep(1, 10)       # utilisation de base rep(x, 2)     # répéter un vecteur

rep(x, times = 2, each = 4) # combinaison des arguments rep(x, times = 1:8)   # nombre de répétitions différent

# pour chaque élément de 'x'

## Classement en ordre croissant ou décroissant.

sort(x)                                                             # classement en ordre croissant

sort(x, decr = TRUE)   # classement en ordre décroissant sort(c("abc", "B", "Aunt", "Jemima")) # chaînes de caractères sort(c(TRUE, FALSE))        # FALSE vient avant TRUE

## La fonction 'order' retourne la position, dans le vecteur

## donné en argument, du premier élément selon l'ordre

## croissant, puis du deuxième, etc. Autrement dit, on obtient ## l'ordre dans lequel il faut extraire les données du vecteur ## pour les obtenir en ordre croissant.

order(x)    # regarder dans le blanc des yeux x[order(x)] # équivalent à 'sort(x)'

## Rang des éléments d'un vecteur dans l'ordre croissant.

                         rank(x)                                                        # rang des élément de 'x'

## Renverser l'ordre d'un vecteur. rev(x)

## Extraction ou suppression en tête ou en queue de vecteur.

head(x, 3) # trois premiers éléments head(x, -2)          # tous sauf les deux derniers tail(x, 3)          # trois derniers éléments tail(x, -2)              # tous sauf les deux premiers

## Expressions équivalentes sans 'head' et 'tail'

                         x[1:3]                                                         # trois premiers éléments

x[1:(length(x) - 2)]      # tous sauf les deux derniers x[(length(x)-2):length(x)] # trois derniers éléments rev(rev(x)[1:3])       # avec petits vecteurs seulement x[c(-1, -2)]            # tous sauf les deux premiers

## Seulement les éléments différents d'un vecteur. unique(x)

## RECHERCHE D'ÉLÉMENTS DANS UN VECTEUR

which(x >= 30)

# positions des éléments >= 30

(x)

# position du minimum

(x)

# position du maximum

match(20, x)

# position du premier 20 dans 'x'

match(c(20, 30), x)

# aussi pour plusieurs valeurs

60 %in% x

# 60 appartient à 'x'

70 %in% x

# 70 n'appartient pas à 'x'

## ARRONDI

(x # arrondi à l'entier round(x, 2)    # arrondi à la seconde décimale round(x, -1) # arrondi aux dizaines ceiling(x)      # plus petit entier supérieur floor(x)            # plus grand entier inférieur trunc(x)           # troncature des décimales

## SOMMAIRES ET STATISTIQUES DESCRIPTIVES

sum(x)      # somme des éléments prod(x)   # produit des éléments diff(x)     # x[2] - x[1], x[3] - x[2], etc. mean(x)            # moyenne des éléments

mean(x, trim = 0.125)                                   # moyenne sans minimum et maximum

var(x)                                                            # variance (sans biais)

(length(x) - 1)/length(x) * var(x) # variance biaisée sd(x) # écart type max(x)   # maximum min(x)    # minimum

range(x)    # c(min(x), max(x)) diff(range(x)) # étendue de 'x' median(x)         # médiane (50e quantile) empirique quantile(x)           # quantiles empiriques

quantile(x, 1:10/10)   # on peut spécifier les quantiles summary(x) # plusieurs des résultats ci-dessus

## SOMMAIRES CUMULATIFS ET COMPARAISONS ÉLÉMENT PAR ÉLÉMENT

(x  

(y  

cumsum(x) # somme cumulative de 'x' cumprod(y)       # produit cumulatif de 'y'

rev(cumprod(rev(y)))                                       # produit cumulatif renversé

cummin(x) # minimum cumulatif cummax(y) # maximum cumulatif pmin(x, y) # minimum élément par élément pmax(x, y) # maximum élément par élément

## OPÉRATIONS SUR LES MATRICES

(A # avec remise dim(A) # conversion en une matrice 4 x 4 b # un vecteur quelconque

A              # la matrice 'A' t(A)    # sa transposée solve(A)            # son inverse solve(A, b)            # la solution de Ax = b

A %*% solve(A, b)      # vérification de la réponse diag(A)             # extraction de la diagonale de 'A' diag(b)    # matrice diagonale formée avec 'b' diag(4) # matrice identité 4 x 4 (A # matrice 4 x 5

nrow(A)    # nombre de lignes de 'A' ncol(A) # nombre de colonnes de 'A' rowSums(A)     # sommes par ligne colSums(A)  # sommes par colonne

apply(A, 1, sum)        # équivalent à 'rowSums(A)' apply(A, 2, sum)               # équivalent à 'colSums(A)' apply(A, 1, prod) # produit par ligne avec 'apply'

## PRODUIT EXTÉRIEUR x # produit extérieur x %o% y        # équivalent plus court

outer(x, y, "+")          # «somme extérieure» outer(x, y, "<=")       # toutes les comparaisons possibles outer(x, y, pmax)   # idem

###

### STRUCTURES DE CONTRÔLE ###

## Pour illustrer les structures de contrôle, on a recours à

## un petit exemple tout à fait artificiel: un vecteur est ## rempli des nombres de 1 à 100, à l'exception des multiples ## de 10. Ces derniers sont affichés à l'écran.

##

## À noter qu'il est possible --- et plus efficace --- de ## créer le vecteur sans avoir recours à des boucles.

(1:100)[-((1:10) * 10)] # sans boucle! rep(1:9, 10) + rep(0:9*10, each = 9) # une autre façon!

## Bon, l'exemple proprement dit

x # initialisation du contenant 'x' j # compteur pour la boucle for (i in 1:100)

{

if (i %% 10)       # si i n'est pas un multiple de 10 x[j # stocker sa valeur dans 'x'

                                 else                                             # sinon

                                           print(i)                                        # afficher la valeur à l'écran

}

                       x                                                              # vérification

## Même chose que ci-dessus, mais sans le compteur 'j' et les

## valeurs manquantes aux positions 10, 20, , 100 sont

## éliminées à la sortie de la boucle.

x

{

if (i %% 10)

x[i]

else print(i) } x

## On peut refaire l'exemple avec une boucle 'while', mais

## cette structure n'est pas naturelle ici puisque l'on sait

## d'avance qu'il faudra faire la boucle exactement 100

## fois. Le 'while' est plutôt utilisé lorsque le nombre de

## répétitions est inconnu. De plus, une boucle 'while' n'est ## pas nécessairement exécutée puisque le critère d'arrêt est ## évalué dès l'entrée dans la boucle.

x

i # pour entrer dans la boucle [*]

while (i <= 100)

{

if (i %% 10)

x[j

else print(i) i # incrémenter le compteur!

} x

## La remarque faite au sujet de la boucle 'while' s'applique

## aussi à la boucle 'repeat'. Par contre, le critère d'arrêt

## de la boucle 'repeat' étant évalué à la toute fin, la

## boucle est exécutée au moins une fois. S'il faut faire la

## manoeuvre marquée [*] ci-dessus pour s'assurer qu'une ## boucle 'while' est exécutée au moins une fois c'est ## qu'il faut utiliser 'repeat'.

x

{

if (i %% 10)

x[j

else print(i)

if (100 < (i # incrément et critère d'arrêt break } x

###

### FONCTIONS ADDITIONNELLES

###

## La fonction 'search' retourne la liste des environnements ## dans lesquels R va chercher un objet (en particulier une ## fonction). '.GlobalEnv' est l'environnement de travail.

search()

## Liste de tous les packages installés sur votre système. library()

## Chargement du package 'MASS', qui contient plusieurs ## fonctions statistiques très utiles. library("MASS")

3.8     Exercices

3.1 À l’aide des fonctions rep, seq et c seulement, générer les séquences suivantes.

a)  0 6 0 6 0 6

b)    1 4 7 10

c)  1 2 3 1 2 3 1 2 3 1 2 3

d)    1 2 2 3 3 3

e)    1 1 1 2 2 3

f)   1 5.5 10

g)  1 1 1 1 2 2 2 2 3 3 3 3

3.2 Générer les suites de nombres suivantes à l’aide des fonctions : et rep seulement, donc sans utiliser la fonction seq.

a)  1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

3.8. Exercices

b)    1 3 5 7 9 11 13 15 17 19

c)  -2 -1 0 1 2 -2 -1 0 1 2

d)    -2 -2 -1 -1 0 0 1 1 2 2

e)    10 20 30 40 50 60 70 80 90 100

3.3 À l’aide de la commande apply, écrire des expressions R qui remplaceraient les fonctions suivantes.

a)  rowSums

b)    colSums

c)  rowMeans

d)    colMeans

3.4  Sans utiliser les fonctions factorial, lfactorial, gamma ou lgamma, générer la séquence 1!, 2!, , 10!

3.5  Trouver une relation entre x, y, x %% y (modulo) et x %/% y (division entière), où y!= 0.

3.6  Simuler un échantillon x = (x1,x2,x3, ,x20) avec la fonction sample. Écrire une expression R permettant d’obtenir ou de calculer chacun des résultats demandés ci-dessous.

a)  Les cinq premiers éléments de l’échantillon.

b)    La valeur maximale de l’échantillon.

c)  La moyenne des cinq premiers éléments de l’échantillon.

d)    La moyenne des cinq derniers éléments de l’échantillon.

3.7 a) Trouver une formule pour calculer la position, dans le vecteur sous-jacent, de l’élément (i, j) d’une matrice I × J remplie par colonne.

b) Répéter la partie a) pour l’élément (i, j,k) d’un tableau I × J ×K .

3.8 Simuler une matrice mat 10×7, puis écrire des expressions R permettant d’effectuer les tâches demandées ci-dessous.

a)  Calculer la somme des éléments de chacunes des lignes de la matrice.

b)    Calculer la moyenne des éléments de chacunes des colonnes de la matrice.

c)  Calculer la valeur maximale de la sous-matrice formée par les trois premières lignes et les trois premières colonnes.

d)    Extraire toutes les lignes de la matrice dont la moyenne des éléments est supérieure à 7.

3.9 On vous donne la liste et la date des 31 meilleurs temps enregistrés au 100 mètres homme entre 1964 et 2005 :

> temps

                                                +                                                  10.05, 9.98, 10.09, 10.01, 10.00, 9.97, 9.93,

                                                +                                                     9.96, 9.99, 9.92, 9.94, 9.90, 9.86, 9.88,

                                                +                                                     9.87, 9.85, 9.91, 9.84, 9.89, 9.79, 9.80,

                                                +                                       9.82, 9.78, 9.77)

> names(temps)

                                                +                                                            "1968-10-14", "1968-10-14", "1968-10-14",

                                                +                                                            "1968-10-14", "1975-08-20", "1977-08-11",

                                                +                                                            "1978-07-30", "1979-09-04", "1981-05-16",

                                                +                                                            "1983-05-14", "1983-07-03", "1984-05-05",

                                                +                                                            "1984-05-06", "1988-09-24", "1989-06-16",

                                                +                                                            "1991-06-14", "1991-08-25", "1991-08-25",

                                                +                                                            "1993-08-15", "1994-07-06", "1994-08-23",

                                                +                                                            "1996-07-27", "1996-07-27", "1999-06-16",

                                                +                                                            "1999-08-22", "2001-08-05", "2002-09-14",

                                                +                                                  "2005-06-14")

Extraire de ce vecteur les records du monde seulement, c’est-à-dire la première fois que chaque temps a été réalisé.

4    Exemples résolus

Objectifs du chapitre

? Mettre en pratique les connaissances acquises dans les chapitres précédents.

? Savoir tirer profit de l’arithmétique vectorielle de R pour effectuer des calculs complexes sans boucles.

? Utiliser l’initialisation de vecteurs et leur indiçage de manière à réduire le temps de calcul.

Ce chapitre propose de faire le point sur les concepts étudiés jusqu’à maintenant par le biais de quelques exemples résolus. On y met particulièrement en évidence les avantages de l’approche vectorielle du langage R.

La compréhension du contexte de ces exemples requiert quelques connaissances de base en mathématiques financières et en théorie des probabilités.

4.1       Calcul de valeurs présentes

De manière générale, la valeur présente d’une série de paiements P1,P2, ,Pn à la fin des années 1,2, ,n est

j

Pj,                                                       (4.1)

j=1k=1

ik est le taux d’intérêt effectif annuellement durant l’année k. Lorsque le taux d’intérêt est constant au cours des n années, cette formule se simplifie en

n

                                                                                          ?(1+i)?jPj.                                                                (4.2)

j=1

Un prêt est remboursé par une série de cinq paiements, le premier étant dû dans un an. On doit trouver le montant du prêt pour chacune des hypothèses cidessous.

63

a)    Paiement annuel de 1000, taux d’intérêt de 6 % effectif annuellement.

Avec un paiement annuel et un taux d’intérêt constants, on utilise la formule (4.2) avec Pj = P = 1000 :

> 1000 * sum((1 + 0.06)^(-(1:5)))

[1] 4212.364

Remarquer comme l’expression R se lit exactement comme la formule mathématique.

b)    Paiements annuels de 500, 800, 900, 750 et 1000, taux d’intérêt de 6 % effectif annuellement.

Les paiements annuels sont différents, mais le taux d’intérêt est toujours le même. La formule (4.2) s’applique donc directement :

> sum(c(500, 800, 900, 750, 1000) * (1 + 0.06)^(-(1:5)))

[1] 3280.681

c)    Paiements annuels de 500, 800, 900, 750 et 1000, taux d’intérêt de 5 %, 6 %, 5,5 %, 6,5 % et 7 % effectifs annuellement.

Avec différents paiements annuels et des taux d’intérêt différents, il faut employer la formule (4.1). Le produit cumulatif des taux d’intérêt est obtenu avec la fonction cumprod :

> sum(c(500, 800, 900, 750, 1000) /

        +                               cumprod(1 + c(0.05, 0.06, 0.055, 0.065, 0.07)))

[1] 3308.521

4.2        Fonctions de masse de probabilité

On doit calculer toutes ou la majeure partie des probabilités de deux lois de probabilité, puis vérifier que la somme des probabilités est bien égale à 1.

Cet exemple est quelque peu artificiel dans la mesure où il existe dans R des fonctions internes pour calculer les principales caractéristiques des lois de probabilité les plus usuelles. Nous utiliserons d’ailleurs ces fonctions pour vérifier nos calculs.

a)    Calculer toutes les masses de probabilité de la distribution binomiale pour des valeurs des paramètres n et p quelconques. La fonction de masse de probabilité de la binomiale est



f (x) = (n)px(1? p)n?x,             x = 0, ,n.

x

4.2. Fonctions de masse de probabilité

Soit n = 10 et p = 0,8. Les coefficients binomiaux sont calculés avec la fonction choose :

> n

> p

> x

> choose(n, x) * p^x * (1 - p)^rev(x)

[1] 0.0000001024 0.0000040960 0.0000737280

[4] 0.0007864320 0.0055050240 0.0264241152

[7] 0.0880803840 0.2013265920 0.3019898880

[10] 0.2684354560 0.1073741824

On vérifie les réponses obtenues avec la fonction interne dbinom :

> dbinom(x, n, prob = 0.8)

[1] 0.0000001024 0.0000040960 0.0000737280

[4] 0.0007864320 0.0055050240 0.0264241152

[7] 0.0880803840 0.2013265920 0.3019898880

[10] 0.2684354560 0.1073741824

On vérifie enfin que les probabilités somment à 1 :

> sum(choose(n, x) * p^x * (1 - p)^rev(x))

[1] 1

b)    Calculer la majeure partie des masses de probabilité de la distribution de Poisson, dont la fonction de masse de probabilité est

?xe??

f (x) =        , x = 0,1, , x!

x! = x(x ?1)?2?1.

La loi de Poisson ayant un support infini, on calcule les probabilités en x = 0,1, ,10 seulement avec ? = 5. On calcule les factorielles avec la fonction factorial. On notera au passage que factorial(x) == gamma(x + 1), où la fonction R gamma calcule les valeurs de la fonction mathématique du même

nom                      ?(n) = ?0? xn?1e?x dx = (n ?1)?(n ?1),

avec ?(0) = 1. Pour n entier, on a donc ?(n) = (n ?1)!.

> lambda

> x

> exp(-lambda) * (lambda^x / factorial(x))

[1] 0.006737947 0.033689735 0.084224337

[4] 0.140373896 0.175467370 0.175467370

[7] 0.146222808 0.104444863 0.065278039

[10] 0.036265577 0.018132789

Vérification avec la fonction interne dpois :

> dpois(x, lambda)

[1] 0.006737947 0.033689735 0.084224337

[4] 0.140373896 0.175467370 0.175467370

[7] 0.146222808 0.104444863 0.065278039

[10] 0.036265577 0.018132789

Pour vérifier que les probabilités somment à 1, il faudra d’abord tronquer le support infini de la Poisson à une «grande» valeur. Ici, 200 est suffisamment éloigné de la moyenne de la distribution, 5. Remarquer que le produit par e?? est placé à l’extérieur de la somme pour ainsi faire un seul produit plutôt que

201.

> x

> exp(-lambda) * sum((lambda^x / factorial(x)))

[1] 1

4.3        Fonction de répartition de la loi gamma

La loi gamma est fréquemment utilisée pour la modélisation d’événements ne pouvant prendre que des valeurs positives et pour lesquels les petites valeurs sont plus fréquentes que les grandes. Par exemple, on utilise parfois la loi gamma en sciences actuarielles pour la modélisation des montants de sinistres. Nous utiliserons la paramétrisation où la fonction de densité de probabilité est

f (x) = ??(??) x??1e??x,        x > 0,                                           (4.3)

où ?(?) est la fonction gamma définie dans l’exemple précédent.

