
Jamie Munro

ASP.NET MVC 5
with Bootstrap
and Knockout.js
BUILDING DYNAMIC RESPONSIVE WEB APPLICATIONS

WEB DEVELOPMENT/DESIGN

ASP.NET MVC 5 with Bootstrap and Knockout.js

ISBN: 978-1-491-91439-7

US $24.99 CAN $28.99

“ This book is an excellent
resource for anyone
getting started in or
switching over to Web
development!”

—Matthew Spence
Server Developer, Fuel Youth Engagement

Twitter: @oreillymedia
facebook.com/oreilly

Bring dynamic server-side web content and responsive web design
together to build websites that work and display well at any resolution,
desktop or mobile. With this practical book, you’ll learn how by combining
the A SP.NET MVC ser ver-side language, the Bootstrap front-end
framework, and Knockout.js—the JavaScript implementation of the
Model-View-ViewModel pattern.

Author Jamie Munro introduces these and other related technologies by
having you work with sophisticated web forms. At the end of the book,
experienced and aspiring web developers alike will learn how to build a
complete shopping cart that demonstrates how these technologies interact
with each other in a sleek, dynamic, and responsive web application.

 ■ Build well-organized, easy-to-maintain web applications by
letting ASP.NET MVC 5, Bootstrap, and Knockout.js do the
heavy lifting

 ■ Use ASP.NET MVC 5 to build server-side web applications,
interact with a database, and dynamically render HTML

 ■ Create responsive views with Bootstrap that render on a
variety of modern devices; you may never code with CSS again

 ■ Add Knockout.js to enhance responsive web design with
snappy client-side interactions driven by your server-side web
application

Jamie Munro has been developing websites and web applications for over 15
years. Over the past six years, he’s actively mentored younger developers to
enhance their web development skills. Jamie’s website (http:// www.endyourif.com)
is geared towards helping web developers further expand their experience through
online examples.

A
SP.N

E
T
 M

V
C
 5 w

ith Bootstrap and K
nockout.js

M
unro

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Jamie Munro

ASP.NET MVC 5
with Bootstrap
and Knockout.js
BUILDING DYNAMIC RESPONSIVE WEB APPLICATIONS

WEB DEVELOPMENT/DESIGN

ASP.NET MVC 5 with Bootstrap and Knockout.js

ISBN: 978-1-491-91439-7

US $24.99 CAN $28.99

“ This book is an excellent
resource for anyone
getting started in or
switching over to Web
development!”

—Matthew Spence
Server Developer, Fuel Youth Engagement

Twitter: @oreillymedia
facebook.com/oreilly

Bring dynamic server-side web content and responsive web design
together to build websites that work and display well at any resolution,
desktop or mobile. With this practical book, you’ll learn how by combining
the A SP.NET MVC ser ver-side language, the Bootstrap front-end
framework, and Knockout.js—the JavaScript implementation of the
Model-View-ViewModel pattern.

Author Jamie Munro introduces these and other related technologies by
having you work with sophisticated web forms. At the end of the book,
experienced and aspiring web developers alike will learn how to build a
complete shopping cart that demonstrates how these technologies interact
with each other in a sleek, dynamic, and responsive web application.

 ■ Build well-organized, easy-to-maintain web applications by
letting ASP.NET MVC 5, Bootstrap, and Knockout.js do the
heavy lifting

 ■ Use ASP.NET MVC 5 to build server-side web applications,
interact with a database, and dynamically render HTML

 ■ Create responsive views with Bootstrap that render on a
variety of modern devices; you may never code with CSS again

 ■ Add Knockout.js to enhance responsive web design with
snappy client-side interactions driven by your server-side web
application

Jamie Munro has been developing websites and web applications for over 15
years. Over the past six years, he’s actively mentored younger developers to
enhance their web development skills. Jamie’s website (http:// www.endyourif.com)
is geared towards helping web developers further expand their experience through
online examples.

A
SP.N

E
T
 M

V
C
 5 w

ith Bootstrap and K
nockout.js

M
unro

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Jamie Munro

ASP.NET MVC 5 with Bootstrap and
Knockout.js

Building Dynamic, Responsive Web Applications

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

978-1-491-91439-7

[LSI]

ASP.NET MVC 5 with Bootstrap and Knockout.js
by Jamie Munro

Copyright © 2015 Jamie Munro. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editor: Meg Foley
Production Editor: Nicole Shelby
Copyeditor: Kim Cofer
Proofreader: Marta Justak

Indexer: Wendy Catalano
Interior Designer: David Futato
Cover Designer: Ellie Volckhausen
Illustrator: Rebecca Demarest

May 2015: First Edition

Revision History for the First Edition
2015-05-08: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781491914397 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. ASP.NET MVC 5 with Bootstrap and
Knockout.js, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the author disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use of
or reliance on this work. Use of the information and instructions contained in this work is at your own
risk. If any code samples or other technology this work contains or describes is subject to open source
licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

www.allitebooks.comwww.allitebooks.com

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491914397
http://www.allitebooks.org
http://www.allitebooks.org

This book is dedicated to my 7th grade teacher who said that being a professional wres‐
tler was not a career I could use for our “Life Plan” project, so instead I chose being an

author. While it’s not my full-time job, it still kind of came true...

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Table of Contents

Preface. ix

Part I. Getting Started

1. Introduction to MVC. 1
Creating Your First Project 1
Examining the HomeController 4
Examining the Views 6
Understanding the URL Structure 8
Summary 9

2. Introduction to Bootstrap. 11
Examining the Default Menu 11
A Menu with Drop-Downs and a Search Box 14
Buttons 17
Alerts 19
Themes 20
Summary 20

3. Introduction to Knockout.js. 21
Installing Knockout.js 21
A Basic Example 23
What Is MVVM? 25
Creating ViewModels 26
Summary 29

v

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

4. Working with a Database. 31
Introduction to Entity Framework 32
Code First 33
Database First 37
Creating Test Data 41
Summary 44

Part II. Working with Data

5. Listing, Sorting, and Paging Through Tables. 47
Scaffolding the Author Model 47
Sorting the Authors 55
Paging the Authors 61
Summary 66

6. Working with Forms. 67
Integrating Knockout with a Form 67
Sharing the View and ViewModel 75
Deleting with a Modal 83
Empty Table Listings 88
Summary 90

7. Server-Side ViewModels. 91
Why Create Server-Side ViewModels? 91
The Authors ViewModel 93
Updating the Authors Listing 94
Updating the Add/Edit Form 95
Updating the Delete Modal 97
Summary 98

8. Introduction to Web API. 99
Installing Web API 99
Updating the List of Authors 102
Updating the Add/Edit Authors Form 112
Summary 115

Part III. Code Architecture

9. Creating Global Filters. 119
Authentication Filters 119
Authorization Filters 120

vi | Table of Contents

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Action Filters 120
Result Filters 120
Exception Filters 120
Global Web API Validation 121
Automapping with a Result Filter 125
Web API Error Handling 129
MVC Error Handling 132
Summary 135

10. Adding Authentication and Authorization. 137
Authentication Overview 137
Authorization Overview 138
Implementing an Authentication Filter 139
Implementing an Authorization Filter 148
Summary 152

11. URL Routing Using Attributes. 153
Attribute Routing Basics 153
Route Prefixes 157
Routing Constraints 158
Summary 162

12. Fat Model, Skinny Controller. 163
Separation of Concerns 163

Controllers 164
Services 164
Behaviors 165
Repositories 165
Orchestrations 165
Unit of Work 166

Services and Behaviors 167
Summary 175

Part IV. A Practical Example

13. Building a Shopping Cart. 179
Shopping Cart Requirements 179
The Shopping Cart Project 180
JavaScript Bundling and Minification 181
Summary 183

Table of Contents | vii

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

14. Building the Data Model. 185
Code-First Models 185
Defining the DbContext and Initializing Data 188
The ViewModels 192
Summary 195

15. Implementing the Layout. 197
The Shared Layout 197
The Cart Summary 199
The Categories Menu 207
Summary 211

16. Lists of Books. 213
The Home Page 213
The Featured Books 214
Filtered Books by Category 218
Summary 221

17. Adding Items to the Cart. 223
The Book Details 223
Custom Components and Custom Bindings 228
Saving the Cart Item 235
Summary 238

18. Updating and Deleting Cart Items. 239
The Cart Details 239
Knockout for the Cart Details 243
Completing the Shopping Cart 248
Summary 251

Index. 253

viii | Table of Contents

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Preface

In today’s society, websites are about giving people information quickly and effec‐
tively. Gone are the days of people waiting for websites to load. Enter single-page web
designs and websites that work on your computer or your phone.

This book will bring three extremely useful technologies together to demonstrate
how you can build a website that will work on many modern devices without writing
specific code for each device.

ASP.NET MVC 5 will be used to build sophisticated web applications (the controller),
interact with a database (the model), and dynamically render HTML (the view).

Bootstrap will be used to build sleek and responsive views that render on a variety of
modern devices. Bootstrap provides a set of custom components that makes it easy to
build an incredible user experience with easy-to-implement HTML, CSS, and Java‐
Script.

Knockout.js will bring these technologies together by enhancing the responsive web
design with snappy client-side interactions driven by the server-side web application.

Why These Technologies?
That’s a good question. If you have previous web development experience, it’s easy to
think that you don’t need help, and that you can write your own HTML and CSS to
create sleek and responsive web pages. I have more than 10 years of experience and
since I was introduced to Bootstrap a few years ago, I’ve barely written any CSS.

Bootstrap provides two big advantages:

• The developers have taken the time to write and organize the CSS that is used
repetitively to solve problems like creating a menu, making the menu stay at the
top, allowing the menu to contain a search bar, etc. All of these things can be
done with CSS, but it takes time! When you first write the code to do these

ix

things, there is a lot of small tweaking to get the alignment perfect. With Boot‐
strap, you don’t need to worry about it because it has already been done.

• Not only have you saved time by not writing a lot of CSS to create your respon‐
sive website, but the developers of Bootstrap have tested all of the components in
a variety of web browsers! This is really important because there are many subtle
differences between each browser. For example, where only a little CSS tweak is
needed for Internet Explorer, the same CSS might mess up Chrome. Because of
Bootstrap, you can be confident that your website will work on a variety of
browsers with just a little bit of effort on your part. This will allow you to focus
your time on building a bigger, better, and more sophisticated project!

Knockout.js is a JavaScript library built on the MVVM (Model-View-ViewModel)
architecture pattern. The defining factor of this pattern is to bind your data to a view
through a ViewModel. This is extremely useful when building dynamic, responsive
web applications because Knockout provides sophisticated logic to update your user
interface automatically, based on user interaction.

Once again, this logic can be accomplished with JavaScript, but it takes a long time to
write. As you’ll see throughout this book, accomplishing it with Knockout.js takes
very little time! And just like Bootstrap, these features are thoroughly tested in a vari‐
ety of browsers, giving you a lot of confidence that your web application will work in
any of the supported browsers.

The final piece of the web development puzzle is server-side technology that allows
data persistence to and from a database, and the ability to write complex and well-
structured business logic and to create intelligent HTML views that mix a combina‐
tion of static and dynamic data together. ASP.NET MVC has progressed into a
technology leader since its official version 1 release in March 2009. Now in its fifth
iteration, it has become extremely powerful with many useful features available with
just a few keystrokes.

Putting these three technologies together makes the development of complex,
dynamic, and responsive web applications very rapid, where all of the heavy lifting is
done for you. This book will demonstrate that and teach you ways to make your
projects very well organized and easy to maintain.

What Is a Web Developer?
Recently, I was asked by a colleague, “Jamie, I’m thinking of switching careers and
want to become a web developer. What do you think I need to learn?”

The colleague in question has great knowledge of several different programming lan‐
guages (including C#). I quickly started to put a response together about learning
MVC because his knowledge would transfer quite easily. I continued thinking that
he’ll also want to learn HTML, CSS, and JavaScript. And that got me thinking—a web

x | Preface

developer doesn’t just focus on one thing; we are more like a Jack-of-all-trades with a
bit of knowledge of everything.

There are already countless books on learning MVC; however, they only focus on one
aspect of web development. They teach you to save and retrieve information from a
database, send emails to users, create a web application that lets users register and log
in, etc. What these books don’t do is teach you how to build forms that work on
mobile devices or tablets that contain sleek user interfaces, use custom components
that replace boring radio buttons, and so on.

Being a web developer involves all of these things and more. The goal of this book is
not just to teach you to build a form that saves data to a database. Instead, we will
build forms that use toggle buttons, modals, and popovers to create user interfaces
that are easy to use, responsive, and dynamic all at once!

Who Is This Book For?
This book is for web developers, or for those who want to become one. It assumes
that you have previous development experience with at least one programming lan‐
guage.

If you are a beginner, I would suggest you read this book from start to finish because
many of the examples will build upon previous examples and, more importantly, top‐
ics discussed in previous chapters. More adventurous readers are free to jump from
section to section for something of particular interest. Keep in mind that when exam‐
ples extend previous ones, some may merely reference the earlier example to avoid
redundant code listings where applicable.

The examples in this book will contain a mix of C#, HTML, CSS, and JavaScript. By
the end of this book, you will be able to build incredibly sleek, dynamic, and respon‐
sive web applications rapidly by leveraging the capabilities of MVC 5, Bootstrap, and
Knockout.js.

The book is separated into four parts. Part one provides an introduction to the three
technologies used in the book. Part two demonstrates how to implement CRUD
(Create-Read-Update-Delete) with the data being stored and read from a database.
Part three dives into some more advanced C# and MVC features to help you organize
and maintain your web applications. The final part demonstrates how to build a
shopping cart from start to finish. The shopping cart will leverage many features of all
three technologies, demonstrating how they interact with each other to create a sleek,
dynamic, and responsive web application.

Preface | xi

Getting Started
There are many different Integrated Development Environments (IDEs) to choose
from that provide many useful shortcuts and code hints. I recommend using Visual
Studio because it contains the best support for writing and building web applications
using ASP.NET’s MVC 5.

If it is not already installed, begin by visiting Microsoft’s official MVC 5 website. Near
the top of this website is a link to download and install a free version of Visual Studio
Express 2013 that contains the templates to create MVC 5 web applications.

All of the examples in this book will assume that Visual Studio is being used when
referencing elements within the IDE.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values or by values deter‐
mined by context.

This element signifies a tip or suggestion.

This element signifies a general note.

xii | Preface

http://www.asp.net/mvc/mvc5

This element indicates a warning or caution.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://github.com/oreillymedia/ASP_NET-MVC-5-with-Bootstrap-and-Knockout_js.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing a CD-ROM of examples
from O’Reilly books does require permission. Answering a question by citing this
book and quoting example code does not require permission. Incorporating a signifi‐
cant amount of example code from this book into your product’s documentation does
require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “ASP.NET MVC 5 with Bootstrap and
Knockout.js by Jamie Munro (O’Reilly). Copyright 2015 Jamie Munro,
978-1-491-91439-7.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that deliv‐
ers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of plans and pricing for enterprise, government,
education, and individuals.

Members have access to thousands of books, training videos, and prepublication
manuscripts in one fully searchable database from publishers like O’Reilly Media,
Prentice Hall Professional, Addison-Wesley Professional, Microsoft Press, Sams, Que,
Peachpit Press, Focal Press, Cisco Press, John Wiley & Sons, Syngress, Morgan Kauf‐

Preface | xiii

https://github.com/oreillymedia/ASP_NET-MVC-5-with-Bootstrap-and-Knockout_js
mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/

mann, IBM Redbooks, Packt, Adobe Press, FT Press, Apress, Manning, New Riders,
McGraw-Hill, Jones & Bartlett, Course Technology, and hundreds more. For more
information about Safari Books Online, please visit us online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/aspnet-mvc5.

To comment or ask technical questions about this book, send email to bookques‐
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our web‐
site at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly.

Follow us on Twitter: http://twitter.com/oreillymedia.

Watch us on YouTube: http://www.youtube.com/oreillymedia.

Acknowledgements
This book was immensely challenging to write! I would not have been able to finish it
if I didn’t have an incredible support team around me, starting first and foremost
with my wife, Shannon. Your unrelenting strength in caring for our children while I
locked myself in a room to work is the only reason this book is done.

Next on the support team come a couple of former coworkers. Eric, you definitely
provided the inspiration for why this book is required. Matt, your feedback during
the technical review and the process for ensuring that the examples and explanations
were clear and concise has gone along way toward making this book that much better.

Even though Mike wasn’t part of this book, I always feel like I need to send out a spe‐
cial acknowledgement to him. Thanks, Mike, for putting up with my grumbling
about how this project was never going to be finished. Your ability to help me pro‐
crastinate is second to none!

xiv | Preface

https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/
http://bit.ly/aspnet-mvc5
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

I think a special shout-out is required to my current (and former) coworkers at Fuse‐
bill. Without you guys, I would not have been working with MVC, Bootstrap, and
Knockout.js every day for the past two years. As a team, I feel like we have learned so
much about each technology and how to use them to their maximum capabilities.

A final shout-out goes to the entire team at O’Reilly. Thank you for providing me this
opportunity to share my knowledge with the community. Kim, you did a fantastic job
ensuring that my technical explanations are easy to follow without losing the impor‐
tant details in the mix.

Preface | xv

PART I

Getting Started

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

CHAPTER 1

Introduction to MVC

MVC is an architecture pattern that stands for Model-View-Controller. My defini‐
tion of MVC is summarized as follows:

• The model manages the data for the application. Each model commonly repre‐
sents one or more tables within a database.

• The view contains the visual representation of the application. In websites, this is
commonly achieved with HTML, CSS, and JavaScript.

• The controller is the middleman between the model and the view. A typical con‐
troller would request data from the model and pass it to the view for use in dis‐
playing the data. When saving data, it would be the opposite. It would receive
data from the view and pass it to the model to save it.

ASP.NET MVC 5 is a framework that implements the Model-View-Controller (MVC)
architecture pattern.

The term MVC will be mentioned repeatedly throughout this book. In most scenar‐
ios, I will be referring to the MVC framework that implements the MVC pattern.

Creating Your First Project
Visual Studio offers a variety of templates that help you start your project. This book
will focus on two specific templates: MVC and Web API.

The MVC template allows the creation of web applications that use the Model-View-
Controller architecture pattern. This will be discussed in more detail throughout this
book.

The Web API template allows for the creation of RESTful web applications. REST is
another type of software architecture pattern that is commonly used for creating APIs
or client-server applications. Web API is easily integrated into the MVC architecture

1

pattern, which will allow reuse between your MVC and Web API projects, as will be
demonstrated later in this book.

For this first example, I will focus on the MVC template. From the Visual Studio Start
Page or from the File Menu, select the New Project option. As you can see, there are
many different types of projects that you can create. Under the Templates menu,
expand the Visual C# menu. From here, select the Web option. In my default installa‐
tion, I have only one option of an ASP.NET Web Application. Select this and enter a
project name in the space provided. I have chosen BootstrapIntroduction.

Once you have selected a project name, click the OK button. You are now presented
with several different Web templates. Select the MVC template. Once the MVC tem‐
plate is selected, you will notice additional options to include Web API and to include
a Unit Test project. For this example, I will leave them unselected.

With the MVC template, there are also four different Authentication options:

No Authentication
All pages of your website will be publicly available.

Individual User Accounts
With this option, your web application will allow users to register and log in by
creating their own username and password. It also provides several different
Social Login options, including Facebook, Twitter, Google, and Microsoft
Account. Any of the various scenarios will store the information in the member‐
ship database that is automatically created.

Organizational Accounts
With this option, your web application will integrate with Active Directory,
Microsoft Azure Active Directory, or Office 365 to secure pages within your
application.

Windows Authentication
With this option, your web application is secured using the Windows Authenti‐
cation IIS module. This is common for intranet applications where all of the user
accounts exist on the web server hosting the application.

For the purposes of this example, I have changed it to No Authentication, as shown in
Figure 1-1.

2 | Chapter 1: Introduction to MVC

Figure 1-1. Project creation

When you are ready, click OK to complete the project creation. Depending on the
speed of your computer, this may take one or two minutes while the project is being
configured and preloaded with many useful files and folders to help you get started.

Once completed, you will be able to select Start Debugging from the Debug menu.
This will launch your new web application in your default web browser.

When you look at the folders, you will notice that each role in MVC has its own
folder. The Views folder commonly contains a subfolder that matches the Controller
name because it typically contains more than one view to allow easy organization of
your files.

If you expand the Views folder, you will see two subfolders: Home and Shared. The
Home folder matches the HomeController that exists in the Controllers folder. The
Shared folder is used for views that contain common code between other views.

This includes layouts or partial views. Layouts are special views that contain the reus‐
able view on each page. A partial view is a reusable view that contains a subset of data
that can be included in one or more pages.

Creating Your First Project | 3

Figure 1-2. The default website

Figure 1-2 is a screenshot of the default website that is created with a new MVC
project. The menu contains three links: Home, About, and Contact. Let’s keep those
in mind as we begin exploring the code.

Examining the HomeController
Let’s start by looking at the controller. Under the Controllers folder is a file called
HomeController.cs, and it should look like Example 1-1.

Example 1-1. HomeController.cs

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 return View();
 }

4 | Chapter 1: Introduction to MVC

 public ActionResult About()
 {
 ViewBag.Message = "Your application description page.";

 return View();
 }

 public ActionResult Contact()
 {
 ViewBag.Message = "Your contact page.";

 return View();
 }
 }
}

The HomeController is a class that contains three methods: Index, About, and Con
tact. In MVC terms, these are commonly referred to as actions. An action named
Index is usually the main entry point for a controller. Notice how each action
matches the names of the links that were created with the exception of Home, because
that refers to the Index action.

All controllers in an MVC application will extend the base Controller class. Each
method in the class returns a type called ActionResult. In most scenarios, all of your
actions will return this. We will explore other return types in future examples.

The About and Contact actions also introduce the ViewBag property of the Control
ler class. This property allows you to dynamically pass data to your view. Example
1-2 will demonstrate how it is used within the view.

The ViewBag

The ViewBag property allows you to share data between your con‐
trollers and your views. This variable is defined as a dynamic type
and contains no predefined properties, which allows you to specify
any name for your property and have it contain any type of data.

Finally, each action is returned with a call to the View function. This method exists in
the Controller class that all controllers extend. It loads the view and executes the
Razor code contained within your .cshtml file. In Example 1-1, no parameters are
passed into the function, which means that, by default, MVC will look for a view with
the same name as the function.

Examining the HomeController | 5

Examining the Views
When you expand the Views folder, there is a subfolder called Home. This contains
three files: About.cshtml, Contact.cshtml, and Index.cshtml. Each file is named after its
action name in the controller. The extension .cshtml stands for C# HTML. These
views allow for Razor syntax, which is a combination of HTML mixed with C#. This
provides the ability to implement common coding techniques like conditional state‐
ments, loops, and outputting of dynamic data (such as the ViewBag property previ‐
ously mentioned).

Example 1-2 is the default About page that is created with the project. Elements that
use Razor begin with the @ symbol. When it is combined with a curly brace ({), this
allows for multiline C# code. In this example, it is setting the page title in the ViewBag
property to "About". The Title property on the ViewBag is commonly used in the
shared layout to set the title of the page that your browser shows. This example also
displays it within an h2 tag.

Example 1-2. About.cshtml

@{
 ViewBag.Title = "About";
}
<h2>@ViewBag.Title.</h2>
<h3>@ViewBag.Message</h3>

<p>Use this area to provide additional information.</p>

In addition to the Title property, the Message property in the ViewBag is shown in
an h3 tag. As you recall, this was set in the controller action for the About and Con
tact methods.

This is a great example of how Razor is interjected with standard HTML to produce
dynamic content when rendered to a browser.

You may notice that when you browse the About page there is a lot more HTML than
just these few elements. This is accomplished with a shared layout. By default, all
views are placed within a default template, which is under the other folder within
Views called Shared. If you expand this folder, you will see the _Layout.cshtml file, as
shown in Example 1-3.

Example 1-3. _Layout.cshtml

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />

6 | Chapter 1: Introduction to MVC

http://bit.ly/razor-syntax

 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>@ViewBag.Title - My ASP.NET Application</title>
 @Styles.Render("~/Content/css")
 @Scripts.Render("~/bundles/modernizr")
</head>
<body>
 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse"
 data-target=".navbar-collapse">

 </button>
 @Html.ActionLink("Application name", "Index", "Home",
 new { area = "" }, new { @class = "navbar-brand" })
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

 </div>
 </div>
 </div>
 <div class="container body-content">
 @RenderBody()
 <hr />
 <footer>
 <p>© @DateTime.Now.Year - My ASP.NET Application</p>
 </footer>
 </div>

 @Scripts.Render("~/bundles/jquery")
 @Scripts.Render("~/bundles/bootstrap")
 @RenderSection("scripts", required: false)
</body>
</html>

The default layout contains the reusable HTML that appears on every page within the
site (elements such as the page title, header, footer, CSS, JavaScript, etc.).

The view that is being rendered is inserted into this layout when the function Render
Body is called via Razor code.

There are a lot of other things happening in this shared layout. It is using several
helper classes provided by the MVC framework, such as the HtmlHelper class to cre‐
ate links, the Scripts class to include JavaScript files, the Styles class to include CSS

Examining the Views | 7

http://bit.ly/htmlhelper
http://bit.ly/scripts-render
http://bit.ly/styles-render

files, and RenderSection to allow your views to mark specific content to be inserted
in a specific spot in the shared layout. This will be shown in Chapter 2.

Understanding the URL Structure
When you launched the default website, three links were created:

• The Home link. This took you to the root of the site (/).
• The About link. This took you to /Home/About.
• The Contact link. This took you to /Home/Contact.

These links work because when an MVC project is first created, a default route is
configured to make them work. Routes allow your website to tell MVC how it should
map a URL to a specific controller and action within your project.

Routes are configured in the App_Start/RouteConfig.cs file. Example 1-4 shows the
default route that is configured with a new MVC project.

Example 1-4. Default route

routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index", id = UrlParameter.Optional }
);

Three important things are defined in this route config:

• A name. Each route must have a unique name.
• The URL. This is a relative URL after the website’s domain name. The URL can

contain a mix of static text and variables.
• Default configuration. If any of the variables in the URL are not provided,

defaults may be set for them.

If we reanalyze the links mentioned earlier, they work because:

• When we go to / the URL contains no controller, action, or ID. The defaults that
are set indicate that it will go to the HomeController, the Index action, and the
ID does not need to exist.

• When we go to /Home/About and /Home/Contact, no defaults are used because
both the controller and action are specified in the URL.

In fact, the Home link can also be accessed via /Home and /Home/Index as well. How‐
ever, when URLs are created within a view, MVC picks the shortest, most accurate
URL, e.g., just /.

8 | Chapter 1: Introduction to MVC

With this route, you can create a new controller and/or action, and it can automati‐
cally be accessed by its name and action name.

Summary
If you are new to MVC, this chapter might feel overwhelming. The predefined MVC
templates in Visual Studio are quite extensive and provide developers with a large
head start in their projects.

Because of this, it’s difficult to cover every detail of what gets created. In this intro‐
ductory chapter, I have covered many of the core features that will get you started.