Il n’existe pas de formule explicite de la fonction de répartition de la loi gamma. Néanmoins, la valeur de la fonction de répartition d’une loi gamma de paramètre ? entier et ? = 1 peut être obtenue à partir de la formule

F(x;?,1) = 1?e?x ??j=?01 xj!j .                                                 (4.4)

4.3. Fonction de répartition de la loi gamma

a)    Évaluer F(4;5,1).

Cet exercice est simple puisqu’il s’agit de calculer une seule valeur de la fonction de répartition avec un paramètre ? fixe. Par une application directe de (4.4), on a :

> alpha

> x

> 1 - exp(-x) * sum(x^(0:(alpha - 1))/gamma(1:alpha))

[1] 0.3711631

Vérification avec la fonction interne pgamma :

> pgamma(x, alpha)

[1] 0.3711631

On peut aussi éviter de générer essentiellement la même suite de nombres à deux reprises en ayant recours à une variable intermédiaire. Au risque de rendre le code un peu moins lisible (mais plus compact!), l’affectation et le calcul final peuvent même se faire dans une seule expression.

> 1 - exp(-x) * sum(x^(-1 + (j

[1] 0.3711631

b)    Évaluer F(x;5,1) pour x = 2,3, ,10 en une seule expression.

Cet exercice est beaucoup plus compliqué qu’il n’y paraît au premier abord. Ici, la valeur de ? demeure fixe, mais on doit calculer, en une seule expression, la valeur de la fonction de répartition en plusieurs points. Or, cela exige de faire d’un coup le calcul x j pour plusieurs valeur de x et plusieurs valeurs de j. C’est un travail pour la fonction outer :

> x

> 1 - exp(-x) * colSums(t(outer(x, 0:(alpha-1), "^")) /

+                                             gamma(1:alpha))

[1] 0.05265302 0.18473676 0.37116306 0.55950671

[5] 0.71494350 0.82700839 0.90036760 0.94503636

[9] 0.97074731

Vérification avec la fonction interne pgamma :

> pgamma(x, alpha)

[1] 0.05265302 0.18473676 0.37116306 0.55950671

[5] 0.71494350 0.82700839 0.90036760 0.94503636

[9] 0.97074731

Il est laissé en exercice de déterminer pourquoi la transposée est nécessaire dans l’expression ci-dessus. Exécuter l’expression étape par étape, de l’intérieur vers l’extérieur, pour mieux comprendre comment on arrive à faire le calcul en (4.4).

4.4       Algorithme du point fixe

Trouver la racine d’une fonction g — c’est-à-dire le point xg(x) = 0 — est un problème classique en mathématiques. Très souvent, il est possible de reformuler le problème de façon à plutôt chercher le point xf (x) = x. La solution d’un tel problème est appelée point fixe.

L’algorithme du calcul numérique du point fixe d’une fonction f (x) est très simple :

1.    choisir une valeur de départ x0 ;

2.    calculer xn = f (xn?1) pour n = 1,2, ;

3.    répéter l’étape 2 jusqu’à ce que ?xn ? xn?1? < ² ou ?xn ? xn?1?/?xn?1? < ².

On doit trouver, à l’aide de la méthode du point fixe, la valeur de i telle que

a              1?(1+i)?10 = 8,21,

i

c’est à dire le taux de rendement d’une série de 10 versements de 1 pour laquelle on a payé un montant de 8,21.

Puisque, d’une part, nous ignorons combien de fois la procédure itérative devra être répétée et que, d’autre part, il faut exécuter la procédure au moins une fois, le choix logique pour la structure de contrôle à utiliser dans cette procédure itérative est repeat. De plus, il faut comparer deux valeurs successives du taux d’intérêt, nous devrons donc avoir recours à deux variables. On a :

> i

> repeat

+ {

        +                 it

        +                           i

        +                          if (abs(i - it)/it < 1E-10)

        +                       break

+ }

> i

[1] 0.03756777

4.5. Suite de Fibonacci

Vérification :

> (1 - (1 + i)^(-10))/i

[1] 8.21

Nous verrons au chapitre 5 comment créer une fonction à partir de ce code.

4.5 Suite de Fibonacci

La suite de Fibonacci est une suite de nombres entiers très connue. Les deux premiers termes de la suite sont 0 et 1 et tous les autres sont la somme des deux termes précédents. Mathématiquement, les valeurs de la suite de Fibonacci sont données par la fonction

f (0) = 0 f (1) = 1 f (n) = f (n ?1)+ f (n ?2), n ? 2.

?

Le quotient de deux termes successifs converge vers (1+ 5)/2, le nombre d’or.

On veut calculer les n > 2 premiers termes de la suite de Fibonacci. Ce problème étant intrinsèquement récursif, nous devons utiliser une boucle.

Voici une première solution pour n = 10 :

> n

> x

> for (i in 3:n) x[i]

> x

[1] 0 1 1 2 3 5 8 13 21 34

La procédure ci-dessus a un gros défaut : la taille de l’objet x est constamment augmentée pour stocker une nouvelle valeur de la suite. Tentons une analogie alimentaire pour cette manière de procéder. Pour ranger des biscuits frais sortis du four, on prend un premier biscuit et on le range dans un plat ne pouvant contenir qu’un seul biscuit. Arrivé au second biscuit, on constate que le contenant n’est pas assez grand, alors on sort un plat pouvant contenir deux biscuits, on change le premier biscuit de plat et on y range aussi le second biscuit. Arrivé au troisième biscuit, le petit manège recommence, et ainsi de suite jusqu’à ce que le plateau de biscuit soit épuisé.

C’est exactement ce qui se passe dans la mémoire de l’ordinateur avec la procédure ci-dessus, l’odeur des bons biscuits chauds en moins. En effet, le système doit constamment allouer de la nouvelle mémoire et déplacer les termes déjà sauvegardés au fur et à mesure que le vecteur x grandit. On aura compris qu’une telle façon de faire est à éviter absolument lorsque c’est possible — et ça l’est la plupart du temps.

Quand on sait quelle sera la longueur d’un objet, comme c’est le cas dans cet exemple, il vaut mieux créer un contenant vide de la bonne longueur et le remplir par la suite. Cela nous donne une autre façon de calculer la suite de Fibonacci :

> n

              > x

             > x[2]

> for (i in 3:n) x[i]

> x

[1] 0 1 1 2 3 5 8 13 21 34

Dans les exemples du chapitre 5, nous composeront des fonctions avec ces deux exemples et nous comparerons les temps de calcul pour n grand.

4.6      Exercices

Dans chacun des exercices ci-dessous, écrire une expression R pour faire le calcul demandé. Parce qu’elles ne sont pas nécessaires, il est interdit d’utiliser des boucles.

4.1 Calculer la valeur présente d’une série de paiements fournie dans un vecteur P en utilisant les taux d’intérêt annuels d’un vecteur i.

4.2 Étant donné un vecteur d’observations x = (x1, ,xn) et un vecteur de poids correspondants w = (w1, ,wn), calculer la moyenne pondérée des observations,

n wi

? w xi, i=1 ?

w wi. Tester l’expression avec les vecteurs de données

x = (7,13,3,8,12,12,20,11)

et

w = (0,15, 0,04, 0,05, 0,06, 0,17, 0,16, 0,11, 0,09).

4.6. Exercices

4.3 Soit un vecteur d’observations x = (x1, ,xn). Calculer la moyenne harmonique de ce vecteur, définie comme

n

.

x      xn

Tester l’expression avec les valeurs de l’exercice 4.2.

4.4 Calculer la fonction de répartition en x = 5 d’une loi de Poisson avec paramètre ? = 2, qui est donnée par

, k=0 k!

k! = 1?2?k.

4.5 a) Calculer l’espérance d’une variable aléatoire X dont le support est x = 1,10,100, ,1000000 et les probabilités correspondantes sont , , , , dans l’ordre.

b) Calculer la variance de la variable aléatoire X définie en a).

4.6 Calculer le taux d’intérêt nominal composé quatre fois par année, i(4), équivalent à un taux de i = 6 % effectif annuellement.

4.7 La valeur présente d’une série de n paiements de fin d’année à un taux d’intérêt i effectif annuellement est

an= v + v2 +???+ vn = 1? vn ,

i

v = (1 + i)?1. Calculer en une seule expression, toujours sans boucle, un tableau des valeurs présentes de séries de n = 1,2, ,10 paiements à chacun des taux d’intérêt effectifs annuellement i = 0,05,0,06, ,0,10.

4.8 Calculer la valeur présente d’une annuité croissante de 1 $ payable annuellement en début d’année pendant 10 ans si le taux d’actualisation est de 6 %. Cette valeur présente est donnée par

10

Ia¨10 = ? kvk?1,

k=1

toujours avec v = (1+i)?1.

4.9 Calculer la valeur présente de la séquence de paiements 1, 2, 2, 3, 3, 3, 4, 4, 4, 4 si les paiements sont effectués en fin d’année et que le taux d’actualisation est de 7 %.

4.10 Calculer la valeur présente de la séquence de paiements définie à l’exercice 4.9 en supposant que le taux d’intérêt d’actualisation alterne successivement entre 5 % et 8 % chaque année, c’est-à-dire que le taux d’intérêt est de 5 %, 8 %, 5 %, 8 %, etc.

5    Fonctions définies par l’usager

Objectifs du chapitre

? Savoir définir une fonction R, ses divers arguments et, le cas échéant, les valeurs par défaut de ceux-ci.

? Être en mesure de déboguer une fonction R.

? Adopter un style de codage correspondant à la pratique en R.

La possibilité pour l’usager de définir facilement et rapidement de nouvelles fonctions — et donc des extensions au langage — est une des grandes forces de R. Les fonctions personnelles définies dans l’espace de travail ou dans un package sont traitées par le système exactement comme les fonction internes.

Ce court chapitre passe en revue la syntaxe et les règles pour créer des fonctions dans R. On discute également brièvement de débogage et de style de codage.

5.1   Définition d’une fonction

On définit une nouvelle fonction avec la syntaxe suivante :

fun arguments) expression

? fun est le nom de la fonction (les règles pour les noms de fonctions étant les mêmes que celles présentées à la section 2.2 pour tout autre objet);

? arguments est la liste des arguments, séparés par des virgules;

? expression constitue le corps de la fonction, soit une expression ou un groupe d’expressions réunies par des accolades.

73

5.2   Retourner des résultats

La plupart des fonctions sont écrites dans le but de retourner un résultat. Or, les règles d’interprétation d’un groupe d’expressions présentées à la section 2.1 s’appliquent ici au corps de la fonction.

? Une fonction retourne tout simplement le résultat de la dernière expression du corps de la fonction.

? On évitera donc que la dernière expression soit une affectation, car la fonction ne retournera alors rien et on ne pourra utiliser une construction de la forme x

? Si on doit retourner un résultat sans être à la dernière ligne de la fonction (à l’intérieur d’un bloc conditionnel, par exemple), on utilise la fonction return. L’utilisation de return à la toute fin d’une fonction est tout à fait inutile et considérée comme du mauvais style en R.

? Lorsqu’une fonction doit retourner plusieurs résultats, il est en général préférable d’avoir recours à une liste nommée.

5.3       Variables locales et globales

Comme la majorité des langages de programmation, R comporte des concepts de variable locale et de variable globale.

? Toute variable définie dans une fonction est locale à cette fonction, c’est-à-dire qu’elle :

–   n’apparaît pas dans l’espace de travail;

–   n’écrase pas une variable du même nom dans l’espace de travail. ? Il est possible de définir une variable dans l’espace de travail depuis une fonction avec l’opérateur d’affectation <

? On peut définir une fonction à l’intérieur d’une autre fonction. Cette fonction sera locale à la fonction dans laquelle elle est définie.

Le lecteur intéressé à en savoir plus pourra consulter les sections de la documentation de R portant sur la portée lexicale (lexical scoping). C’est un sujet important et intéressant, mais malheureusement trop avancé pour ce document d’introduction à la programmation en R.

5.4. Exemple de fonction

fp

## Fonction pour trouver par la méthode du point ## fixe le taux d'intérêt pour lequel une série de ## 'n' paiements vaut 'k'.

##

## ARGUMENTS

##

          ##                         k: la valeur présente des paiements

          ##                    n: le nombre de paiements

## start: point de départ des itérations

          ##                    TOL: niveau de précision souhaité

##

## RETOURNE

##

## Le taux d'intérêt

i

it

break

} i

}

FIG. 5.1: Exemple de fonction de point fixe

5.4   Exemple de fonction

Le code développé pour l’exemple de point fixe de la section 4.4 peut être intégré dans une fonction; voir la figure 5.1.

? Le nom de la fonction est fp.

? La fonction compte quatre arguments : k, n, start et TOL.

? Les deux derniers arguments ont des valeurs par défaut de 0,05 et 10?10, respectivement.

? La fonction retourne la valeur de la variable i.

5.5   Fonctions anonymes

Il est parfois utile de définir une fonction sans lui attribuer un nom — d’où la notion de fonction anonyme. Il s’agira en général de fonctions courtes utilisées dans une autre fonction. Par exemple, pour calculer la valeur de xy2 pour toutes les combinaisons de x et y stockées dans des vecteurs du même nom, on pourrait utiliser la fonction outer ainsi :

> x

> f

> outer(x, y, f)

[,1] [,2] [,3]

                                                 [1,]          16        25        36

                                                 [2,]          32        50        72

                                                 [3,]          48          75 108

Cependant, si la fonction f ne sert à rien ultérieurement, on peut se contenter de passer l’objet fonction à outer sans jamais lui attribuer un nom :

> outer(x, y, function(x, y) x * y^2)

[,1] [,2] [,3]

                                                 [1,]          16        25        36

                                                 [2,]          32        50        72

                                                 [3,]          48          75 108

On a alors utilisé dans outer une fonction anonyme.

5.6       Débogage de fonctions

Il est assez rare d’arriver à écrire un bout de code sans bogue du premier coup. Par conséquent, qui dit programmation dit séances de débogage.

Les techniques de débogages les plus simples et naïves sont parfois les plus efficaces et certainement les plus faciles à apprendre. Loin d’un traité sur le débogage de code R, nous offrons seulement ici quelques trucs que nous utilisons régulièrement.

5.7. Styles de codage

? Les erreurs de syntaxe sont les plus fréquentes (en particulier l’oubli de virgules). Lors de la définition d’une fonction, une vérification de la syntaxe est effectuée par l’interprète R. Attention, cependant : une erreur peut prendre sa source plusieurs lignes avant celle que l’interprète pointe comme faisant problème. ? Les messages d’erreur de l’interprète ne sont pas toujours d’un grand secours tant que l’on n’a pas appris à les reconnaître. Un exemple de message d’erreur fréquemment rencontré :

valeur manquante là où TRUE / FALSE est requis

Cette erreur provient généralement d’une commande if dont l’argument vaut NA plutôt que TRUE ou FALSE. La raison : des valeurs manquantes se sont faufilées dans les calculs à notre insu jusqu’à l’instructions if, qui n’accepte que des valeurs booléennes en arguement.

? Lorsqu’une fonction ne retourne pas le résultat attendu, placer des commandes print à l’intérieur de la fonction, de façon à pouvoir suivre les valeurs prises par les différentes variables.

Par exemple, la modification suivante à la boucle de la fonction fp permet d’afficher les valeurs successives de la variable i et de détecter une procédure itérative divergente :

repeat {

it

print(i) if (abs((i - it)/it < TOL)) break

}

? Quand ce qui précède ne fonctionne pas, ne reste souvent qu’à exécuter manuellement la fonction. Pour ce faire, définir dans l’espace de travail tous les arguments de la fonction, puis exécuter le corps de la fonction ligne par ligne. La vérification du résultat de chaque ligne permet généralement de retrouver la ou les expressions qui causent problème.

5.7      Styles de codage

Si tous conviennent que l’adoption d’un style propre et uniforme favorise le développement et la lecture de code, il existe plusieurs chapelles dans le monde des programmeurs quant à la «bonne façon» de présenter et, surtout, d’indenter le code informatique.

Par exemple, Emacs reconnaît et supporte les styles de codage suivants, entre autres :

C++/Stroustrup

for (i in 1:10)

{ expression

}

K&R (1TBS)

for (i in 1:10){

expression

}

Whitesmith

for (i in 1:10)

{ expression

}

GNU

for (i in 1:10)

{ expression

}

? Pour des raisons générales de lisibilité et de popularité, le style C++, avec les accolades sur leurs propres lignes et une indentation de quatre (4) espaces est considéré comme standard pour la programmation en R.

? La version de GNU Emacs distribuée par l’auteur est déjà configurée pour utiliser ce style de codage.

? Consulter la documentation de votre éditeur de texte pour savoir si vous pouvez configurer le niveau d’indentation. La plupart des bons éditeurs pour programmeurs le permettent.

? Surtout, éviter de ne pas du tout indenter le code.

5.8      Exemples

### POINT FIXE

## Comme premier exemple de fonction, on réalise une mise en

## oeuvre de l'algorithme du point fixe pour trouver le taux ## d'intérêt tel que a_angle{n} = k pour 'n' et 'k' donnés.

5.8. Exemples

## Cette mise en oeuvre est peu générale puisqu'il faudrait ## modifier la fonction chaque fois que l'on change la ## fonction f(x) dont on cherche le point fixe. fp1

{ i

{

it

}

fp1(7.2, 10)

# valeur de départ par défaut

fp1(7.2, 10, 0.06)

# valeur de départ spécifiée

i

# les variables n'existent pas

start

# dans l'espace de travail

## Généralisation de la fonction 'fp1': la fonction f(x) dont

## on cherche le point fixe (c'est-à-dire la valeur de 'x' ## tel que f(x) = x) est passée en argument. On peut faire

## ça? Bien sûr, puisqu'une fonction est un objet comme un

## autre en R. On ajoute également à la fonction un argument ## 'echo' qui, lorsque TRUE, fera en sorte d'afficher à ## l'écran les valeurs successives de 'x'.

##

## Ci-dessous, il est implicite que le premier argument, FUN, ## est une fonction.

fp2

{ x

{

xt

if (echo)  # inutile de faire 'if (echo == TRUE)' print(xt)

                                       x # appel de la fonction

if (abs(x - xt)/xt < TOL) break

} x

}

f # définition de f(x)

                                             fp2(f, 0.05)                                         # solution

fp2(f, 0.05, echo = TRUE) # avec résultats intermédiaires fp2(function(x) 3^(-x), start = 0.5) # avec fonction anonyme

## Amélioration mineure à la fonction 'fp2': puisque la

## valeur de 'echo' ne change pas pendant l'exécution de la ## fonction, on peut éviter de refaire le test à chaque

## itération de la boucle. Une solution élégante consiste à ## utiliser un outil avancé du langage R: les expressions.

##

## L'objet créé par la fonction 'expression' est une

## expression non encore évaluée (comme si on n'avait pas

## appuyé sur Entrée à la fin de la ligne). On peut ensuite ## évaluer l'expression (appuyer sur Entrée) avec 'exec'. fp3

{ x

## Choisir l'expression à exécuter plus loin if (echo) expr

else expr

repeat

{

eval(expr)

# évaluer l'expression

x

# appel de la fonction

if (abs(x - xt)/xt < TOL) break } x

}

fp3(f, 0.05, echo = TRUE) # avec résultats intermédiaires fp3(function(x) 3^(-x), start = 0.5) # avec une fonction anonyme

### SUITE DE FIBONACCI

5.8. Exemples

## On a présenté au chapitre 4 deux manières différentes de

## pour calculer les 'n' premières valeurs de la suite de

## Fibonacci. On crée d'abord des fonctions à partir de ce ## code. Avantage d'avoir des fonctions: elles sont valides ## pour tout 'n' > 2.

##

## D'abord la version inefficace.

fib1

{

res

res[i]

res } fib1(10) fib1(20)

## Puis la version supposéement plus efficace. fib2

{

res

# contenant créé

res[2]

# res[1] vaut déjà 0

for (i in 3:n)

res[i]

res } fib2(5) fib2(20)

## A-t-on vraiment gagné en efficacité? Comparons le temps ## requis pour générer une longue suite de Fibonacci avec les ## deux fonctions.

(fib1(10000)) # version inefficace (fib2(10000)) # version efficace

## Variation sur un même thème: une fonction pour calculer non ## pas les 'n' premières valeurs de la suite de Fibonacci, ## mais uniquement la 'n'ième valeur.

##

## Mais il y a un mais: la fonction 'fib3' est truffée

## d'erreurs (de syntaxe, d'algorithmique, de conception). À

## vous de trouver les bogues. (Afin de préserver cet

## exemple, copier le code erroné plus bas ou dans un autre

## fichier avant d'y faire les corrections.)

fib3

{

x 0))

x

}

fib3(1)

# devrait donner 0

fib3(2)

# devrait donner 1

fib3(5)

# devrait donner 3

fib3(10)

# devrait donner 34

fib3(20)

# devrait donner 4181

5.9     Exercices

5.1 La fonctions var calcule l’estimateur sans biais de la variance d’une population à partir de l’échantillon donné en argument. Écrire une fonction variance qui calculera l’estimateur biaisé ou sans biais selon que l’argument biased sera TRUE ou FALSE, respectivement. Le comportement par défaut de variance devrait être le même que celui de var. L’estimateur sans biais de la variance à partir d’un échantillon X1, ,Xn est

                                                                                                                      1      n

S, n ?1 i=1

alors que l’estimateur biaisé est

1 n

S, ni=1

X¯ = n?1(X1 +???+ Xn).

5.2 Écrire une fonction matrix2 qui, contrairement à la fonction matrix, remplira par défaut la matrice par ligne. La fonction ne doit pas utiliser matrix. Les arguments de la fonction matrix2 seront les mêmes que ceux de matrix, sauf que l’argument byrow sera remplacé par bycol.

5.3 Écrire une fonction phi servant à calculer la fonction de densité de probabilité d’une loi normale centrée réduite, soit

.

5.9. Exercices

La fonction devrait prendre en argument un vecteur de valeurs de x. Comparer les résultats avec ceux de la fonction dnorm.

5.4 Écrire une fonction Phi servant à calculer la fonction de répartition d’une loi normale centrée réduite, soit  d y, ?? < x < ?.

Supposer, pour le moment, que x ? 0. L’évaluation numérique de l’intégrale ci-dessus peut se faire avec l’identité

                                                                                                      2 n=0 1?3?5?(2n +1)

Utiliser la fonction phi de l’exercice 5.3 et tronquer la somme infinie à une grande valeur, 50 par exemple. La fonction ne doit pas utiliser de boucles, mais peut ne prendre qu’une seule valeur de x à la fois. Comparer les résultats avec ceux de la fonction pnorm.

5.5 Modifier la fonction Phi de l’exercice 5.4 afin qu’elle admette des valeurs de x négatives. Lorsque x < 0, ?(x) = 1 ? ?(?x). La solution simple consiste à utiliser une structure de contrôle if else, mais les curieux chercheront à s’en passer.

5.6 Généraliser maintenant la fonction de l’exercice 5.5 pour qu’elle prenne en argument un vecteur de valeurs de x. Ne pas utiliser de boucle. Comparer les résultats avec ceux de la fonction pnorm.

5.7 Sans utiliser l’opérateur %*%, écrire une fonction qui effectuera le produit matriciel de deux matrices seulement si les dimensions de celles-ci le permettent. Cette fonction aura deux arguments (mat1 et mat2) et devra tout d’abord vérifier si le produit matriciel est possible. Si celui-ci est impossible, la fonction retourne un message d’erreur.

a)  Utiliser une structure de contrôle if else et deux boucles.

b)    Utiliser une structure de contrôle if else et une seule boucle.

Dans chaque cas, comparer le résultat avec l’opérateur %*%.

5.8 Vous devez calculer la note finale d’un groupe d’étudiants à partir de deux informations : 1) une matrice contenant la note sur 100 des étudiants à chacune des évaluations, et 2) un vecteur contenant la pondération des évaluations. Un de vos collègues a composé la fonction notes.finales ci-dessous afin de faire le calcul de la note finale pour chacun de ses étudiants. Votre collègue vous mentionne toutefois que sa fonction est plutôt lente et inefficace pour de grands groupes d’étudiants. Modifiez la fonction afin d’en réduire le nombre d’opérations et faire en sorte qu’elle n’utilise aucune boucle.

notes.finales

{ netud

{ for(j in 1:neval)

{ final[i]

} } final

}

5.9 Trouver les erreurs qui empêchent la définition de la fonction ci-dessous.

AnnuiteFinPeriode

{{

v

ValPresChaquePmt

}

5.10 La fonction ci-dessous calcule la valeur des paramètres d’une loi normale, gamma ou Pareto à partir de la moyenne et de la variance, qui sont connues par l’utilisateur.

param

{ loi

if (loi == "gamma") param2

5.9. Exercices

param1

if (loi == "pareto") cte

stop("La loi doit etre une de \"normale\",

\"gamma\" ou \"pareto\"") }

L’utilisation de la fonction pour diverses lois donne les résultats suivants :

> param(2, 4, "normale")

$mean

[1] 2

$sd

[1] 2

> param(50, 7500, "gamma")

Erreur dans param(50, 7500, "gamma") : Objet "param1" non trouvé

> param(50, 7500, "pareto")

Erreur dans param(50, 7500, "pareto") : Objet "param1" non trouvé

a)  Expliquer pour quelle raison la fonction se comporte ainsi.

b)    Appliquer les correctifs nécessaires à la fonction pour que celle-ci puisse calculer les bonnes valeurs. (Les erreurs ne se trouvent pas dans les mathématiques de la fonction.) Astuce : tirer profit du moteur d’indentation de votre éditeur de texte pour programmeur.

6    Concepts avancés

Objectifs du chapitre

? Savoir passer des valeurs à une fonction via l’argument ‘ ’.

? Savoir effectuer des sommaires sur des tableaux à l’aide de la fonction apply.

? Savoir réduire des listes avec les fonctions lapply, sapply et mapply; connaître les différences entre ces fonctions.

? Comprendrecommentlaclassed’unobjetpeutmodifierletraitementqu’enferont les fonctions génériques.

Ce chapitre traite de divers concepts et fonctions un peu plus avancés du langage R, dont les fonctions de la famille apply auxquelles nous avons fait référence à quelques reprises dans les chapitres précédents. Ce sont des fonctions d’une grande importance en R.

6.1        Argument ‘

La mention ‘ ’ apparaît dans la définition de plusieurs fonctions en R. Il ne faut pas voir là de la paresse de la part des rédacteurs des rubriques d’aide, mais bel et bien un argument formel dont ‘ ’ est le nom.

? Cet argument signifie qu’une fonction peut accepter un ou plusieurs autres arguments autres que ceux faisant partie de sa définition.

? Le contenu de l’argument ‘ ’ n’est ni pris en compte, ni modifié par la fonction. Il est généralement simplement passé tel quel à une autre fonction qui, elle, saura traiter les arguments qui lui sont ainsi passés.

? Pour des exemples, voir les définitions des fonctions apply, lapply et sapply, ci-dessous.

87

6.2       Fonctionapply

La fonction apply sert à appliquer une fonction quelconque sur une partie d’une matrice ou, plus généralement, d’un tableau. La syntaxe de la fonction est la suivante :

apply(X, MARGIN, FUN, ),

? X est une matrice ou un tableau;

? MARGIN est un vecteur d’entiers contenant la ou les dimensions de la matrice ou du tableau sur lesquelles la fonction doit s’appliquer;

? FUN est la fonction à appliquer;

? ‘ ’ est un ensemble d’arguments supplémentaires, séparés par des virgules, à passer à la fonction FUN.

Lorsque X est une matrice, apply sert principalement à calculer des sommaires par ligne (dimension 1) ou par colonne (dimension 2) autres que la somme ou la moyenne (puisque les fonctions rowSums, colSums, rowMeans et colMeans existent pour ce faire).

? Utiliser la fonction apply plutôt que des boucles puisque celle-ci est plus efficace.

? Considérer les exemples suivants :

> (x

[,1] [,2] [,3] [,4]

[1,]

27

90

21         50

[2,]

38

95

18         72

[3,]

58

67

69 100

[4,]

91

63

39         39

[5,]

21

7

77         78

                                                    > apply(x, 1, var)                                                 # variance par ligne

[1] 978.000 1181.583 335.000 612.000 1376.917

                                                    > apply(x, 2, min)                                               # minimum par colonne

[1] 21 7 18 39

> apply(x, 1, mean, trim = 0.2) # moyenne tronquée par ligne

[1] 47.00 55.75 73.50 58.00 45.75

Puisqu’il n’existe pas de fonctions internes pour effectuer des sommaires sur des tableaux, il faut toujours utiliser la fonction apply.

6.2. Fonctionapply

? Si X est un tableau de plus de deux dimensions, alors l’argument passé à FUN peut être une matrice ou un tableau.

? Lorsque X est un tableau à trois dimensions et que MARGIN est de longueur 1, cela équivaut à appliquer la fonction FUN sur des «tranches» (des matrices) de X. Si MARGIN est de longueur 2, on applique FUN sur des «carottes» (des vecteurs) tirées de X.

? Truc mnémotechnique : la ou les dimensions absentes de MARGIN sont celles qui disparaissent après le passage de apply.

? Considérer les exemples suivants :

> (x

, , 1

[,1] [,2] [,3]

                        [1,]          10          2          1

                        [2,]            3          3          4

                        [3,]            7          4          9

, , 2

[,1] [,2] [,3]

                        [1,]            4          5          7

                        [2,]            5          2          8

                        [3,]            6          9          2

, , 3

[,1] [,2] [,3]

                        [1,]            8          7          6

                        [2,]            5          8          8

                        [3,]            9          6          1

, , 4

[,1] [,2] [,3]

[1,]

5

5

3

[2,]

8

9

1

[3,]

7

5

1

                              > apply(x, 3, det)                                                        # déterminants des quatre matrices 3 x 3

[1] 103 149 -103 -54

                                                   > apply(x, 1, sum)                                      # sommes des trois tranches horizontales

[1] 63 64 66

> apply(x, c(1, 2), sum) # sommes des neuf carottes horizontales

[,1] [,2] [,3]

                                              [1,]          27        19        17

                                              [2,]          21        22        21

                                              [3,]          29        24        13

> apply(x, c(1, 3), sum) # sommes des 12 carottes transversales

[,1] [,2] [,3] [,4]

                                              [1,]          13        16        21        13

                                              [2,]          10        15        21        18

                                              [3,]          20        17        16        13

> apply(x, c(2, 3), sum) # sommes des 12 carottes verticales

[,1] [,2] [,3] [,4]

[1,]

20

15

22

20

[2,]

9

16

21

19

[3,]

14

17

15

5

6.3         Fonctionslapplyetsapply

Les fonctions lapply et sapply sont similaires à la fonction apply en ce qu’elles permettent d’appliquer une fonction aux éléments d’une structure — le vecteur ou la liste en l’occurrence. Leur syntaxe est similaire :

lapply(X, FUN, ) sapply(X, FUN, )

? La fonction lapply applique une fonction FUN à tous les éléments d’un vecteur ou d’une liste X et retourne le résultat sous forme de liste. Le résultat est donc :

list(FUN(X[[1]], ), FUN(X[[2]], ),

FUN(X[[3]], ),

)

? Les éléments de X sont passés comme à la fonction FUN sans être nommés. Les règles habituelles d’évaluation d’un appel de fonction s’appliquent. Par conséquent, les éléments de X seront considérés comme les premiers arguments de FUN à moins que des arguments nommés dans ‘ ’ aient préséance.

6.3. Fonctionslapply etsapply

? Par exemple, on crée une liste formée de quatre vecteurs aléatoires de taille 5, 6, 7 et 8.

> (x

[[1]]

[1] 7 4 3 10 9

[[2]]

[1] 3 2 4 7 8 5

[[3]]

[1] 8 4 9 2 1 10 6

[[4]]

[1] 5 6 8 4 3 1 7 2

Le premier argument de la fonction sample est x. Dans l’expression ci-dessus, cet argument est passé à la fonction via l’argument ‘ ’. Par conséquent, les valeurs successives de 5:8 servent comme deuxième argument à la fonction sample, soit la taille de l’échantillon.

? On peut ensuite calculer la moyenne de chacun des vecteurs obtenus ci-dessus, toujours sans faire de boucle :

> lapply(x, mean)

[[1]]

[1] 6.6

[[2]]

[1] 4.833333

[[3]]

[1] 5.714286

[[4]]

[1] 4.5

La fonction sapply est similaire à lapply, sauf que le résultat est retourné sous forme de vecteur, si possible. Le résultat est donc simplifié par rapport à celui de lapply, d’où le nom de la fonction.

? Dans l’exemple ci-dessus, il est souvent plus utile d’obtenir les résultats sous la forme d’un vecteur :

> sapply(x, mean)

[1] 6.600000 4.833333 5.714286 4.500000

? Si le résultat de chaque application de la fonction est un vecteur et que les vecteurs sont tous de la même longueur, alors sapply retourne une matrice, remplie comme toujours par colonne :

> (x

[[1]]

[1] 6 2 9 5 4

[[2]]

[1] 1 10 6 7 4

[[3]]

[1] 6 5 8 4 9

> sapply(x, sort)

[,1] [,2] [,3]

                                              [1,]            2          1          4

                                              [2,]            4          4          5

                                              [3,]            5          6          6

                                              [4,]            6          7          8

                                              [5,]            9        10          9

Dans un grand nombre de cas, il est possible de remplacer les boucles for par l’utilisation de lapply ou sapply. On ne saurait donc trop insister sur l’importance de ces fonctions.

6.4      Fonctionmapply

La fonction mapply est une version multidimensionnelle de sapply. Sa syntaxe est, essentiellement, mapply(FUN, )

? Le résultat de mapply est l’application de la fonction FUN aux premiers éléments de tous les arguments contenus dans ‘ ’, puis à tous les seconds éléments, et ainsi de suite.

? Ainsi, si v et w sont des vecteurs, mapply(FUN, v, w) retourne sous forme de liste, de vecteur ou de matrice, selon le cas, FUN(v[1], w[1]), FUN(v[2], w[2]), etc.

6.5. Fonctionreplicate

? Par exemple :

> mapply(rep, 1:4, 4:1)

[[1]]

[1] 1 1 1 1

[[2]]

[1] 2 2 2

[[3]]

[1] 3 3

[[4]]

[1] 4

? Les éléments de ‘ ’ sont recyclés au besoin.