There are many more details to cover with Models-Views-Controllers. As this book
progresses and covers more advanced topics, they will be explored thoroughly in
those chapters.

Summary | 9

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

CHAPTER 2

Introduction to Bootstrap

Bootstrap is an HTML, CSS, and JavaScript framework that creates consistent-
looking, responsive websites. Bootstrap is automatically installed with MVC 5 appli‐
cations and is immediately seen in action within the default layout that was created in
Chapter 1. Through the use of basic HTML styled with specific CSS classes, it’s easy to
create very nice-looking web pages.

This chapter will explore the many common components of Bootstrap, such as
menus, buttons, and alerts. You can visit the Bootstrap Components listing for a more
in-depth overview of the plethora of components that have been created. Some of the
more complex components that require a combination of JavaScript, HTML, and CSS
will be covered in future chapters when they are integrated with Knockout.js.

Examining the Default Menu
The project that we created in Chapter 1 contains an example of one of Bootstrap’s
menus with a responsive design. Let’s explore its structure now. It is contained in
Views/Shared/_Layout.cshtml. When this menu is rendered in a browser, it looks like
Figure 2-1.

Figure 2-1. The default menu

Defining a menu with Bootstrap requires a div tag with the class of navbar as shown
in Example 2-1.

11

http://getbootstrap.com/components/

Example 2-1. Starting the menu

<div class="navbar navbar-inverse navbar-fixed-top">
</div>

This example also specifies two additional classes: navbar-inverse and navbar-
fixed-top. By specifying the navbar-inverse class, Bootstrap will make the menu
the inverse of the default coloring. With the default theme, that means black instead
of transparent. The navbar-fixed-top class will cause the menu to always remain
fixed at the top of the page, meaning if the content allows you to scroll down, the
menu will remain visible at the top.

The list of navigational elements are commonly defined in a list tag (ul) attributed
with a class called nav. Each navigation element is then defined in its own list item or
li tag as shown in Example 2-2.

Example 2-2. Defining the menu links

<div class="navbar navbar-inverse navbar-fixed-top">
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

 </div>
</div>

As I’ve mentioned, Bootstrap provides a responsive web layout. This means when the
website is viewed in a browser with a different screen resolution, the page will adjust
automatically.

As shown in Example 2-2, just above the ul tag that defines the three main links is
a div with the class navbar-collapse. When this page is viewed on a small device (or
you resize your browser), the menu will automatically collapse to ensure that the
menu fits properly in the provided resolution. This example adds a second class to
the div of collapse, which will make the menu completely hidden if it won’t fit on a
single line.

Of course, this wouldn’t provide very good usability, and this example has already
thought of that. It adds a little button on the right-hand side that, when clicked, tog‐
gles the display of the three buttons as shown in Figure 2-2.

12 | Chapter 2: Introduction to Bootstrap

Figure 2-2. A collapsed menu

The button to show and hide the menu is created with several different attributes, so
when clicked, the menu is shown as demonstrated in Example 2-3.

Example 2-3. Button for collapsed menu

 <div class="navbar navbar-inverse navbar-fixed-top">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle" data-toggle="collapse"
 data-target=".navbar-collapse">

 </button>
 @Html.ActionLink("Application name", "Index", "Home",
 new { area = "" }, new { @class = "navbar-brand" })
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

 </div>
 </div>
</div>

Previously, everything was accomplished via CSS classes on HTML elements. The
collapse button introduces data attributes that are used in the JavaScript provided by
Bootstrap. The data-toggle attribute with a value of collapse indicates that it
should remain invisible until the menu requires collapsing. The data-

target attribute indicates which element that is currently being hidden should be dis‐
played (or hidden) when the button is clicked; in this case, it is .navbar-collapse.
The button is styled and placed on the right-hand side by the class navbar-toggle.

Examining the Default Menu | 13

The Data Target

Notice that in Example 2-3 the class navbar-collapse is prefixed
with a period (.). The value within the attribute is used within a
jQuery selector to find the element and show or hide it. If the menu
were identified by an ID, it would require a hash tag (#) prefix
before the ID assigned to it.

Now enter the power of the many different Bootstrap components. In Example
2-2, the ul tag contains a secondary class of navbar-nav. Bootstrap provides several
different classes that can create a variety of different-looking menus.

If you replace the navbar-nav class with nav-pills, a different-looking menu is dis‐
played. I also added the class active to the first li item (see Example 2-4).

Example 2-4. Changing to pills stylized menu

<ul class="nav nav-pills">
 <li class="active">@Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

When rendered, it looks slightly different as shown in Figure 2-3.

Figure 2-3. A pill menu

A Menu with Drop-Downs and a Search Box
The default menu that was created by MVC is pretty comprehensive. However, Boot‐
strap provides a lot more functionality that can be implemented in a menu. This next
example will explore a more complex menu that will contain a mix of navigation ele‐
ments with and without drop-downs, as well as a search box with a button.

Just like the default menu, starting a new menu requires the navbar class as shown in
Example 2-5. This time, it will use the default colors (instead of the inverse), and it
won’t be fixed to the top.

Example 2-5. Starting the menu

<nav class="navbar navbar-default" role="navigation">

</nav>

14 | Chapter 2: Introduction to Bootstrap

The next thing that is required is the “branding” of the application as shown in
Example 2-6. It will be contained in a separate element with the button to show the
menu when it’s collapsed, to ensure that it is grouped together when the resolution is
too small to show the full menu.

Example 2-6. Menu with branding

<nav class="navbar navbar-default" role="navigation">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-toggle="collapse"
 data-target=".navbar-collapse">
 Toggle navigation

 </button>
 Application name
 </div>
</nav>

This contains the same button as shown in the Figure 2-2 that will be displayed when
the menu is collapsed. Notice that the links are defined differently. Previously, they
were completely defined with Razor. However, the next links (in Example 2-7)
require HTML within the link text, so it’s better to have complete control over the a
tag. It is still important to let MVC compile the URL for us, so it’s using the Url
Helper to build the link instead of the HtmlHelper.

Next up are the three links to Home, About, and Contact as shown in Example 2-7.
About and Contact have been updated to include drop-down links to fictitious sub‐
pages. The About drop-down even contains a nice divider between the second and
third link.

Example 2-7. Drop-down menus

<nav class="navbar navbar-default" role="navigation">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-toggle="collapse"
 data-target=".navbar-collapse">
 Toggle navigation

 </button>
 Application name
 </div>
 <div class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 <li class="active">Home

A Menu with Drop-Downs and a Search Box | 15

 <li class="dropdown">
 <a href="@Url.Action("About", "Home")" class="dropdown-toggle"
 data-toggle="dropdown">About
 <ul class="dropdown-menu" role="menu">
 The Executive Team
 Who We Are
 <li class="divider">
 Jobs

 <li class="dropdown">
 <a href="@Url.Action("Contact", "Home")" class="dropdown-toggle"
 data-toggle="dropdown">Contact
 <ul class="dropdown-menu" role="menu">
 By Mail
 By E-mail

 </div>
</nav>

The li elements for drop-downs are tagged with the dropdown class. The link is then
affixed with the dropdown-toggle class and the data-toggle of dropdown. Beneath
the link is an unordered list with each link in a li tag. Inside the About drop-down is
an empty li tag that contains the class divider.

To complete this menu, a search form will be created and aligned to the right side of
the menu as shown in Example 2-8.

Example 2-8. The search form

<nav class="navbar navbar-default" role="navigation">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle collapsed" data-toggle="collapse"
 data-target=".navbar-collapse">
 Toggle navigation

 </button>
 Application name
 </div>
 <div class="collapse navbar-collapse">
 <ul class="nav navbar-nav">
 <li class="active">Home
 <li class="dropdown">
 <a href="@Url.Action("About", "Home")" class="dropdown-toggle"
 data-toggle="dropdown">About
 <ul class="dropdown-menu" role="menu">
 The Executive Team

16 | Chapter 2: Introduction to Bootstrap

 Who We Are
 <li class="divider">
 Jobs

 <li class="dropdown">
 <a href="@Url.Action("Contact", "Home")" class="dropdown-toggle"
 data-toggle="dropdown">Contact
 <ul class="dropdown-menu" role="menu">
 By Mail
 By E-mail

 <form class="navbar-form navbar-right" role="search">
 <div class="form-group">
 <input type="text" class="form-control" placeholder="Search">
 </div>
 <button type="submit" class="btn btn-default">Submit</button>
 </form>
 </div>
</nav>

The final menu looks (in my opinion) really slick (shown in Figure 2-4) with an
inline search form aligned to the far right of the menu.

Figure 2-4. The final menu

The inline form and alignment are accomplished by adding the navbar-form and
navbar-right classes to the form tag as shown in Example 2-8.

Buttons
Another very common thing on any website are buttons. Bootstrap has built six dif‐
ferent themed buttons. They are named and look as shown in Figure 2-5.

Figure 2-5. The six button styles

Buttons | 17

Note the names: Default, Primary, Success, Info, Warning, and Danger. These are
used in several other components as well, and the colors remain consistent between
them. Example 2-9 demonstrates how to create the buttons shown in Figure 2-5.

Example 2-9. Making the buttons

<button type="button" class="btn btn-default">Default</button>
<button type="button" class="btn btn-primary">Primary</button>
<button type="button" class="btn btn-success">Success</button>
<button type="button" class="btn btn-info">Info</button>
<button type="button" class="btn btn-warning">Warning</button>
<button type="button" class="btn btn-danger">Danger</button>

Each button is created by specifying two classes. The first is btn, and it is consistent
between all of the buttons. Next is a class that begins with btn- and finishes with the
type of button being created, e.g., success or danger.

These classes are not limited to only HTML button tags. They can be applied with
links or submit buttons as well.

Just like the menu created earlier, buttons can be created with drop-downs as well.
This provides a nice solution when you require a selection from the user where multi‐
ple options are available.

Another nice feature of buttons is that you can group them together. Example 2-10
will explore these options mixed together.

Example 2-10. Button group with drop-down

<div class="btn-group">
 <button type="button" class="btn btn-default">Default</button>
 <button type="button" class="btn btn-primary">Primary</button>
 <button type="button" class="btn btn-success">Success</button>
 <button type="button" class="btn btn-success dropdown-toggle"
 data-toggle="dropdown">

 </button>
 <ul class="dropdown-menu" role="menu">
 Option 1
 Option 2

</div>

The result of this button group looks like Figure 2-6.

Figure 2-6. A button group

18 | Chapter 2: Introduction to Bootstrap

The drop-down in the button is accomplished identically to the menu—the list of
options are contained within a ul tag, and each option is contained within a li tag.
The drop-down icon is its own button that contains a span tag with caret as the class
name. Because the buttons are contained within a div with class btn-group, they are
tightly coupled together. This gives the appearance that the button with “Success” and
the drop-down icon are the same button, even though it is implemented with a two-
button tags.

Alerts
Prior to using Bootstrap, I didn’t often deal with alert messages because I felt the
implementation effort exceeded the value they provided. Bootstrap definitely allevi‐
ates this concern.

Figure 2-7 demonstrates the four different types of alert messages. Alert messages
optionally include the ability to be dismissed with the “x” in the right corner, which
allows users to hide the message once they have read it.

Figure 2-7. Alert messages

Example 2-11. Dismissible alert messages

<div class="alert alert-success alert-dismissible" role="alert">
 <button type="button" class="close" data-dismiss="alert">
 ×Close
 </button>
 Success!
</div>

Example 2-11 demonstrates that creating an alert is quite similar to creating buttons
when dealing with the styling. A success button would contain two classes: btn and
btn-success. Alerts work the same way, replacing btn with alert.

Alerts | 19

Note that, by default, alerts do not support the default and primary classes that but‐
tons support.

Like buttons, if I wanted to create a warning alert, or a danger alert I would
replace alert-success with alert-warning or alert-danger, respectively.

A third class is added to this alert message: alert-dismissible. Inside the div tag is
a button with a class of close and an attribute data-dismiss with the value alert.
This combination will allow the Bootstrap CSS and JavaScript to stylize and make the
alert box disappear when the user clicks the x in the top-right corner.

Themes
As shown when creating buttons and alert boxes, Bootstrap leverages common class
names that are converted to a consistent color theme. If you are adventurous, you can
edit any of the coloring, spacing, and so on by editing the Bootstrap CSS. In MVC,
the file is located in the Content directory and appropriately named bootstrap.css.

Because of Bootstrap’s consistent nature, there are hundreds of different themes that
people have created to further enhance the built-in components.

Bootstrap theming is outside the scope of this book; however, if you search for Boot‐
strap themes on Google, you will find many different types. Many of them are free
and some of them cost a few dollars.

Summary
The examples in this chapter barely scratch the surface of the more than 70 compo‐
nents that are provided by Bootstrap. There are great components that deal with pagi‐
nating of data, tables or grids of data, form elements, etc. Throughout the remainder
of this book, I will explore a variety of these components while integrating them with
MVC.

This chapter contains example HTML for multiple menus, buttons, button groups,
and alert messages that is barely more than 50 lines of code. If you were to create the
same styling without Bootstrap, you would also need to write several hundred lines of
CSS and accompanying JavaScript to make the drop-down menus and dismissible
alert messages!

In my opinion, this makes using Bootstrap in all of my projects a no-brainer.

20 | Chapter 2: Introduction to Bootstrap

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

CHAPTER 3

Introduction to Knockout.js

Knockout.js is an open source JavaScript library that allows you to create dynamic
and rich web applications. It is built with the Model-View-ViewModel (MVVM) pat‐
tern. Knockout makes it really simple to implement a complex user interface that
responds to user interactions.

I like Knockout because it is one of the most lightweight JavaScript libraries available
today. It also doesn’t try to be an all-in-one framework. It serves a single purpose:
 data binding your ViewModel to your user interface.

Implementing Knockout involves three distinct things: a view that contains HTML
and CSS elements that get data-bound to it, a ViewModel that contains the data to
bind to the view, and telling Knockout to perform the data binding to the view with
the ViewModel.

Installing Knockout.js
Knockout.js can be installed in one of two ways:

• Downloading the latest version from the Knockout downloads page.
• Installing Knockout via the NuGet Package Manager.

My preference is the NuGet Package Manager because it makes it easier to update to a
new version if/when a newer version is available.

The NuGet Package Manager is integrated directly into Visual Studio and allows
developers to easily install (or create their own) packages to install and manage third-
party dependencies.

To install Knockout, perform the following operations:

21

http://knockoutjs.com/downloads

1. Click the Tools menu.
2. Click the NuGet Package Manager submenu.
3. Click the NuGet Packages for Solution menu.
4. On the left, click Online if it is not already selected.
5. In the search box on the top right, type knockoutjs.
6. The first package is the Knockout framework. Click the Install button for this

package (see Figure 3-1).
7. Next, choose which project to install it on. Assuming that you have just the one

project, the default option of “All” is OK. If, in the future, you have multiple
projects, be sure to select the project that contains your MVC application.

8. Once the package is installed, click the Close button on the NuGet Package
Manager.

Figure 3-1. Installing the Knockout package

With the Knockout library downloaded and added to the project, it becomes a simple
matter of including the script.

In the Views/Shared/_Layout.cshtml file, add the code from Example 3-1 just above
the @RenderSection located just above the ending body tag (</body>).

Example 3-1. Including the Knockout library

<script src="~/Scripts/knockout-3.2.0.js" type="text/javascript"></script>

22 | Chapter 3: Introduction to Knockout.js

You may notice that right above this line there is Razor code that starts
with @Scripts.Render. This is another way of including JavaScript files; however, it
requires creating a JavaScript bundle. Bundling and minification of JavaScript files
will be covered in Chapter 12.

NuGet Package Updates

If you reopen the NuGet Package Manager and select the Updates
menu option on the left, you will see a long list of packages that
require updating.
These packages were installed by default when the project was cre‐
ated through the Visual Studio template. Because the template uses
fixed versions of the package and was created many months ago, it’s
possible that the referenced libraries have been updated.
Before beginning a new project, it’s a great idea to update any pack‐
ages that you will be using. Likewise, if there are dependencies that
you will not be using, it’s a good idea to remove them and clean up
the included packages.

A Basic Example
Now that the Knockout library is installed, let’s get right to an example of using it.
Knockout works with ViewModels, which are comprised of JavaScript code that is
executed by Knockout and bound to the view. Many different ViewModels will be
created throughout this book.

Example 3-2 creates a new Razor view called Basic.cshtml and is placed inside the
Views/Home folder.

Example 3-2. A basic ViewModel

@{
 ViewBag.Title = "Basic";
}

<h2>Hello </h2>

@section Scripts {
<script>
 function ViewModel() {
 this.name = 'Eric McQuiggan';
 };

 var viewModel = new ViewModel();
 ko.applyBindings(viewModel);
</script>
}

A Basic Example | 23

I mentioned in the introduction that there are three important pieces that make
Knockout work:

• HTML and CSS that contain elements that are data bound to it from the View‐
Model. This example is using a span tag that contains an HTML attribute
called data-bind with the contents of text: name.

• The ViewModel that contains the properties and/or functions that are used in the
data binding. In this example, it is a function called ViewModel that contains a
single variable called name that is set to the value of Eric McQuiggan.

• The final piece is to tell Knockout to execute the bindings on the View with a
specific ViewModel. In this example, the ViewModel function is instantiated like a
class and stored in a variable called viewModel. This variable is then passed to
the ko.applyBindings function, which takes the name variable from the View‐
Model and replaces the contents within the span tag with the contents of the vari‐
able.

@section Scripts

You might have noticed that the JavaScript was placed inside the
following Razor code: @section Scripts { }. This is a good code
practice within a view because inside the shared layout right below
where the Knockout library was included in Example 3-1 is
the @RenderSection of this section. When the view is executed, the
Razor engine will extract the JavaScript and place it there when the
view is rendered in the browser.

Before this example can be run, the HomeController must be updated to call the
newly created view. Example 3-3 contains an updated controller with a new action
that will render the view.

Example 3-3. Updated HomeController

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction.Controllers
{
 public class HomeController : Controller
 {
 public ActionResult Index()
 {
 return View();

24 | Chapter 3: Introduction to Knockout.js

 }

 public ActionResult About()
 {
 ViewBag.Message = "Your application description page.";

 return View();
 }

 public ActionResult Contact()
 {
 ViewBag.Message = "Your contact page.";

 return View();
 }

 public ActionResult Basic()
 {
 return View();
 }
 }
}

You can now debug the project by pressing the default shortcut key of F5. Visual Stu‐
dio will compile your project and launch your default web browser with a URL that
will look something like http://localhost:50955/. Adding Home/Basic to the end of the
URL will display the newly created view and execute the Knockout code as shown in
Figure 3-2.

Figure 3-2. Hello world example

What Is MVVM?
The Model-View-ViewModel (MVVM) design pattern is based largely on the Model-
View-Controller (MVC) pattern. In fact, the MV is shared between them. It’s the
ViewModel that really separates the two.

What Is MVVM? | 25

MVVM was designed to implement (as shown in Figure 3-3) data binding between
your ViewModel and your View. This is what Knockout does for you, and it does it
very well. It is accomplished using some simple-to-implement HTML attributes and a
JavaScript ViewModel as shown in Example 3-2.

The most important thing to remember when you are building ViewModels is that
they should be organized to make it easy to represent how your View uses the data.
This is an important distinction because Models in MVC are typically represented in
how they are stored in the database.

Figure 3-3. Understanding MVVM

The most common example of this is a name. As shown in Example 3-2, a single
name variable contains both the first and last name of the person. However, if we
were to collect a person’s name with a form, I would separate it into two fields. If the
name was left as two fields when used for display, it would require maintaining two
variables and rendering them both on-screen instead of amalgamating them into a
single variable representing the user’s full name.

In this example, the Model (in MVC) would contain a first and last name, whereas
the ViewModel would contain a single field created from the two fields.

Creating ViewModels
A ViewModel can be any type of JavaScript variable. Example 3-4 demonstrates this
by replacing the ViewModel that was created in Example 3-2 with a simple JavaScript
variable that contains the same property name.

Example 3-4. Another ViewModel

<script>
 var viewModel = {
 name: 'Eric McQuiggan'

26 | Chapter 3: Introduction to Knockout.js

 };

 ko.applyBindings(viewModel);
</script>

Running this example will output the same result as Figure 3-2. Typically, when I
create ViewModels, I create simple or complex JavaScript classes that allow me to lev‐
erage an object-oriented style of programming (functions, properties, abstraction,
etc.).

Object-Oriented Programming with JavaScript

JavaScript is a fully object-oriented programming (OOP) language
based on prototyping. It doesn’t contain class statements like C++,
C#, or PHP; however, JavaScript functions can be used to simulate
the same behavior.
It also offers full support of OOP language features such as name‐
spaces, objects, properties, inheritance, abstraction, etc.
If you are new to JavaScript or object-oriented programming, the
Mozilla Developer Network (MDN) offers a great introductory
article.

In the previous examples, the name property was hardcoded inside the ViewModel.
It’s more common that this data would be populated from the MVC application.
Example 3-5 will create a new view called Advanced.cshtml and place it within the
same Views/Home folder.

Example 3-5. ViewModel that accepts the name as input

@model BootstrapIntroduction.Models.Person
@{
 ViewBag.Title = "Advanced";
}

<h2>Hello </h2>

@section Scripts {
 <script>
 function ViewModel(firstName, lastName) {
 var self = this;

 self.name = firstName + ' ' + lastName;

 self.getName = function () {
 return self.name;
 };
 };

Creating ViewModels | 27

http://mzl.la/1u0uge8
http://mzl.la/1u0uge8

 var viewModel = new ViewModel('@Model.FirstName', '@Model.LastName');
 ko.applyBindings(viewModel);
 </script>
}

Once again, executing Knockout requires three important steps:

1. HTML and CSS contain elements that are to be data bound from the ViewModel.
Similar to Example 3-2, a span tag is used, but this time the text binding is call‐
ing the getName function in the ViewModel. This function is a wrapper to
the name property.

2. The ViewModel that contains the variables and functions that will be bound to
the HTML. Example 3-5 is slightly different from Example 3-2 because it accepts
the first name and last name as variables in the constructor to the ViewModel.
This is then concatenated and stored to the name property and accessed by
the getName function.

3. And finally, the ViewModel is executed by Knockout when the ko.applyBind
ings function is called with the ViewModel.

When the ViewModel is created, it is populating the name with Razor code to access
the Model that is associated with this view (the person model). This will be set in
Example 3-6 when the HomeController is updated. It’s important that the Razor syn‐
tax is contained within quotes because when this is parsed by Razor, it will be ren‐
dered as JavaScript code. Because it is contained within quotes, it will be executed as a
JavaScript string instead of a variable, which would cause an error because it doesn’t
exist.

Self = This

You may be wondering why the first line of my ViewModel is var
self = this;. By creating a variable called self and assigning it
the variable this, it provides me with a property that I can use
inside methods of my class and easily reference other methods or
properties in my class.

Before running this example, the HomeController must be updated to add a new
function called Advanced (as shown in Example 3-6). This function creates a new Per‐
son model (shown in Example 3-7) and provides this object as a parameter to the
View function. The data in this model is used by the view when the ViewModel is
constructed in the JavaScript.

28 | Chapter 3: Introduction to Knockout.js

Example 3-6. Advanced function to be placed in HomeController

 public ActionResult Advanced()
 {
 var person = new Person
 {
 FirstName = "Eric",
 LastName = "McQuiggan"
 };

 return View(person);
 }

And finally, a Person.cs file should be created inside of the Models folder that contains
the code from Example 3-7.

Example 3-7. The Person model

namespace BootstrapIntroduction.Models
{
 public class Person
 {
 public string FirstName { get; set; }

 public string LastName { get; set; }
 }
}

Running this example will produce the same output as Figure 3-2.

Summary
This introduction to Knockout only demonstrated one type of data binding that
Knockout supports (the text binding). Knockout contains many other data-binding
types that will be explored throughout the rest of this book.

Summary | 29

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

CHAPTER 4

Working with a Database

There are many options when it comes to working with a database. You can choose
anything from SQL Server, Oracle, MySQL, or even a Microsoft Access database! My
personal preference is SQL Server. I don’t claim it to be the best; however, I do think it
is the best choice when working with MVC. ASP.NET and the MVC framework are
built and maintained by Microsoft. Microsoft is also the owner of SQL Server.
Because of this, I think it provides the best support.

Just like databases, there are a variety of ways to integrate a database into your MVC
application. You can write your own SQL statements and access the database by using
the classes under the SqlClient namespace. Or you can use an ORM (Object-
Relational-Mapper) that wraps your database access.

What Is an ORM?

An ORM converts a database table into a model, which allows you
to use it like any other class in a project. For example, in Chapter 3,
a Person class was created. With an ORM, this class could be map‐
ped to a Person table.
When you fetch the object from your database, the ORM would
return the Person class populated with the data. Likewise, saving
data to the database would involve creating a new Person object
populated with the data to save.

My preference is the latter. A framework like Entity Framework (EF) makes it easy to
create, access, and maintain your database with an MVC project.

There are several other frameworks like EF, such as NHibernate; however, like SQL
Server, Entity Framework is built and maintained by Microsoft, which will provide
better support within your application for compatibility.

31

http://bit.ly/sql-client

Chapter 5 will demonstrate this with Visual Studio’s built-in support for Entity
Framework when creating controllers and views.

Introduction to Entity Framework
Entity Framework is an ORM that provides easy access to your database using LINQ
that is written similarly to SQL. EF converts the LINQ to SQL and executes against
your database. When the SQL is executed, EF takes the response of your query and
converts the results into your models for easy access within your code.

Entity Framework provides three different workflows that you can set up and use
within your project:

Database First
This flow is for when you have an existing database or want complete control
over how your database is created and maintained. When you use this flow, you
create an EDMX file that stores your data schema, data models, and the relation‐
ship between your schema and models in XML. Visual Studio provides a very
nice designer that visually displays your model and relationships within it.

Model First
This flow is quite similar to Database First in that your models and relationships
are maintained within an EDMX file. Instead of the EDMX being generated auto‐
matically from a database design, you manually create models and define inter-
model relationships using the Visual Studio designer. Once finished, you tell EF
to create the necessary database tables, columns, and primary and foreign keys.
Just like in Database First, the EDMX stores the information in XML.

Code First
With Code First, you can have Entity Framework automatically create your data‐
base. Or if you have an existing database, you can use the Entity Framework tools
to create your initial Code First classes. When using Code First, Entity Frame‐
work provides a nice toolset that allows you to perform Code First Migrations to
automatically update your database when your models change.

The power of the Code First Migrations makes this option extremely convenient for
any developer who doesn’t require complete control over how the database tables are
created and maintained.

Database First makes it very convenient for the opposite scenario—when you want
complete control over all database changes, but still want to leverage the power of an
ORM.

The next two sections will explore both of these workflows, which will allow you to
make your own decision for your projects.

32 | Chapter 4: Working with a Database

Installing Entity Framework is quite similar to how Knockout was installed using the
NuGet Package Manager. To install EF, right-click your project in Visual Studio and
select Manage NuGet Packages. Once selected, the NuGet Package Manager will be
opened. If it is not already selected, choose the Online option from the left-hand side.
Because Entity Framework is so popular, it is often the first result returned. If it is
not, type “Entity Framework” in the search box on the right. Once you find it, click
the Install button. You will need to accept the licenses agreement before it will be
installed in your application.

To demonstrate the differences between Code First and Database First, the next two
sections will build a data model that contains a Book model and a related Author
model. In this relationship, a Book can have one Author, while an Author can have
many Books.

It’s time to put the M in MVC! Whether you choose Code First or Database First,
interacting with your models will be the same. This will be demonstrated in the next
chapter. The remainder of this chapter will focus on creating your models.

Code First
When you use Code First and you don’t have an existing database, you need to man‐
ually create your Model classes. As mentioned, the example model consists of books
and authors. To begin, create a new file called Book.cs inside of the Models directory.
A model is simply a new class with one property per column in your table. Example
4-1 contains the Book model.

Example 4-1. The Book model

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.Models
{
 public class Book
 {
 public int Id { get; set; }

 public int AuthorId { get; set; }

 public string Title { get; set; }

 public string Isbn { get; set; }

 public string Synopsis { get; set; }

Code First | 33

 public string Description { get; set; }

 public string ImageUrl { get; set; }

 public virtual Author Author { get; set; }
 }
}

If you try to build your project, it will error out because the Book model contains a
reference to the Author model (shown in Example 4-2). Before this code will compile,
you must create the Author model, so create a new file called Author.cs and add it to
the Models directory.

Example 4-2. The Author model

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.Models
{
 public class Author
 {
 public int Id { get; set; }

 public string FirstName { get; set; }

 public string LastName { get; set; }

 public string Biography { get; set; }

 public virtual ICollection<Book> Books { get; set; }
 }
}

In our data model, a Book can contain one Author. You define this in the Book model
by creating the property AuthorId. You also create a virtual property to the Author
model, which provides the ability to access the Author model directly from the Book
model. Unlike the Book model, the Author model can contain one or more books.
Thus, it is defined as a collection of the Book model. When an Author model is
accessed, the virtual collection of books provides the ability to display the list of
books for a specific author.

34 | Chapter 4: Working with a Database

Virtual Properties and Lazy Loading

It’s quite common to define navigational properties in a model to
be virtual. When a navigation property is defined as virtual, it can
take advantage of certain Entity Framework functionality. The
most common one is lazy loading.
Lazy loading is a nice feature of many ORMs because it allows you
to dynamically access related data from a model. It will not unnec‐
essarily fetch the related data until it is actually accessed, thus
reducing the up-front querying of data from the database.

Once the models are created, it’s time to create a class that maintains your Entity
Framework Database Context. The EF context is a lot like a controller in the MVC
pattern because it coordinates your data models to the database. It is quite common
for a controller to create the DbContext. The controller would use your DbContext
class to fetch the model and pass it to the view.

It’s quite common for large projects to have more than one EF context class because
you can logically group your models together in one or more contexts. To aid with
code organization, it’s a good idea to create a new folder in which to store your EF
contexts. A common folder name is DAL, which stands for Data Access Layer.

With the DAL folder created, you can create a new file called BookContext.cs inside of
it. The BookContext (as shown in Example 4-3) contains one DbSet property per
model in the context. Quite commonly, a DbSet is related to a table in the database,
and the model represents one row in the table.

Example 4-3. The BookContext

using BootstrapIntroduction.Models;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Data.Entity.ModelConfiguration.Conventions;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.DAL
{
 public class BookContext : DbContext
 {
 public BookContext() : base("BookContext")
 {

 }

 public DbSet<Book> Books { get; set; }

Code First | 35

 public DbSet<Author> Authors { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 base.OnModelCreating(modelBuilder);
 }
 }
}

The BookContext is a class that extends the DbContext class from Entity Framework.
The DbContext class is what allows querying the database. The BookContext class
contains an empty constructor that calls the base constructor with the string "Book
Context". The DbContext class will use this string to get the connection string from
the Web.config file so that it can connect to your database.

In this class, I’ve also added a function that overrides the default OnModelCreat
ing function. By overriding this function, I can specify different options for how I
want my tables and columns created inside my database. In Example 4-3, I’ve told EF
to remove the convention to pluralize my table names.

Conventions

Entity Framework has a lot of built-in conventions to make data‐
base creation easy when using Code First. For example, fields
named Id are automatically recognized as primary keys. Likewise,
fields with a related class and Id are created as foreign keys. Exam‐
ple 4-1 contains an example of this with the AuthorId property.
When EF creates the Book table, it will automatically create a for‐
eign key from AuthorId to the Id of the Author table.
Any of these conventions can be overridden, as demonstrated in
Example 4-3, by removing the default to pluralize table names.

Example 4-4 contains an example connection string named BookContext that can be
added to the Web.config file located in the root of the project. This connection string
will use a SQL Server Express LocalDB Database. LocalDB is a lightweight version of
SQL Server Express that stores your data inside of MDF files contained within the
App_Data folder of your project. This is a convenient option for development pur‐
poses because it is installed by default with Visual Studio.

Example 4-4. BookContext connection string

 <connectionStrings>
 <add name="BookContext" connectionString=
 "Data Source=(LocalDb)\v11.0;

36 | Chapter 4: Working with a Database

http://msdn.microsoft.com/en-us/library/system.data.entity.dbcontext(v=VS.103).aspx

 Initial Catalog=BootstrapIntroduction;
 Integrated Security=SSPI;"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

The connection string can be placed anywhere within your Web.config file inside of
the configuration XML tags. I commonly place mine right below the configSec
tions and above the appSettings section.

Using a Different Database?

If you want to use a different database than the LocalDb, you will
need to update the connection string appropriately. You can find
more information on Entity Framework Connection Strings on
MSDN.

The models and EF context have now been successfully configured. The next chapter
will demonstrate how to add, edit, delete, and fetch data from it.

Database First
For Database First, instead of creating classes to generate the database, you must cre‐
ate the database manually, or you can use an existing database if you have one. Just
like in Code First, you can use a LocalDb database for Database First as well.

Let’s begin by creating a new LocalDb database. With Visual Studio open, follow these
steps:

1. Click View → Server Explorer (Ctrl-Alt-S).
2. Right-click Data Connections and select Add Connection.
3. For the Data Source, select Microsoft SQL Server. There is a checkbox that will let

you always use this selection in the future to speed up the process. Click Con‐
tinue to proceed.

4. The Add Connection dialog will be displayed. See Figure 4-1 for the options I
used.

Database First | 37

http://bit.ly/conn-string

Figure 4-1. The Add Connection dialog box

5. If the database you chose does not exist, you will be prompted to create it. Select
Yes to continue.
The newly created database will now appear under the Data Connections.

With the database created, you can now create tables. Example 4-5 and Example 4-6
contain the SQL to create the Author and Book tables, respectively. To execute the
SQL against the database, right-click the BootstrapIntroduction database and select
New Query.

Example 4-5. Author table

 CREATE TABLE [dbo].[Author] (
 [Id] INT IDENTITY (1, 1) NOT NULL,
 [FirstName] NVARCHAR (200) NULL,
 [LastName] NVARCHAR (200) NULL,

38 | Chapter 4: Working with a Database

 [Biography] NVARCHAR (2000) NULL,
 CONSTRAINT [PK_Author] PRIMARY KEY CLUSTERED ([Id] ASC)
);

Click the green play button or press Ctrl-Shift-E to execute the SQL script.

Example 4-6. Book table

CREATE TABLE [dbo].[Book] (
 [Id] INT IDENTITY (1, 1) NOT NULL,
 [AuthorId] INT NOT NULL,
 [Title] NVARCHAR (200) NULL,
 [Isbn] NVARCHAR (200) NULL,
 [Synopsis] NVARCHAR (200) NULL,
 [Description] NVARCHAR (2000) NULL,
 [ImageUrl] NVARCHAR (200) NULL,
 CONSTRAINT [PK_Book] PRIMARY KEY CLUSTERED ([Id] ASC),
 CONSTRAINT [FK_Book_Author] FOREIGN KEY ([AuthorId])
 REFERENCES [dbo].[Author] ([Id]) ON DELETE CASCADE
);

I’ve created the same columns in both the Author and Book tables as the Code First
example. Example 4-6 also specifies a foreign key from the Book table to the Author
table. This will allow Entity Framework to create the proper navigational properties
in the next steps.

Once the tables are created, it’s time to create the EDMX file that will reverse-
engineer the models from the database. Because the end result of the EDMX will cre‐
ate a DbContext (similar to Example 4-3), it should be created inside the previously
created DAL (Data Access Layer) folder. Follow these steps to create the EDMX:

1. Right-click the DAL folder and select Add → New Item.
2. From the left menu, select Data, and if it’s not already selected, choose ADO.NET

Entity Data Model.
3. For the name, enter “BookDatabaseFirstContext” and click Add. You will now

proceed through a wizard to complete the EDMX creation.
4. This will be a Database First EDMX, so select EF Designer from the database and

click Next.
5. Now you need to choose the database connection. You’ll want to select BookCon‐

text (Settings) because this contains the previously created tables. Click Next to
continue.

6. In the final step, the database will be read, and a list of objects will be returned.
Expand the Tables → dbo menu and select the Author and Book tables. Click
Finish to complete the EDMX creation.

After Visual Studio has completed creating and adding the file, the new EDMX will
open and should look similar to Figure 4-2.

Database First | 39

Figure 4-2. Finished EDMX

In the Solution Explorer, if you expand the grouped files under the EDMX, you will
see several files with the extension tt, which stands for Text Template. These files con‐
tain code that will automatically generate your models and DbContext from the
EDMX file as shown in Figure 4-3.

Figure 4-3. Expanded EDMX

Underneath the BookDatabaseFirstContext.tt file are the two models (Author and
Book), and underneath the BookDatabaseFirstContext.Context.tt file is the DbContext.
These three files are all autogenerated.

As you can see in Example 4-7, the BookDatabaseFirstContext.Context.cs file is almost
identical to the DbContext created in Example 4-3 with the exception of class names
and connection string references.

Example 4-7. Autogenerated DbContext

//--
// <auto-generated>
// This code was generated from a template.
//

40 | Chapter 4: Working with a Database

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

// Manual changes to this file may cause unexpected behavior in your application.
// Manual changes to this file will be overwritten if the code is regenerated.
// </auto-generated>
//--

namespace BootstrapIntroduction.DAL
{
 using System;
 using System.Data.Entity;
 using System.Data.Entity.Infrastructure;

 public partial class BootstrapIntroductionEntities : DbContext
 {
 public BootstrapIntroductionEntities()
 : base("name=BootstrapIntroductionEntities")
 {
 }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 throw new UnintentionalCodeFirstException();
 }

 public virtual DbSet<Author> Authors { get; set; }
 public virtual DbSet<Book> Books { get; set; }
 }
}

The models and DBContext have now been automatically generated and whether you
choose to continue with Code First or Database First, the next chapter will demon‐
strate how to add, edit, delete, and fetch data from it.

Creating Test Data
When Entity Framework first accesses a DbContext, if the database does not exist, the
default behavior will be to create the database and tables. Immediately after this initial
creation, EF allows you to provide a class that will automatically seed your database
with real or test data.

This example will leverage the DbContext from the Code First examples because this
database and its tables do not exist yet. Example 4-8 will seed the initial books and
authors with books I’ve previously written. This should be placed in a new file called
BookInitializer.cs inside the DAL folder.

Example 4-8. BookInitializer

using BootstrapIntroduction.Models;
using System;
using System.Collections.Generic;

Creating Test Data | 41

using System.Data.Entity;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.DAL
{
 public class BookInitializer : DropCreateDatabaseIfModelChanges<BookContext>
 {
 protected override void Seed(BookContext context)
 {
 var author = new Author
 {
 Biography = "...",
 FirstName = "Jamie",
 LastName = "Munro"
 };

 var books = new List<Book>
 {
 new Book {
 Author = author,
 Description = "...",
 ImageUrl = "http://ecx.images-amazon.com/images/I/51T%2BWt430bL._AA160_.jpg",
 Isbn = "1491914319",
 Synopsis = "...",
 Title = "Knockout.js: Building Dynamic Client-Side Web Applications"
 },
 new Book {
 Author = author,
 Description = "...",
 ImageUrl = "http://ecx.images-amazon.com/images/I/51AkFkNeUxL._AA160_.jpg",
 Isbn = "1449319548",
 Synopsis = "...",
 Title = "20 Recipes for Programming PhoneGap: Cross-Platform Mobile Development"
 },
 new Book {
 Author = author,
 Description = "...",
 ImageUrl = "http://ecx.images-amazon.com/images/I/51LpqnDq8-L._AA160_.jpg",
 Isbn = "1449309860",
 Synopsis = "...",
 Title = "20 Recipes for Programming MVC 3: Faster, Smarter Web Development"
 },
 new Book {
 Author = author,
 Description = "...",
 ImageUrl = "http://ecx.images-amazon.com/images/I/41JC54HEroL._AA160_.jpg",
 Isbn = "1460954394",
 Synopsis = "...",
 Title = "Rapid Application Development With CakePHP"
 }
 };

42 | Chapter 4: Working with a Database

 books.ForEach(b => context.Books.Add(b));

 context.SaveChanges();
 }
 }
}

To seed the data, you simply create new objects of the model classes. Example 4-8
creates a single Author and a collection of Books. To save the data, you add each book
to the Books DbSet in the BookContext. Finally, you call the SaveChanges function on
the BookContext. When SaveChanges is called, EF will commit the changes to the
database in a single transaction.

Saving the Author

If you notice in Example 4-8, the Author was not added to the
Authors DbSet. This is the magic of EF, and it automatically knows
that it needs to create the Author prior to saving the book because
the Book model was initialized with a reference to the Author.

Configuration is required to complete the initialization process (shown in Example
4-9). Inside the global.asax.cs file, the Application_Start function will be updated to
instantiate the BookContext, the BookInitializer, and tell the DbContext to initial‐
ize the database.

Example 4-9. Application_Start

using BootstrapIntroduction.DAL;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Optimization;
using System.Web.Routing;

namespace BootstrapIntroduction
{
 public class MvcApplication : System.Web.HttpApplication
 {
 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);

Creating Test Data | 43

 var bookContext = new BookContext();
 Database.SetInitializer(new BookInitializer());
 bookContext.Database.Initialize(true);
 }
 }
}

When the application runs for the first time, it will execute the database initialization
and create the one author and four books.

Database Initializers

In Example 4-8, the BookInitializer extended the class DropCrea
teDatabaseIfModelChanges. This tells EF that when it detects a
change in the database, it should drop the database and recreate it,
and then seed it with the provided data.
There are two other options as well: CreateDatabaseIfNotExists
and DropCreateDatabaseAlways. The first one is the default and is
quite common for production because you don’t want to be drop‐
ping the database each time it changes.

Summary
Although I suggest using SQL Server and Entity Framework for the database and
ORM, you are certainly not limited to them. The support that both Visual Studio and
Microsoft provides for them, though, make it worthwhile because there are many
benefits when using them.

The next chapter will explore scaffolding of controllers and views, and a prerequisite
to this is having Entity Framework and a database initialized like this chapter has
done.

Going forward, I will be using Code First with Entity Framework because I find it
translates better in examples for this book. Database First also works great; in fact, I
use it on a day-to-day basis at work because my company wants complete control
over all aspects of the database.

44 | Chapter 4: Working with a Database

PART II

Working with Data

CHAPTER 5

Listing, Sorting, and Paging Through Tables

It’s time to fully integrate MVC, Bootstrap, and Knockout.js together in one example.
This will be done by creating a new controller, views, and data binding with Knock‐
out using the data that was prepopulated in Chapter 4. To aid in stubbing out the
controllers and views, I am going to use Visual Studio’s scaffolding functionality.

Scaffolding is why I choose MVC and Entity Framework in my projects. When I use
scaffolding, I find that I can rapidly create websites that provide basic CRUD (Create-
Read-Update-Delete) functionality on any model.

This chapter will extend on the Code First DbContext and models created in
Chapter 4.

Scaffolding the Author Model
Scaffolding involves creating a new controller. To do this, right-click the Controllers
folder and select Add → Controller. This will start a wizard to create the new control‐
ler. In the first step, select MVC 5 Controller with views, using Entity Framework,
and click Add to continue.

The Add Controller window will now be displayed (shown in Figure 5-1). It requires
three pieces of configuration to complete the scaffolding process:

• For the model class, select Author (BootstrapIntroduction.Models).
• For the data context class, select BookContext (BootstrapIntroduction.DAL).

When you selected the model, the controller name field was automatically popu‐
lated with AuthorsController. Leaving as-is is perfect.

• The Use a layout page option is left checked and empty because the default layout
will be used unless otherwise specified. Because there is only one default layout in
this project, you don’t need to change it.

47

Figure 5-1. Creating the AuthorsController

Click Add to finish creating the AuthorsController and its related views. Visual Stu‐
dio will now scaffold the controller and the views for the new controller.

Error Creating Controller?

During my first attempt, I received an error creating the controller
because I had the same models twice; once in the Code First and
once in the Database First. Because I no longer require the EDMX
from the Database First example, I have deleted this file and its
child files.

Along with the AuthorsController, Visual Studio also created a new folder called
Authors under the Views directory. Inside this directory are five different views. Each
view is used for a different piece of the CRUD process (with the exception of Index
and Details because they both are used in the “R”).

Example 5-1 contains the scaffolded AuthorsController that Visual Studio created.

Example 5-1. The AuthorsController

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Net;
using System.Web;

48 | Chapter 5: Listing, Sorting, and Paging Through Tables

using System.Web.Mvc;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;

namespace BootstrapIntroduction.Controllers
{
 public class AuthorsController : Controller
 {
 private BookContext db = new BookContext();

 // GET: Authors
 public ActionResult Index()
 {
 return View(db.Authors.ToList());
 }

 // GET: Authors/Details/5
 public ActionResult Details(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 return HttpNotFound();
 }
 return View(author);
 }

 // GET: Authors/Create
 public ActionResult Create()
 {
 return View();
 }

 // POST: Authors/Create
 [HttpPost]
 [ValidateAntiForgeryToken]
 public ActionResult Create(
 [Bind(Include = "Id,FirstName,LastName,Biography")] Author author)
 {
 if (ModelState.IsValid)
 {
 db.Authors.Add(author);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 return View(author);
 }

Scaffolding the Author Model | 49

 // GET: Authors/Edit/5
 public ActionResult Edit(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 return HttpNotFound();
 }
 return View(author);
 }

 // POST: Authors/Edit/5
 [HttpPost]
 [ValidateAntiForgeryToken]
 public ActionResult Edit(
 [Bind(Include = "Id,FirstName,LastName,Biography")] Author author)
 {
 if (ModelState.IsValid)
 {
 db.Entry(author).State = EntityState.Modified;
 db.SaveChanges();
 return RedirectToAction("Index");
 }
 return View(author);
 }

 // GET: Authors/Delete/5
 public ActionResult Delete(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 return HttpNotFound();
 }
 return View(author);
 }

 // POST: Authors/Delete/5
 [HttpPost, ActionName("Delete")]
 [ValidateAntiForgeryToken]
 public ActionResult DeleteConfirmed(int id)
 {
 Author author = db.Authors.Find(id);

50 | Chapter 5: Listing, Sorting, and Paging Through Tables

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

 db.Authors.Remove(author);
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 db.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

The AuthorsController, just like the HomeController extends the Controller class.
However, unlike the HomeController, each method is not quite so empty. Visual Stu‐
dio has created all of the necessary methods and functionality to perform CRUD on
the authors.

This chapter will focus strictly on the Index function which—using the BookContext
—fetches the complete list of authors. The results of this are then passed to the
Index.cshtml view.

A private variable called db is instantiated as a new BookContext. This will happen at
the start of each request from the web browser. The BookContext opens a connection
to the database, so it is important that at the end of the request, the BookContext is
disposed of properly, closing all open connections to prevent memory leaks. This is
done by overriding the Dispose function from the base Controller class. Inside the
function, the db variable is disposed. The Dispose function is called by MVC at the
end of each request.

Fetching the list of authors is done by accessing the Authors DbSet from the BookCon
text and calling ToList.

Scaffolding the Author Model | 51

ToList

The access to the Authors DbSet is followed by a call to the ToList
function. This is an important concept when working with Entity
Framework. When you are interacting with a DbSet, EF doesn’t
execute any database queries until the data is actually accessed in
code. By calling ToList, this tells EF to execute the query and pop‐
ulate the list of authors in a list.
Prior to specifying the ToList function, you can add filters to the
DbSet to limit the results. Each time you do this, EF updates the
query that will be sent to the database server. Once the data has
been queried from the database, any further manipulations to the
results will be done strictly on the in-memory object and not
against the database.

So far, the M and C have been implemented. Let’s complete this example by imple‐
menting the V and the VM. The default Index view that was created by Visual Studio
uses a Razor foreach function to show the data. Example 5-2 will change this and
implement similar functionality by using the Knockout foreach binding to create
the table of author data.

Example 5-2. HTML to create table

@model IEnumerable<BootstrapIntroduction.Models.Author>
@{
 ViewBag.Title = "Authors";
}

<h2>Authors</h2>

<p>@Html.ActionLink("Create New", "Create")</p>

<table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>@Html.DisplayNameFor(model => model.FirstName)</th>
 <th>@Html.DisplayNameFor(model => model.LastName)</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: authors">
 <tr>
 <td data-bind="text: FirstName"></td>
 <td data-bind="text: LastName"></td>
 <td>
 <a data-bind="attr: { href: '@Url.Action("Details")/' + Id }"
 class="btn btn-info">Details
 <a data-bind="attr: { href: '@Url.Action("Edit")/' + Id }"

52 | Chapter 5: Listing, Sorting, and Paging Through Tables

 class="btn btn-primary">Edit
 <a data-bind="attr: { href: '@Url.Action("Delete")/' + Id }"
 class="btn btn-danger">Delete
 </td>
 </tr>
 </tbody>
</table>

The view starts with the model binding. In this example, it is an IEnumerable of the
Author model. The next important piece is the definition of the table of data. Instead
of using a Razor foreach loop to display each author, inside the tbody tag there is an
HTML attribute called data-bind that is defined as foreach: authors. When the
Knockout bindings are applied, the block of HTML code contained within the tbody
will be repeated for each element in the list.

Inside the tbody is a td tag for each column in the table. The td tag is using the text
data binding for each column. And finally, three buttons are created allowing you to
navigate to the details, edit, and delete of that author. Each button is using another
new data binding called attr. This binding lets you create any HTML attribute. In
this example, it is setting the href attribute for each link. This is a great example of
mixing Razor with Knockout. The UrlHelper is used to generate the link to Authors/
Edit and then the author ID is appended to the end of the link from the Knockout
binding.

More code is required to complete this example. Example 5-3 should be added to the
Authors/Index view after the end of the table.

Example 5-3. The ViewModel

@section Scripts {
 <script>
 function ViewModel(authors) {
 var self = this;

 self.authors = authors;
 };

 var viewModel = new ViewModel(@Html.HtmlConvertToJson(Model));
 ko.applyBindings(viewModel);
 </script>
}

This example creates a new ViewModel that accepts an array of authors in its con‐
structor. This array is then assigned to a local property also called authors. This
property is what the view was data bound to in the foreach binding.

Scaffolding the Author Model | 53

The ViewModel is then instantiated with the model that was provided from the con‐
troller. The model is converted into a JavaScript array by calling a custom HtmlHelper
extension (shown in Example 5-4).

Example 5-4. HtmlHelper extension

using Newtonsoft.Json;
using System.Web;
using System.Web.Mvc;

public static class HtmlHelperExtensions
{
 public static HtmlString HtmlConvertToJson(this HtmlHelper htmlHelper,
object model)
 {
 var settings = new JsonSerializerSettings
 {
 ReferenceLoopHandling = ReferenceLoopHandling.Ignore,
 Formatting = Formatting.Indented
 };

 return new HtmlString(JsonConvert.SerializeObject(model, settings));
 }
}

This example should be placed inside a new file called HtmlHelperExtension inside a
new folder called Extensions. This extension method accepts a model object and uses
a third-party library to serialize the data into a JavaScript object. The third-party
library is called Json.Net and should be installed via the NuGet Package Manager. To
install the package, follow these steps:

1. Right-click the Project and select Manage NuGet Packages.
2. If it is not already selected, on the left, choose Online.
3. Select Json.Net. (This is an extremely popular package, and is typically second in

the list.)
4. Click the Install button to add this to your project.

Running the completed example will show results similar to Figure 5-2.

54 | Chapter 5: Listing, Sorting, and Paging Through Tables

Figure 5-2. The list of authors

Sorting the Authors
The default functionality after scaffolding the authors is quite nice, but there are defi‐
nitely some missing pieces, such as sorting and paging through the results. This sec‐
tion will update the controller and view to provide the ability to sort the authors.

Sorting data involves manipulating the DbSet with LINQ statements. For example, to
return the list of authors sorted by first name, you would use db.Authors.OrderBy(a
=> a.FirstName).ToList().

When using LINQ, it is strongly typed to your model. Many tutorials would then
demonstrate sorting your data by creating a switch statement for each field in your
model that should be sorted. I find this tedious to maintain and not extremely
flexible.

Once again, there is a great third-party library that provides support for dynamic
LINQ statements. With a dynamic LINQ statement, a string can be used to define the
field to be sorted on. For example, the string "FirstName ASC" would result to the
same db.Authors.OrderBy(a => a.FirstName). These next few examples will
demonstrate it.

To begin, the new library needs to be installed via NuGet. Open the NuGet Package
Manager and search for “dynamic.” The first result should be System.Linq.Dynamic.
Click Install to add it to your project.

Example 5-5 creates a new model called QueryOptions. This class will store the sort‐
ing and paging options. For now, this class will contain only the fields for sorting.

Sorting the Authors | 55

Example 5-5. QueryOptions model

namespace BootstrapIntroduction.Models
{
 public class QueryOptions
 {
 public QueryOptions()
 {
 SortField = "Id";
 SortOrder = SortOrder.ASC;
 }

 public string SortField { get; set; }

 public SortOrder SortOrder { get; set; }

 public string Sort
 {
 get
 {
 return string.Format("{0} {1}",
 SortField, SortOrder.ToString());
 }
 }
 }
}

The QueryOptions class contains two properties that can be read and written to: Sort
Field and SortOrder. The SortField defines which field from the model should be
sorted on. The SortOrder field indicates the direction. There is also a third property
that is read-only. This property concatenates the two properties into a single string.
This will be used in the dynamic LINQ. This model will be used in the controller to
order the authors prior to passing to the view.

The QueryOptions model references an enum called SortOrder. This enum is shown
in Example 5-6 and should be added to the Models folder. The SortOrder could be
accomplished without the use of an enum; however, then it would involve comparing
strings. An enum allows us to use strongly typed comparisons.

Example 5-6. SortOrder enum

namespace BootstrapIntroduction.Models
{
 public enum SortOrder
 {
 ASC,
 DESC
 }
}

56 | Chapter 5: Listing, Sorting, and Paging Through Tables

Now the Index in the AuthorsController (shown in Example 5-7) can be updated to
accept the QueryOptions class as input. This class is then used to order the authors by
leveraging the dynamic LINQ library that was previously added.