> mapply(seq, 1:6, 6:8)

[[1]]

[1] 1 2 3 4 5 6

[[2]]

[1] 2 3 4 5 6 7

[[3]]

[1] 3 4 5 6 7 8

[[4]]

[1] 4 5 6

[[5]]

[1] 5 6 7

[[6]]

[1] 6 7 8

6.5         Fonctionreplicate

La fonction replicate est une fonction enveloppante de sapply simplifiant la syntaxe pour l’exécution répétée d’une expression.

? Son usage est particulièrement indiqué pour les simulations. Ainsi, on peut construire une fonction fun qui fait tous les calculs d’une simulation, puis obtenir les résultats pour, disons, 10000 simulations avec

> replicate(10000, fun( ))

? L’annexe B présente en détail différentes stratégies — dont l’utilisation de la fonction replicate — pour la réalisation d’études de simulation en R.

6.6       Classes et fonctions génériques

Dans le langage R, tous les objets ont une classe. La classe est parfois implicite ou dérivée du mode de l’objet (consulter la rubrique d’aide de class pour de plus amples détails).

? Certaines fonctions, dites fonctions génériques, se comportent différemment selon la classe de l’objet donné en argument. Les fonctions génériques les plus fréquemment employées sont print, plot et summary.

? Une fonction générique possède une méthode correspondant à chaque classe qu’elle reconnaît et, généralement, une méthode default pour les autres objets. La liste des méthodes existant pour une fonction générique s’obtient avec la fonction methods :

> methods(plot)

[1] *                                                   .frame*

[3] * plot.default

[5] plot.dendrogram*

plot.density

[7]

plot.factor*

[9] plot.formula*

plot.function

[11] plot.hclust*

plot.histogram*

[13] plot.HoltWinters*

plot.isoreg*

[15]

plot.medpolish*

[17]

*

[19] plot.prcomp*

plot.princomp*

[21] *

[23] plot.stepfun

*

[25] plot.table*

[27] plot.tskernel*

plot.TukeyHSD

Non-visible functions are asterisked

? À chaque méthode methode d’une fonction générique fun correspond une fonction fun.methode. C’est donc la rubrique d’aide de cette dernière fonction qu’il faut consulter au besoin, et non celle de la fonction générique, qui contient en général peu d’informations.

? Il est intéressant de savoir que lorsque l’on tape le nom d’un objet à la ligne de commande pour voir son contenu, c’est la fonction générique print qui est appelée. On peut donc complètement modifier la représentation à l’écran du contenu d’un objet en créant une nouvelle classe et une nouvelle méthode pour la fonction print.

6.7      Exemples

###

### FONCTION 'apply' ###

## Création d'une matrice et d'un tableau à trois dimensions ## pour les exemples. m

## Les fonctions 'rowSums', 'colSums', 'rowMeans' et ## 'colMeans' sont des raccourcis pour des utilisations ## fréquentes de 'apply'.

rowSums(m)                                              # somme par ligne

apply(m, 1, sum)       # idem, mais moins lisible colMeans(m)       # somme par colonne apply(m, 2, mean)     # idem, mais moins lisible

## Puisqu'il n'existe pas de fonctions comme 'rowMax' ou ## 'colProds', il faut utiliser 'apply'.

apply(m, 1, max)       # maximum par ligne apply(m, 2, prod)       # produit par colonne

## L'argument ' ' de 'apply' permet de passer des arguments ## à la fonction FUN.

m[sample(1:20, 5)] # ajout de données manquantes apply(m, 1, var, = TRUE) # variance par ligne sans NA

## Lorsque 'apply' est utilisée sur un tableau, son résultat

## est de dimensions dim(X)[MARGIN], d'où le truc ## mnémotechnique donné dans le texte du chapitre. apply(a, c(2, 3), sum) # le résultat est une matrice apply(a, 1, prod)              # le résultat est un vecteur

## L'utilisation de 'apply' avec les tableaux peut rapidement

## devenir confondante si l'on ne visualise pas les calculs

## qui sont réalisés. On reprend ici les exemples du chapitre

## en montrant comment l'on calculerait le premier élément de ## chaque utilisation de 'apply'. Au besoin, retourner à ## l'indiçage des tableaux au chapitre 2. (x

apply(x, 3, det)

# déterminants des quatre matrices 3 x 3

det(x[, , 1])

# équivalent pour le premier déterminant

apply(x, 1, sum)

# sommes des trois tranches horizontales

sum(x[1, , ])

# équivalent pour la première somme

apply(x, c(1, 2), sum) # sommes des neuf carottes horizontales sum(x[1, 1, ])   # équivalent pour la première somme

apply(x, c(1, 3), sum) # sommes des 12 carottes transversales sum(x[1, , 1])    # équivalent pour la première somme

apply(x, c(2, 3), sum) # sommes des 12 carottes verticales sum(x[, 1, 1])         # équivalent pour la première somme

###

### FONCTIONS 'lapply' ET 'sapply' ###

## La fonction 'lapply' applique une fonction à tous les

## éléments d'une liste et retourne une liste, peu importe les ## dimensions des résultats. La fonction 'sapply' retourne un ## vecteur ou une matrice, si possible.

##

## Somme «interne» des éléments d'une liste. (x # erreur

lapply(x, sum)           # sommes internes (liste) sapply(x, sum)      # sommes internes (vecteur)

## Création de la suite 1, 1, 2, 1, 2, 3, 1, 2, 3, 4, , 1, ## 2, , 9, 10.

                             lapply(1:10, seq)                                        # le résultat est une liste

unlist(lapply(1:10, seq)) # le résultat est un vecteur

## Soit une fonction calculant la moyenne pondérée d'un ## vecteur. Cette fonction prend en argument une liste de deux ## éléments: 'donnees' et 'poids'.

fun

## On peut maintenant calculer la moyenne pondérée de ## plusieurs ensembles de données réunis dans une liste ## itérée.

(x

list(donnees = sample(1:100, 12), poids = 1:12),

list(donnees = c(1, 4, 0, 2, 2), poids = c(12, 3, 17, 6, 2))))

sapply(x, fun)                                                 # aucune boucle explicite!

###

### FONCTION 'mapply' ###

## Création de quatre échantillons aléatoires de taille 12. x

## Moyennes tronquées à 0, 10, 20 et 30%, respectivement, de ## ces quatre échantillons aléatoires. mapply(mean, x, 0:3/10)

###

### FONCTION 'replicate' ###

## La fonction 'replicate' va répéter un certain nombre de

## fois une expression quelconque. Le principal avantage de ## 'replicate' sur 'sapply' est qu'on n'a pas à se soucier des ## arguments à passer à une fonction.

##

## Par exemple, on veut simuler dix échantillons aléatoires

## indépendants de longueur 12. On peut utiliser 'sapply', ## mais la syntaxe n'est ni élégante, ni facile à lire ## (l'argument 'i' ne sert à rien). sapply(rep(1, 10), function(i) sample(1:100, 12))

## En utilisant 'replicate', on sait tout de suite de quoi il

## s'agit. À noter que les échantillons se trouvent dans les ## colonnes de la matrice résultante. replicate(10, sample(1:100, 12))

## Vérification que la moyenne arithmétique (bar{X}) est un

## estimateur sans biais de la moyenne de la loi normale. On

## doit calculer la moyenne de plusieurs échantillons

## aléatoires, puis la moyenne de toutes ces moyennes.

##

## On définit d'abord une fonction pour faire une simulation.

## Remarquer que dans la fonction ci-dessous, 'mean' est tour ## à tour le nom d'un argument (qui pourrait aussi bien être ## «toto») et la fonction pour calculer une moyenne.

fun

## Avec 'replicate', on fait un grand nombre de simulations. x # 10000 simulations

hist(x)       # distribution de bar{X} mean(x) # moyenne de bar{X}

###

### CLASSES ET FONCTIONS GÉNÉRIQUES ###

## Pour illustrer les classes et fonctions génériques, on ## reprend la fonction de point fixe 'fp3' des exemples du ## chapitre 5 en y faisant deux modifications:

##

## 1. ajout d'un compteur pour le nombre d'itérations;

## 2. la fonction retourne une liste de classe 'fp' ##       contenant diverses informations relatives à la ##         procédure de point fixe.

##

## Ainsi, la fonction 'fp4' retourne un objet qui peut ensuite ## être manipulé par des méthodes de fonctions génériques. ## C'est l'approche de programmation objet favorisée dans le ## langage R. fp4

{

x

# valeur de départ

i

# compteur des itérations

if (echo) expr

expr

repeat

{ eval(expr)

x

# nouvelle valeur

i

# incrémenter le compteur

if (abs(x - xt)/xt < TOL) break }

structure(list(fixed.point = x, # point fixe = i,             # nombre d'itérations fun = FUN, # fonction f(x) x0 = start,            # valeur de départ

TOL = TOL),      # précision relative class = "fp")

}

## On crée maintenant des méthodes pour la classe 'fp' pour

## les fonctions génériques les plus courantes, soit 'print', ## 'summary' et 'plot'.

##

## La méthode de 'print' sera utilisée pour afficher seulement

## la valeur du point fixe. C'est en quelque sorte

## l'utilisation la plus simple de la fonction 'fp4'.

##

## La méthode de 'summary' fournira un peu plus d'informations ## sur la procédure de point fixe.

##

## Enfin, la méthode de 'plot' fera un graphique de la ## fonction f(x) et son intersection avec la droite y = x.

{ if (class(x) != "fp") stop("object is not of class 'fp'")

cat("Function:\n ") print(x$fun) cat("\n") cat("Fixed point:\n ", x$fixed.point, fill = TRUE) cat("\n") cat("Number of iterations:\n ", x$, fill = TRUE) cat("\n") cat("Precision:\n ", x$TOL, fill = TRUE)

}

## Valeur du point fixe fp

## Il faut déterminer un intervalle pour lequel tracer la

## fonction. Celui-ci est déterminé de façon arbitraire ## comme un multiple de la distance entre la valeur de ## départ et la valeur du point fixe. r

## Fonction à tracer

FUN

## Fonction y = x. 'FUN2' est nécessaire parce que 'curve' ## n'admet pas de fonctions anonymes en argument.

FUN2

## Graphique de la fonction 'FUN' curve(FUN, from = fp - 3 * r, to = fp + 3 * r, xlab = "x", ylab = "f(x)", lwd = 2)

## Ajout de la droite 'FUN2' au graphique curve(FUN2, add = TRUE, lwd = 1)

## Ajout d'un point sur le point fixe points(fp, FUN(fp), )

}

## Exemples d'utilisation x

x

# affichage de ''

summary(x)

# plus d'information

plot(x)

# graphique de base

plot(x, pch = 21,

# graphique plus élaboré

bg = "orange",

# consulter la rubrique

cex = 2, lwd = 2)

# d'aide de 'par'

###

### OPÉRATEURS EN TANT QUE FONCTIONS ###

## Les opérateurs représentés par des caractères spéciaux sont

## des fonctions comme les autres. On peut donc les appeler

## comme toute autre fonction. (En fait, l'interprète R fait

## cette traduction à l'interne.) x # un vecteur x + 2      # appel usuel

"+"(x, 2)    # équivalent x[c(3, 5)] # extraction usuelle "["(x, c(3, 5)) # équivalent x[1] # assignation usuelle "[<-"(x, 2, 0)               # équivalent (à x[2]0)

## D'une part, cela explique pourquoi il faut placer les

## opérateurs entre guillemets (" ") lorsqu'on les utilise ## dans les fonctions comme 'outer', 'lapply', etc.

outer(x, x, +)             # erreur de syntaxe outer(x, x, "+")              # correct

## D'autre part, cela permet d'utiliser les opérateurs

## d'extraction "[" et "[[" dans de telles fonctions. Par

## exemple, voici comment extraire le deuxième élément de ## chaque élément d'une liste.

(x # liste quelconque

x[[1]][2]     # 2e élément du 1er élément x[[2]][2]          # 2e élément du 2e élément x[[3]][2]           # 2e élément du 3e élément x[[4]][2]           # 2e élément du 4e élément lapply(x, "[", 2)         # même chose en une ligne sapply(x, "[", 2)  # résultat sous forme de vecteur

###

### COMMENT JOUER DES TOURS AVEC R ###

## Redéfinir un opérateur dans l'espace de travail de ## quelqu'un

"+" # redéfinition de "+"

5 + 2         # ouch! ls() # traîtrise dévoilée rm("+")      # puis éliminée

5 + 2                                                         # c'est mieux

## Faire croire qu'une fonction fait autre chose que ce

## qu'elle fait en réalité. Si l'attribut "source" d'une ## fonction existe, c'est son contenu qui est affiché lorsque ## l'on examine une fonction.

f # vraie fonction attr(f, "source") <- "function(x, y) x * y" # ce qui est affiché

f

# une fonction pour faire le produit?

f(2, 3)

# non!

str(f)

# structure de l'objet

attr(f, "source")

# attribut "source" effacé

f

# c'est mieux

## Redéfinir la méthode de 'print' pour une classe d'objet ## Ici, l'affichage d'un objet de classe "lm" cause la ## fermeture de R!

x

# échantillon aléatoire

y

# modèle de régression linéaire

lm(y ~ x)

# répondre "c"!

6.8     Exercices

6.1 À l’exercice 4.2, on a calculé la moyenne pondérée d’un vecteur d’observations n wi

Xw = ?  Xi, i=1 w?

w wi. Si l’on a plutôt une matrice n×p d’observations Xi j, on peut

définir les moyennes pondérées

p wi j

Xiw = ?         Xi j,

j=1 wi?

p

wi? = ? wi j

j=1

n wi j

Xwj = ?         Xi j,

i=1 w?j

n

w?j = ? wi j

i=1

et

n          p wi j                                            n       p

Xww = ? ?  Xi j, w?? = ? ? wi j. i=1 j=1 w?? i=1 j=1

De même, on peut définir des moyennes pondérées calculées à partir d’un tableau de données Xi jk de dimensions n×p×r dont la notation suit la même

6.8. Exercices

logique que ci-dessus. Écrire des expressions R pour calculer, sans boucle, les moyennes pondérées suivantes.

a)  Xiw en supposant une matrice de données n × p.

b)  Xwj en supposant une matrice de données n × p.

c)  Xww en supposant une matrice de données n × p.

d)  Xi jw en supposant un tableau de données n × p ×r.

e)  Xiww en supposant un tableau de données n × p ×r.

f)   Xwjw en supposant un tableau de données n × p ×r.

g)  Xwww en supposant un tableau de données n × p ×r.

6.2 Générer les suites de nombres suivantes à l’aide d’expressions R. (Évidemment, il faut trouver un moyen de générer les suites sans simplement concaténer les différentes sous-suites.) a) 0,0,1,0,1,2, ,0,1,2,3, ,10.

b)    10,9,8, ,2,1,10,9,8, 3,2, ,10,9,10.

c)  10,9,8, ,2,1,9,8, ,2,1, ,2,1,1.

6.3 La fonction de densité de probabilité et la fonction de répartition de la loi de Pareto de paramètres ? et ? sont, respectivement,

???

f (x) = (x +?)?+1

et

??

F(x) = 1?(x +?) .

La fonction suivante simule un échantillon aléatoire de taille n issu d’une distribution de Pareto de paramètres ? et ? :

rpareto

a)  Écrire une expression R utilisant la fonction rpareto ci-dessus qui permet de simuler cinq échantillons aléatoires de tailles 100, 150, 200, 250 et 300 d’une loi de Pareto avec ? = 2 et ? = 5000. Les échantillons aléatoires devraient être stockés dans une liste.

b)    On vous donne l’exemple suivant d’utilisation de la fonction paste :

> paste("a", 1:5, sep = "")

[1] "a1" "a2" "a3" "a4" "a5"

Nommer les éléments de la liste créée en a) sample1, , sample5.

c)  Calculer la moyenne de chacun des échantillons aléatoires obtenus en a). Retourner le résultat dans un vecteur.

d)    Évaluer la fonction de répartition de la loi de Pareto(2,5000) en chacune des valeurs de chacun des échantillons aléatoires obtenus en a). Retourner les valeurs de la fonction de répartition en ordre croissant.

e)    Faire l’histogramme des données du cinquième échantillon aléatoire avec la fonction hist.

f)   Ajouter 1000 à toutes les valeurs de tous les échantillons simulés en a), ceci afin d’obtenir des observations d’une distribution de Pareto translatée.

6.4 Une base de données contenant toutes les informations sur les assurés est stockée dans une liste de la façon suivante :

> x[[1]]

$num.police [1] 1001

$franchise [1] 500

$

[1] 0 1 1 0

$montants

[1] 3186.864 3758.389

> x[[2]]

$num.police [1] 1002

$franchise [1] 250

$

[1] 4 0 0 4 1 1 0

$montants

                                       [1] 16728.7354               1414.7264           1825.7495              282.5609

6.8. Exercices

             [5]               1684.6686 14869.1731                7668.4196            2501.7257

                [9] 108979.3725              2775.3161

Ainsi, x[[i]] contient les informations relatives à l’assuré i. Sans utiliser de boucles, écrire des expressions ou des fonctions R qui permettront de calculer les quantités suivantes.

a)  La franchise moyenne dans le portefeuille.

b)    Le nombre annuel moyen de réclamations par assuré.

c)  Le nombre total de réclamations dans le portefeuille.

d)    Le montant moyen par accident dans le portefeuille.

e)    Le nombre d’assurés n’ayant eu aucune réclamation.

f)   Le nombre d’assurés ayant eu une seule réclamation dans leur première année.

g)  La variance du nombre total de sinistres.

h)    La variance du nombre de sinistres pour chaque assuré.

i)   La probabilité empirique qu’une réclamation soit inférieure à x (un scalaire) dans le portefeuille.

j)   La probabilité empirique qu’une réclamation soit inférieure à x (un vecteur) dans le portefeuille.