Example 5-7. AuthorsController

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Net;
using System.Web;
using System.Web.Mvc;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;
using System.Web.ModelBinding;

namespace BootstrapIntroduction.Controllers
{
 public class AuthorsController : Controller
 {
 private BookContext db = new BookContext();

 // GET: Authors
 public ActionResult Index([Form] QueryOptions queryOptions)
 {
 var authors = db.Authors.OrderBy(queryOptions.Sort);

 ViewBag.QueryOptions = queryOptions;

 return View(authors.ToList());
 }

 // other functions removed for an abbreviated example
 }
}

As you’ll see in Example 5-8, the view will build a URL that contains the SortField
and SortOrder. By adding the [Form] attribute in front of the QueryOptions parame‐
ter, MVC will automatically parse the URL parameters and create the QueryOptions
class for us. If the URL contains no fields, it will simply create a new QueryOptions
class without setting the SortField and SortOrder properties. In Example 5-5, these
are instantiated in the constructor to be “Id” and ascending.

The QueryOptions are passed to the view by using the ViewBag property. The view
will use this to help build the URL by inversing the sort direction for the current field
being sorted.

Sorting the Authors | 57

Example 5-8 contains an updated Index view.

Example 5-8. Authors Index view

@using BootstrapIntroduction.Models
@model IEnumerable<Author>

@{
 ViewBag.Title = "Authors";
 var queryOptions = (QueryOptions)ViewBag.QueryOptions;
}

<h2>Authors</h2>

<p>@Html.ActionLink("Create New", "Create")</p>

<table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>@Html.BuildSortableLink("First Name", "Index", "FirstName"
 , queryOptions)</th>
 <th>@Html.BuildSortableLink("Last Name", "Index", "LastName"
 , queryOptions)</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: authors">
 <tr>
 <td data-bind="text: FirstName"></td>
 <td data-bind="text: LastName"></td>
 <td>
 <a data-bind="attr: { href: '@Url.Action("Details")/' + Id }"
 class="btn btn-info">Details
 <a data-bind="attr: { href: '@Url.Action("Edit")/' + Id }"
 class="btn btn-primary">Edit
 <a data-bind="attr: { href: '@Url.Action("Delete")/' + Id }"
 class="btn btn-danger">Delete
 </td>
 </tr>
 </tbody>
</table>

@section Scripts {
 <script>
 function ViewModel(authors) {
 var self = this;

 self.authors = authors;
 };

 var viewModel = new ViewModel(@Html.HtmlConvertToJson(Model));
 ko.applyBindings(viewModel);

58 | Chapter 5: Listing, Sorting, and Paging Through Tables

 </script>
}

The QueryOptions that was passed from the controller in the ViewBag property is cas‐
ted from the dynamic property and stored in a local variable that the view can access.
The other major change converts the static text in the th tag to build a link back to
the index page with the URL parameters defining the sort direction.

The link is built using another custom HtmlHelper extension. Example 5-9 contains
an updated HtmlHelperExtension that creates a new function called BuildSortable
Link that accepts four parameters:

fieldName
This is the name of the link (e.g., First Name).

actionName
This is the name of the action to link to (e.g., Index).

sortField
This is the name of the model field to sort on (e.g., FirstName).

queryOptions
This contains the QueryOptions currently used to sort the authors. This is used
to determine if the current field is being sorted, in which case the direction
should be inversed.

This function returns an MvcHtmlString with the link that, when selected, will reload
the page and sort the authors by the specified field in the specified order.

Example 5-9. HtmlHelperExtension

using BootstrapIntroduction.Models;
using Newtonsoft.Json;
using System.Web;
using System.Web.Mvc;
using System.Web.Mvc.Html;

public static class HtmlHelperExtensions
{
 public static HtmlString HtmlConvertToJson(this HtmlHelper htmlHelper
 , object model)
 {
 var settings = new JsonSerializerSettings
 {
 ReferenceLoopHandling = ReferenceLoopHandling.Ignore,
 Formatting = Formatting.Indented
 };

 return new HtmlString(JsonConvert.SerializeObject(model, settings));

Sorting the Authors | 59

 }

 public static MvcHtmlString BuildSortableLink(this HtmlHelper htmlHelper,
 string fieldName, string actionName, string sortField, QueryOptions queryOptions)
 {
 var urlHelper = new UrlHelper(htmlHelper.ViewContext.RequestContext);

 var isCurrentSortField = queryOptions.SortField == sortField;

 return new MvcHtmlString(string.Format("{1} {2}",
 urlHelper.Action(actionName,
 new {
 SortField = sortField,
 SortOrder = (isCurrentSortField
 && queryOptions.SortOrder == SortOrder.ASC)
 ? SortOrder.DESC : SortOrder.ASC
 }),
 fieldName,
 BuildSortIcon(isCurrentSortField, queryOptions)));
 }

 private static string BuildSortIcon(bool isCurrentSortField
 , QueryOptions queryOptions)
 {
 string sortIcon = "sort";

 if (isCurrentSortField)
 {
 sortIcon += "-by-alphabet";
 if (queryOptions.SortOrder == SortOrder.DESC)
 sortIcon += "-alt";
 }

 return string.Format("",
 "glyphicon", "glyphicon-", sortIcon);
 }
}

As a nice little touch, Example 5-9 contains a private function called BuildSortIcon
that leverages three of the many glyphicons provided by Bootstrap. When the field is
not currently being sorted, it uses the glyphicon-sort. When the field is being sorted
ascending, it uses the glyphicon-sort-by-alphabet. And when the field is being
sorted descending, it uses glyphicon-sort-by-alphabet-alt.

60 | Chapter 5: Listing, Sorting, and Paging Through Tables

Why Inside the HtmlHelperExtension?

It is not necessary to create an HtmlHelper extension method to
implement sorting in your view. This approach provides two nice
benefits:

• The multiline logic to create the link with sorting icon does not
convolute the view with a complicated mixture of HTML and
Razor.

• Creating multiple sortable links is easily reusable both within
the same view and future views in your project.

Figure 5-3 demonstrates the sorting in action.

Figure 5-3. Authors sorted by last name descending

When you run this example, it will be difficult to see the sorting in action. However,
this can be solved by clicking the link to create a new author (as I’ve shown in Figure
5-3) and use the previously scaffolded view and controller action to create a new
author. Once you’ve created additional authors, you can click the first and last name
links to sort them. Clicking the same link twice will alter the direction from ascend‐
ing to descending, and vice versa.

Paging the Authors
Paging through the authors is quite similar to sorting. LINQ will be used on the
DbSet to Skip and Take a specific number of records. The previously created QueryOp
tions model will be updated (shown in Example 5-10) to include three new proper‐
ties: CurrentPage, TotalPages, and PageSize. CurrentPage and PageSize have been

Paging the Authors | 61

defaulted to 1 in the constructor. One is a very small number for the page size; how‐
ever, when dealing with a small number of authors, it makes it easier to test the func‐
tionality. Ten is a more common number for paging.

Example 5-10. Updated QueryOptions model

namespace BootstrapIntroduction.Models
{
 public class QueryOptions
 {
 public QueryOptions()
 {
 CurrentPage = 1;
 PageSize = 1;

 SortField = "Id";
 SortOrder = SortOrder.ASC;
 }

 public int CurrentPage { get; set; }

 public int TotalPages { get; set; }

 public int PageSize { get; set; }

 public string SortField { get; set; }

 public SortOrder SortOrder { get; set; }

 public string Sort
 {
 get
 {
 return string.Format("{0} {1}",
 SortField, SortOrder.ToString());
 }
 }
 }
}

In Example 5-11, the AuthorsController Index function has been updated to imple‐
ment the LINQ to skip and take the specific number of records. Inside this updated
function, the TotalPages from the QueryOptions model (the one that was not defaul‐
ted in the constructor) is set by calculating the number of pages from the count of
authors divided by the page size, rounded up. This will be used in the view to disable
the Next button.

62 | Chapter 5: Listing, Sorting, and Paging Through Tables

Example 5-11. Updated AuthorsController

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Net;
using System.Web;
using System.Web.Mvc;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;
using System.Web.ModelBinding;

namespace BootstrapIntroduction.Controllers
{
 public class AuthorsController : Controller
 {
 private BookContext db = new BookContext();

 // GET: Authors
 public ActionResult Index([Form] QueryOptions queryOptions)
 {
 var start = (queryOptions.CurrentPage - 1) * queryOptions.PageSize;

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages =
 (int)Math.Ceiling((double)db.Authors.Count() / queryOptions.PageSize);

 ViewBag.QueryOptions = queryOptions;

 return View(authors.ToList());
 }

 // other functions removed for an abbreviated example
 }
}

Just like when sorting the authors, the logic to generate the HTML for paging the
authors has been done inside another custom HtmlHelper method. Example 5-12 cre‐
ates one public function called BuildNextPreviousLinks that accepts the QueryOp
tions and the actionName as input parameters. Four private functions are also
created to build the necessary HTML to generate the next and previous links shown
in Figure 5-4.

Paging the Authors | 63

Example 5-12. Updated HtmlHelperExtension

using BootstrapIntroduction.Models;
using Newtonsoft.Json;
using System.Web;
using System.Web.Mvc;
using System.Web.Mvc.Html;

public static class HtmlHelperExtensions
{
 public static MvcHtmlString BuildNextPreviousLinks(
 this HtmlHelper htmlHelper, QueryOptions queryOptions, string actionName)
 {
 var urlHelper = new UrlHelper(htmlHelper.ViewContext.RequestContext);

 return new MvcHtmlString(string.Format(
"<nav>" +
" <ul class=\"pager\">" +
" <li class=\"previous {0}\">{1}" +
" <li class=\"next {2}\">{3}" +
" " +
"</nav>",
 IsPreviousDisabled(queryOptions),
 BuildPreviousLink(urlHelper, queryOptions, actionName),
 IsNextDisabled(queryOptions),
 BuildNextLink(urlHelper, queryOptions, actionName)
));
 }

 private static string IsPreviousDisabled(QueryOptions queryOptions)
 {
 return (queryOptions.CurrentPage == 1)
 ? "disabled" : string.Empty;
 }

 private static string IsNextDisabled(QueryOptions queryOptions)
 {
 return (queryOptions.CurrentPage == queryOptions.TotalPages)
 ? "disabled" : string.Empty;
 }

 private static string BuildPreviousLink(
 UrlHelper urlHelper, QueryOptions queryOptions, string actionName)
 {
 return string.Format(
 "← Previous",
 urlHelper.Action(actionName, new
 {
 SortOrder = queryOptions.SortOrder,
 SortField = queryOptions.SortField,
 CurrentPage = queryOptions.CurrentPage - 1,
 PageSize = queryOptions.PageSize

64 | Chapter 5: Listing, Sorting, and Paging Through Tables

 }));
 }

 private static string BuildNextLink(
 UrlHelper urlHelper, QueryOptions queryOptions, string actionName)
 {
 return string.Format(
 "Next →",
 urlHelper.Action(actionName, new
 {
 SortOrder = queryOptions.SortOrder,
 SortField = queryOptions.SortField,
 CurrentPage = queryOptions.CurrentPage + 1,
 PageSize = queryOptions.PageSize
 }));
 }

 // other functions removed for an abbreviated example
}

The generated next and previous links are leveraging more Bootstrap components for
pagination. When you are on the first page, the Previous link is disabled. Similarly,
when you are on the last page, the Next link is disabled.

Because the QueryOptions are passed into the custom HtmlHelper function, the next
and previous links include the current sorting options into the URL. The sorting links
are not updated because when the sorting direction changes, the current page should
be reset back to 1.

Figure 5-4. Next/Previous links

To complete this example, the Index view of the AuthorsController needs to be
updated to execute the BuildNextPreviousLinks from the HtmlHelper. Example

Paging the Authors | 65

5-13 contains the one-liner that can be added to the Index view below the end table
tag.

Example 5-13. Create the next/previous links

@Html.BuildNextPreviousLinks(queryOptions, "Index")

Summary
This chapter focused on a single part of the CRUD operation, but it introduced sev‐
eral new things from MVC, Bootstrap, and Knockout.

In MVC, LINQ was used to sort a collection and limit the number of results returned.
The HtmlHelper was extended multiple times to create reusable links to sort the data
or navigate between pages.

For Bootstrap, several of the table classes were used to provide alternating row colors,
borders, etc. The pagination component was also used to create nicely aligned next
and previous links, including disabling the link when on the first and last page.

And finally, Knockout introduced a new foreach data binding that repeated a block
of HTML code for each element in the array.

66 | Chapter 5: Listing, Sorting, and Paging Through Tables

CHAPTER 6

Working with Forms

If you experimented in the preceding chapter, you will have noticed that the scaffol‐
ded AuthorsController is fully functional in terms of adding, editing, and deleting
records from the Author table. This in itself makes it quite useful; however, this chap‐
ter will demonstrate how to integrate Knockout and Bootstrap into the form as well
as a little jQuery to submit the form via AJAX.

Upgrading Bootstrap

When I introduced the NuGet Package Manager, I mentioned
updating the existing packages to their latest versions. The version
that is installed with MVC is version 3.0 and some of the features
used in this chapter (and future chapters) use the documentation
from version 3.3.
If you didn’t update the packages back in Chapter 3, I would
encourage you to do it now by following these steps:

1. Right-click the project and select Manage NuGet Packages.
2. On the left, select the Update option. This will search online

for any updates to all of the packages currently installed.
3. If you are comfortable with updating all packages, you can

click the Update All button, or you can find just the Bootstrap
package and update it individually.

Integrating Knockout with a Form
This chapter will start to demonstrate why I love working with these three technolo‐
gies together. It’s going to take a nice-looking form and add some usability to it. In
fact, no changes are required to the AuthorsController.

67

Back in Chapter 4 when the Author and Book models were created, I didn’t specify
any data validation for them. Because jQuery provides good client-side validation
that integrates nicely with MVC, I thought I would go back and add some validation
on the Author model.

Example 6-1 demonstrates making both the first and last name required fields before
saving to the database.

Example 6-1. Updated AuthorModel

using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.Models
{
 public class Author
 {
 public int Id { get; set; }

 [Required]
 public string FirstName { get; set; }

 [Required]
 public string LastName { get; set; }

 public string Biography { get; set; }

 public virtual ICollection<Book> Books { get; set; }
 }
}

Above the definition of both the first and last name properties, an attribute has been
added called Required. This does several things. In the AuthorsController, the cre‐
ate method performs a ModelState.IsValid check, which validates that all properties
of the model are valid based upon all of the validation rules identified. And secondly,
as mentioned, jQuery validation will perform client-side validations by taking the
rules in the model and implementing them via JavaScript.

68 | Chapter 6: Working with Forms

More Validation

MVC provides a variety of validation options apart from the afore‐
mentioned Required attribute, such as minimum string length,
regular expressions, minimum and maximum integer values, etc.
Throughout this book, we will explore several as they are required.
A list of attribute classes can be found at MSDN under the DataAn‐
notations namespace.

With the validation implemented on the Author model, it’s time to move on to the UI
and Knockout data bindings. Example 6-2 contains the Knockout ViewModel called
AuthorFormViewModel. To allow for easy management of the various ViewModels, I
suggest creating a new folder called ViewModels inside the Scripts folder. Code orga‐
nization is a very important step in building maintainable code. Right-click the
Scripts folder and select the Add submenu item followed by New Folder. Once the
new folder is created, create a new JavaScript file called AuthorFormViewModel.js.

Example 6-2. AuthorFormViewModel

function AuthorFormViewModel() {
 var self = this;

 self.saveCompleted = ko.observable(false);
 self.sending = ko.observable(false);

 self.author = {
 firstName: ko.observable(),
 lastName: ko.observable(),
 biography: ko.observable(),
 };

 self.validateAndSave = function (form) {
 if (!$(form).valid())
 return false;

 self.sending(true);

 // include the anti forgery token
 self.author.__RequestVerificationToken = form[0].value;

 $.ajax({
 url: 'Create',
 type: 'post',
 contentType: 'application/x-www-form-urlencoded',
 data: ko.toJS(self.author)
 })
 .success(self.successfulSave)
 .error(self.errorSave)
 .complete(function () { self.sending(false) });

Integrating Knockout with a Form | 69

http://bit.ly/data-anno
http://bit.ly/data-anno

 };

 self.successfulSave = function () {
 self.saveCompleted(true);

 $('.body-content').prepend(
 '<div class="alert alert-success">
 Success! The new author has been saved.</div>');
 setTimeout(function () { location.href = './'; }, 1000);
 };

 self.errorSave = function () {
 $('.body-content').prepend(
 '<div class="alert alert-danger">
 Error! There was an error creating the author.</div>');
 };
}

This file introduces a new concept with Knockout called observable variables. When
you define a JavaScript variable as an observable, Knockout will begin tracking
changes to the variable. This means that if you data bind the observable in your form,
Knockout will update the JavaScript variable in your ViewModel; and vice versa, if
you update the property in your ViewModel and it is data bound to an HTML ele‐
ment it will be automatically updated when it changes.

Example 6-2 contains five properties marked as observables. The saveCompleted
observable will be used to alter the page once the new author has been saved success‐
fully. The sending observable will be used to show a progress bar when the author is
being saved via AJAX and hide the submit button while it’s saving. The final three
observables are contained within the author structure that are bound to the author
form elements. The author property with its observables will be submitted via AJAX
to save the author.

After the observable variables are three functions: validateAndSave, successful
Save, and errorSave. The first function introduces the submit data binding and is
called by Knockout when the authors form is submitted.

The validateAndSave function is doing three important things:

• Not submitting the form if it doesn’t pass the jQuery validation.
• Dynamically adding an antiforgery token from the form to the AJAX request.
• Sending the author object via an AJAX form post.

The final two functions are called from the validateAndSave function upon success
or failure. If saving the author is successful, a new success alert message is added with
jQuery at the top of the form, and after one second, the user is redirected back to the
list of authors page. Similarly if an error occurs, an error alert is displayed indicating
that the author was not saved.

70 | Chapter 6: Working with Forms

setTimout

Example 6-2 contains a setTimout function, which is contained
within the successfulSave function. It is used to display a success
alert message to the user, and then after one second, redirect back
to the list of authors.

The final piece of the puzzle is the Create.cshtml view. The complete source is dis‐
played in Example 6-7. The next few examples will display the important pieces of
implementing Knockout within the view and the creation of a progress bar with
Bootstrap. Figure 6-1 demonstrates what the final form looks like, including error
messages, because no first and last names were entered.

Figure 6-1. Creating author with error handling

The form that was created when the view was first scaffolded has been updated to set
a data binding for the submit event. Example 6-3 indicates that when the form is sub‐
mitted, Knockout should call the validateAndSave function.

Example 6-3. Submit data binding

@using (Html.BeginForm("Create", "Authors", FormMethod.Post,
 new { data_bind = "submit: validateAndSave" }))

All three of the form fields (first name, last name, and biography) have been updated
to include a data-binding attribute of value (as shown in Example 6-4). Each is
bound to the appropriate observable property inside the author variable. When the

Integrating Knockout with a Form | 71

user types into the form field, Knockout will update the corresponding observable
property.

Example 6-4. Value data binding

 @Html.EditorFor(model => model.FirstName, new { htmlAttributes =
 new { @class = "form-control", data_bind = "value: author.firstName" } })

In Example 6-5, the submit button is updated to include the visible data binding.
When the sending observable variable is false, the button is visible. When it is true,
the button will be hidden so that the user cannot click it multiple times while the
author is being saved via AJAX.

Beneath the submit button is where the progress bar is included with the appropriate
Bootstrap classes. The div tag used to define the progress bar is also decorated with
the visible data binding. It is using the opposite of the button, meaning it is only
visible when the author is being saved via AJAX and hidden when it is not.

Example 6-5. Submit button and progress bar

<div class="form-group">
 <div class="col-md-offset-2 col-md-10" data-bind="visible: !sending()">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>

 <div class="progress" data-bind="visible: sending">
 <div class="progress-bar progress-bar-info progress-bar-striped active"
 role="progressbar" aria-valuenow="100"
 aria-valuemin="0" aria-valuemax="100"
 style="width: 100%">

 </div>
 </div>
</div>

72 | Chapter 6: Working with Forms

Accessing Observables

When you create an observable property, Knockout converts the
variable into a function to track its changes. This means when you
want to access the value to the property, you need to add brackets
after its name to execute the function.
In Example 6-5, you might have noticed that the submit button has
brackets after sending and the progress bar does not. Knockout is
intelligent enough that when it is comparing to true, brackets are
not required because Knockout will detect if it is an observable and
automatically add the brackets. On the other hand, when you are
saying not (!) sending, you need to access the observable variable’s
value prior to checking if it is false.

The final change made to the Create view is to include the Scripts section.
Example 6-6 includes two JavaScript files: the jQuery Validation bundle (for the
unobtrusive form validation) and the AuthorFormViewModel that was shown in
Example 6-2. After these files are included, the AuthorFormViewModel is instantiated
and ko.applyBindings is called with it.

Example 6-6. Scripts section

 @section Scripts {
 @Scripts.Render("~/bundles/jqueryval",
 "/Scripts/ViewModels/AuthorFormViewModel.js")
 <script>
 var viewModel = new AuthorFormViewModel();
 ko.applyBindings(viewModel);
 </script>
}

Example 6-7 shows the full Views/Authors/Create.cshtml file.

Example 6-7. Authors Create view

 @model BootstrapIntroduction.Models.Author
@{
 ViewBag.Title = "Create";
}

<div data-bind="visible: !saveCompleted()">

 <h2>Create</h2>

 @using (Html.BeginForm("Create", "Authors", FormMethod.Post,
 new { data_bind = "submit: validateAndSave" }))
 {
 @Html.AntiForgeryToken()

Integrating Knockout with a Form | 73

 <div class="form-horizontal">
 <h4>Author</h4>
 <hr />
 @Html.ValidationSummary(true, "", new { @class = "text-danger" })
 <div class="form-group">
 @Html.LabelFor(model => model.FirstName, htmlAttributes:
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.FirstName, new { htmlAttributes =
 new { @class = "form-control",
 data_bind = "value: author.firstName" } })
 @Html.ValidationMessageFor(model => model.FirstName, "",
 new { @class = "text-danger" })
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.LastName, htmlAttributes:
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.LastName, new { htmlAttributes =
 new { @class = "form-control", data_bind = "value:
 author.lastName" } })
 @Html.ValidationMessageFor(model => model.LastName, "",
 new { @class = "text-danger" })
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Biography, htmlAttributes:
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Biography, new { htmlAttributes =
 new { @class = "form-control", data_bind = "value:
 author.biography" } })
 @Html.ValidationMessageFor(model => model.Biography, "",
 new { @class = "text-danger" })
 </div>
 </div>

 <div class="form-group">
 <div class="col-md-offset-2 col-md-10" data-bind="visible: !sending()">
 <input type="submit" value="Create" class="btn btn-default" />
 </div>

 <div class="progress" data-bind="visible: sending">
 <div class="progress-bar progress-bar-info progress-bar-striped active"
 role="progressbar" aria-valuenow="100"
 aria-valuemin="0" aria-valuemax="100"
 style="width: 100%">

74 | Chapter 6: Working with Forms

 </div>
 </div>
 </div>
 </div>
 }
</div>

<div>
 @Html.ActionLink("Back to List", "Index")
</div>

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval",
 "/Scripts/ViewModels/AuthorFormViewModel.js")
 <script>
 var viewModel = new AuthorFormViewModel();
 ko.applyBindings(viewModel);
 </script>
}

Sharing the View and ViewModel
It’s decision time now. The create author view has been updated and integrated with
Knockout and some Bootstrap; however, the edit author view is still using the old
way. To be consistent (and consistency in a website is important), the edit view should
be updated to match the create.

It would be pretty easy to copy all of the changes from the create form to the edit
form, making the subtle adjustments where applicable. I personally try to avoid this
whenever possible. I instead like to share the View and ViewModel between the two.
Sharing the code makes updates easier to maintain. For example, if a new field were
added to the Author model, there is less work because once it is added, both the cre‐
ate and edit forms will have it.

Use Caution

While I strongly recommend sharing the View and ViewModel,
there are many times when this is not easy or even possible. If the
structure of the two are very different or contain different rules, it
makes more sense to maintain separate Views and ViewModels.
This would be less complicated than a single View and ViewModel
with many conditional statements identifying the differences.

Sharing the View and ViewModel involves updating several different things:

1. The AuthorsController needs updating to load the same view (shown in Exam‐
ple 6-8) for the Create and Edit actions.

Sharing the View and ViewModel | 75

2. The Create function needs to instantiate a new Author model and provide this to
the view (also shown in Example 6-8). This will be explained in more detail with
the following code examples.

3. The Create view will be renamed to Form to help better identify that it is not
specifically for create or edit.

4. The newly renamed Form view will contain several conditional statements to
change the wording when an author is being added or edited. It will also serialize
the Author model bound to the view. This will then be passed into the Author
FormViewModel to prepopulate the author when it is being edited. This is shown
in Example 6-9.

5. The AuthorFormViewModel author variable contains a new id property to distin‐
guish whether the author is being added or edited. This will also be used to
update the jQuery AJAX request to either go to the Create or Edit action (shown
in Example 6-10).

6. The Author model is updated (shown in Example 6-11) to leverage a new data
annotation called JsonProperty that will allow the properties to be camelCased
when used in JavaScript, but remain PascalCase in C#.

7. The previous model changes also have an effect on the Index view because the
previously PascalCase variable references now need to be camelCased as shown
in Example 6-12.

There are a total of seven things to do, so let’s get started. Example 6-8 contains an
abbreviated AuthorsController with the required updates to the Create and Edit
functions.

Example 6-8. Updated AuthorsController

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Net;
using System.Web;
using System.Web.Mvc;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;
using System.Web.ModelBinding;

namespace BootstrapIntroduction.Controllers
{
 public class AuthorsController : Controller
 {
 private BookContext db = new BookContext();

76 | Chapter 6: Working with Forms

 // Abbreviated controller

 // GET: Authors/Create
 public ActionResult Create()
 {
 return View("Form", new Author());
 }

 // GET: Authors/Edit/5
 public ActionResult Edit(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 return HttpNotFound();
 }
 return View("Form", author);
 }

 // Abbreviated controller
}

This example completes the first two items on the list. You will notice that the return
View at the end of each method has been updated to pass two parameters. The first
parameter is the name of the view to load, in this case, Form. The second parameter is
the model that is bound to the view. Previously, the Create method did not pass this
in, even though it was bound to it. However, it is now instantiated as an empty model,
because the model will be serialized and passed as a JavaScript object to the Author
FormViewModel. If the Create function did not instantiate it, the model would be null,
and the JavaScript ViewModel would be unable to parse out the properties.

The Edit view that was automatically scaffolded can be safely deleted. The Create
view should now be renamed to Form. This can be done by selecting the view in Vis‐
ual Studio and pressing F2.

Example 6-9 contains the full Form view. The added/altered lines are highlighted to
identify them easily.