7    Fonctions d’optimisation

Objectifs du chapitre

? Connaître et savoir utiliser les différentes fonctions de calcul de racines de R.

? Connaître et savoir utiliser les différentes fonctions d’optimisation de R.

? Savoir reformuler un problème d’optimisation en base logarithmique pour éviter les difficultés numériques.

7.1      Contexte

Les méthodes de bissection, du point fixe, de Newton–Raphson et consorts permettent de résoudre des équations à une variable de la forme f (x) = 0 ou g(x) = x. Il existe également des versions de ces méthodes pour les systèmes à plusieurs variables de la forme

f1(x1,x2,x3) = 0 f2(x1,x2,x3) = 0 f3(x1,x2,x3) = 0.

De tels systèmes d’équations surviennent plus souvent qu’autrement lors de l’optimisation d’une fonction. Par exemple, en recherchant le maximum ou le minimum d’une fonction f (x, y), on souhaitera résoudre le système d’équations

En inférence statistique, les fonctions d’optimisation sont fréquemment employées pour calculer numériquement des estimateurs du maximum de vraisemblance.

107

La grande majorité des suites logicielles de calcul comportent des outils d’optimisation de fonctions. Ce chapitre passe en revue les fonctions disponibles dans R. Comme pour les chapitres précédents, des exemples d’utilisation de chacune des fonctions se trouvent dans le code informatique de la section 7.4.

7.2        Fonctions d’optimisation et de calcul de racines

Le système R compte un certain nombre de fonctions pour trouver numériquement le minimum ou le maximum d’une fonction ainsi que pour calculer la racine d’une fonction dans un intervalle ou toutes les racines d’un polynôme. Ces fonctions diffèrent par certaines de leurs fonctionnalités et leur interface, mais aussi par les algorithmes utilisés. Consulter les rubriques d’aide pour les détails.

7.2.1      Fonction uniroot

La fonction uniroot recherche la racine d’une fonction dans un intervalle.

C’est donc la fonction de base pour trouver la solution (unique) de l’équation f (x) = 0 dans un intervalle déterminé.

7.2.2       Fonction optimize

La fonction optimize recherche le minimum local (par défaut) ou le maximum local d’une fonction dans un intervalle donné.

7.2.3     Fonctionnlm

La fonction nlm minimise une fonction non linéaire sur un nombre arbitraire de paramètres.

7.2.4      Fonction nlminb

La fonction nlminb est similaire à nlm, sauf qu’elle permet de spécifier des bornes inférieure et/ou supérieure pour les paramètres. Attention, toutefois : les arguments de la fonction ne sont ni les mêmes, ni dans le même ordre que ceux de nlm.

7.2.5     Fonction optim

La fonction optim est l’outil d’optimisation tout usage de R. À ce titre, la fonction est souvent utilisée par d’autres fonctions. Elle permet de choisir parmi plu-

7.3. Pour en savoir plus

sieurs algorithmes d’optimisation différents et, selon l’algorithme choisi, de fixer des seuils minimum et/ou maximum aux paramètres à optimiser.

7.2.6 polyroot

En terminant, un mot sur polyroot(), qui n’est pas à proprement parler une fonction d’optimisation, mais qui pourrait être utilisée dans ce contexte. La fonction polyroot calcule toutes les racines (complexes) du polynôme ai xi. Le premier argument est le vecteur des coefficients a0,a1, ,an, dans cet ordre.

7.3      Pour en savoir plus

Les packages disponible sur CRAN fournissent plusieurs autres outils d’optimisation pour R. Pour un bon résumé des options disponibles, consulter la CRAN Task View consacrée à l’optimisation :

7.4      Exemples

###

### FONCTION 'uniroot' ###

## La fonction 'uniroot' recherche la racine d'une fonction

## 'f' dans un intervalle spcifi soit comme une paire de ## valeurs dans un argument 'interval', soit via des arguments ## 'lower' et 'upper'.

##

## On calcule la solution de l'quation x - 2^(-x) = 0 dans ## l'intervalle [0, 1].

f # fonction uniroot(f, c(0, 1))       # appel simple

uniroot(f, lower = 0, upper = 1) # quivalent

## On peut aussi utiliser 'uniroot' avec une fonction anonyme. uniroot(function(x) x - 2^(-x), lower = 0, upper = 1)

###

### FONCTION 'optimize'

###

## On cherche le maximum local de la densit d'une loi bta

## dans l'intervalle (0, 1), son domaine de dfinition. (Ce

## problme est facile rsoudre explicitement.)

##

## Les arguments de 'optimize' sont essentiellement les mmes ## que ceux de 'uniroot'. Ici, on utilise aussi l'argument ## ' ' pour passer les paramtres de la loi bta 'dbeta'.

##

## Par dfaut, la fonction recherche un minimum. Il faut donc ## lui indiquer de rechercher plutt un maximum. optimize(dbeta, interval = c(0, 1), maximum = TRUE, shape1 = 3, shape2 = 2)

## On pourrait aussi avoir recours une fonction auxiliaire.

## Moins lgant et moins flexible. f

###

### FONCTION 'nlm' ###

## Pour la suite, nous allons donner des exemples

## d'utilisation des fonctions d'optimisation dans un contexte ## d'estimation des paramtres d'une loi gamma par la mthode ## du maximum de vraisemblance.

##

## On commence par se donner un chantillon alatoire de la ## loi. videmment, pour ce faire nous devons connatre les ## paramtres de la loi. C'est un exemple fictif.

(1) # toujours le mme chantillon x

## Les estimateurs du maximum de vraisemblance des paramtres

## 'shape' et 'rate' de la loi gamma sont les valeurs qui

## maximisent la fonction de vraisemblance

##

##                    prod(dgamma(x, shape, rate))

##

## ou, de manire quivalente, qui minimisent la fonction de

## log-vraisemblance ngative

##

##                      -sum(log(dgamma(x, shape, rate))).

##

## On remarquera au passage que les fonctions de calcul de

7.4. Exemples

## densits de lois de probabilit dans R ont un argument

## 'log' qui, lorsque TRUE, retourne la valeur du logarithme

## (naturel) de la densit de manire plus prcise qu'en

## prenant le logarithme aprs coup. Ainsi, pour faire le

## calcul ci-dessus, on optera plutt, pour l'expression

##

##                        -sum(dgamma(x, shape, rate, log = TRUE))

##

## La fonction 'nlm' suppose que la fonction optimiser

## passe en premier argument a elle-mme comme premier

## argument le vecteur 'p' des paramtres optimiser. Le ## second argument de 'nlm' est un vecteur de valeurs de ## dpart, une pour chaque paramtre.

##

## Ainsi, pour trouver les estimateurs du maximum de

## vraisemblance avec la fonction 'nlm' pour l'chantillon

## ci-dessus, on doit d'abord dfinir une fonction auxiliaire ## conforme aux attentes de 'nlm' pour calculer la fonction de ## log-vraisemblance ( un signe prs). f

## L'appel de 'nlm' est ensuite tout simple. Remarquer comment

## on passe notre chantillon alatoire (contenu dans l'objet

## 'x') comme second argument 'f' via l'argument ' ' de

## 'nlm'. Le fait que l'argument de 'f' et l'objet contenant ## les valeurs portent le mme nom est sans importance. R sait ## faire la diffrence entre l'un et l'autre. nlm(f, c(1, 1), x = x)

## L'optimisation ci-dessus a gnr des avertissements? C'est

## parce que la fonction d'optimisation s'est gare dans les ## valeurs ngatives, alors que les paramtres d'une gamma ## sont strictement positifs. Cela arrive souvent.

##

## On peut pallier ce problme avec le truc suivant: plutt

## que d'estimer les paramtres eux-mmes, on estime leurs ## logarithmes. Ceux-ci demeurent alors valides sur tout l'axe ## des rels.

f2

{

                               p # retour aux paramtres originaux

-sum(dgamma(x, p[1], p[2], log = TRUE))

}

nlm(f2, c(0, 0), x = x)

## Les valeurs obtenues ci-dessus sont toutefois les

## estimateurs des logarithmes des paramtres de la loi gamma. ## On retrouve les estiamteurs des paramtres en prenant ## l'exponentielle des rponses. exp(nlm(f2, c(0, 0), x = x)$estimate)

###

### FONCTION 'nlminb' ###

## L'utilisation de la fonction 'nlminb' peut s'avrer

## intressante dans notre contexte puisque l'on sait que les ## paramtres d'une loi gamma sont strictement positifs. nlminb(c(1, 1), f, x = x, lower = 0, upper = Inf)

###

### FONCTION 'optim' ###

## La fonction 'optim' est trs puissante, mais requiert aussi ## une bonne dose de prudence. Ses principaux arguments sont:

##

## par: un vecteur contenant les valeurs initiales des

##                  paramtres;

## fn: la fonction minimiser. Le premier argument de fn ##            doit tre le vecteur des paramtres.

##

## Comme pour les autres fonctions tudies ci-dessus, on peut ## passer des arguments 'fn' (les donnes, par exemple) par ## le biais de l'argument ' ' de 'optim'. optim(c(1, 1), f, x = x)

## L'estimation par le maximum de

##                        vraisemblance\index{vraisemblance} est de beaucoup

##                           simplifie par l'utilisation de la fonction

##                    \fonction{fitdistr} du package

##                       \texttt{MASS}\index{package![email protected]\texttt{MASS}}.

###

### FONCTION 'polyroot' ###

## Racines du polynme x^3 + 4 x^2 - 10. Les rponses sont

## donnes sous forme de nombre complexe. Utiliser les

## fonctions 'Re' et 'Im' pour extraire les parties relles et

7.5. Exercices

## imaginaires des nombres, respectivement. polyroot(c(-10, 0, 4, 1))            # racines

Re(polyroot(c(-10, 0, 4, 1))) # parties relles

Im(polyroot(c(-10, 0, 4, 1))) # parties imaginaires

7.5      Exercices

7.1 Trouver la solution des équations suivantes à l’aide des fonctions R appropriées.

a)  x3 ?2x2 ?5 = 0 pour 1 ? x ? 4

b)    x3 +3x2 ?1 = 0 pour ?4 ? x ? 0

c)  x ?2?x = 0 pour 0 ? x ? 1

d)    ex +2?x +2cosx ?6 = 0 pour 1 ? x ? 2

e)    ex ? x2 +3x ?2 = 0 pour 0 ? x ? 1

7.2 En théorie de la crédibilité, l’estimateur d’un paramètre a est donné sous forme de point fixe

                                                                                         1      n                                      2

¯

aˆ =n ?1 i?=1zi(Xi ? Xz) ,

awˆ i

zi = awˆ  i + s2

X

¯z = i?=n1 zz?i Xi

et X1, ,Xn, w1, ,wn et s2 sont des données. Calculer la valeur de aˆ si s2 = 140000000 et que les valeurs de Xi et wi sont telles qu’elles apparaissent dans le tableau ci-dessous.

i

1

2

3

4

5

Xi

2061

1511

1806

1353

1600

wi

100155

19895

13735

4152

36110

7.3 Les fonctions de densité de probabilité et de répartition de la distribution de Pareto sont données à l’exercice 6.3. Calculer les estimateurs du maximum de vraisemblance des paramètres de la Pareto à partir d’un échantillon aléatoire obtenu par simulation avec la commande

> x

8    Générateurs de nombres aléatoires

Objectifs du chapitre

? Savoir générer des nombres aléatoires uniformes avec la fonction runif.

? Savoir générer des nombres aléatoires non uniformes provenant de lois de probabilité discrètes et continues.

? Savoir générer des nombres aléatoires provenant d’une distribution discrète quelconque.

? Savoir tirer profit de la nature vectorielle des fonctions de simulation de R.

Avant d’utiliser pour quelque tâche de simulation moindrement importante un générateur de nombres aléatoires inclus dans un logiciel, il importe de s’assurer de la qualité de cet outil. On trouvera en général relativement facilement de l’information dans Internet.



On présente ici, sans entrer dans les détails, les générateurs de nombres uniformes utilisés dans R ainsi que la liste des différentes fonctions de simulation de variables aléatoires.

8.1       Générateurs de nombres aléatoires

On obtient des nombres uniformes sur un intervalle quelconque avec la fonction runif dans R. La fonction permet de spécifier la valeur de l’amorce du générateur aléatoire, ce qui est utile si on veut répéter une simulation absolument à l’identique.

R offre la possibilité de choisir entre plusieurs générateurs de nombres aléatoires différents, ou encore de spécifier son propre générateur. Par défaut, R utilise le générateur Marsenne–Twister, considéré comme le plus avancé en ce moment.

115

116                                                                                                                        Générateurs de nombres aléatoires

La période de ce générateur est 219937 ? 1 (rien de moins!) et la distribution des nombres est uniforme dans 623 dimensions consécutives sur toute la période.

Pour de plus amples détails et les dernières informations sur les générateurs disponibles et la procédure de réglage de l’amorce, consulter les rubriques d’aide des fonctions et .

8.2     Fonctions de simulation de variables aléatoires non uniformes

Un large éventail de fonctions donne directement accès aux caractéristiques de plusieurs lois de probabilité dans R. Pour chaque racine loi, il existe quatre fonctions différentes :

1.    dloi calcule la fonction de densité de probabilité (loi continue) ou la fonction de masse de probabilité (loi discrète);

2.    ploi calcule la fonction de répartition;

3.    qloi calcule la fonction de quantile;

4.    rloi simule des observations de cette loi.

Les différentes lois de probabilité disponibles dans le système R de base, leur racine et le nom de leurs paramètres sont rassemblés au tableau 8.1. Des packages fournissent des fonctions pour d’autres lois dont, entre autres, actuar (Dutang et collab., 2008) et SuppDists (Wheeler, 2009).

Toutes les fonctions du tableau 8.1 sont vectorielles, c’est-à-dire qu’elles acceptent en argument un vecteur de points où la fonction (de densité, de répartition ou de quantile) doit être évaluée et même un vecteur de paramètres. Par exemple,

> dpois(c(3, 0, 8), lambda = c(1, 4, 10))

[1] 0.06131324 0.01831564 0.11259903

retourne la probabilité que des lois de Poisson de paramètre 1, 4 et 10 prennent les valeurs 3, 0 et 8, dans l’ordre.

Le premier argument des fonctions de simulation est la quantité de nombres aléatoires désirée. Ainsi,

> rpois(3, lambda = c(1, 4, 10))

[1] 2 8 7

8.2. Fonctions de simulation de variables aléatoires non uniformes                                                   117

Loi de probabilité

Racine dans R

Noms des paramètres

Bêta

beta

shape1, shape2

Binomiale

binom

size, prob

Binomiale négative

nbinom

size, prob ou mu

Cauchy

cauchy

location, scale

Exponentielle

exp

rate

F (Fisher)

f

df1, df2

Gamma

gamma

shape, rate ou scale

Géométrique

geom

prob

Hypergéométrique

hyper

m, n, k

Khi carré

chisq

df

Logistique

logis

location, scale

Log-normale

lnorm

meanlog, sdlog

Normale

norm

mean, sd

Poisson

pois

lambda

t (Student)

t

df

Uniforme

unif

min, max

Weibull

weibull

shape, scale

Wilcoxon

wilcox

m, n

TAB. 8.1: Lois de probabilité pour lesquelles il existe des fonctions dans le système R de base

retourne trois nombres aléatoires issus de distributions de Poisson de paramètre 1, 4 et 10, respectivement. Évidemment, passer un vecteur comme premier argument n’a pas tellement de sens, mais, si c’est fait, R retournera une quantité de nombres aléatoires égale à la longueur du vecteur (sans égard aux valeurs contenues dans le vecteur).

La fonction sample permet de simuler des nombres d’une distribution discrète quelconque. Sa syntaxe est sample(x, size, replace = FALSE, prob = NULL),

où x est un vecteur des valeurs possibles de l’échantillon à simuler (le support de la distribution), size est la quantité de nombres à simuler et prob est un vecteur de probabilités associées à chaque valeur de x (1/length(x) par défaut). Enfin, si replace est TRUE, l’échantillonnage se fait avec remise.

118                                                                                                                        Générateurs de nombres aléatoires

8.3      Exemples

###

### GÉNÉRATEURS DE NOMBRES ALÉATOIRES ###

## La fonction de base pour simuler des nombres uniformes est ## 'runif'.

                                           runif(10)                                                    # sur (0, 1) par défaut

runif(10, 2, 5)  # sur un autre intervalle 2 + 3 * runif(10)     # équivalent, moins lisible

## R est livré avec plusieurs générateurs de nombres

## aléatoires. On peut en changer avec la fonction 'RNGkind'. RNGkind("Wichmann-Hill") # générateur de Excel

                                           runif(10)                                                      # rien de particulier à voir

                                             RNGkind("default")                                     # retour au générateur par défaut

## La fonction '' est très utile pour spécifier

## l'amorce d'un générateur. Si deux simulations sont ## effectuées avec la même amorce, on obtiendra exactement les ## mêmes nombres aléatoires et, donc, les mêmes résultats.