Example 6-9. Form view

@model BootstrapIntroduction.Models.Author
@{
 var isCreating = Model.Id == 0;
 ViewBag.Title = (isCreating) ? "Create" : "Edit";
}

Sharing the View and ViewModel | 77

<div data-bind="visible: !saveCompleted()">

 <h2>@ViewBag.Title</h2>

 @using (Html.BeginForm("Create", "Authors", FormMethod.Post,
 new { data_bind = "submit: validateAndSave" }))
 {
 @Html.AntiForgeryToken()

 <div class="form-horizontal">
 <h4>Author</h4>
 <hr />
 @Html.ValidationSummary(true, "", new { @class = "text-danger" })
 <div class="form-group">
 @Html.LabelFor(model => model.FirstName, htmlAttributes:
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.FirstName, new { htmlAttributes =
 new { @class = "form-control",
 data_bind = "value: author.firstName" } })
 @Html.ValidationMessageFor(model => model.FirstName, "",
 new { @class = "text-danger" })
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.LastName, htmlAttributes:
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.LastName, new { htmlAttributes =
 new { @class = "form-control",
 data_bind = "value: author.lastName" } })
 @Html.ValidationMessageFor(model => model.LastName, "",
 new { @class = "text-danger" })
 </div>
 </div>

 <div class="form-group">
 @Html.LabelFor(model => model.Biography, htmlAttributes:
 new { @class = "control-label col-md-2" })
 <div class="col-md-10">
 @Html.EditorFor(model => model.Biography, new { htmlAttributes =
 new { @class = "form-control",
 data_bind = "value: author.biography" } })
 @Html.ValidationMessageFor(model => model.Biography, "",
 new { @class = "text-danger" })
 </div>
 </div>

 <div class="form-group">
 <div class="col-md-offset-2 col-md-10" data-bind="visible: !sending()">

78 | Chapter 6: Working with Forms

 <input type="submit" value="@if (isCreating) {
 @Html.Raw("Create")
 } else { @Html.Raw("Update") }"
 class="btn btn-default" />
 </div>

 <div class="progress" data-bind="visible: sending">
 <div class="progress-bar progress-bar-info progress-bar-striped active"
 role="progressbar" aria-valuenow="100"
 aria-valuemin="0" aria-valuemax="100"
 style="width: 100%">

 </div>
 </div>
 </div>
 </div>
 }
</div>

<div>
 @Html.ActionLink("Back to List", "Index")
</div>

@section Scripts {
 @Scripts.Render("~/bundles/jqueryval",
 "/Scripts/ViewModels/AuthorFormViewModel.js")
 <script>
 var viewModel = new AuthorFormViewModel(@Html.HtmlConvertToJson(Model));
 ko.applyBindings(viewModel);
 </script>
}

Example 6-10 is an updated AuthorFormViewModel. It does similar things to the view
by determining whether the author is being added or edited to perform minor condi‐
tional differences.

Example 6-10. AuthorFormViewModel

function AuthorFormViewModel(author) {
 var self = this;

 self.saveCompleted = ko.observable(false);
 self.sending = ko.observable(false);

 self.isCreating = author.id == 0;

 self.author = {
 id: author.id,
 firstName: ko.observable(author.firstName),
 lastName: ko.observable(author.lastName),
 biography: ko.observable(author.biography),

Sharing the View and ViewModel | 79

 };

 self.validateAndSave = function (form) {
 if (!$(form).valid())
 return false;

 self.sending(true);

 // include the anti forgery token
 self.author.__RequestVerificationToken = form[0].value;

 $.ajax({
 url: (self.isCreating) ? 'Create' : 'Edit',
 type: 'post',
 contentType: 'application/x-www-form-urlencoded',
 data: ko.toJS(self.author)
 })
 .success(self.successfulSave)
 .error(self.errorSave)
 .complete(function () { self.sending(false) });
 };

 self.successfulSave = function () {
 self.saveCompleted(true);

 $('.body-content').prepend(
 '<div class="alert alert-success">
 Success! The author has been saved.</div>');
 setTimeout(function () {
 if (self.isCreating)
 location.href = './';
 else
 location.href = '../';
 }, 1000);
 };

 self.errorSave = function () {
 $('.body-content').prepend(
 '<div class="alert alert-danger">
 Error! There was an error saving the author.</div>');
 };
}

The id is now added to the author object. It is not an observable property because it
won’t change during the lifetime of the request. This is used by the Edit method to
indicate which author is being edited. Similar to the view, a variable called isCreat
ing is defined to place the logic identifying whether the author is being added or edi‐
ted. This variable is used within the validateAndSave function to change the URL of
the AJAX request. When isCreating is true, it will continue to go to the Create
method. When it is false, it will change and go to the Edit action. This variable is also

80 | Chapter 6: Working with Forms

used in the successfulSave function to properly redirect back to the authors listing
page.

Both the successful and error messages have been updated to remove the word creat‐
ing and replace it with saving. This could also be updated to leverage the isCreating
variable; however, I like the ambiguous term of “saving.”

Creating Observables

In Example 6-9, the id property in the author variable was not cre‐
ated as an observable. Because Knockout needs to track changes to
all observables, it’s important to be conscientious of how many
observables get created. My general rule of thumb is, if the user
cannot change it and if the UI doesn’t require updating if it is
changed via code, then it doesn’t need to be observed. If either of
these are true, then it probably should be an observed property.

It’s quite common in JavaScript for variables and property names to be camelCased. I
like to follow this rule when I can. As part of the Json.Net library, a data annotation is
available that lets us do exactly that. The C# properties can remain PascalCase, and
the JavaScript can be camelCased. Example 6-11 contains an updated Author model
reflecting this.

Example 6-11. Updated Author model

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.Models
{
 public class Author
 {
 [JsonProperty(PropertyName="id")]
 public int Id { get; set; }

 [Required]
 [JsonProperty(PropertyName = "firstName")]
 public string FirstName { get; set; }

 [Required]
 [JsonProperty(PropertyName = "lastName")]
 public string LastName { get; set; }

 [JsonProperty(PropertyName = "biography")]

Sharing the View and ViewModel | 81

 public string Biography { get; set; }

 [JsonProperty(PropertyName = "books")]
 public virtual ICollection<Book> Books { get; set; }
 }
}

The change to the Author model now breaks the previous data bindings in the
authors Index view and should be updated as shown in Example 6-12.

Example 6-12. Updated Index view

@using BootstrapIntroduction.Models
@model IEnumerable<Author>

@{
 ViewBag.Title = "Authors";
 var queryOptions = (QueryOptions)ViewBag.QueryOptions;
}

<h2>Authors</h2>

<p>@Html.ActionLink("Create New", "Create")</p>

<table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>@Html.BuildSortableLink("First Name", "Index", "firstName"
 , queryOptions)</th>
 <th>@Html.BuildSortableLink("Last Name", "Index", "lastName"
 , queryOptions)</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: authors">
 <tr>
 <td data-bind="text: firstName"></td>
 <td data-bind="text: lastName"></td>
 <td>
 <a data-bind="attr: { href: '@Url.Action("Details")/' + id }"
 class="btn btn-info">Details
 <a data-bind="attr: { href: '@Url.Action("Edit")/' + id }"
 class="btn btn-primary">Edit
 <a data-bind="attr: { href: '@Url.Action("Delete")/' + id }"
 class="btn btn-danger">Delete
 </td>
 </tr>
 </tbody>
</table>

@Html.BuildNextPreviousLinks(queryOptions, "Index")

82 | Chapter 6: Working with Forms

@section Scripts {
 <script>
 function ViewModel(authors) {
 var self = this;

 self.authors = authors;
 };

 var viewModel = new ViewModel(@Html.HtmlConvertToJson(Model));
 ko.applyBindings(viewModel);
 </script>
}

The required changes are now completed, and the Create and Edit actions are now
sharing the same View and ViewModel.

Deleting with a Modal
The scaffolded delete functionality is quite nice. I like that it contains a confirmation
page allowing the users to back out and change their mind. However, I do not like the
fact that users are redirected to a new page for this simple option. This section will
demonstrate how to implement the same functionality within a modal window
(shown in Figure 6-2).

Converting the existing functionality into a modal involves a few different steps:

1. The delete button in the Views/Authors/Index.cshtml view needs to change from a
regular link to a Knockout click data binding.

2. The resulting click event from the delete button will be implemented in the
authors ViewModel to fetch the existing delete confirmation page and display it
with a Bootstrap modal.

3. To avoid adding additional markup to the Index view, the scaffolded Views/
Authors/Delete.cshtml view has been updated to contain the required markup for
a Bootstrap modal.

4. The previous inline ViewModel has been moved into a new AuthorIndexViewMo
del inside the newly created ViewModels folder for better code organization.

Two changes are required in the authors Index view. First, the delete link needs
updating to include the new click data binding. This data binding accepts a func‐
tion that will be executed by Knockout when the user clicks this button. This is
shown in Example 6-13.

Deleting with a Modal | 83

Figure 6-2. Delete author modal

Example 6-13. Updated delete button

<a data-bind="
 click: $parent.showDeleteModal, attr: { href: '@Url.Action("Delete")/' + id }"
 class="btn btn-danger">Delete

Because this code is inside a Knockout foreach binding, the function to be called is
prefixed with $parent. When you are inside a foreach binding, you are no longer in
the context of the ViewModel. In this example, you are now in the context of an indi‐
vidual author object and only its properties are available. Knockout provides the abil‐
ity to access other properties outside the current context with $parent.

The second change (shown in Example 6-14) updates the Scripts section at the bot‐
tom of the view. Previously, the ViewModel was contained in the view. It has now
been moved to a new file called AuthorIndexViewModel. This file is included and
then instantiated with the list of authors as before.

Example 6-14. Updated Scripts section

@section Scripts {
 @Scripts.Render("/Scripts/ViewModels/AuthorIndexViewModel.js")
 <script>
 var viewModel = new AuthorIndexViewModel(@Html.HtmlConvertToJson(Model));
 ko.applyBindings(viewModel);
 </script>
}

84 | Chapter 6: Working with Forms

Example 6-15 contains the enhanced AuthorIndexViewModel. It contains two new
functions: showDeleteModal and deleteAuthor.

Example 6-15. New AuthorIndexViewModel

function AuthorIndexViewModel(authors) {
 var self = this;

 self.authors = authors;

 self.showDeleteModal = function (data, event) {
 self.sending = ko.observable(false);

 $.get($(event.target).attr('href'), function (d) {
 $('.body-content').prepend(d);
 $('#deleteModal').modal('show');

 ko.applyBindings(self, document.getElementById('deleteModal'));
 });
 };

 self.deleteAuthor = function (form) {
 self.sending(true);
 return true;
 };
};

The showDeleteModal function is called when the user clicks the delete button. It
contains two parameters: data and event. The data parameter contains the current
author with all of its properties. The second parameter, event, contains the HTML
element that the click binding is attached to. This parameter is used in the AJAX call
to specify the URL of the request.

When the AJAX request completes, the resulting HTML is prepended to the body-
content class. Once the HTML is prepended, the modal is shown to the user by
accessing the newly added HTML element with the id of deleteModal and calling the
modal with the value of show.

The updated Delete view (shown in Example 6-16) contains a couple of Knockout
bindings. For these to be processed by Knockout, the ko.applyBindings needs to be
executed with a ViewModel—in this case, the current ViewModel. An optional sec‐
ond parameter is provided that limits the scope of the binding to the newly inserted
delete modal.

The deleteAuthor function is called when the user confirms the deletion of the
author. This function sets the sending observable that was created in the showDelete
Modal to true. In the delete modal, this will hide the submit button options. The func‐

Deleting with a Modal | 85

tion returns true, so the form will be submitted as usual. Normally, Knockout
automatically returns false to prevent the submission of the form.

Example 6-16 contains an updated Delete view. The initial view contained a preview
of the author being deleted and the creation of a new form with a submit button to
delete. This has been maintained, but the markup is now wrapped within a modal.

Example 6-16. Updated Delete view

@model BootstrapIntroduction.Models.Author
@{
 ViewBag.Title = "Delete";
 Layout = null;
}

<div class="modal fade" id="deleteModal">
 <div class="modal-dialog">
 <div class="modal-content">
 <div class="modal-header">
 <button type="button" class="close" data-dismiss="modal">
 ×
 Close
 </button>
 <h4 class="modal-title">Author Delete Confirmation</h4>
 </div>
 <div class="modal-body">
 <h3>Are you sure you want to delete this author?</h3>
 <div>
 <hr />
 <dl class="dl-horizontal">
 <dt>
 @Html.DisplayNameFor(model => model.FirstName)
 </dt>

 <dd>
 @Html.DisplayFor(model => model.FirstName)
 </dd>

 <dt>
 @Html.DisplayNameFor(model => model.LastName)
 </dt>

 <dd>
 @Html.DisplayFor(model => model.LastName)
 </dd>

 <dt>
 @Html.DisplayNameFor(model => model.Biography)
 </dt>

 <dd>

86 | Chapter 6: Working with Forms

 @Html.DisplayFor(model => model.Biography)
 </dd>

 </dl>
 </div>
 <div class="modal-footer">
 @using (Html.BeginForm("Delete", "Authors", FormMethod.Post,
 new { data_bind = "submit: deleteAuthor" }))
 {
 @Html.AntiForgeryToken()

 <div class="form-actions no-color text-center"
 data-bind="visible: !sending()">
 <input type="submit" value="Delete" class="btn btn-danger" />
 <button type="button" class="btn btn-default"
 data-dismiss="modal">Close</button>
 </div>

 <div class="progress" data-bind="visible: sending">
 <div class="progress-bar progress-bar-info progress-bar-striped active"
 role="progressbar" aria-valuenow="100"
 aria-valuemin="0" aria-valuemax="100"
 style="width: 100%">

 </div>
 </div>
 }
 </div>
 </div><!-- /.modal-content -->
 </div><!-- /.modal-dialog -->
</div><!-- /.modal -->
</div>

Creating a modal consists of including a wrapper div with the class of modal. The
modal is then divided into three separate sections: the header, the body, and the
footer. In the delete modal, the header contains a title indicating that the user needs
to confirm the deletion of this author. The body contains the preview of the author’s
information. And the footer contains the form that will submit the author for dele‐
tion.

This form has been updated to include the submit data binding, which calls the afore‐
mentioned deleteAuthor function. The progress bar that was included when adding
or editing an author is also included here and shown once the user has clicked the
delete button.

Once the user clicks the delete button, it performs a regular form post. In the Author
sController, the results of a successful author deletion redirect the user back to the
authors listing page. This will hide the modal and cause the list of authors to be upda‐
ted with the deleted author removed.

Deleting with a Modal | 87

Empty Table Listings
Once I started to delete and add authors, I noticed that an empty table is shown when
there are zero authors. Also, because there are Knockout data bindings contained
within the first table, there is a flicker of an empty table row and buttons. This, of
course, looks a little awkward.

This next example will solve it by applying a visible binding to the table. An alert
message will also be shown when there are no authors. Example 6-17 contains an
updated Views/Authors/Index.cshtml views with the subtle changes.

Example 6-17. Updated Authors view

@using BootstrapIntroduction.Models
@model IEnumerable<Author>

@{
 ViewBag.Title = "Authors";
 var queryOptions = (QueryOptions)ViewBag.QueryOptions;
}

<h2>Authors</h2>

<p>@Html.ActionLink("Create New", "Create")</p>

<div style="display: none" data-bind="visible: authors.length > 0">
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>@Html.BuildSortableLink("First Name", "Index", "firstName"
 , queryOptions)</th>
 <th>@Html.BuildSortableLink("Last Name", "Index", "lastName"
 , queryOptions)</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: authors">
 <tr>
 <td data-bind="text: firstName"></td>
 <td data-bind="text: lastName"></td>
 <td>
 <a data-bind="attr: { href: '@Url.Action("Details")/' + id }"
 class="btn btn-info">Details
 <a data-bind="attr: { href: '@Url.Action("Edit")/' + id }"
 class="btn btn-primary">Edit
 <a data-bind="click: $parent.showDeleteModal,
 attr: { href: '@Url.Action("Delete")/' + id }"
 class="btn btn-danger">Delete
 </td>
 </tr>

88 | Chapter 6: Working with Forms

 </tbody>
 </table>

 @Html.BuildNextPreviousLinks(queryOptions, "Index")
</div>

<div style="display: none" data-bind="visible: authors.length == 0"
 class="alert alert-warning alert-dismissible" role="alert">
 <button type="button" class="close" data-dismiss="alert">
 ×
 Close
 </button>
 There are no authors to display.
 Click @Html.ActionLink("here", "Create") to create one now.
</div>

@section Scripts {
 @Scripts.Render("/Scripts/ViewModels/AuthorIndexViewModel.js")
 <script>
 var viewModel = new AuthorIndexViewModel(@Html.HtmlConvertToJson(Model));
 ko.applyBindings(viewModel);
 </script>
}

The table and pagination links are now wrapped in a div tag. This div contains a data
binding that will make it hidden when the length of the authors array is 0. There is
also an inline style of display: none on this element. This means by default it will be
hidden until the Knockout bindings are executed.

An alert message has also been added (as shown in Figure 6-3). The div tag for the
alert contains the inverse data binding, meaning that it will only be shown when there
are no authors; otherwise, it will remain hidden. This div also contains an inline style
with display: none.

Figure 6-3. Empty authors listing

Empty Table Listings | 89

Without the inline style to make both elements hidden by default, prior to Knockout
being executed and hiding one of the two properties, both would be temporarily visi‐
ble to the user. The side effect of this is that the page will be temporarily empty until
Knockout executes the data bindings and shows the appropriate element. I prefer the
empty page look to the on and off flicker of elements.

Summary
Chapter 5 provided the ability to add, edit, delete, and view the authors in the data‐
base. It introduced some nice functionality on the index page to sort and page
through the authors. This chapter focused on the managing portion of it. The add
and edit forms were updated to share the view and ViewModel and submit the author
via AJAX. The delete was then updated to show the confirmation in a modal instead
of going to a new page to perform the delete confirmation.

As a good learning exercise, I would suggest that you attempt the same changes on
the Books table. Begin by scaffolding a BooksController and then perform the simi‐
lar steps completed throughout this chapter and Chapter 5.

90 | Chapter 6: Working with Forms

CHAPTER 7

Server-Side ViewModels

Chapter 3 introduced client-side ViewModels that are used to perform data bindings
with Knockout. I would consider them identical in purpose, but they live at a differ‐
ent level in the lifecycle of a web request.

A server-side ViewModel is generated from a data model. The ViewModel is then
bound to a view. In Chapter 5 and Chapter 6 when the AuthorsController was scaf‐
folded from the Author model, the Author model is also being used as a ViewModel
for the various views in the CRUD operation.

In Chapter 6, client-side ViewModels were created that accepted the ViewModel from
the Razor view (the data model), and they were bound to the view via Knockout. The
major difference between client-side and server-side ViewModels is that server-side
ViewModels are static. Once the web request has been returned from the server to the
client, the server-side ViewModel will never change, whereas the client-side ViewMo‐
del is dynamic and responds to user interactions on the web page.

Why Create Server-Side ViewModels?
This is an important question. As you will see very soon, when I create an Authors
ViewModel, it will be nearly identical to the Authors model, so why should we create
them?

In Chapter 5, when the AuthorsController was first scaffolded from the Author
model, the list of authors was serialized to JSON and provided to the client-side
ViewModel. If you view the source of the authors index page, you will notice the list
of books for each author was also serialized. I consider this a mistake because unnec‐
essary data was transferred to the client, and this data was then unnecessarily bound
to the ViewModel.

91

The definition of a ViewModel is to bind data from a model so that it can be accessed
easily by a view. Returning the unneeded and unused array of books breaks this defi‐
nition. This, of course, is required by the data model and Entity Framework to create
inter-relationships.

It is also quite common for data models to contain nonpublic data. For example, an
Authors table may often contain contact information that should not be displayed
publicly, but be available for internal use. These fields would exist in the data model,
but they would not exist in the ViewModel.

The concept of a server-side ViewModel could have existed in Chapter 3 with the
Person model that demonstrated how Knockout ViewModels accepted input. In this
case, the Person is a not a data model, but rather it is a ViewModel used for the
Advanced view in the HomeController.

Chapter 5 also introduced two additional ViewModels that at the time were placed in
the Models directory: QueryOptions and SortOrder. These also do not correspond to
data models; they are used by the View and the Controller to communicate informa‐
tion back and forth.

With a good understanding of server-side ViewModels, it is a good time to create a
new ViewModels folder in the root of the project. The Person, QueryOptions, and
SortOrder classes should then be relocated to this folder.

ViewModels Namespace

When you relocate the preceding three classes, it is a good idea to
adjust the namespaces. Because these classes were created inside
the Models directory, their namespace is BootstrapIntroduc
tion.Models. An updated namespace would be to change it
to BootstrapIntroduction.ViewModels. Once you update the
namespace in the class, you’ll need to update any reference to it
and include the newly named namespace, for example the HomeCon
troller, the HtmlHelperExtension, the Advanced.cshtml, etc.
It’s not necessary to update the namespace; however, if your project
continues to grow and you create a Person data model, you would
receive an error because a Person class would already exist in that
namespace.

Going forward, Controllers will now be responsible for converting Models to View‐
Models for output, and vice versa for input (as shown in Figure 7-1). The remainder
of this chapter will update the AuthorsController to demonstrate this.

92 | Chapter 7: Server-Side ViewModels

Figure 7-1. Server-side ViewModels

The Authors ViewModel
Example 7-1 creates a new class called AuthorViewModel inside the newly created
ViewModels directory. Even though the class is contained within the ViewModels
folder, I do like post-fixing ViewModel in the name because it helps to easily distin‐
guish the ViewModel from the data model.

Example 7-1. AuthorViewModel

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.ViewModels
{
 public class AuthorViewModel
 {
 [JsonProperty(PropertyName="id")]
 public int Id { get; set; }

 [Required]
 [JsonProperty(PropertyName = "firstName")]
 public string FirstName { get; set; }

 [Required]
 [JsonProperty(PropertyName = "lastName")]

The Authors ViewModel | 93

 public string LastName { get; set; }

 [JsonProperty(PropertyName = "biography")]
 public string Biography { get; set; }
 }
}

The AuthorViewModel is nearly identical to the Author data model. It contains the
JsonProperty annotations because this model will now be serialized for the Java‐
Script ViewModels. It also contains the validation annotations because, as will be
demonstrated in a later section, the add and edit forms will be using this model in the
form. Adding the data validation will allow the form to ensure the appropriate fields
are populated.

Updating the Authors Listing
Updating the list of authors to use the new AuthorViewModel requires two changes:

1. Update the Index.cshtml to be bound to a list of AuthorViewModels instead of
Author model.

2. Update the AuthorsController to convert the list of Author models to a list of
AuthorViewModels.

Updating the authors Index.cshtml requires changes to the first two lines of the entire
view, as shown in Example 7-2.

Example 7-2. Changing to AuthorViewModel

@using BootstrapIntroduction.ViewModels
@model IEnumerable<AuthorViewModel>

Converting the list of models to ViewModels is equally as easy because I am going to
leverage a new third-party library called Automapper. Automapper is a library that
lets you define a map from the source (Author data model) to a destination (Author
ViewModel). It will automatically go through each record in the list, and all properties
that are named the same will be copied from the source to the destination.

Automapper can also be customized to map properties that don’t match in name with
a little bit of configuration. That’s not necessary at this time, however, because the
naming conventions between the Author model and AuthorViewModel are identical.

To install Automapper, right-click the project and select Manage NuGet Packages.
With the Online option selected on the left, search for Automapper. Click the Install
button on the first result.

94 | Chapter 7: Server-Side ViewModels

Using Automapper in code requires two things. The first is to define the mapping
that identifies the source class and the destination class. The second is to run the map.
Example 7-3 shows an updated Index function inside the AuthorsController.

Example 7-3. Updated AuthorsController Index

 public ActionResult Index([Form] QueryOptions queryOptions)
 {
 var start = (queryOptions.CurrentPage - 1) * queryOptions.PageSize;

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages =
 (int)Math.Ceiling((double)db.Authors.Count() / queryOptions.PageSize);

 ViewBag.QueryOptions = queryOptions;

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();

 return View(AutoMapper.Mapper.Map<List<Author>,
 List<AuthorViewModel>>(authors.ToList()));
 }

The two Automapper lines appear almost identical; the first one calls a CreateMap
function, and the second calls the Map function. The second line also defines the
source and destination slightly differently. When the Automapper map is defined, it
only takes the class names; however, if you want to convert an entire collection of
those models, you must indicate that when calling the Map function.

The listing of authors is now data bound to a ViewModel instead of a data model.

Updating the Add/Edit Form
Updating the add and edit authors form involves the same two things as updating the
index. The authors Form.cshtml view needs to be data bound to the AuthorViewModel
(as shown in Example 7-4).

Example 7-4. Updated Authors Form

@model BootstrapIntroduction.ViewModels.AuthorViewModel

The AuthorsController then needs to be updated to convert the data. The Index
function only has to convert from the data model to the ViewModel; for the add and

Updating the Add/Edit Form | 95

edit form, it also needs to convert from the ViewModel to the data model. Example
7-5 contains updates to both of the Create and both of the Edit functions.

Example 7-5. Updated AuthorsController

 // GET: Authors/Create
 public ActionResult Create()
 {
 return View("Form", new AuthorViewModel());
 }

 // POST: Authors/Create
 [HttpPost]
 [ValidateAntiForgeryToken]
 public ActionResult Create([Bind(Include = "Id,FirstName,LastName,Biography")]
 AuthorViewModel author)
 {
 if (ModelState.IsValid)
 {
 AutoMapper.Mapper.CreateMap<AuthorViewModel, Author>();
 db.Authors.Add(AutoMapper.Mapper.Map<AuthorViewModel, Author>(author));
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 return View(author);
 }

 // GET: Authors/Edit/5
 public ActionResult Edit(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 return HttpNotFound();
 }

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 return View("Form", AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

 // POST: Authors/Edit/5
 [HttpPost]
 [ValidateAntiForgeryToken]
 public ActionResult Edit([Bind(Include = "Id,FirstName,LastName,Biography")]
 AuthorViewModel author)
 {

96 | Chapter 7: Server-Side ViewModels

 if (ModelState.IsValid)
 {
 AutoMapper.Mapper.CreateMap<AuthorViewModel, Author>();
 db.Entry(AutoMapper.Mapper.Map<AuthorViewModel, Author>(author)).State
 = EntityState.Modified;
 db.SaveChanges();
 return RedirectToAction("Index");
 }

 return View("Form", author);
 }

The first Create function was updated to create a new AuthorViewModel instead of
the previous Author data model.

The second Create function (that is called when the form is posted) was updated to
implement the Automapper. This time the source is the AuthorViewModel and the
destination is the Author data model.

The first Edit function was updated to be similar to the Index function. It uses Auto‐
mapper to convert from the data model to the ViewModel. This will allow the form to
be prepopulated with the existing author data from the database.

The second Edit function (also called when the form is posted) was updated just like
the second Create function to perform the conversion from the AuthorViewModel to
the Author data model. This allows the updated Author to be saved to the database.

Updating the Delete Modal
You guessed it! Updating the deletion of an author requires the same two updates.
First, the Delete.cshtml file needs to be updated to the AuthorViewModel as shown in
Example 7-6.

Example 7-6. Updated Delete Author view

@model BootstrapIntroduction.ViewModels.AuthorViewModel

The Delete function in the AuthorsController needs to be updated just like the first
Edit function. It creates an Automapper from the data model to the ViewModel as
shown in Example 7-7.

Example 7-7. Updated Delete AuthorsController

 public ActionResult Delete(int? id)
 {
 if (id == null)
 {

Updating the Delete Modal | 97

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 return HttpNotFound();
 }
 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 return View(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

The second Delete function requires no updates because it doesn’t accept the entire
Author model as input when the delete is confirmed; it simply accepts the id. The id
is used to fetch the author and delete it from the database. It also does not return the
Author model (because it was just deleted).

Summary
Implementing server-side ViewModels can appear as duplicated code to the data
model, and I sometimes feel this way. However, as soon as you have a single property
or relationship that is not required by the View, ViewModels become almost manda‐
tory.

The next chapter will introduce Web API, for which ViewModels are a prerequisite
because models are often the view in the Web API. Data models that contain a circu‐
lar relationship (an author can have many books and a book has one author is a cir‐
cular relationship) cannot be used in the return.

98 | Chapter 7: Server-Side ViewModels

CHAPTER 8

Introduction to Web API

Web API was briefly mentioned in Chapter 1 because Visual Studio provides a tem‐
plate for automatically creating a Web API application. Web API allows you to build
RESTful web applications. When using Web API in combination with the MVC
architecture pattern, the Controller is often the entry point for the Resource (Model)
being interacted with. The View with Web API is often a JSON or XML representa‐
tion of the resource.

This chapter will demonstrate the Web API by enhancing the CRUD interaction with
the authors that the previous two chapters have been focusing on. In this chapter, the
listing of authors will be updated to perform the sorting and paging of authors via a
Web API controller. Likewise, adding and editing an author will also interact with the
same Web API controller. Previously, new HTML pages were returned, but when
Web API is integrated, the HTML will be updated to use Knockout data bindings.
These will be dynamically updated by the result of an AJAX request to a Web API
endpoint, which will prevent full-page reloads.

Installing Web API
In Chapter 1, when the BootstrapIntroduction project was first created, Web API was
not included. This means it now needs to be added via the NuGet Package Manager.
If you wish to avoid the visual NuGet Package Manager, a console utility is also avail‐
able. To install packages via the console, click Tools → NuGet Package Manager
→ Package Manager Console. In the console window, enter Install-Package Micro
soft.AspNet.WebApi to install the Web API package.

When a new project is created with Web API, Visual Studio scaffolds several addi‐
tional pieces that, when installed via the NuGet Package Manager, are not set up. Let’s
configure those now.

99

http://en.wikipedia.org/wiki/Representational_state_transfer

Example 8-1 is a new file called WebApiConfig and should be added to the App_Start
folder. This file is very similar to the RouteConfig that was explored in Chapter 1 with
the default routing.

Example 8-1. WebApiConfig

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace BootstrapIntroduction
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 // Web API configuration and services

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

Just like RouteConfig, this creates a new default route that will allow the common
HTTP verbs associated with a RESTful application to work out of the box. A key dif‐
ference is that all URLs are prefixed with api before the controller and action.

Next, in the root folder of the project, the Global.asax.cs file requires a minor update
(as shown in Example 8-2) to configure the newly added Web API routes.

Example 8-2. Updated Global.asax.cs

using BootstrapIntroduction.DAL;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Web;
using System.Web.Http;
using System.Web.Mvc;
using System.Web.Optimization;
using System.Web.Routing;

100 | Chapter 8: Introduction to Web API

namespace BootstrapIntroduction
{
 public class MvcApplication : System.Web.HttpApplication
 {
 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 GlobalConfiguration.Configure(WebApiConfig.Register);
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);

 var bookContext = new BookContext();
 Database.SetInitializer(new BookInitializer());
 bookContext.Database.Initialize(true);
 }
 }
}

If you create a new project and include the Web API framework at the same time,
these steps are not needed because Visual Studio will automatically configure this.

And finally, a new AuthorsController can be created. Prior to creating the file for
the new AuthorsController, create a new folder called api inside of the Controllers
folder. Once created, right-click the new folder and add a new Controller. This time,
select Web API 2 Controller - Empty to finish creating the empty AuthorsController
(as shown in Example 8-3).

Example 8-3. Empty AuthorsController

using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;

namespace BootstrapIntroduction.Controllers.Api
{
 public class AuthorsController : ApiController
 {
 }
}

Much like the regular MVC controllers that were created earlier, Web API controllers
are classes that extend a base ApiController class instead of the Controller class.
Like the Controller class, the ApiController contains a lot of core methods that will
help bind and execute the custom controller code and return for output.

Installing Web API | 101

Updating the List of Authors
In Chapter 5, the list of authors was sorted and paged via an MVC controller. This
meant that each time a link was clicked, the entire HTML would be refreshed. In this
chapter, a Web API controller will be used not to return back a full HTML page, but
to return only an updated list of authors with the sorting and paging applied.

The Index view will contain new Knockout bindings that will then automatically
update the list of authors when the AJAX call is successfully completed.

Example 8-4 is the Web API AuthorsController with a Get function that accepts the
QueryOptions as input from the URL. The code to sort the authors and page through
them is identical to the MVC AuthorsController.

Example 8-4. Get AuthorsController

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Data.Entity.Infrastructure;
using System.Linq;
using System.Linq.Dynamic;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using System.Web.Http.Description;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;
using BootstrapIntroduction.ViewModels;

namespace BootstrapIntroduction.Controllers.Api
{
 public class AuthorsController : ApiController
 {
 private BookContext db = new BookContext();

 // GET: api/Authors
 public ResultList<AuthorViewModel> Get([FromUri]QueryOptions queryOptions)
 {
 var start = (queryOptions.CurrentPage - 1) * queryOptions.PageSize;

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages =
 (int)Math.Ceiling((double)db.Authors.Count() / queryOptions.PageSize);

102 | Chapter 8: Introduction to Web API

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();

 return new ResultList<AuthorViewModel>
 {
 QueryOptions = queryOptions,
 Results = AutoMapper.Mapper.Map<List<Author>, List<AuthorViewModel>>
 (authors.ToList())
 };
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 db.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

Example 8-4 demonstrates some immediate differences between an MVC controller
and a Web API controller. The QueryOptions input parameter in both controllers
comes from URL parameters; however, they are attributed differently in the control‐
lers. An MVC controller defines it as Form, and a Web API controller defines it as
FromUri.

Second, the MVC controller would typically finish an action by returning via a call to
the View function. With Web API, the object that you wish to return is returned as-is.
In this example, a new class called ResultList (shown in Example 8-5) of type
AuthorViewModel is returned. Based on the request made to the Web API controller,
the results will be encoded as JSON or XML. Knockout works really well with JSON,
so that is what will be used.

Example 8-5 is a new ViewModel called ResultList. This class should be added to
the previously created ViewModels folder. This class contains a generic property
called List<T> that allows this class to be reused for other listing pages. In Example
8-4, the ResultList was created with a type of AuthorViewModel.

Example 8-5. ResultList ViewModel

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.ViewModels
{

Updating the List of Authors | 103

 public class ResultList<T>
 {
 [JsonProperty(PropertyName="queryOptions")]
 public QueryOptions QueryOptions { get; set; }

 [JsonProperty(PropertyName = "results")]
 public List<T> Results { get; set; }
 }
}

Along with the generic list property, the ResultList contains a second property for
the QueryOptions. In Chapter 5, the QueryOptions were returned to the Index view
in the ViewBag. In this example, they are bound in the ResultList ViewModel. This
model will be used by Knockout to dynamically update the user interface (UI) when
the authors are sorted or paged.

To make it easier to provide consistency to the Knockout ViewModel, the Index view
in the original MVC AuthorsController will also be updated to leverage the new
ResultList ViewModel. Example 8-6 contains an updated Index function from the
AuthorsController that constructs the new ResultList ViewModel just like Exam‐
ple 8-4 did in the Web API AuthorsController.

Example 8-6. Index action

 public ActionResult Index([Form] QueryOptions queryOptions)
 {
 var start = (queryOptions.CurrentPage - 1) * queryOptions.PageSize;

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages =
 (int)Math.Ceiling((double)db.Authors.Count() / queryOptions.PageSize);

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();

 return View(new ResultList<AuthorViewModel>
 {
 QueryOptions = queryOptions,
 Results = AutoMapper.Mapper.Map<List<Author>,
 List<AuthorViewModel>>(authors.ToList())
 });
 }

The QueryOptions that were previously passed via the ViewBag have been moved into
the ResultList ViewModel. This will force the Index.cshtml view to require minor

104 | Chapter 8: Introduction to Web API

changes to accomodate the new model being bound and where the QueryOptions are
retrieved from.

Example 8-7 contains a fully updated Index view. It contains the previously described
changes, as well as several others that implement Knockout bindings to perform the
previous sorting and paging that were happening via regular HTML links. These links
have been updated to generate Knockout bindings that will execute an AJAX request
to the Web API and dynamically update the list of authors.

Example 8-7. Index view

@using BootstrapIntroduction.ViewModels
@model ResultList<AuthorViewModel>

@{
 ViewBag.Title = "Authors";
 var queryOptions = Model.QueryOptions;
}

<h2>Authors</h2>

<p>@Html.ActionLink("Create New", "Create")</p>

<div style="display: none" data-bind="visible: pagingService.entities().length > 0">
 <table class="table table-bordered table-striped">
 <thead>
 <tr>
 <th>@Html.BuildKnockoutSortableLink("First Name", "Index", "firstName")</th>
 <th>@Html.BuildKnockoutSortableLink("Last Name", "Index", "lastName")</th>
 <th>Actions</th>
 </tr>
 </thead>
 <tbody data-bind="foreach: pagingService.entities">
 <tr>
 <td data-bind="text: firstName"></td>
 <td data-bind="text: lastName"></td>
 <td>
 <a data-bind="attr: { href: '@Url.Action("Details")/' + id }"
 class="btn btn-info">Details
 <a data-bind="attr: { href: '@Url.Action("Edit")/' + id }"
 class="btn btn-primary">Edit
 <a data-bind="click: $parent.showDeleteModal,
 attr: { href: '@Url.Action("Delete")/' + id }"
 class="btn btn-danger">Delete
 </td>
 </tr>
 </tbody>
 </table>

 @Html.BuildKnockoutNextPreviousLinks("Index")

Updating the List of Authors | 105

</div>

<div style="display: none" data-bind="visible: pagingService.entities().length == 0"
 class="alert alert-warning alert-dismissible" role="alert">
 <button type="button" class="close" data-dismiss="alert">
 ×Close
 </button>
 There are no authors to display. Click @Html.ActionLink("here", "Create")
 to create one now.
</div>

@section Scripts {
 @Scripts.Render("/Scripts/Services/PagingService.js",
 "/Scripts/ViewModels/AuthorIndexViewModel.js")
 <script>
 var viewModel = new AuthorIndexViewModel(@Html.HtmlConvertToJson(Model));
 ko.applyBindings(viewModel);
 </script>
}

This code will not compile just yet because new files and HtmlHelper extensions need
to be created. Prior to reviewing those, let’s go through the several important changes
to the Index view.

First, there was an array of authors contained in the Knockout ViewModel. This has
been replaced with a new observableArray called entities under the pagingSer
vice object. The pagingService is a new JavaScript class that can be reused across
different HTML views to allow easy paging and sorting of your data. The entities is
an observableArray, which means whenever this array changes, Knockout will auto‐
matically update any data bindings that reference it. When changing the sort order,
the list of authors will be dynamically redrawn with the results of the AJAX call from
the Web API controller.

Next, the previously created HtmlHelper extension methods that helped build the
sortable link and the next/previous page links have been updated to call a new
method. They contain the same name with Knockout injected after the word Build to
identify that these methods will build Knockout-specific links.

The final change in the Index view is that the Scripts.Render call has been updated
to include the new PagingService file that will be created in Example 8-9.

Example 8-8 contains the newly created HtmlHelper extension methods that create
the Knockout data-bound links for sorting and paging.

Example 8-8. HtmlHelperExtension

using BootstrapIntroduction.ViewModels;
using Newtonsoft.Json;

106 | Chapter 8: Introduction to Web API

using System.Web;
using System.Web.Mvc;
using System.Web.Mvc.Html;

public static class HtmlHelperExtensions
{
 // other functions removed for an abbreviated example

 public static MvcHtmlString BuildKnockoutSortableLink(this HtmlHelper htmlHelper,
 string fieldName, string actionName, string sortField)
 {
 var urlHelper = new UrlHelper(htmlHelper.ViewContext.RequestContext);

 return new MvcHtmlString(string.Format(
 "<a href=\"{0}\" data-bind=\"click: pagingService.sortEntitiesBy\"" +
 " data-sort-field=\"{1}\">{2} " +
 "",
 urlHelper.Action(actionName),
 sortField,
 fieldName));
 }

 public static MvcHtmlString BuildKnockoutNextPreviousLinks(
 this HtmlHelper htmlHelper, string actionName)
 {
 var urlHelper = new UrlHelper(htmlHelper.ViewContext.RequestContext);

 return new MvcHtmlString(string.Format(
"<nav>" +
" <ul class=\"pager\">" +
" <li data-bind=\"css: pagingService.buildPreviousClass()\">" +
"
 Previous" +
" <li data-bind=\"css: pagingService.buildNextClass()\">" +
" Next
 " +
" " +
"</nav>",
 @urlHelper.Action(actionName)
));
 }

 // other functions removed for an abbreviated example
}

These two functions are quite similar to their counterparts (the non-Knockout ver‐
sions) in that they return a new MvcHtmlString to perform the sorting or paging. The
non-Knockout versions leveraged the QueryOptions to construct a full URL. These
functions instead leverage the Knockout click data binding. The click data binding
allows you to specify a function to call inside your Knockout ViewModel.

Updating the List of Authors | 107

The BuildKnockoutSortableLink binds the click to the sortEntitiesBy function
within the aforementioned PagingService class. Inside this link, the sorting icon is
leveraging another Knockout data binding called css. The results of the
buildSortIcon function in the PagingService returns the appropriate class names to
build the sort icon. The buildSortIcon is a computedObservable function, which
means that when Knockout detects a change in any observed property within the
function, it will re-execute the function to update what it is data bound to. This will
allow for the sorting link to change each time you alter the sort order.

The BuildKnockoutNextPreviousLinks works quite similarly to the sortable link
function. The previous and next links are data bound to the click event that calls the
previousPage and nextPage functions, respectively, from the PagingService class.
Both links also contain a css data binding to mark them as disabled when the previ‐
ous and next links are unavailable.

Example 8-9 contains the new PagingService JavaScript class. For organization pur‐
poses, I have created a new Services folder inside of the Scripts folder and added the
PagingService.js file here.

Example 8-9. PagingService

 function PagingService(resultList) {
 var self = this;
 self.queryOptions = {
 currentPage: ko.observable(),
 totalPages: ko.observable(),
 pageSize: ko.observable(),
 sortField: ko.observable(),
 sortOrder: ko.observable()
 };

 self.entities = ko.observableArray();

 self.updateResultList = function (resultList) {
 self.queryOptions.currentPage(resultList.queryOptions.currentPage);
 self.queryOptions.totalPages(resultList.queryOptions.totalPages);
 self.queryOptions.pageSize(resultList.queryOptions.pageSize);
 self.queryOptions.sortField(resultList.queryOptions.sortField);
 self.queryOptions.sortOrder(resultList.queryOptions.sortOrder);

 self.entities(resultList.results);
 };

 self.updateResultList(resultList);

 self.sortEntitiesBy = function (data, event) {
 var sortField = $(event.target).data('sortField');

108 | Chapter 8: Introduction to Web API

 if (sortField == self.queryOptions.sortField() &&
 self.queryOptions.sortOrder() == "ASC")
 self.queryOptions.sortOrder("DESC");
 else
 self.queryOptions.sortOrder("ASC");

 self.queryOptions.sortField(sortField);
 self.queryOptions.currentPage(1);

 self.fetchEntities(event);
 };

 self.previousPage = function (data, event) {
 if (self.queryOptions.currentPage() > 1) {
 self.queryOptions.currentPage(self.queryOptions.currentPage() - 1);

 self.fetchEntities(event);
 }
 };

 self.nextPage = function (data, event) {
 if (self.queryOptions.currentPage() < self.queryOptions.totalPages()) {
 self.queryOptions.currentPage(self.queryOptions.currentPage() + 1);

 self.fetchEntities(event);
 }
 };

 self.fetchEntities = function (event) {
 var url = '/api/' + $(event.target).attr('href');
 url += "?sortField=" + self.queryOptions.sortField();
 url += "&sortOrder=" + self.queryOptions.sortOrder();
 url += "¤tPage=" + self.queryOptions.currentPage();
 url += "&pageSize=" + self.queryOptions.pageSize();

 $.ajax({
 dataType: 'json',
 url: url
 }).success(function (data) {
 self.updateResultList(data);
 }).error(function () {
 $('.body-content').prepend('<div class="alert alert-danger">
 Error! There was an error fetching the data.</div>');
 });
 };

 self.buildSortIcon = function (sortField) {
 return ko.pureComputed(function () {
 var sortIcon = 'sort';

 if (self.queryOptions.sortField() == sortField) {
 sortIcon += '-by-alphabet';

Updating the List of Authors | 109

 if (self.queryOptions.sortOrder() == "DESC")
 sortIcon += '-alt';
 }

 return 'glyphicon glyphicon-' + sortIcon;
 });
 };

 self.buildPreviousClass = ko.pureComputed(function () {
 var className = 'previous';

 if (self.queryOptions.currentPage() == 1)
 className += ' disabled';

 return className;
 });

 self.buildNextClass = ko.pureComputed(function () {
 var className = 'next';

 if (self.queryOptions.currentPage() == self.queryOptions.totalPages())
 className += ' disabled';

 return className;
 });
}

The PagingService class starts by creating two properties: the queryOptions and the
entities array. The queryOptions makes all of its child properties observable. This
will be used to dynamically update the sort icons and build the AJAX URL to update
the data. The entities array will contain the list of authors.

The updateResultList function is then defined that accepts a resultList model and
sets all of the observables that were just defined. This function is then immediately
called afterward to populate the observables with the input parameter to the Paging
Service class. This function will also be used after the AJAX calls to update all of the
observables with the results from the Web API controller.

The sortEntitiesBy, previousPage, and nextPage functions are defined next. These
functions update the affected queryOptions properties to perform the sorting and
paging, respectively. sortEntitiesBy sets the sortOrder and sortField passed from
the link that is clicked. It then resets the currentPage to 1. The previousPage and
nextPage functions decrement and increment the currentPage property, respectively.
Both functions also perform a check to prevent going below and above the minimum
and maximum pages. And finally, all three functions call the shared fetchEntities
function.

110 | Chapter 8: Introduction to Web API

The fetchEntities function builds the URL to call using the href attribute from the
link that was clicked. Then the url variable is updated to set the various queryOp
tions. An AJAX request is then made to the URL. On success, the updateResultList
function is called with the results of the AJAX request to update the observed proper‐
ties. When the properties are updated, Knockout will automatically update the sort
icons, list of authors, and paging links dynamically. If an error occurs with the AJAX
request, an alert is added to notify the user they should try again.

The final three functions, buildSortIcon, buildPreviousClass, and buildNext
Class, are created as pureComputed functions. The buildSortIcon accesses the sort
Field and sortOrder observed properties from the queryOptions variable.
Whenever these properties are updated, any UI element that is data bound to the
function will be redrawn with the updated results of the function. The buildPreviou
sClass and buildNextClass work similarily, but they are updated whenever the cur
rentPage property on the queryOptions variable is updated.

Example 8-10 is an updated AuthorIndexViewModel. The only change is that there is
no longer an array of authors. Instead, a new pagingService variable is instantiated
with the new PagingService class passing in the serialized resultList from the
Index view.

Example 8-10. Updated AuthorIndexViewModel

 function AuthorIndexViewModel(resultList) {
 var self = this;

 self.pagingService = new PagingService(resultList);

 self.showDeleteModal = function (data, event) {
 self.sending = ko.observable(false);

 $.get($(event.target).attr('href'), function (d) {
 $('.body-content').prepend(d);
 $('#deleteModal').modal('show');

 ko.applyBindings(self, document.getElementById('deleteModal'));
 });
 };

 self.deleteAuthor = function (form) {
 self.sending(true);
 return true;
 };
};

When using Knockout, I like leveraging Web API controllers to return back only
JSON data instead of the full HTML to build the list of authors. Knockout makes it

Updating the List of Authors | 111

really simple to dynamically update the UI by data binding to observable properties,
arrays, or computed functions.

Updating the Add/Edit Authors Form
Updating the add and edit is much simpler than updating the list of authors. Most of
the effort in the previous section was about maintaining the user interface. This is not
required for the add and edit form, because on success, the user was redirected back
to the list of authors, and on error, an alert message was dynamically added.

That will remain the same. The minor updates in the JavaScript ViewModel will
involve updating the AJAX request type and changing the contentType (shown in
Example 8-11). The rest will remain the same on the JavaScript side of things.

The MVC controller that was scaffolded in Chapter 5 will be updated to remove the
automatically generated form post version of the Create and Edit actions. Similar
actions will be created in the Authors Web API controller.

Example 8-11 contains an updated validateAndSave function from the AuthorForm
ViewModel. It removes the previous inline if statement for the URL and moves it to
the AJAX request type property. The contentType is changed from a standard form
post to be of type application/json. The data property has been updated to leverage
the similar ko.toJS to be ko.toJSON. It works quite similarily to the former, but it
encodes the JavaScript variable into valid JSON to send to the server.

Example 8-11. Updated validateAndSave function

 self.validateAndSave = function (form) {
 if (!$(form).valid())
 return false;

 self.sending(true);

 // include the anti forgery token
 self.author.__RequestVerificationToken = form[0].value;

 $.ajax({
 url: '/api/authors',
 type: (self.isCreating) ? 'post' : 'put',
 contentType: 'application/json',
 data: ko.toJSON(self.author)
 })
 .success(self.successfulSave)
 .error(self.errorSave)
 .complete(function () { self.sending(false) });
 };

112 | Chapter 8: Introduction to Web API

Previously, when an author was being created, the AJAX request was going to a differ‐
ent URL than when the author was being edited. When interacting with a RESTful
API, the URL stays consistent; instead, the request type changes. When you are
adding, the type is post. When you are editing, the request type is changed to a put.
Similarily, if you were to implement a delete action, the request type would be delete
and the URL would remain the same.

Example 8-12 is an updated Authors Web API controller. Two new functions Post
and Put have been added that accept the AuthorViewModel as input.

Example 8-12. Updated Web API AuthorsController

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Data.Entity.Infrastructure;
using System.Linq;
using System.Linq.Dynamic;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using System.Web.Http.Description;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;
using BootstrapIntroduction.ViewModels;

namespace BootstrapIntroduction.Controllers.Api
{
 public class AuthorsController : ApiController
 {
 private BookContext db = new BookContext();

 // GET: api/Authors
 public ResultList<AuthorViewModel> Get([FromUri]QueryOptions queryOptions)
 {
 var start = (queryOptions.CurrentPage - 1) * queryOptions.PageSize;

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages =
 (int)Math.Ceiling((double)db.Authors.Count() / queryOptions.PageSize);

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();

 return new ResultList<AuthorViewModel>
 {

Updating the Add/Edit Authors Form | 113

 QueryOptions = queryOptions,
 Results = AutoMapper.Mapper.Map<List<Author>, List<AuthorViewModel>>
 (authors.ToList())
 };
 }

 // PUT: api/Authors/5
 [ResponseType(typeof(void))]
 public IHttpActionResult Put(AuthorViewModel author)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 AutoMapper.Mapper.CreateMap<AuthorViewModel, Author>();
 db.Entry(AutoMapper.Mapper.Map<AuthorViewModel, Author>(author)).State
 = EntityState.Modified;

 db.SaveChanges();

 return StatusCode(HttpStatusCode.NoContent);
 }

 // POST: api/Authors
 [ResponseType(typeof(AuthorViewModel))]
 public IHttpActionResult Post(AuthorViewModel author)
 {
 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

 AutoMapper.Mapper.CreateMap<AuthorViewModel, Author>();
 db.Authors.Add(AutoMapper.Mapper.Map<AuthorViewModel, Author>(author));
 db.SaveChanges();

 return CreatedAtRoute("DefaultApi", new { id = author.Id }, author);
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 db.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

114 | Chapter 8: Introduction to Web API

These functions are almost identical to the scaffolded MVC AuthorsController in
that they use AutoMapper to convert the ViewModel to a data model and save it using
the Entity Framework DbContext.

The key difference is that neither function returns an HTML view. The Put function
returns an empty result and sets the HTTP Status Code to NoContent. The Post func‐
tion returns an updated AuthorViewModel with the id property set with the newly
created value from the database.

HTTP Status Codes
RESTful applications rely heavily on HTTP Status Codes to provide the integrator
with feedback of the API request. Three main levels are commonly used:

Successful 2xx
The common successful requests are 200 OK, 201 Created, and 204 No Content.
Any request in the 200s is used to identify that the API request was successful.

Client Error 4xx
The common client error requests are 400 Bad Request (the input data was not
valid), 401 Unauthorized, 404 Not Found, and 405 Method Not Allowed. Any
request in the 400s is used to identify that the API integrator is doing something
incorrectly. It’s quite common for the body of the response to contain a helpful
error message to fix the problem prior to resubmitting the same request.

Server Error 5xx
The common server error requests are 500 Internal Server Error, 501 Not Imple‐
mented, and 503 Service Unavailable (often used for rate-limiting the number of
requests to an API). Any request in the 500s is used to identify that an error
occurred on the server and the API integrator should try his request again. Simi‐
lar to 400 level requests, it is quite common for the body of the response to con‐
tain a helpful error message identifying what the problem is.

To avoid unnecessary extra code, I removed the Create and Edit functions from the
MVC AuthorsController that perform the saving of data to the database. I left the
two functions that display the form to the user.

Summary
This chapter demonstrated using Web API controllers to only return JSON data from
the server that gets data bound to observable Knockout properties. I think it nicely
demonstrates how Knockout is capable of updating multiple UI elements when one
or more observable properties are changed. It’s a much smoother user interface to

Summary | 115

dynamically update the table of authors without the need for a full-page reload of the
entire HTML.

If you would like to further explore Web API controllers, I would suggest that you try
converting the delete modal to use two other common Web API functions. The first
is an overloaded Get (by id) that returns an individual AuthorViewModel instead of
a list. The second is a Delete method that also accepts an ID and deletes the author
from the database.

116 | Chapter 8: Introduction to Web API

PART III

Code Architecture

CHAPTER 9

Creating Global Filters

Global filters enable you to apply a consistent behavior across all requests to your web
application by registering a filter during the application startup. Filters can also be
applied to specific actions or entire controllers by adding an attribute to the action or
controller, respectively.