## Très utile pour répéter une simulation à l'identique.

(1)      # valeur sans importance runif(5) # 5 nombres aléatoires runif(5)   # 5 autres nombres

(1)      # réinitialisation de l'amorce runif(5)           # les mêmes 5 nombres que ci-dessus

###

### FONCTIONS POUR LA SIMULATION DE VARIABLES ALÉATOIRES NON

### UNIFORMES

###

## Plutôt que de devoir utiliser la méthode de l'inverse ou un

## autre algorithme de simulation pour obtenir des nombres

## aléatoires d'une loi de probabilité non uniforme, R fournit

## des fonctions de simulation pour bon nombre de lois. Toutes ## ces fonctions sont vectorielles. Ci-dessous, P == Poisson ## et G == Gamma pour économiser sur la notation.

n

# taille des échantillons

rbinom(n, 5, 0.3)

# Binomiale(5, 0,3)

rbinom(n, 1, 0.3)

# Bernoulli(0,3)

rnorm(n)

# Normale(0, 1)

8.4. Exercices

rnorm(n, 2, 5)           # Normale(2, 25) rpois(n, c(2, 5))         # P(2), P(5), P(2), , P(5) rgamma(n, 3, 2:11)         # G(3, 2), G(3, 3), , G(3, 11) rgamma(n, 11:2, 2:11)        # G(11, 2), G(10, 3), , G(2, 11) ## La fonction 'sample' sert pour simuler d'une distribution

119

## discrète quelconque. Le premier argument est le support de

## la distribution et le second, la taille de l'échantillon ## désirée. Par défaut, l'échantillonnage se fait avec remise ## et avec des probabilités égales sur tout le support. sample(1:49, 7)  # numéros pour le 7/49 sample(1:10, 10)     # mélange des nombres de 1 à 10

## On peut échantilloner avec remise. sample(1:10, 10, replace = TRUE)

## On peut aussi spécifier une distribution de probabilités ## non uniforme.

x # tableau de fréquences

8.4      Exercices

8.1 La loi log-normale est obtenue par transformation de la loi normale : si la distribution de la variable aléatoire X est une normale de paramètres µ et ?2, alors la distribution de eX est une log-normale. Simuler 1000 observations d’une loi log-normale de paramètres µ = ln5000?  et ?2 = 1, puis tracer l’histogramme de l’échantillon aléatoire obtenu.

8.2 Simuler 10000 observations d’un mélange continu Poisson/gamma où les paramètres de la loi gamma sont ? = 5 et ? = 4, puis tracer la distribution de fréquence de l’échantillon aléatoire obtenu à l’aide des fonctions plot et table. Superposer à ce graphique la fonction de probabilité d’une binomiale négative de paramètres r = 5 et ? = 0,8.

8.3 Simuler 10000 observations d’un mélange discret de deux distributions lognormales, l’une de paramètres (µ = 3,5,?2 = 0,6) et l’autre de paramètres (µ = 4,6,?2 = 0,3). Utiliser un paramètre de mélange p = 0,55. Tracer ensuite l’histogramme de l’échantillon aléatoire obtenu.

A      GNU Emacs et ESS : la base

Emacs est l’Éditeur de texte des éditeurs de texte. Conçu à l’origine comme un éditeur pour les programmeurs (avec des modes spéciaux pour une multitude de langages différents), Emacs est devenu au fil du temps un environnement logiciel en soi dans lequel on peut réaliser une foule de tâches différentes : rédiger des documents LATEX, interagir avec R, SAS ou un logiciel de base de données, consulter son courrier électronique, gérer son calendrier ou même jouer à Tetris!

Cette annexe passe en revue les quelques commandes essentielles à connaître pour commencer à travailler avec GNU Emacs et le mode ESS. L’ouvrage de Cameron et collab. (2004) constitue une excellente référence pour l’apprentissage plus poussé de l’éditeur.

A.1      Mise en contexte

Emacs est le logiciel étendard du projet GNU («GNU is not Unix»), dont le principal commanditaire est la Free Software Foundation (FSF) à l’origine de tout le mouvement du logiciel libre.

? Richard M. Stallman, président de la FSF et grand apôtre du libre, a écrit la première version de Emacs et il continue à ce jour à contribuer au projet. ? Les origines de Emacs remontent au début des années 1980, une époque où les interfaces graphiques n’existaient pas, le parc informatique était beaucoup plus hétérogène qu’aujourd’hui (les claviers n’étaient pas les mêmes d’une marque d’ordinateur à une autre) et les modes de communication entre les ordinateurs demeuraient rudimentaires.

? L’âge vénérable de Emacs transparaît à plusieurs endroits, notamment dans la terminologie inhabituelle, les raccourcis clavier qui ne correspondent pas aux standards d’aujourd’hui ou la manipulation des fenêtres qui ne se fait pas avec une souris.

121

Emacs s’adapte à différentes tâches par l’entremise de modes qui modifient son comportement ou lui ajoutent des fonctionnalités. L’un de ces modes est ESS (Emacs Speaks Statistics).

? ESS permet d’interagir avec des logiciels statistiques (en particulier R, S+ et SAS) directement depuis Emacs.

? Quelques-uns des développeurs de ESS sont aussi des développeurs de R, dont la grande compatibilité entre les deux logiciels.

? Lorsque ESS est installé, le mode est activé automatiquement en ouvrant dans Emacs un fichier dont le nom se termine par l’extension .R.

A.2      Installation

GNU Emacs et le mode ESS sont normalement livrés d’office avec toutes les distributions Linux. Pour les environnements Windows et Mac OS X, le plus simple consiste à télécharger et installer les distributions préparées par le présent auteur.

Consulter le site

A.3       Description sommaire

Au lancement, Emacs affiche un écran d’information contenant des liens vers différentes ressources. Cet écran disparaît dès que l’on appuie sur une touche. La fenêtre Emacs se divise en quatre zone principales (voir la figure A.1) :

1.    tout au haut de la fenêtre (ou de l’écran sous OS X), on trouve l’habituelle barre de menu dont le contenu change selon le mode dans lequel se trouve Emacs;

2.    l’essentiel de la fenêtre set à afficher un buffer, soit le contenu d’un fichier ouvert ou l’invite de commande d’un programme externe;

3.    la ligne de mode est le séparateur horizontal contenant diverses informations sur le fichier ouvert et l’état de Emacs;

4.    le minibuffer est la région au bas de la fenêtre où l’on entre des commandes et reçoit de l’information de Emacs.

Il est possible de séparer la fenêtre Emacs en sous-fenêtres pour afficher plusieurs buffers à la fois. Il y a alors une ligne de mode pour chaque buffer.

A.4. Emacs-ismes et Unix-ismes

?Barre de menu ?Buffer

?Ligne de mode

?Minibuffer

FIG. A.1: Fenêtre GNU Emacs et ses différentes parties au lancement de l’application sous Mac OS X. Sous Windows et Linux, la barre de menu se trouve à l’intérieur de la fenêtre.

A.4      Emacs-ismes et Unix-ismes

Emacs possède sa propre terminologie qu’il vaut mieux connaître lorsque l’on consulte la documentation. De plus, l’éditeur fait siennes certaines conventions du monde Unix et qui sont moins usitées sur les plateformes Windows et OS X. ? Dans les définitions de raccourcis claviers :

–    C est la touche Contrôle ();

–    M est la touche Meta, qui correspond à la touche Alt de gauche sur un PC ou la touche Option () sur un Mac (toutefois, voir l’encadré à la page suivante);

Par défaut sous Mac OS X, la touche Meta est assignée à Option (). Sur les claviers français, cela empêche d’accéder à certains caractères spéciaux tels que [, ], { ou }.

Une solution consiste à plutôt assigner la touche Meta à Commande ( ). Cela bloque alors l’accès à certains raccourcis Mac, mais la situation est moins critique ainsi.

Pour assigner la touche Meta à Commande ( ), il suffit d’insérer les lignes suivantes dans son fichier de configuration .emacs (voir la section A.7) :

;;; ====================================

;;; Assigner la touche Meta à Commande

;;; ====================================

(setq-default ns-command-modifier 'meta) ; Commande est Meta

(setq-default ns-option-modifier 'none) ; Option est Option

–    ESC est la touche Échap () et est équivalente à Meta;

–    SPC est la barre d’espacement; – RET est la touche Entrée ().

? Toutes les fonctionnalités de Emacs correspondent à une commande pouvant être tapée dans le minibuffer. M-x démarre l’invite de commande.

? Le caractère ~ représente le dossier vers lequel pointe la variable d’environnement $HOME (Linux, OS X) ou %HOME% (Windows). C’est le dossier par défaut de Emacs.

? La barre oblique (/) est utilisée pour séparer les dossiers dans les chemins d’accès aux fichiers, même sous Windows.

? En général, il est possible d’appuyer sur TAB dans le minibuffer pour compléter les noms de fichiers ou de commandes.

A.5      Commandes de base

Emacs comporte une pléthore de commandes, il serait donc futile de tenter d’en faire une liste exhaustive ici. Nous nous contenterons de mentionner les commandes les plus importantes regroupées par tâche.

Pour débuter, il est utile de suivre le Tour guidé de Emacset de lire le tutoriel de Emacs, que l’on démarre avec C-h t.

A.5. Commandes de base

A.5.1     Les essentielles

M-x démarrer l’invite de commande

C-g bouton de panique : annuler, quitter! Presser plus d’une fois au besoin.

A.5.2      Manipulation de fichiers

Entre parenthèses, le nom de la commande Emacs correspondante. On peut entrer cette commande dans le minibuffer au lieu d’utiliser le raccourci clavier.

B

On remarquera qu’il n’existe pas de commande «nouveau fichier» dans Emacs. Pour créer un nouveau fichier, il suffit d’ouvrir un fichier n’existant pas.

C-x C-f ouvrir un fichier (find-file)

C-x C-s sauvegarder (save-buffer)

C-x C-w sauvegarder sous (write-file)

                     C-x k                  fermer un fichier (kill-buffer)

                    C-_                      annuler (pratiquement illimité); aussi C-x u (undo)

                    C-s                       recherche incrémentale avant (isearch-forward)

C-r           Recherche incrémentale arrière (isearch-backward) M-%             rechercher et remplacer (query-replace)

A.5.3      Sélection de texte, copier, coller, couper

                    C-SPC               débute la sélection (set-mark-command)

                   C-w                      couper la sélection (kill-region)

                  M-w                      copier la sélection (kill-ring-save)

                    C-y                 coller (yank)

                   M-y                             remplacer le dernier texte collé par la sélection précédente (yank-pop)

? Il est possible d’utiliser les raccourcis clavier usuels de Windows (C-c, C-x, C-v) et OS X ( C, X, V) en activant le mode CUA dans le menu Options. ? On peut copier-coller directement avec la souris dans Windows en sélectionnant du texte puis en appuyant sur le bouton central (ou la molette) à l’endroit souhaité pour y copier le texte.

A.5.4  Manipulation de fenêtres

C-x b

changer de buffer (switch-buffer)

C-x 2

séparer l’écran en deux fenêtres (split-window-vertically)

C-x 1

conserver uniquement la fenêtre courante (delete-other-windows)

C-x 0

fermer la fenêtre courante (delete-window)

C-x o

aller vers une autre fenêtre lorsqu’il y en a plus d’une (other-window)

A.5.5  Manipulation de fichiers de script dans le mode ESS

C-c C-n

évaluer la ligne sous le curseur dans le processus R, puis déplacer le curseur à la prochaine expression (ess-eval-line-and-step)

C-c C-r

évaluer la région sélectionnée dans le processus R (ess-eval-region)

C-c C-f

évaluer le code de la fonction courante dans le processus R

(ess-eval-function)

C-c C-l

évaluer le code du fichier courant en entier dans le processus R

(ess-load-file)

C-c C-v

aide sur une commande R (ess-display-help-on-object)

A.5.6  Interaction avec l’invite de commande R

M-p, M-n

navigation dans l’historique des commandes

(previous-matching-history-from-input, next-matching-history-from-input)

C-c C-e

replacer la dernière ligne au bas de la fenêtre

(comint-show-maximum-output)

M-h

sélectionner le résultat de la dernière commande (mark-paragraph)

C-c C-o

effacer le résultat de la dernière commande (comint-delete-output)

C-c C-v

aide sur une commande R (ess-display-help-on-object)

C-c C-q

terminer le processus R (ess-quit)

A.5.7  Consultation des rubriques d’aide de R

h            ouvrir une nouvelle rubrique d’aide, par défaut pour le mot se trouvant sous le curseur (ess-display-help-on-object)

                                         n, p                     aller à la section suivante (n) ou précédente (p) de la rubrique

(ess-skip-to-next-section, ess-skip-to-previous-section)

A.6. Anatomie d’une session de travail (bis)

                   l                   évaluer la ligne sous le curseur; pratique pour exécuter les exemples

(ess-eval-line-and-step) r         évaluer la région sélectionnée (ess-eval-region) q          retourner au processus ESS en laissant la rubrique d’aide visible

(ess-switch-to-end-of-ESS) x   fermer la rubrique d’aide et retourner au processus ESS

(ess-kill-buffer-and-go)

A.6       Anatomie d’une session de travail (bis)

On reprend ici les étapes d’une session de travail type présentées à la section 1.6, mais en expliquant comment compléter chacune dans Emacs avec le mode

ESS.

1.    Lancer Emacs et ouvrir un fichier de script avec

C-x C-f

ou avec le menu

File|Open file

En spécifiant un nom de fichier qui n’existe pas déjà, on se trouve à créer un nouveau fichier de script. S’assurer de terminer le nom des nouveaux fichiers par .R pour que Emacs reconnaisse automatiquement qu’il s’agit de fichiers de script R.

2.    Démarrer un processus R à l’intérieur même de Emacs avec

M-x R

Emacs demandera alors de spécifier de répertoire de travail (starting data directory). Accepter la valeur par défaut, par exemple

~/ ou indiquer un autre dossier. Un éventuel message de Emacs à l’effet que le fichier .Rhistory n’a pas été trouvé est sans conséquence et peut être ignoré.

3.    Composer le code. Lors de cette étape, on se déplacera souvent du fichier de script à la ligne de commande afin d’essayer diverses expressions. On exécutera également des parties seulement du code se trouvant dans le fichier de script. Les commandes les plus utilisées sont alors

C-x o pour se déplacer d’une fenêtre à l’autre;

C-c C-n pour exécuter une ligne du fichier de script;

C-c C-e pour replacer la ligne de commande au bas de la fenêtre.

4.    Sauvegarder le fichier de script :

C-x C-s

Les quatrième et cinquième caractères de la ligne de mode changent de ** à

--.

5.    Sauvegarder si désiré l’espace de travail de R avec save.image(). On le répète, cela n’est habituellement pas nécessaire à moins que l’espace de travail ne contienne des objets importants ou longs à recréer.

6.    Quitter le processus R avec

C-c C-q

Cette commande ESS se chargera de fermer tous les fichiers associés au processus R. On peut ensuite quitter Emacs en fermant l’application de la manière usuelle.

A.7   Configuration de l’éditeur

Une des grandes forces de Emacs est qu’à peu près chacune de ses facettes est configurable : couleurs, polices de caractère, raccourcis clavier, etc. ? Un utilisateur place ses commandes de configuration dans un fichier nommé .emacs (le point est important!) que Emacs lit au démarrage.

? Le fichier .emacs doit se trouver dans le dossier ~/, c’est-à-dire dans le dossier de départ de l’utilisateur sous Linux et OS X, et dans le dossier référencé par la variable d’environnement %HOME% sous Windows.

A.8   Aide et documentation

Emacs possède son propre système d’aide très exhaustif, mais dont la navigation est peu intuitive selon les standards d’aujourd’hui. Consulter le menu Help.

Autrement, on trouvera les manuels de Emacs et de ESS en divers formats dans les sites respectifs des deux projets :

Enfin, si le désespoir vous prend au cours d’une séance de codage intensive, vous pouvez toujours consulter le psychothérapeute Emacs. On le trouve, bien entendu, dans le menu Help!

B      Planification d’une simulation en R

Il existe de multiples façons de réaliser la mise en œuvre informatique d’une simulation, mais certaines sont plus efficaces que d’autres. Cette annexe passe en revue diverses façons de faire des simulations avec R à l’aide d’un exemple simple de nature statistique.

B.1      Contexte

Soit X1, , Xn un échantillon aléatoire tiré d’une population distribuée selon une loi uniforme sur l’intervalle (?? ,?+ ). On considère trois estimateurs sans biais du paramètre inconnu ? : 1. la moyenne arithmétique

?ˆ1 = n1 i?=n1Xi ;

2.    la médiane empirique

?ˆ2 = ???????X21((Xn+2(1n2)), + X(n2+1)), nn pair,impair

X(k) est la ke statistique d’ordre de l’échantillon aléatoire;

3.    la mi-étendue ?ˆ3 = X(1) + X(n).

2

À l’aide de la simulation on veut, d’une part, vérifier si les trois estimateurs sont bel et bien sans biais et, d’autre part, déterminer lequel a la plus faible variance.

Pour ce faire, on doit d’abord simuler un grand nombre N d’échantillons aléatoires de taille n d’une distribution U(? ? ,? + ) pour une valeur de ? choisie.

129

Pour chaque échantillon, on calculera ensuite les trois estimateurs ci-dessus, puis la moyenne et la variance, par type d’estimateur, de tous les estimateurs obtenus. Si la moyenne des N estimateurs ?ˆi, i = 1,2,3 est près de ?, alors on pourra conclure que ?ˆi est sans biais. De même, on déterminera lequel des trois estimateurs a la plus faible variance selon le classement des variances empiriques.

B.2       Première approche : avec une boucle

La façon la plus intuitive de mettre en œuvre cette étude de simulation en R consiste à utiliser une boucle for. Avec cette approche, il est nécessaire d’initialiser une matrice de 3 lignes et N colonnes (ou l’inverse) dans laquelle seront stockées les valeurs des trois estimateurs pour chaque simulation. Une fois la matrice remplie dans la boucle, il ne reste plus qu’à calculer la moyenne et la variance par ligne pour obtenir les résultats souhaités.