Five different types of filters can be created. At the start of each web request, any filter
that is defined is executed in the following order—the exception to this rule is the
Exception filter (no pun intended) because these filters are only called when an error
occurs:

• Authentication filters (new in MVC 5)
• Authorization filters
• Action filters
• Result filters
• Exception filters

This chapter will provide a brief overview of all five types of filters and then will
demonstrate how to create Action, Result, and Exception filters. Chapter 10 will
demonstrate how to create Authentication and Authorization filters.

Authentication Filters
Authentication filters are new to MVC 5. Prior to that, authentication and authoriza‐
tion were accomplished together in the Authorization filters. MVC 5 has now separa‐
ted these two concerns.

When MVC receives a web page request, any Authentication filters will be executed
first. If the request requires authentication and the user has previously been authenti‐
cated, the request will continue to the next step. If the user has not been authentica‐

119

ted, the request will halt processing. Based on the setup of the filter, the request may
redirect the user to a login page; this is commonly done with an MVC controller. A
Web API controller would more likely return a 401 Unauthorized request.

Authorization Filters
Once the request has passed any Authentication filters, the Authorization filters are
executed next. The goal of an Authorization filter is to ensure that the authenticated
user is allowed to access the page or resource being requested. If authorization suc‐
ceeds, the request will continue to the next step. If it fails authorization, MVC con‐
trollers commonly return error pages. A Web API controller would commonly return
a 403 Forbidden request. Alternatively, it may return a 404 Not Found error and
inform the user that the resource being accessed does not exist, even though it
actually does.

Action Filters
Action filters provide the ability to execute code at two different times. When you
define an Action filter, you can optionally implement a function that executes prior to
the action being requested, or optionally after the action has finished executing, but
prior to generating the final results to complete the request.

Result Filters
Like Action filters, Result filters provide two different functions that can be optionally
implemented. The first is when the result has finished executing; for example, in an
MVC controller once the view has been fully rendered and is ready to be returned
from the server. The second is when the result is executing. This function would not
have access to the final content.

Exception Filters
At any time during a request being handled by MVC, any Exception filters will be
executed. Filters for MVC controllers will commonly return a custom error page that
can return either a specific or generic error message. Web API controllers will com‐
monly build different HTTP status codes. For example, if the model is invalid, a 400
Bad Request could be returned. If an unknown exception occurred, a 500 error would
be more appropriate to indicate a server error occurred.

120 | Chapter 9: Creating Global Filters

Global Web API Validation
When Visual Studio scaffolds controllers and views for us, the controller contains a
statement inside the Create and Edit methods that resembles Example 9-1.

Example 9-1. Model validation

 if (!ModelState.IsValid)
 {
 return BadRequest(ModelState);
 }

The ModelState is a class that inherits from a Dictionary that contains key/value
pairs for all of the elements in the model being validated. When the IsValid Boolean
returns false, it indicates one or more things are invalid in the model and cannot be
saved.

In a Web API controller, this means it should return a 400 Bad Request with a mes‐
sage indicating the issues that need to be fixed.

This section will create a new class called ValidationActionFilterAttribute
(shown in Example 9-2). I like to organize my filters in a common folder, so I have
created a new folder called Filters at the root of my project and created the Action
filter within it.

Example 9-2. ValidationActionFilterAttribute

using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http.Controllers;
using System.Web.Http.Filters;

namespace BootstrapIntroduction.Filters
{
 public class ValidationActionFilterAttribute : ActionFilterAttribute
 {
 public override void OnActionExecuting(HttpActionContext actionContext)
 {
 var modelState = actionContext.ModelState;
 if (!modelState.IsValid)
 actionContext.Response = actionContext.Request.CreateResponse(
 HttpStatusCode.BadRequest, modelState);
 }
 }
}

Global Web API Validation | 121

The new Action filter inherits from the ActionFilterAttribute, which is an abstract
class that contains four virtual functions that can be optionally overridden in your
Action filter class:

OnActionExecuting
The OnActionExecuting function is called just prior to executing the code inside
of your controller method. As shown in Example 9-2, if the ModelState is inva‐
lid, the response is immediately terminated and a 400 Bad Request is returned
from the server. This ensures that your data is valid when your controller method
is executed based upon the validation rules of that model.

OnActionExecutingAsync
The OnActionExecutingAsync function is identical to the OnActionExecuting
function with the exception that it works with asynchronous controllers.

OnActionExecuted
The OnActionExecuted function is called after your controller method has fin‐
ished executing, but it is extremely important that it is triggered prior to the
response being constructed and sent back to the server.

OnActionExecutedAsync
The OnActionExecutedAsync function is identical to the OnActionExecuted
function with the exception that it works with asynchronous controllers.

Once the ValidationActionFilterAttribute is created, it can be implemented glob‐
ally so that none of the API controllers need to perform the same validation inside of
each method.

Global Web API filters are defined in the WebApiConfig class that was created in
Chapter 8 when we installed Web API. Example 9-3 contains an updated WebApiCon
fig class that registers the ValidationActionFilterAttribute.

Example 9-3. Updated WebApiConfig

using BootstrapIntroduction.Filters;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace BootstrapIntroduction
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 // Web API configuration and services

122 | Chapter 9: Creating Global Filters

 config.Filters.Add(new ValidationActionFilterAttribute());

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }
);
 }
 }
}

Testing the validation is not quite so straightforward. When the authors forms were
initially created, they were configured to perform client-side validation to avoid
unnecessary requests to the server to perform the same validation.

You can disable this or use a free tool called Fiddler from Telerik to perform a direct
request to the authors Web API controller.

Installing Fiddler

You can install Fiddler by visiting Telerik’s Fiddler product page
and clicking the Free Download button.
Fiddler currently offers an Alpha version for Linux and Mac. Of
course, any traffic-monitoring software can be used to perform this
test if you prefer not to use Fiddler.

If your web application is not running, be sure it is running now. With Fiddler open,
you’ll see a handful of tabs near the top right-hand side. In this list is a tab called
Composer, which allows you to execute your own web request.

Figure 9-1 contains the setup I used to execute a request to create an author against
the REST API previously created.

Global Web API Validation | 123

http://www.telerik.com/fiddler

Figure 9-1. Composer settings

There are several key settings required to execute the request:

• A content-type. I used application/json.
• The request type. This must be POST. This is selected from the drop-down beside

the URL.
• The URL, it might be slightly different from mine if the random port differs. It’s

important that you use /api/authors at the end of the URL.
• The request body. I set it to {}, which is JSON syntax for an empty request body.

Finally, you can execute the request by clicking the Execute button near the upper
right.

Once your request is executed, it will appear on the left with any other requests that
Fiddler is currently monitoring. Find your request and double-click to select it and
view the results.

As expected, this request failed with a 400 Bad Request. In Fiddler, you can select the
JSON view to see the results returned from the server. Figure 9-2 contains the
response from my failed call.

124 | Chapter 9: Creating Global Filters

Figure 9-2. 400 Bad Request

Each key in the JSON contains the field that has a validation issue. Inside the field is
an array of errors that contains a specific error message that can be used to inform
the API integrator why the request is invalid.

Automapping with a Result Filter
In the previous section, the Action filter was added globally to all Web API requests.
However, it doesn’t make sense to apply all filters globally. Filters can also be added
directly to one or more methods in your controller, or if it makes sense, to the entire
controller itself.

This section will demonstrate how this is done by creating a custom Result filter. The
Result filter will update the Index function of the AuthorsController to not perform
the Automapping and creation of the ResultList. The Index view will still depend
on this; however, as you create more and more controllers with a listing page of the
model, the generation of the ResultList will quickly become extremely repetitive.

Example 9-4 contains a new class called GenerateResultListFilterAttribute, and I
have placed it within the previously created Filters folder.

Example 9-4. GenerateResultListFilterAttribute

using BootstrapIntroduction.Models;
using BootstrapIntroduction.ViewModels;
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction.Filters

Automapping with a Result Filter | 125

{
 [AttributeUsage(AttributeTargets.Method)]
 public class GenerateResultListFilterAttribute : FilterAttribute, IResultFilter
 {
 private readonly Type _sourceType;
 private readonly Type _destinationType;

 public GenerateResultListFilterAttribute(Type sourceType, Type destinationType)
 {
 _sourceType = sourceType;
 _destinationType = destinationType;
 }

 public void OnResultExecuting(ResultExecutingContext filterContext)
 {
 var model = filterContext.Controller.ViewData.Model;

 var resultListGenericType = typeof(ResultList<>)
 .MakeGenericType(new Type[] { _destinationType });
 var srcGenericType = typeof(List<>).MakeGenericType(
 new Type[] { _sourceType });
 var destGenericType = typeof(List<>).MakeGenericType(
 new Type[] { _destinationType });

 AutoMapper.Mapper.CreateMap(_sourceType, _destinationType);
 var viewModel = AutoMapper.Mapper.Map(model, srcGenericType, destGenericType);

 var queryOptions = filterContext.Controller.ViewData.ContainsKey(
 "QueryOptions") ?
 filterContext.Controller.ViewData["QueryOptions"] :
 new QueryOptions();

 var resultList = Activator.CreateInstance(resultListGenericType, viewModel,
 queryOptions);

 filterContext.Controller.ViewData.Model = resultList;
 }

 public void OnResultExecuted(ResultExecutedContext filterContext)
 {
 }
 }
}

This class contains some similarities to the previously created ValidationActionFil
terAttribute with a few notable differences. The Result filter extends the base Fil
terAttribute class, and it implements the IResultFilter interface.

Implementing the IResultFilter requires two functions: OnResultExecuting and
OnResultExecuted. These functions are quite similar to the Action filter equivalents

126 | Chapter 9: Creating Global Filters

in that the first one is called prior to the view being generated, and the second is
called after the view is generated and ready to be returned to the server.

This Result filter only implements the OnResultExecuting function because it
changes the model that was bound to the View from the Controller to a new Result
List model.

The GenerateResultListFilterAttribute expects two input parameters: source
Type and destinationType. These two type properties are used to perform the auto‐
mapping from the data model to the ViewModel. The class is also attributed with an
AttributeUsage that indicates this filter can only be used on methods. This is done
because of the specific requirements for the constructor.

Inside the OnResultExecuting function, reflection is used to dynamically instantiate
the ResultList to the destinationType and populate the results by executing the
automapper.

Previously, in the Index function, the QueryOptions were passed to the View in the
ViewBag before moving within the ResultList class. This Result filter assumes the
QueryOptions will be stored in a similar ViewData dictionary that is accessed via the
Result filter and passed to the ResultList class.

A few more changes are required to make this work. Previously, the properties in the
ResultList class were being publicly set; this has been updated to accept them via
the constructor. Example 9-5 contains an updated ResultList class.

Example 9-5. Updated ResultList

using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace BootstrapIntroduction.ViewModels
{
 public class ResultList<T>
 {
 public ResultList(List<T> results, QueryOptions queryOptions)
 {
 Results = results;
 QueryOptions = queryOptions;
 }

 [JsonProperty(PropertyName="queryOptions")]
 public QueryOptions QueryOptions { get; private set; }

 [JsonProperty(PropertyName = "results")]

Automapping with a Result Filter | 127

 public List<T> Results { get; private set; }
 }
}

This change will break how the Web API AuthorsController was previously instan‐
tiating the ResultList class. Example 9-6 contains an updated Index function to
match the change.

Example 9-6. Updated Web API AuthorsController

 public ResultList<AuthorViewModel> Get([FromUri]QueryOptions queryOptions)
 {
 var start = (queryOptions.CurrentPage - 1) * queryOptions.PageSize;

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages =
 (int)Math.Ceiling((double)db.Authors.Count() / queryOptions.PageSize);

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();

 return new ResultList<AuthorViewModel>(
 AutoMapper.Mapper.Map<List<Author>,
 List<AuthorViewModel>>(authors.ToList()), queryOptions);
 }

And finally, it’s time to update the MVC AuthorsController to leverage the Result
filter and remove the now unneeded Automapping code from the Index function.
Example 9-7 contains an updated Index function implementing the Result filter.

Example 9-7. Updated MVC AuthorsController

 [GenerateResultListFilterAttribute(typeof(Author), typeof(AuthorViewModel))]
 public ActionResult Index([Form] QueryOptions queryOptions)
 {
 var start = (queryOptions.CurrentPage - 1) * queryOptions.PageSize;

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages =
 (int)Math.Ceiling((double)db.Authors.Count() / queryOptions.PageSize);

 ViewData["QueryOptions"] = queryOptions;

128 | Chapter 9: Creating Global Filters

 return View(authors.ToList());
 }

Web API Error Handling
Exceptions happen all the time. Sometimes, it can be an unexpected exception; other
times, it is a business validation exception. No matter what type of exception it is, a
global Exception filter will help you to deal with all exceptions in a consistent fashion.

Example 9-8 contains a new OnApiExceptionAttribute class. This class can be cre‐
ated in the Filters directory. The goal of this class is to build a new HttpResponseMes
sage with a specific HTTP Status Code based on the type of exception that occurred.
The content being returned will also be tailored to suppress unknown server errors.

Example 9-8. OnApiExceptionAttribute

using BootstrapIntroduction.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web;
using System.Web.Http.Filters;

namespace BootstrapIntroduction.Filters
{
 public class OnApiExceptionAttribute : ExceptionFilterAttribute
 {
 public override void OnException(HttpActionExecutedContext actionExecutedContext)
 {
 var exceptionType = actionExecutedContext.Exception.GetType().Name;

 ReturnData returnData;

 switch (exceptionType)
 {
 case "ObjectNotFoundException":
 returnData = new ReturnData(HttpStatusCode.NotFound,
 actionExecutedContext.Exception.Message, "Error");
 break;

 default:
 returnData = new ReturnData(HttpStatusCode.InternalServerError,
 "An error occurred, please try again or contact the administrator.",
 "Error");
 break;
 }

 actionExecutedContext.Response =

Web API Error Handling | 129

 new HttpResponseMessage(returnData.HttpStatusCode)
 {
 Content = new StringContent(returnData.Content),
 ReasonPhrase = returnData.ReasonPhrase
 };
 }
 }
}

Creating an Exception filter involves creating a class that inherits from the Exception
FilterAttribute class. Then you override the OnException function and add your
custom logic.

Example 9-8 does this, and a switch statement is implemented to create a different
type of ReturnData object (created in Example 9-9) based on the exception that
occurred. To start, the switch statement only contains two cases. The first one is when
the exception is an ObjectNotFoundException, which will return a 404 Not Found
exception and set the content of the response to the message within the exception.
The second is the default case statement, which will return a 500 Internal Server
Error. Here the content is set to a generic message to suppress what the actual error
was.

As your code expands and you work with new exceptions, this switch statement can
be extended to return many other different HTTP Status Codes and error content.

The OnApiExceptionAttribute leverages a new ViewModel called ReturnData.
Example 9-9 contains the class definition. This file can be created in the ViewModels
directory.

Example 9-9. ReturnData ViewModel

using System.Net;
namespace BootstrapIntroduction.ViewModels
{
 public class ReturnData
 {
 public ReturnData(HttpStatusCode httpStatusCode, string content,
 string reasonPhrase)
 {
 HttpStatusCode = httpStatusCode;
 Content = content;
 ReasonPhrase = reasonPhrase;
 }

 public HttpStatusCode HttpStatusCode { get; private set; }
 public string Content { get; private set; }
 public string ReasonPhrase { get; private set; }
 }
}

130 | Chapter 9: Creating Global Filters

Example 9-10 demonstrates how an ObjectNotFoundException can be thrown by
implementing a new function in the Web API AuthorsController.

Example 9-10. Updated Web API AuthorsController

 // GET: api/Authors/5
 [ResponseType(typeof(AuthorViewModel))]
 public IHttpActionResult Get(int id)
 {
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 throw new System.Data.Entity.Core.ObjectNotFoundException
 (string.Format("Unable to find author with id {0}", id));
 }

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();

 return Ok(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

The final piece of the puzzle is to add your new Exception Attribute to the WebApi‐
Config. Example 9-11 contains an updated WebApiConfig that instantiates the new
OnApiExceptionAttribute.

Example 9-11. Updated WebApiConfig

using BootstrapIntroduction.Filters;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web.Http;

namespace BootstrapIntroduction
{
 public static class WebApiConfig
 {
 public static void Register(HttpConfiguration config)
 {
 // Web API configuration and services
 config.Filters.Add(new ValidationActionFilterAttribute());
 config.Filters.Add(new OnApiExceptionAttribute());

 // Web API routes
 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(
 name: "DefaultApi",
 routeTemplate: "api/{controller}/{id}",
 defaults: new { id = RouteParameter.Optional }

Web API Error Handling | 131

);
 }
 }
}

To see this in action, with your web application running, you can navigate to this
URL in your web browser: http://localhost:50955/api/authors/-2. This will return the
error message “Unable to find author with id -2.” Please note that your URL might be
slightly different if the port 50955 does not match.

MVC Error Handling
Creating an error handler for MVC is quite similar to creating one for Web API.
Example 9-12 contains a new OnExceptionAttribute (no “Api” this time) that con‐
tains very similar logic to the OnApiExceptionAttribute.

Example 9-12. OnExceptionAttribute

using BootstrapIntroduction.ViewModels;
using System;
using System.Net;
using System.Web.Mvc;

namespace BootstrapIntroduction.Filters
{
 public class OnExceptionAttribute : HandleErrorAttribute
 {
 public override void OnException(ExceptionContext exceptionContext)
 {
 var exceptionType = exceptionContext.Exception.GetType().Name;

 ReturnData returnData;

 switch (exceptionType)
 {
 case "ObjectNotFoundException":
 returnData = new ReturnData(HttpStatusCode.NotFound,
 exceptionContext.Exception.Message, "Error");
 break;

 default:
 returnData = new ReturnData(HttpStatusCode.InternalServerError,
 "An error occurred, please try again or contact the administrator.",
 "Error");
 break;
 }

 exceptionContext.Controller.ViewData.Model = returnData.Content;
 exceptionContext.HttpContext.Response.StatusCode =

132 | Chapter 9: Creating Global Filters

 (int)returnData.HttpStatusCode;
 exceptionContext.Result = new ViewResult
 {
 ViewName = "Error",
 ViewData = exceptionContext.Controller.ViewData
 };

 exceptionContext.ExceptionHandled = true;

 base.OnException(exceptionContext);
 }
 }
}

The OnExceptionAttribute extends the HandleErrorAttribute, and it overrides the
OnException method. The first half of Example 9-12 is an identical switch statement
that will set up the ReturnData object. After this is done, the result that was going to
be displayed is altered to return an error view instead.

First, the ViewModel that is bound to a View is updated to write the Content from
the ReturnData. This will be used by the Error view shown in Example 9-13. Next,
the StatusCode of the Response is changed (quite similarily to how it was changed in
the OnApiExceptionAttribute). And finally, a new ViewResult is created that will
load the Error.cshtml view that exists within the Views/Shared folder.

After the result has been updated, the exception is marked as handled before calling
the base OnException function.

Example 9-13 contains an updated Error.cshtml view from the Shared views folder.

Example 9-13. Updated Error.cshtml

@model string
<!DOCTYPE html>
<html>
<head>
 <meta name="viewport" content="width=device-width" />
 <title>Error</title>
</head>
<body>
 <hgroup>
 <h1>Error.</h1>
 <h2>An error occurred while processing your request.</h2>
 <p>@Model</p>
 </hgroup>
</body>
</html>

MVC Error Handling | 133

Three minor changes have been made to the default error page. First, a ViewModel of
type string has been bound to the view. Second, the Layout = null has been removed,
so it will use the shared layout, and the error page will look like the rest of the site.
And finally, the ViewModel that is bound to the view is displayed beneath the error
headers inside a paragraph tag.

When the AuthorsController was first scaffolded, a Details function was created
that accepts an author ID and will display information about the author. Example
9-14 updates this function to throw an ObjectNotFoundException if the author is
null (just like Example 9-10 did for the Web API controller).

Example 9-14. Updated MVC AuthorsController

 // GET: Authors/Details/5
 public ActionResult Details(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 throw new System.Data.Entity.Core.ObjectNotFoundException
 (string.Format("Unable to find author with id {0}", id));
 }

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 return View(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

And finally, the OnExceptionAttribute needs to be registered in the FilterConfig
class as shown in Example 9-15.

Example 9-15. Updated FilterConfig

using BootstrapIntroduction.Filters;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction
{
 public class FilterConfig
 {
 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 filters.Add(new OnExceptionAttribute());
 }

134 | Chapter 9: Creating Global Filters

 }
}

To see the new error handler in action (as shown in Figure 9-3), you can visit http://
localhost:50955/authors/Details/-2 in your browser.

Figure 9-3. Custom error handler

Summary
This chapter demonstrated three of the five different types of global filters you can
create. Most of the filters were added globally, but as the Result filter demonstrated,
filters can also be applied to individual actions.

MVC also contains many built-in Result and Action filters that you can use. Visit the
MSDN description of the FilterAttribute class to see many of the existing Result fil‐
ters. Likewise, on MSDN you can visit the ActionFilterAttribute class to see many of
the existing Action filter attributes.

Summary | 135

http://bit.ly/action-filter-att
http://bit.ly/act-filter-att

CHAPTER 10

Adding Authentication and Authorization

In this chapter, I will demonstrate how to create your own Authentication and
Authorization filters. There are many tutorials available on the Internet about setting
up FormsAuthentication together with ASP.NET Membership to manage users in
your application—in fact, this is a built-in option when you create a new MVC appli‐
cation with Visual Studio. To avoid reinventing the wheel, this chapter will implement
Basic Access Authentication. Basic authentication allows a web browser to provide a
username and password when performing a request against the web server. The
authentication is provided in the HTTP Headers as a Base64-encoded string.

Authentication Overview
Authentication filters did not exist prior to MVC 5; instead, it was mixed together in
a single Authorization filter. As of MVC 5, there is a nice and clear separation of con‐
cerns with authentication and authorization.

Creating a filter involves implementing two functions:

OnAuthentication
This function is called at the start of the life cycle and is responsible for validating
the credentials, if supplied. This is described in more detail in the following text.

OnAuthenticationChallenge
This function is called at the end of the life cycle for every request. It is responsi‐
ble for requesting authentication when the request is unauthorized.

The role of the OnAuthentication function is three-fold (a flowchart is shown in Fig‐
ure 10-1):

137

http://bit.ly/formsauth
http://bit.ly/asp-members

1. If no authentication is provided, the filter does nothing. This is important
because it clearly implies that the Authentication filter doesn’t prevent requests
because the authentication was not provided. It is left to the Authorization filters
to determine whether the user must be authenticated to proceed.

2. If authentication is provided and the credentials are valid, the Authentication fil‐
ter defines an identity to the application context with an authenticated principal
(commonly a user).

3. If authentication is provided and the credentials are invalid, the Authentication
filter sets an error result with an unauthorized request. The MVC framework is
notified that authentication has failed and should not proceed further.

Figure 10-1. OnAuthentication flowchart

Authorization Overview
An Authorization filter no longer needs to validate credentials; instead, it can focus
on whether an authenticated principal is set. If the principal is not authenticated, the
filter will set the request as unauthorized. Furthermore, an Authorization filter can
perform further validation. For example, the default Authorize attribute can option‐
ally validate that the authenticated principal exists within a specific group, allowing
easy role-based authorization.

138 | Chapter 10: Adding Authentication and Authorization

http://bit.ly/auth-att

Figure 10-2 contains a flowchart that demonstrates how the request begins with the
Authentication filter and, before returning a response, ends with the Authentication
filter.

Figure 10-2. Life cycle flowchart

As the flowchart demonstrates, whether the request is successful or unauthenticated/
unauthorized before the response is sent back from the server, the OnAuthentication
Challenge is called for each request. If the request is not authenticated, it does not
proceed on through to authorization. Likewise, if the request is not authorized, it
does not proceed with executing the requested action.

Implementing an Authentication Filter
Creating your own Authentication filter involves inheriting from the same ActionFil
terAttribute used for common Action filters (described in Chapter 9), as well as
implementing the IAuthenticationFilter interface.

Implementing the IAuthenticationFilter interface involves creating the two afore‐
mentioned functions: OnAuthentication and OnAuthenticationChallenge (shown
in Example 10-1). I’ve decided to call this class BasicAuthenticationAttribute and
have created it within the existing Filters folder.

Implementing an Authentication Filter | 139

Example 10-1. Empty Authentication filter

using BootstrapIntroduction.Models;
using System;
using System.Linq;
using System.Net;
using System.Security.Principal;
using System.Text;
using System.Web.Mvc;
using System.Web.Mvc.Filters;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthenticationAttribute
 : ActionFilterAttribute, IAuthenticationFilter
 {
 public void OnAuthentication(AuthenticationContext filterContext)
 {
 }

 public void OnAuthenticationChallenge(AuthenticationChallengeContext
 filterContext)
 {
 }
 }
}

The first thing the OnAuthentication function will do is check whether the Authori
zation header is set in the filterContext request headers. If no authorization is
found, or it doesn’t contain the word “Basic” in it, the function returns and stops pro‐
cessing (shown in Example 10-2).

Example 10-2. Checking for authorization

using BootstrapIntroduction.Models;
using System;
using System.Linq;
using System.Net;
using System.Security.Principal;
using System.Text;
using System.Web.Mvc;
using System.Web.Mvc.Filters;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthenticationAttribute
 : ActionFilterAttribute, IAuthenticationFilter
 {
 public void OnAuthentication(AuthenticationContext filterContext)
 {
 var request = filterContext.HttpContext.Request;

140 | Chapter 10: Adding Authentication and Authorization

 var authorization = request.Headers["Authorization"];

 // No authorization, do nothing
 if (string.IsNullOrEmpty(authorization) || !authorization.Contains("Basic"))
 return;
 }

 public void OnAuthenticationChallenge(AuthenticationChallengeContext
 filterContext)
 {
 }
 }
}

If the authorization is found in the request header, the function proceeds to parse out
the username and password from the header. The authorization is Base64 encoded, so
the first thing to do is Base64 decode the string. At this time, it is also removing the
word “Basic” to focus on extracting the username and password. The decoded string
is stored in a byte array, so this is extracted into a usable string. And finally, with that
string, the username and password are separated by a colon (:), so the string is split
up by this value and stores the username and password into local variables for further
use. This is shown in Example 10-3.

Example 10-3. Extracting the username and password

using BootstrapIntroduction.Models;
using System;
using System.Linq;
using System.Net;
using System.Security.Principal;
using System.Text;
using System.Web.Mvc;
using System.Web.Mvc.Filters;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthenticationAttribute
 : ActionFilterAttribute, IAuthenticationFilter
 {
 public void OnAuthentication(AuthenticationContext filterContext)
 {
 var request = filterContext.HttpContext.Request;
 var authorization = request.Headers["Authorization"];

 // No authorization, do nothing
 if (string.IsNullOrEmpty(authorization) || !authorization.Contains("Basic"))
 return;

 // Parse username and password from header
 byte[] encodedDataAsBytes = Convert.FromBase64String(

Implementing an Authentication Filter | 141

 authorization.Replace("Basic ", ""));
 string value = Encoding.ASCII.GetString(encodedDataAsBytes);

 string username = value.Substring(0, value.IndexOf(':'));
 string password = value.Substring(value.IndexOf(':') + 1);
 }

 public void OnAuthenticationChallenge(AuthenticationChallengeContext
 filterContext)
 {
 }
 }
}

Now it’s time for the validation. Two different validation checks are performed. First,
I think it’s a good idea to ensure that both the username and password are not empty
strings. If either are, the result is set to an HttpUnauthorizedResult.