La figure B.1 présente un exemple de code adéquat pour réaliser la simulation à l’aide d’une boucle.

Si l’on souhaite pouvoir exécuter le code de la figure B.1 facilement à l’aide d’une seule expression, il suffit de placer l’ensemble du code dans une fonction. La fonction simul1 de la figure B.2 reprend le code de la figure B.1, sans les commentaires. On a alors :

> simul1(10000, 100, 0)

$biais

                                                              Moyenne                   Mediane             Mi-etendue

-5.475023e-05 -1.230907e-04 1.158071e-05

$variances

                                                           Moyenne                Mediane           Mi-etendue

0.0008281255 0.0024482918 0.0000484432

B.3         Seconde approche : avecsapply

On le sait, les boucles sont inefficaces en R. Il est en général plus efficace de déléguer les boucles aux fonctions lapply et sapply (section 6.3). On rappelle que la syntaxe de ces fonctions est

lapply(x, FUN, ) sapply(x, FUN, )

B.3. Seconde approche : avecsapply

## Bonne habitude à prendre: stocker les constantes dans ## des variables faciles à modifier au lieu de les écrire ## explicitement dans le code.

size

## Les lignes ci-dessous éviteront de faire deux additions ## 'nsimul' fois.

a

## Initialisation de la matrice dans laquelle seront

## stockées les valeurs des estimateurs. On donne également

## des noms aux lignes de la matrice afin de facilement ## identifier les estimateurs.

x

## Simulation comme telle.

for (i in 1:nsimul)

{ u

}

## On peut maintenant calculer la moyenne et la variance ## par ligne.

rowMeans(x) - theta               # vérification du biais apply(x, 1, var)    # comparaison des variances

FIG. B.1: Code pour la simulation utilisant une boucle for

simul1

{

a

x

for (i in 1:nsimul)

{ u

}

list(biais = rowMeans(x) - theta, variances = apply(x, 1, var))

}

FIG. B.2: Définition de la fonction simul1

Ces fonctions appliquent la fonction FUN à tous les éléments de la liste ou du vecteur x et retournent les résultats sous forme de liste (lapply) ou, lorsque c’est possible, de vecteur ou de matrice (sapply). Il est important de noter que les valeurs successives de x seront passées comme premier argument à la fonction FUN. Le cas échéant, les autres arguments de FUN sont spécifiés dans le champ ‘ ’.

Pour pouvoir utiliser ces fonctions dans le cadre d’une simulation comme celle dont il est question ici, il s’agit de définir une fonction qui fera tous les calculs pour une simulation, puis de la passer à sapply pour obtenir les résultats de N simulations. La figure B.3 présente une première version d’une telle fonction. On remarquera que l’argument i ne joue aucun rôle dans la fonction. Voici un exemple d’utilisation pour un petit nombre de simulations (4) :

> sapply(1:4, fun1, size = 10, a = -0.5, b = 0.5)

                                                                                              [,1]                          [,2]                       [,3]

                                               Moyenne                      -0.096559263 -0.047190233 0.02463859

                                                Mediane                      -0.065582015 -0.082029770 0.11141037

Mi-etendue 0.005047172 0.008949292 -0.03506855

B.3. Seconde approche: avecsapply

fun1

{ u

Mediane = median(u),

"Mi-etendue" = mean(range(u)))

}

simul2

{

a

x

list(biais = rowMeans(x) - theta, variances = apply(x, 1, var))

}

FIG. B.3: Définitions des fonction fun1 et simul2

[,4]

                         Moyenne             -0.05667023

                          Mediane              -0.06164078

Mi-etendue -0.04438876

On remarque donc que les résultats de chaque simulation se trouvent dans les colonnes de la matrice obtenue avec sapply.

Pour compléter l’analyse, on englobe le tout dans une fonction simul2, dont le code se trouve à la figure B.3 :

> simul2(10000, 100, 0)

$biais

                                        Moyenne                  Mediane             Mi-etendue

-0.0001949077 -0.0002907399 -0.0001114678

$variances

                                                           Moyenne                Mediane           Mi-etendue

8.293582e-04 2.419974e-03 4.921899e-05

Il est généralement plus facile de déboguer le code avec cette approche puisque l’on peut rapidement circonscrire un éventuel problème à fun1 ou simul2.

B.4       Variante de la seconde approche

Une chose manque d’élégance dans la seconde approche : l’obligation d’inclure un argument factice dans la fonction fun1. La fonction replicate (section 6.5) permet toutefois de passer outre cette contrainte. En effet, cette fonction exécute un nombre donné de fois une expression quelconque.

Les fonctions fun2 et simul3 de la figure B.4 sont des versions légèrement modifiées de fun1 et simul2 pour utilisation avec replicate. On a alors

> simul3(10000, 100, 0)

$biais

                                                              Moyenne                   Mediane             Mi-etendue

-0.0001443050 0.0001392598 -0.0001046946

$variances

                                                           Moyenne                Mediane           Mi-etendue

8.510722e-04 2.496812e-03 4.918979e-05

B.5      Gestion des fichiers

Pour un petit projet comme celui utilisé en exemple ici, il est simple et pratique de placer tout le code informatique dans un seul fichier de script. Pour un plus gros projet, cependant, il vaut souvent mieux avoir recours à plusieurs fichiers différents. Le présent auteur utilise pour sa part un fichier par fonction.

À des fins d’illustration, supposons que l’on utilise l’approche de la section B.4 avec la fonction replicate et que le code des fonctions fun2 et simul3 est sauvegardé dans des fichiers fun2.R et simul3.R, dans l’ordre. Si l’on crée un autre fichier, disons go.R, ne contenant que des expressions source pour lire les autres fichiers, il est alors possible de démarrer des simulations en exécutant ce seul fichier. Dans notre exemple, le fichier go.R contiendrait les lignes suivantes :

source("fun2.R") source("simul3.R") simul3(10000, 100, 0)

B.6. Exécution en lot

fun2

{ u

Mediane = median(u),

"Mi-etendue" = mean(range(u)))

}

simul3

{

a

x

list(biais = rowMeans(x) - theta, variances = apply(x, 1, var))

}

FIG. B.4: Définitions des fonction fun2 et simul3

Une simple commande

> source("go.R") exécutera alors une simulation complète.

B.6      Exécution en lot

Les utilisateurs plus avancés pourront vouloir exécuter leur simulation R en lot (batch) pour en accélérer le traitement. Dans ce mode, aucune interface graphique n’est démarrée et tous les résultats sont redirigés vers un fichier pour consultation ultérieure. Pour les simulations demandant un long temps de calcul, c’est très pratique.

On exécute R en lot depuis la ligne de commande (Invite de commande sous Windows, Terminal sous OS X ou Linux). Une fois placé dans le répertoire contenant les fichiers de script, il suffit d’entrer à la ligne de commande

R CMD BATCH go.R

La sortie de cette commande (et donc tous les résultats des expressions R du fichier go.R) seront placés par défaut dans le fichier . Sous Windows, le dossier d’installation de R peut ne pas se trouver dans la variable d’environnement %PATH%, auquel cas il faut spécifier le chemin d’accès complet de l’exécutable à la ligne de commande :

"c:\Program Files\R\R-x.y.z\bin\R" CMD BATCH go.R Remplacer R-x.y.z par le numéro de version courant de R.

B.7      Conclusion

Le nombre de simulations, N, et la taille de l’échantillon, n, ont tous deux un impact sur la qualité des résultats, mais de manière différente. Quand n augmente, la précision des estimateurs augmente. Ainsi, dans l’exemple ci-dessus, le biais et la variance des estimateurs de ? seront plus faibles. D’autre part, l’augmentation du nombre de simulations diminue l’impact des échantillons aléatoires individuels et, de ce fait, améliore la fiabilité des conclusions de l’étude.

D’ailleurs, les conclusions de l’étude de simulation sur le biais et la variance des trois estimateurs de la moyenne d’une loi uniforme sont les suivantes : les trois estimateurs sont sans biais et la mi-étendue a la plus faible variance. En effet, on peut démontrer mathématiquement que, pour n impair,

                                                                                                Var[?ˆ1] =    1

Var[?ˆ2] =

Var[?ˆ3] = 2(n +1)(n +2)

et donc

Var[?ˆ3] ? Var[?ˆ1] ? Var[?ˆ2]

pour tout n ? 2.

C       Installation de packages dans R

Un package R est un ensemble cohérent de fonctions, de jeux de données et de documentation permettant de compléter les fonctionnalités du système ou d’en ajouter de nouvelles. Les packages sont normalement installés depuis le site Comprehensive R Archive Network (CRAN; ).

Cette annexe explique comment configurer R pour faciliter l’installation et l’administration de packages externes.

Les instructions ci-dessous sont centrées autour de la création d’une bibliothèque personnelle où seront installés les packages R téléchargés de CRAN. Il est fortement recommandé de créer une telle bibliothèque. Cela permet d’éviter les problèmes d’accès en écriture dans la bibliothèque principale et de conserver les packages intacts lors des mises à jour de R. Nous montrons également comment spécifier le site miroir de CRAN pour éviter d’avoir à le répéter à chaque installation de package.

1. Identifier le dossier de départ de l’utilisateur. En cas d’incertitude, examiner la valeur de la variable d’environnement HOME, depuis R avec la commande

> Sys.getenv("HOME") ou, pour les utilisateurs de Emacs, directement depuis l’éditeur avec

M-x getenv RET HOME RET

Nous référerons à ce dossier par le symbole ~.

2.    Créer un dossier qui servira de bibliothèque de packages personnelle. Dans la suite, nous utiliserons ~/R/library.

3.    Dans un fichier nommé ~/.Renviron (donc situé dans le dossier de départ), enregistrer la ligne suivante :

R_LIBS_USER="~/R/library

137

Installation de packages dans R

Au besoin, remplacer le chemin ~/R/library par celui du dossier créé à l’étape précédente. Utiliser la barre oblique avant (/) dans le chemin pour séparer les dossiers.

4.    Dans un fichier nommé ~/.Rprofile, enregistrer l’option suivante :

options(repos = "")

Si désiré, remplacer la valeur de l’option repos par l’URL d’un autre site miroir de CRAN.

Les utilisateurs de GNU Emacs voudront ajouter une autre option. Le code a entrer dans le fichier ~/.Rprofile sera plutôt

options(repos = "", menu.graphics = FALSE)

Consulter la rubriques d’aide de Startup pour les détails sur la syntaxe et l’emplacement des fichiers de configuration, celles de library et .libPaths pour la gestion des bibliothèques et celle de options pour les différentes options reconnues par R.

Après un redémarrage de R, la bibliothèque personnelle aura préséance sur la bibliothèque principale et il ne sera plus nécessaire de préciser le site miroir de

CRAN lors de l’installation de packages. Ainsi, la simple commande

> install.packages("actuar")

téléchargera le package de fonctions actuarielles actuar depuis le miroir canadien de CRAN et l’installera dans le dossier ~/R/library. Pour charger le package en mémoire, on fera

> library("actuar")

On peut arriver au même résultat sans utiliser les fichiers de configuration .Renviron et .Rprofile. Il faut cependant recourir aux arguments lib et repos de la fonction install.packages et à l’argument de la fonction library. Consulter les rubriques d’aide de ces deux fonctions pour de plus amples informations.

Réponses des exercices

Chapitre2

2.1 a) Il y a plusieurs façons de créer les troisième et quatrième éléments de la liste. Le plus simple consiste à utiliser numeric() et logical() :

> x

                               +                                   test = logical(4))

b)   > names(x)

c)    > mode(x$test)

> length(x$test)

d)   > dim(x$data)

e)   > x[[2]][c(2, 3)]

f)  > x[[3]]

2.2 a) > x[2]

b)   > x[1:5]

c)    > x[x > 14]

d)   > x[-c(6, 10, 12)]

2.3 a) > x[4, 3]

b)   > x[6, ]

c)    > x[, c(1, 4)]

d)   > x[x[, 1] > 50, ]

139

Chapitre3

3.1 a) > rep(c(0, 6), 3)

b)   > seq(1, 10, by = 3)

c)    > rep(1:3, 4)

d)   > rep(1:3, 1:3)

e)   > rep(1:3, 3:1)

f)  > seq(1, 10, length = 3)

g)    > rep(1:3, rep(4,3))

3.2 a) > 11:20 / 10

b)   > 2 * 0:9 + 1

c)    > rep(-2:2, 2)

d)   > rep(-2:2, each = 2)

e)   > 10 * 1:10

3.3 Soit mat une matrice.

a)    > apply(mat, 1, sum)

b)   > apply(mat, 2, sum)

c)    > apply(mat, 1, mean)

d)   > apply(mat, 2, mean)

3.4    > cumprod(1:10)

3.5    x == (x %% y) + y * (x %/% y)

3.6    a) > x[1:5]

> head(x, 5)

b)   > max(x)

c)    > mean(x[1:5])

> mean(head(x, 5))

d)   > mean(x[16:20])

> mean(x[(length(x) - 4):length(x)]) # plus général

> mean(tail(x, 5))                                                              # plus lisible!

3.7 a) (j - 1)*I + i

b) ((k - 1)*J + j - 1)*I + i

3.8 a) > rowSums(mat)

b)   > colMeans(mat)

c)    > max(mat[1:3, 1:3])

d)   > mat[rowMeans(mat) > 7,]

3.9 > temps[match(unique(cummin(temps)), temps)]

Chapitre4

4.1    > sum(P / cumprod(1 + i))

4.2    > x

> w

> sum(x * w)/sum(w)

4.3    > 1/mean(1/x)

4.4    > lambda

> x

> exp(-lambda) * sum(lambda^(0:x)/gamma(1 + 0:x))

4.5    a) > x

> probs

b) > sum(x^2 * probs) - (sum(x * probs))^2

4.6 > i

> 4 * ((1 + i)^0.25 - 1)

4.7 > n

> i

> (1 - outer((1 + i), -n, "^"))/i

ou

> n

> i

> apply(outer(1/(1+i), n, "^"), 1, cumsum)

4.8 > v k

> sum(k * v^(k - 1))

4.9 > pmts

> v

> k

> sum(pmts * v^k)

4.10 > v

> pmts

> sum(pmts * v)

Chapitre5

5.1 variance

{ if (biased)

{ n

} else var(x)

}

5.2 Une première solution utilise la transposée. La première expression de la fonction s’assure que la longueur de data est compatible avec le nombre de lignes et de colonnes de la matrice demandée.

matrix2

bycol = FALSE, dimnames = NULL)

{ data

if (bycol) dim(data)

}

dimnames(data)

}

La seconde solution n’a pas recours à la transposée. Pour remplir la matrice par ligne, il suffit de réordonner les éléments du vecteur data en utilisant la formule obtenue à l’exercice 3.7.

matrix2

bycol = FALSE, dimnames = NULL)

{ data

if (!bycol)

{ i

}

dim(data)

}

5.3 phi

{ exp(-x^2/2) / sqrt(2 * pi)

}

5.4 Phi

{

n

0.5 + phi(x) * sum(x^n / cumprod(n))

}

5.5 Première solution utilisant une fonction interne et une structure de contrôle if else.

Phi

{ fun

{

n

0.5 + phi(x) * sum(x^n / cumprod(n)) }

if (x < 0)

1 - fun(-x) else fun(x)

}

Seconde solution sans structure de contrôle if else. Rappelons que dans des calculs algébriques, FALSE vaut 0 et TRUE vaut 1.

Phi

{

n

}

5.6 Phi

{

n

0.5 + phi(x) * colSums(t(outer(x, n, "^")) / cumprod(n))

}

5.7 a)

{ if (ncol(mat1) == nrow(mat2))

{ res

{ for (j in 1:ncol(mat2))

{ res[i, j]

} } res

} else stop("Les dimensions des matrices ne

permettent pas le produit matriciel.")

}

b) <-function(mat1, mat2)

{ if (ncol(mat1) == nrow(mat2))

{ res

res

} else stop("Les dimensions des matrices ne

permettent pas le produit matriciel.")

}

Solutions bonus : deux façons de faire équivalentes qui cachent la boucle dans un sapply.

<-function(mat1, mat2)

{ if (ncol(mat1) == nrow(mat2)) t(sapply(1:nrow(mat1), function(i) colSums(mat1[i,] * mat2))) else stop("Les dimensions des matrices ne permettent

pas le produit matriciel.")

}

<-function(mat1, mat2)

{ if (ncol(mat1) == nrow(mat2)) t(sapply(1:ncol(mat2), function(j) colSums(t(mat1) * mat2[,j]))) else stop("Les dimensions des matrices ne permettent

pas le produit matriciel.")

}

5.8 Le calcul à faire n’est qu’un simple produit matriciel, donc :

notes.finales

5.10 param

{ loi

{ param1

} if (loi == "gamma")

{ param2

} if (loi == "pareto")

{ cte

} stop("La loi doit etre une de \"normale\",

\"gamma\" ou \"pareto\"")

}

Chapitre6

6.1 Soit Xij et wij des matrices, et Xijk et wijk des tableaux à trois dimensions.

a)    > rowSums(Xij * wij)/rowSums(wij)

b)   > colSums(Xij * wij)/colSums(wij)

c)    > sum(Xij * wij)/sum(wij)

d)   > apply(Xijk * wijk, c(1, 2), sum)/apply(wijk, c(1, 2), sum)

e)   > apply(Xijk * wijk, 1, sum)/apply(wijk, 1, sum)

f)  > apply(Xijk * wijk, 2, sum)/apply(wijk, 2, sum)

g)    > sum(Xijk * wijk)/sum(wijk)

6.2 a) > unlist(lapply(0:10, seq, from = 0))

b)   > unlist(lapply(1:10, seq, from = 10))

c)    > unlist(lapply(10:1, seq, to = 1))

6.3 a) > ea

b)   > names(ea)

c)    > sapply(ea, mean)

d)   > lapply(ea, function(x) sort(ppareto(x, 2, 5000)))

> lapply(lapply(ea, sort), ppareto, alpha = 2, lambda = 5000)

e)   > hist(ea$sample5)

f)  > lapply(ea, "+", 1000)

6.4 a) > mean(sapply(x, function(liste) liste$franchise))

Les crochets utilisés pour l’indiçage constituent en fait un opérateur dont le «nom» est [[. On peut donc utiliser cet opérateur dans la fonction sapply :

> mean(sapply(x, "[[", "franchise"))

b)   > sapply(x, function(x) mean(x$))

c)    > sum(sapply(x, function(x) sum(x$))) ou

> sum(unlist(sapply(x, "[[", "")))

d)   > mean(unlist(lapply(x, "[[", "montants")))

e)   > sum(sapply(x, function(x) sum(x$) == 0))

f)  > sum(sapply(x, function(x) x$[1] == 1))

g)    > var(unlist(lapply(x, function(x) sum(x$))))

h)   > sapply(x, function(x) var(x$))

i)  > y

> sum(y <= x)/length(y)

La fonction ecdf retourne une fonction permettant de calculer la fonction de répartition empirique en tout point :

> ecdf(unlist(lapply(x, "[[", "montants")))(x)

j)  > y

> colSums(outer(y, x, "<="))/length(y)

La fonction retournée par ecdf accepte un vecteur de points en argument :

> ecdf(unlist(lapply(x, "[[", "montants")))(x)

Chapitre7

7.1 a) > f

> uniroot(f, lower = 1, upper = 4)

b)   Comme un simple graphique le démontre, il y a deux racines dans l’intervalle.

> f curve(f, xlim = c(-4, 0))

> uniroot(f, lower = -4, upper = -1)

> uniroot(f, lower = -1, upper = 0)

c)    > f

> uniroot(f, lower = 0, upper = 1)

d)   > f

> uniroot(f, lower = 1, upper = 2)

e)   > f

> uniroot(f, lower = 0, upper = 1)

7.2    > X

> w

> g

+ {

+         z

+       Xz

+             sum(z * (X - Xz)^2)/(length(X) - 1)

+ }

> uniroot(function(x) g(x, X, w, 140E6) - x, c(50000, 80000))

7.3    > dpareto

+ {

+             (alpha * lambda^alpha)/(x + lambda)^(alpha+1)

+ }

> f

> optim(c(1, 1000), f, x = x)

ou, en utilisant le truc du logarithme des paramètres expliqué dans le code informatique de la section 7.4 pour éviter les soucis de convergence :

> dpareto

+ {

+       alpha

+      lambda

+             (alpha * lambda^alpha)/(x + lambda)^(alpha+1)

+ }

> optim(c(log(2), log(1000)), f, x = x)

> exp(optim(c(log(2), log(1000)), f, x = x)$par)

Chapitre8

8.1 > x

> hist(x)

8.2 > x

> xx

> px

> plot(xx, dnbinom(xx, size = 5, prob = 0.8),

         +                             type = "h", lwd = 5, col = "blue")

> points(xx, px/length(x), pch = 16)

8.3 > w

> x

> hist(x)

Bibliographie

Abelson, H., G. J. Sussman et J. Sussman. 1996, Structure and Interpretation of Computer Programs, 2e éd., MIT Press, ISBN 0-26201153-0.

Becker, R. A. 1994, «A brief history of S», cahier de recherche, AT&T Bell Laboratories. URL .

Becker, R. A. et J. M. Chambers. 1984, S: An Interactive Environment for Data Analysis and Graphics, Wadsworth, ISBN 0-53403313-X.

Becker, R. A., J. M. Chambers et A. R. Wilks. 1988, The New S Language: A Programming Environment for Data Analysis and Graphics, Wadsworth & Brooks/Cole, ISBN 0-53409192-X.

Braun, W. J. et D. J. Murdoch. 2007, A First Course in Statistical Programming with R, Cambridge University Press, ISBN 978-0-52169424-7.

Cameron, D., J. Elliott, M. Loy, E. S. Raymond et B. Rosenblatt. 2004, Leaning GNU Emacs, 3e éd., O’Reilly, Sebastopol, CA, ISBN 0-59600648-9.

Chambers, J. M. 1998, Programming with Data: A Guide to the S Language, Springer, ISBN 0-38798503-4.

Chambers, J. M. 2000, «Stages in the evolution of S», URL -labs. .

Chambers, J. M. 2008, Software for Data Analysis: Programming with R, Springer, ISBN 978-0-38775935-7.

Chambers, J. M. et T. J. Hastie. 1992, Statistical Models in S, Wadsworth & Brooks/Cole, ISBN 0-53416765-9.

151

Bibliographie

Dutang, C., V. Goulet et M. Pigeon. 2008, «actuar: An R package for actuarial science», Journal of Statistical Software, vol. 25, no 7. URL http://www.

Goulet, V. 2007, Introduction à la programmation en S, 2e éd., Document libre publié sous contrat GNU FDL, ISBN 978-2-9809136-7-9.

Hornik, K. 2011, «The R FAQ», URL , ISBN 3-90005108-9.

Iacus, S. M., S. Urbanek et R. J. Goedman. 2011, «R for Mac OS X FAQ», URL http: .

IEEE. 2003, 754-1985 IEEE Standard for Binary Floating-Point Arithmetic, IEEE, Piscataway, NJ.

Ihaka, R. et R. Gentleman. 1996, «R: A language for data analysis and graphics», Journal of Computational and Graphical Statistics, vol. 5, no 3, p. 299–314.

Ligges, U. 2003, «R-winedt», dans Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), édité par K. Hornik, F. Leisch et A. Zeileis, TU Wien, Vienna, Austria, ISSN 1609-395X. URL .

Redd, A. 2010, «Introducing NppToR: R interaction for Notepad++», R Journal, vol. 2, no 1, p. 62–63. URL .

Ripley, B. D. et D. J. Murdoch. 2011, «R for Windows FAQ», URL http://cran. .

Venables, W. N. et B. D. Ripley. 2000, S Programming, Springer, New York, ISBN 0-38798966-8.

Venables, W. N. et B. D. Ripley. 2002, Modern Applied Statistics with S, 4e éd., Springer, New York, ISBN 0-38795457-0.

Venables, W. N., D. M. Smith et R Development Core Team. 2011, An Introduction to R, R Foundation for Statistical Computing. URL

.

Wheeler, B. 2009, SuppDists: Supplementary Distributions. URL , r package version 1.1-8.

Index

Les numéros de page en caractères gras indiquent les pages où les concepts sont introduits, définis ou expliqués.

!, 43                                                                                  %*%, 43, 83

!=, 43                                                                                %/%, 43

*, 43                                                                                 %%, 43

+, 43                                                                                  %in%, 46, 56

-, 43                                                                                  %o%, 50, 58

->, 14, 43                                                                          &, 43

->>, 43                                                                              &&, 43

-Inf, 19                                                                              ˆ, 42, 43

, 87, 132                                                                         { }, 15

/, 43

:, 43, 60                                                                             abs, 79, 80, 99, 100

;, 14                                                                                   add, 100

<, 43                                                                                  affectation, 13

<-, 14, 42, 43                                                                     apply, 51, 58, 61, 87, 88, 88–90, 95, 96

<<-, 43, 74                                                                          array, 22, 34, 95, 96

<=, 43                                                                                  array (classe), 22

=, 14                                                                                  arrondi, 46

==, 43                                                                                   .frame, 26

>, 43                                                                                   attach, 26, 37

>=, 43                                                                                 attr, 19, 31, 102

[, 27                                                                                   attribut, 19

[<-, 27                                                                                   attributes, 19, 31, 32

[[, 147

[[ ]], 25, 25                                                                        boucle, 51, 70, 130

[ ], 21, 23, 25, 27                                                               break, 51, 60, 79, 80, 99

$, 26, 27, 43                                                                     by, 10, 55

$<-, 27                                                                               byrow, 22, 44

153

c, 20 cat, 99, 100 cbind, 24, 26, 34, 39, 57 ceiling, 46, 56 character, 21, 33 character (mode), 17, 21 choose, 65 class, 32–34, 36, 94, 99 class (attribut), 20 colMeans, 49, 61, 88, 95 colSums, 48, 58, 61, 68, 88

compilé (langage), 2 complex, 33

complex (mode), 17 cos, 28 cummax, 48, 57 cummin, 48, 57

cumprod, 48, 57, 64

cumsum, 48, 57 curve, 100

data, 31, 44, 55 data frame, 26 data.frame, 26 data.frame (classe), 26 dbeta, 110 dbinom, 65

density, 10 det, 49 detach, 26, 37 dgamma, 111 diag, 39, 49, 57 diff, 47, 57 différences, 47 dim, 32–34, 36, 38, 57, 95 dim (attribut), 20, 21, 22 dimension, 20, 39 dimnames, 32, 44 dimnames (attribut), 20 distribution

bêta, 117 binomiale, 64, 117 binomiale négative, 117 Cauchy, 117 exponentielle, 117 F, 117 gamma, 66, 84, 117 géométrique, 117 hypergéométrique, 117 khi carré, 117 log-normale, 117, 119 logistique, 117 mélange discret, 119 mélange Poisson/gamma, 119

normale, 82–84, 117

Pareto, 84, 103

Poisson, 65, 71, 117

t, 117

uniforme, 117

Weibull, 117

Wilcoxon, 117 dnorm, 83 dossier de travail, voir répertoire de travail dpois, 66

écart type, 47 ecdf, 148

else, 50, 58–60, 80, 98

Emacs, 7, 78

C-_, 125

C-g, 125

C-r, 125

C-s, 125

C-SPC, 125 C-w, 125

C-x 0, 126

C-x 1, 126

C-x 2, 126

C-x b, 126

Index                                                                                                                                                                           155

C-x C-f, 125

C-x C-s, 125, 128

C-x C-w, 125 C-x k, 125

C-x o, 126

C-x o , 127

C-x u, 125 C-y, 125 configuration, 128

M-%, 125

M-w, 125

M-x, 125 M-y, 125 nouveau fichier, 125 rechercher et remplacer, 125 sélection, 125 sauvegarder, 125 sauvegarder sous, 125

ESS, 7

C-c C-e, 126

C-c C-e , 127

C-c C-f, 126

C-c C-l, 126

C-c C-n, 126

C-c C-n , 127

C-c C-o, 126

C-c C-q, 126, 128

C-c C-r, 126 C-c C-v, 126 h, 126 l, 127

M-h, 126

M-n, 126 M-p, 126 n, 126 p, 126 q, 127 r, 127 x, 127

étiquette, 20, 39 eval, 80, 99 exists, 37 exp, 28, 65, 67, 111, 112 expression, 13 expression, 30, 80, 98, 99 expression (mode), 17 extraction, voir aussi indiçage derniers éléments, 45 éléments différents, 45 premiers éléments, 45

F, voir FALSE factorial, 61, 65 FALSE, 16, 77

floor, 46, 56 fonction anonyme, 76 appel, 43 débogage, 76

définie par l’usager, 73

générique, 94

maximum local, 108

minimum, 108

minimum local, 108

optimisation, 108

racine, 108

résultat, 74

for, 51, 53, 54, 58, 59, 81, 92, 130 function, 73, 79–82, 97–102, 109–111 function (mode), 17 gamma, 28, 61, 65

head, 45, 56 hist, 98, 104

if, 50, 53, 54, 58–60, 77, 79, 80, 98, 99 ifelse, 50 Im, 113 indiçage

liste, 25, 39

matrice, 23, 26, 40

vecteur, 26, 39 Inf, 19 install.packages, 52

interprété (langage), 2

is.finite, 19

is.infinite, 19

, 19, 31, 38, 59

, 19

, 18

lapply, 51, 87, 90, 90–92, 96, 97, 101,

130, 132 length, 10, 17, 30–36, 38, 55–57 lfactorial, 61 lgamma, 61

library, 52, 60 list, 25, 30, 32, 35, 36, 96, 97, 99, 101 list (mode), 17, 24

liste, 24 lm, 102 log, 111

logical, 21, 33 logical (mode), 17, 19, 21 longueur, 18, 39 lower, 109, 110, 112 ls, 11, 29, 101

mapply, 51, 92, 97 match, 46, 56 matrice, 61, 82, 83, 88

diagonale, 49

identité, 49

inverse, 49

moyennes par colonne, 49

moyennes par ligne, 49

somme par colonne, 48

sommes par ligne, 48

transposée, 49

matrix, 11, 22, 28, 33, 34, 36, 53, 55,

82, 95, 96 matrix (classe), 21 max, 10, 11, 47, 57, 95 maximum

cumulatif, 48

d’un vecteur, 47 local, 108

parallèle, 48

position dans un vecteur, 46

mean, 19, 31, 47, 57, 95, 98 median, 47, 57 médiane, 47 methods, 94

min, 10, 11, 47, 57 minimum

cumulatif, 48 d’un vecteur, 47

fonction non linéaire, 108

local, 108

parallèle, 48 position dans un vecteur, 46

mode, 17, 39 mode, 16, 30, 31, 35, 36 moyenne

arithmétique, 47 harmonique, 71 pondérée, 70, 102

tronquée, 47

NA, 19, 77 , 19, 31, 95 names, 32, 36–38 names (attribut), 20 NaN, 19 nchar, 18, 30 ncol, 11, 33, 34, 44, 48, 55, 58, 95 next, 51 nlm, 108, 108, 111, 112 nlminb, 108

Index                                                                                                                                                                           157

noms d’objets conventions, 15 réservés, 16

Notepad++, 8

nrow, 11, 33, 44, 48, 55, 57, 95

NULL, 18, 20

NULL (mode), 18

numeric, 21, 31, 33, 38, 58, 59, 81 numeric (mode), 17, 21

optim, 108, 112 optimize, 108, 110 order, 45, 56 outer, 49, 51, 58, 67, 76, 101

package, 51 paste, 103

pgamma, 67

plot, 10, 32, 94, 100, 119

pmax, 48, 57, 58 pmin, 48, 57

pnorm, 83

point fixe, 68, 75 points, 100 polyroot, 109, 113 print, 53, 54, 58–60, 77, 79, 80, 94, 95,

98, 99 prod, 47, 50, 57, 58, 95, 96 produit, 47 cumulatif, 48 extérieur, 49

q, 8, 102 quantile, 47 quantile, 47, 57

racine

d’un polynôme, 109

d’une fonction, 108

rang, 45 range, 47, 57 rank, 45, 56 rbind, 24, 26, 34, 39 rbinom, 118 Re, 113 renverser un vecteur, 45

rep, 10, 44, 55, 58, 60, 96, 97 repeat, 51, 59, 68, 79, 80, 99 répertoire de travail, 9 répétition de valeurs, 44 replace, 37, 57, 119 replicate, 93, 98, 134

return, 74 rev, 45, 56, 57, 65 rgamma, 110, 119 rm, 11, 101 RNGkind, 118 rnorm, 10, 98, 102, 118 round, 11, 46, 56 row.names, 36 rowMeans, 49, 61, 88

rowSums, 48, 58, 61, 88, 95 rpois, 119 runif, 10, 11, 118

S, 1, 2 S+, 1

S-PLUS, 1 sample, 32, 37, 57, 61, 91, 95–98, 101,

117, 119 sapply, 51, 87, 90, 91–93, 96, 97, 101,

130, 132, 145 save.image, 4, 8, 128

Scheme, 2

sd, 47, 57, 98

search, 51, 60

seq, 10, 30, 36, 44, 55, 60, 96

simulation

nombres uniformes, 115 planification, 129–136 variables aléatoires, 116

sin, 28

solve, 11, 49, 57 somme, 47 cumulative, 48

sort, 45, 55 source, 134

start, 79, 80, 98, 100 stop, 99 structure, 99 style, 77 suite de nombres, 44 sum, 19, 47, 57, 58, 95–97, 111 summary, 47, 57, 94, 100

switch, 51

, 81

T, voir TRUE t, 11, 49, 57 table, 119

tableau, 61, 88 tail, 45, 56 tri, 45 TRUE, 16, 77

trunc, 46, 57

typeof, 17

unique, 45, 56 uniroot, 108, 109

unlist, 26, 36, 96 upper, 109, 110, 112

valeur présente, 63, 70–72 var, 47, 57, 82 variable globale, 74 locale, 74

variance, 47 vecteur, 20, 41 vector, 33, 35 vide, voir NULL which, 45, 56 , 46, 56 , 46, 56 while, 51, 59, 82

WinEdt, 8

ISBN 978-2-9811416-2-0

9782981 141620



.

. Merci à Markus Gesmann pour cette observation.

.

. En fait, cela devient un appel à l’opérateur "(" qui ne fait que retourner son argument.

. ou cliquer sur le lien dans l’écran d’accueil.

[6] . Pour les utilisateurs de GNU Emacs sous Windows, la variable est créée par l’assistant d’installation de Emacs lorsqu’elle n’existe pas déjà.


9