Once we know the username and password are properly set, they are used to find a
valid user of the system. In this example, I’ve created a new User model (shown in
Example 10-7) and an AuthenticatedUsers list (shown in Example 10-8) that con‐
tains a list of valid usernames and passwords. This list is searched for a matching
username and password combination. If no user is found, the result is set to an HttpU
nauthorizedResult. If a user is found, a new GenericPrincipal is instantiated with
the user that matched the criteria. This is shown in Example 10-4.

Example 10-4. Authenticating the user

using BootstrapIntroduction.Models;
using System;
using System.Linq;
using System.Net;
using System.Security.Principal;
using System.Text;
using System.Web.Mvc;
using System.Web.Mvc.Filters;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthenticationAttribute
 : ActionFilterAttribute, IAuthenticationFilter
 {
 public void OnAuthentication(AuthenticationContext filterContext)
 {
 var request = filterContext.HttpContext.Request;
 var authorization = request.Headers["Authorization"];

 // No authorization, do nothing
 if (string.IsNullOrEmpty(authorization) || !authorization.Contains("Basic"))
 return;

142 | Chapter 10: Adding Authentication and Authorization

 // Parse username and password from header
 byte[] encodedDataAsBytes = Convert.FromBase64String(
 authorization.Replace("Basic ", ""));
 string value = Encoding.ASCII.GetString(encodedDataAsBytes);

 string username = value.Substring(0, value.IndexOf(':'));
 string password = value.Substring(value.IndexOf(':') + 1);

 if (string.IsNullOrEmpty(username) || string.IsNullOrEmpty(password))
 {
 filterContext.Result = new HttpUnauthorizedResult(
 "Username or password missing");
 return;
 }

 // Validate username and password
 var user = AuthenticatedUsers.Users
 .FirstOrDefault(u => u.Name == username && u.Password
 == password);

 if (user == null)
 {
 filterContext.Result = new HttpUnauthorizedResult(
 "Invalid username and password");
 return;
 }

 // Set principal
 filterContext.Principal = new GenericPrincipal(user, user.Roles);
 }

 public void OnAuthenticationChallenge(AuthenticationChallengeContext
 filterContext)
 {
 }
 }
}

And finally, to complete the Authentication filter, the OnAuthenticationChallenge
that executes every time will generate a new result that encapsulates the current result
(more on this in a minute). Once the request is executed, it can assert that the Status
Code is not set to 401 Unauthorized. If it is an unauthorized request, it adds a WWW-
Authenticate header with the value of Basic. When a browser receives this header, it
will prompt the user for credentials as shown in Figure 10-3. Example 10-5 demon‐
strates the OnAuthenticationChallenge function.

Implementing an Authentication Filter | 143

Example 10-5. OnAuthenticationChallenge

using BootstrapIntroduction.Models;
using System;
using System.Linq;
using System.Net;
using System.Security.Principal;
using System.Text;
using System.Web.Mvc;
using System.Web.Mvc.Filters;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthenticationAttribute
 : ActionFilterAttribute, IAuthenticationFilter
 {
 public void OnAuthentication(AuthenticationContext filterContext)
 {
 // Truncated for example
 }

 public void OnAuthenticationChallenge(AuthenticationChallengeContext
 filterContext)
 {
 filterContext.Result = new BasicChallengeActionResult
 {
 CurrrentResult = filterContext.Result
 };
 }
 }
}

Example 10-5 sets the result to a newly generated BasicChallengeActionResult
(shown in Example 10-6). This class extends the basic ActionResult and contains a
public property called CurrentResult. The OnAuthenticationChallenge function
instantiates this class and sets the CurrentResult with the current filterCon
text.Result. Example 10-6 overrides the ExecuteResult function, and the first
thing it does is execute the CurrentResult. Doing this will allow the next step to hap‐
pen, which is to determine if the response is 401 unauthorized. If it is, the WWW-
Authenticate header is added.

Example 10-6. BasicChallengeActionResult

using BootstrapIntroduction.Models;
using System;
using System.Linq;
using System.Net;
using System.Security.Principal;
using System.Text;
using System.Web.Mvc;

144 | Chapter 10: Adding Authentication and Authorization

using System.Web.Mvc.Filters;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthenticationAttribute : ActionFilterAttribute,
 IAuthenticationFilter
 {
 public void OnAuthentication(AuthenticationContext filterContext)
 {
 // Truncated for example
 }

 public void OnAuthenticationChallenge(AuthenticationChallengeContext
 filterContext)
 {
 filterContext.Result = new BasicChallengeActionResult
 {
 CurrrentResult = filterContext.Result
 };
 }
 }

 class BasicChallengeActionResult : ActionResult
 {
 public ActionResult CurrrentResult { get; set; }

 public override void ExecuteResult(ControllerContext context)
 {
 CurrrentResult.ExecuteResult(context);

 var response = context.HttpContext.Response;

 if (response.StatusCode == (int)HttpStatusCode.Unauthorized)
 response.AddHeader("WWW-Authenticate", "Basic");
 }
 }
}

Implementing an Authentication Filter | 145

Figure 10-3. Basic authentication

Before this example will compile, the User model class and AuthenticatedUsers
class need to be created. Example 10-7 creates a new class in the Models directory
called User.

Example 10-7. User Model

using System.Collections.Generic;
using System.Security.Principal;

namespace BootstrapIntroduction.Models
{
 public class User : IIdentity
 {
 public User(string username, string password, string[] roles,
 List<string> validIpAddresses)
 {
 Name = username;
 Password = password;
 Roles = roles;
 ValidIpAddresses = validIpAddresses;
 }

 public string Name { get; private set; }

 public string Password { get; private set; }

 public string[] Roles { get; private set; }

 public List<string> ValidIpAddresses { get; private set; }

146 | Chapter 10: Adding Authentication and Authorization

 public bool IsAuthenticated { get { return true; } }

 public string AuthenticationType { get { return "Basic"; } }
 }
}

The User model implements the IIdentity interface, which requires three properties
to be set: AuthenticationType, IsAuthenticated, and Name. Because the model
implements the IIdentity interface, as demonstrated in Example 10-4, the User can
be set when the new GenericPrincipal is instantiated.

The User model also contains properties for a list of Roles and a list of ValidIpAd
dresses and, of course, a password. The username is stored in the required Name
property. The list of ValidIpAddresses will be used in the next section when a cus‐
tom Authorization filter is created.

And finally, a new AuthenticatedUsers class can be created in the same Models
folder. Example 10-8 shows the AuthenticatedUsers class.

Example 10-8. AuthenticatedUsers

using System.Collections.Generic;
namespace BootstrapIntroduction.Models
{
 public static class AuthenticatedUsers
 {
 private static List<User> _users = new List<User>
 {
 new User("jamie", "munro", null, new List<string> { "::1" })
 };

 public static List<User> Users { get { return _users; } }
 }
}

The AuthenticatedUsers class contains a public list of Users that are used in Exam‐
ple 10-4 to search this list for a user that contains the same username and password.
The AuthenticatedUsers is a static class that, during application start, creates a list of
valid users. In this scenario, I have created one user with a username of jamie and a
password of munro. The roles are set to null because they are currently not required
for this example. ValidIpAddresses is instantiated with a single item that contains
the value ::1 (more on this in the next section).

Implementing the Authentication filter can be done in one of two ways: globally or on
a per-controller/action basis. Because the Authentication filter is only responsible for
validating authorization credentials, if they are provided, I think it makes most sense

Implementing an Authentication Filter | 147

to apply this globally. However, when it comes to authorization, I think it makes more
sense to apply on a per-controller/action basis (unless your entire site requires
authorization).

Example 10-9 updates the FilterConfig class inside the App_Start directory to regis‐
ter the new BasicAuthenticationAttribute across all requests.

Example 10-9. BasicAuthentication globally

using BootstrapIntroduction.Filters;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction
{
 public class FilterConfig
 {
 public static void RegisterGlobalFilters(GlobalFilterCollection filters)
 {
 filters.Add(new HandleErrorAttribute());
 filters.Add(new OnExceptionAttribute());
 filters.Add(new BasicAuthenticationAttribute());
 }
 }
}

Implementing an Authorization Filter
Creating your own Authorization filter involves creating a class that extends the exist‐
ing AuthorizeAttribute and overriding the OnAuthorization function. Example
10-10 creates a new BasicAuthorizationAttribute class inside the existing Filters
folder.

Example 10-10. Empty BasicAuthorizationAttribute

using BootstrapIntroduction.Models;
using System.Web.Mvc;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthorizationAttribute : AuthorizeAttribute
 {
 public override void OnAuthorization(AuthorizationContext filterContext)
 {
 }
 }
}

148 | Chapter 10: Adding Authentication and Authorization

The first responsibility of the OnAuthorization function is to check that there is a
valid User. Example 10-11 demonstrates this, and if there is no user or the user is not
authenticated, the result is set to HttpUnauthorizedResult and processing stops.

Example 10-11. Checking for valid user

using BootstrapIntroduction.Models;
using System.Web.Mvc;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthorizationAttribute : AuthorizeAttribute
 {
 public override void OnAuthorization(AuthorizationContext filterContext)
 {
 var userIdentity = filterContext.HttpContext.User.Identity as User;

 if (userIdentity == null || !userIdentity.IsAuthenticated)
 {
 filterContext.Result = new HttpUnauthorizedResult();
 return;
 }
 }
 }
}

So far, the Authorization filter does nothing custom. If you recall back in the previous
section, when the User model was created, it contained a list of validIpAddresses.
Let’s put those to good use. Example 10-12 extracts the user’s IP address from the
server variables. The IP address can be set in one of three spots, depending on things
like if the user is using a proxy, browsing from localhost (like I am), etc.

Example 10-12. Extracting the IP address

using BootstrapIntroduction.Models;
using System.Web.Mvc;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthorizationAttribute : AuthorizeAttribute
 {
 public override void OnAuthorization(AuthorizationContext filterContext)
 {
 var userIdentity = filterContext.HttpContext.User.Identity as User;

 if (userIdentity == null || !userIdentity.IsAuthenticated)
 {
 filterContext.Result = new HttpUnauthorizedResult();
 return;

Implementing an Authorization Filter | 149

 }

 string visitorIPAddress =
 filterContext.HttpContext.Request.ServerVariables["HTTP_X_FORWARDED_FOR"];

 if (string.IsNullOrEmpty(visitorIPAddress)) visitorIPAddress =
 filterContext.HttpContext.Request.ServerVariables["REMOTE_ADDR"];

 if (string.IsNullOrEmpty(visitorIPAddress))
 visitorIPAddress = filterContext.HttpContext.Request.UserHostAddress;
 }
 }
}

With the user’s IP address, the custom authorization will validate that the IP address
exists within the logged-in User list of ValidIpAddresses. As shown in Example
10-13, if the IP address is not in the list, the request is set to HttpUnauthorizedRe
sult; otherwise, the authorization has succeeded, and MVC continues executing
down the chain to the action requested.

Example 10-13. Validating the IP address

using BootstrapIntroduction.Models;
using System.Web.Mvc;

namespace BootstrapIntroduction.Filters
{
 public class BasicAuthorizationAttribute : AuthorizeAttribute
 {
 public override void OnAuthorization(AuthorizationContext filterContext)
 {
 var userIdentity = filterContext.HttpContext.User.Identity as User;

 if (userIdentity == null || !userIdentity.IsAuthenticated)
 {
 filterContext.Result = new HttpUnauthorizedResult();
 return;
 }

 string visitorIPAddress =
 filterContext.HttpContext.Request.ServerVariables["HTTP_X_FORWARDED_FOR"];

 if (string.IsNullOrEmpty(visitorIPAddress)) visitorIPAddress =
 filterContext.HttpContext.Request.ServerVariables["REMOTE_ADDR"];

 if (string.IsNullOrEmpty(visitorIPAddress))
 visitorIPAddress = filterContext.HttpContext.Request.UserHostAddress;

 if (userIdentity.ValidIpAddresses != null &&
 !userIdentity.ValidIpAddresses.Contains(visitorIPAddress))

150 | Chapter 10: Adding Authentication and Authorization

 {
 filterContext.Result = new HttpUnauthorizedResult();
 return;
 }
 }
 }
}

Like all filters, the BasicAuthorizationAttribute can be implemented globally or on
a per-controller/action level. Based on the current site’s functionality, I would imple‐
ment it only on the actions that require security. For example, most of the site is pub‐
lic; however, I might only want authenticated users to be able to add, edit, and delete
authors. Example 10-14 contains an abbreviated AuthorsController that enforces
authorization on the aforementioned actions.

Example 10-14. Adding authorization to AuthorsController

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
namespace BootstrapIntroduction.Controllers
{
 public class AuthorsController : Controller
 {
 // Truncated for example

 // GET: Authors/Create
 [BasicAuthorization]
 public ActionResult Create()
 {
 return View("Form", new AuthorViewModel());
 }

 // GET: Authors/Edit/5
 [BasicAuthorization]
 public ActionResult Edit(int? id)
 {
 // Truncated for example
 }

 // GET: Authors/Delete/5
 [BasicAuthorization]
 public ActionResult Delete(int? id)
 {
 // Truncated for example
 }

 // POST: Authors/Delete/5

Implementing an Authorization Filter | 151

 [HttpPost, ActionName("Delete")]
 [ValidateAntiForgeryToken]
 [BasicAuthorization]
 public ActionResult DeleteConfirmed(int id)
 {
 // Truncated for example
 }
 }
}

If you debug your web application and attempt to add a new author, you would
receive a request for authentication as shown earlier in Figure 10-3.

Summary
This chapter has demonstrated how to create your own custom Authentication and
Authorization filters. To make the examples more focused on the inner workings of
these filters, proper security of passwords and storage of user data in a database was
not demonstrated. I would encourage that your next steps be to create a new MVC
application from Visual Studio and select one of the built-in authorization methods.

The new project will provide a ton of code to implement FormsAuthentication
together with ASP.NET Membership. The ASP.NET Membership provides great func‐
tionality for managing your users in a database with password hashing and many
other security features. As a great exercise, after you review how it works, try replac‐
ing the static AuthenticatedUsers class with the ASP.NET Membership in the Basi
cAuthenticationAttribute.

152 | Chapter 10: Adding Authentication and Authorization

http://bit.ly/formsauth
http://bit.ly/asp-members

CHAPTER 11

URL Routing Using Attributes

In Chapter 1, I reviewed the default route that allows new controllers and new actions
to be created and automatically routed based on their names alone. This is extremely
convenient and works most of the time. However, whether it is for Search Engine
Optimization (SEO) purposes or to follow a naming convention and provide a more
convenient URL, custom routing allows you to do this.

Prior to MVC 5, routes were defined in the RouteConfig (for MVC) and WebApiCon‐
fig (for Web Api) and still can be (as the default route is defined). New in MVC 5 is
the ability to route via attributes.

Attribute routing is extremely convenient because it helps unhide the routing and
makes it more obvious to the developer how the controller and action can be
accessed. Global routing, of course, still serves a useful purpose when you have one or
two common routes that apply across multiple controllers and/or actions.

Attribute Routing Basics
Before attribute routing can be used, it must be turned on. This is done in the Route
Config class inside the App_Start folder. Example 11-1 contains an updated defintion
of this class.

Example 11-1. Updated RouteConfig

using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;
using System.Web.Routing;

153

namespace BootstrapIntroduction
{
 public class RouteConfig
 {
 public static void RegisterRoutes(RouteCollection routes)
 {
 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapMvcAttributeRoutes();

 routes.MapRoute(
 name: "Default",
 url: "{controller}/{action}/{id}",
 defaults: new { controller = "Home", action = "Index"
 , id = UrlParameter.Optional }
);
 }
 }
}

Defining a route consists of adding a relative URL from the domain inside of an
attribute named Route. A very common scenario where I use routing is for static
pages. When the project was first created, a HomeController was created with three
actions: Index, About, and Contact. For SEO purposes, it might make more sense for
the contact and about pages to reside simply at /About or /Contact instead of /Home/
About and /Home/Contact, respectively.

This, of course, could be accomplished by making new controllers called AboutCon
troller and ContactController, each with a single action called Index. Although
this works, it feels a bit like overkill to create new controllers for static pages with a
single action.

Enter routing. Example 11-2 contains an updated HomeController with attribute
routes for both the About and Contact actions that remove the requirement for
the /Home prefix.

Example 11-2. Updated HomeController

using BootstrapIntroduction.Filters;
using BootstrapIntroduction.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction.Controllers
{
 public class HomeController : Controller

154 | Chapter 11: URL Routing Using Attributes

 {
 public ActionResult Index()
 {
 return View();
 }

 [Route("About")]
 public ActionResult About()
 {
 ViewBag.Message = "Your application description page.";

 return View();
 }

 [Route("Contact")]
 public ActionResult Contact()
 {
 ViewBag.Message = "Your contact page.";

 return View();
 }
 }
}

This is one of the most basic examples. Routes can be more complicated. They can
define input parameters for your actions, including optional parameters. If you
attempted to apply the lessons learned from Part II from the AuthorsController to
the BooksController, you may have already created it. If not, you can add the Book
sController to the Controllers folder now. Example 11-3 contains a new action in a
BooksController with a custom attribute. The action is called ByAuthor and accepts
an integer called authorId. Because of the default route, this could be accessed
via /Books/ByAuthor/{id}. This example overrides this route and makes the URL look
a bit nicer by changing it to /Authors/{id}/Books.

Example 11-3. BooksController

using System;
using System.Collections.Generic;
using System.Data;
using System.Data.Entity;
using System.Linq;
using System.Net;
using System.Web;
using System.Web.Mvc;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;

namespace BootstrapIntroduction.Controllers
{

Attribute Routing Basics | 155

 public class BooksController : Controller
 {
 private BookContext db = new BookContext();

 [Route("authors/{id}/books")]
 public ActionResult ByAuthor(int id)
 {
 var books = db.Books.Where(b => b.AuthorId == id);
 return View(books.ToList());
 }
 }
}

You might be asking yourself why this is placed in the BooksController and not the
AuthorsController. My reasoning behind it is about the resources being displayed,
which are books, even though the filter is by author. Likewise, if you were viewing the
details of a book and wanted more information on the author, a similar route could
be inversed. It would exist in the AuthorsController and be /Books/{id}/Author.
Because in this case the resource is the author, and it belongs in the AuthorsControl
ler, even though the filter is by book.

In certain scenarios you may wish to make your input parameters optional. This is
accomplished by placing a question mark (?) at the end of the parameter name but
inside the closing bracket (as shown in Example 11-4).

Example 11-4. Example optional route

[Route("Details/{id?}")]

One final common thing done with attribute routing is to define an alternative
default route for the controller. The default route will display the Index method when
no action is defined in the URL. With attribute routing, the default route can be
updated by placing the Route attribute before the Controller definition as shown in
Example 11-5.

Example 11-5. Default controller route

using BootstrapIntroduction.Filters;
using BootstrapIntroduction.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction.Controllers
{
 [Route("{action=About}")]

156 | Chapter 11: URL Routing Using Attributes

 public class HomeController : Controller
 {
 // Truncated for example
 }
}

This example demonstrates this by updating the HomeController and making the
default action the About method.

Route Prefixes
A route prefix allows you to define a common prefix for all actions in your controller.
This is quite common when you wish to name your controller to match a pluralized
model name, but for SEO (or even readability) purposes, replace it with a different
name.

As an example, a synonym for “author” is “writer.” Perhaps to visitors of our website,
this is a more commonly understood term. Example 11-6 adds a route prefix to the
AuthorsController, changing the previous URLs from /Authors to /Writer.

Example 11-6. Prefix on AuthorsController

using System;
using System.Collections.Generic;
using System.Net;
using System.Web;
using System.Web.ModelBinding;
using System.Web.Mvc;
using BootstrapIntroduction.Models;
using BootstrapIntroduction.ViewModels;
using BootstrapIntroduction.Filters;
using BootstrapIntroduction.Services;

namespace BootstrapIntroduction.Controllers
{
 [RoutePrefix("Writer")]
 public class AuthorsController : Controller
 {
 // Truncated for example
 }
}

Having a nonpluralized URL works great for actions that include an id parameter at
the end, e.g., /writer/details/{id}. However, it doesn’t make a lot of sense when you are
going to the Index action and getting a list of writers. Example 11-7 overrides the
route prefix for the Index action only of the AuthorsController.

Route Prefixes | 157

Example 11-7. Updated Index action

 [GenerateResultListFilterAttribute(typeof(Author), typeof(AuthorViewModel))]
 [Route("~/Writers")]
 public ActionResult Index([Form] QueryOptions queryOptions)
 {
 var authors = authorService.Get(queryOptions);

 ViewData["QueryOptions"] = queryOptions;

 return View(authors);
 }

Overriding the route prefix is accomplished by defining a route and placing a tilde
(~) followed by a forward slash (/). If the ~/ was not added, the term writers would be
added to the route prefix making the URL /writer/writers.

Routing Constraints
This is my favorite enhancement to routing with MVC 5. Prior to MVC 5, routing
constraints required regular expressions. With attribute routing, it has become as
simple as specifying a constraint type preceded by a colon (:) after the variable name.

Example 11-8 updates the Details action in the AuthorsController to constrain the
id to be an integer.

Example 11-8. Updated AuthorsController

 [Route("Details/{id:int?}")]
 public ActionResult Details(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }

 var author = authorService.GetById(id.Value);

 return View(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

The question mark (?) to mark the id as optional should always be added at the end
of the constraints. Notice how I pluralized constraints because they can be chained
together. Example 11-9 further updates the Details route to force a minimum value
of 0.

158 | Chapter 11: URL Routing Using Attributes

Example 11-9. Chaining constraints

 [Route("Details/{id:int:min(0)?}")]
 public ActionResult Details(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }

 var author = authorService.GetById(id.Value);

 return View(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

Certain constraints (such as the min constraint) require input parameters to it, which
are done by placing the value within brackets after the constraint.

Chaining the constraints is accomplished by adding a colon (:) before the next con‐
straint.

A complete list of supported constraints is shown in Figure 11-1.

Figure 11-1. Support constraints. This list is courtesy of the MSDN blog

Routing Constraints | 159

http://bit.ly/att-route

To complete this section, here is a great way I use routing attributes to make both the
URLs and Controllers nice and clean. It’s quite common for SEO purposes not to use
integers when viewing the details of things like authors or books. Example 11-10 adds
two new functions to the AuthorsController (replacing the previous Details
method) to display the author either by id or by name.

Example 11-10. Updated AuthorsController

 // GET: Authors/Details/5
 [Route("Details/{id:int:min(0)?}")]
 public ActionResult GetById(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }

 var author = authorService.GetById(id.Value);

 return View(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

 // GET: Authors/Details/Jamie Munro
 [Route("Details/{name}")]
 public ActionResult GetByName(string name)
 {
 if (string.IsNullOrEmpty(name))
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }

 var author = authorService.GetByName(name);

 return View(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

Both the GetById and GetByName functions route to Writer/Details, and because of
the constraints, MVC will determine which function to call by parsing out the param‐
eter after Details in the URL. If it is determined to be an integer, it will call the Get
ById function. Otherwise, it will call the GetByName function.

For this example to compile, the AuthorService needs to be updated to add the new
GetByName method, as is shown in Example 11-11.

Example 11-11. Updated AuthorService

using BootstrapIntroduction.Behaviors;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;

160 | Chapter 11: URL Routing Using Attributes

using BootstrapIntroduction.ViewModels;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Net;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction.Services
{
 public class AuthorService : IDisposable
 {
 private BookContext db = new BookContext();

 public List<Author> Get(QueryOptions queryOptions)
 {
 var start = QueryOptionsCalculator.CalculateStart(queryOptions);

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages = QueryOptionsCalculator.CaclulateTotalPages(
 db.Authors.Count(), queryOptions.PageSize);

 return authors.ToList();
 }

 public Author GetById(long id)
 {
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 throw new System.Data.Entity.Core.ObjectNotFoundException
 (string.Format("Unable to find author with id {0}", id));
 }

 return author;
 }

 public Author GetByName(string name)
 {
 Author author = db.Authors
 .Where(a => a.FirstName + ' ' + a.LastName == name)
 .SingleOrDefault();
 if (author == null)
 {
 throw new System.Data.Entity.Core.ObjectNotFoundException
 (string.Format("Unable to find author with name {0}", name));

Routing Constraints | 161

 }

 return author;
 }

 public void Insert(Author author)
 {
 db.Authors.Add(author);

 db.SaveChanges();
 }

 public void Update(Author author)
 {
 db.Entry(author).State = EntityState.Modified;

 db.SaveChanges();
 }

 public void Delete(Author author)
 {
 db.Authors.Remove(author);

 db.SaveChanges();
 }

 public void Dispose() {
 db.Dispose();
 }
 }
}

With the addition of these two new functions, authors can be found in one of two
ways:

• /Writer/Details/1
• /Writer/Details/Jamie Munro

Summary
Attribute routing is new to MVC 5, which provides a lot of power for creating intelli‐
gent routing with a simple mechanism for constraining the data input. It’s nice to
have the routing inline with the controllers because it can be difficult to understand
why a controller method cannot be found when the routing is at a more global level.
With attribute routing, the route is defined in the same code as the controller method
that you are working on.

162 | Chapter 11: URL Routing Using Attributes

CHAPTER 12

Fat Model, Skinny Controller

Up to this point, the examples in this book have been applying the opposite of a fat
model, skinny controller, which is a fat controller, skinny model. The term “fat”
implies the presence of business logic; “skinny” implies the lack thereof. This was
done to provide focus on the new features that were being shown. In fact, you may
have noticed in Chapter 8 when Web API was introduced that the MVC and Web API
AuthorsController contained duplicated code to fetch the list of authors.

That is a perfect example of why fat controllers are convoluted, hard to maintain, and
share code between them, whereas the fat model is completely geared toward
reusability of code within your application.

Implementing the fat model can be done many different ways, and the depth of orga‐
nization within can be from one to many layers. This all depends on the complexity
of your application.

No matter which approach you take, the end goal of the fat model is to place all of
your business logic in the M of MVC. The M should be able to stand alone as a com‐
plete application (without a user interface). The V and C that interact to make it
MVC can be a console application, a RESTful API, a web application, etc. It shouldn’t
matter to the M.

This chapter will provide an overview of common ways to separate the concerns
within your MVC application followed by an example of refactoring the two Author
sControllers to share common business logic.

Separation of Concerns
This section will discuss common ways to separate your code within an MVC appli‐
cation. In this section, I will discuss layers upon layers that, depending on the size of

163

your application, may or may not be needed. The next section will demonstrate a sub‐
set of these layers that provides a clear separation of concerns. The nice part is that as
your application grows and the additional layers are required, you’ll have clear spots
in which to add them to make your application more organized and easier to main‐
tain.

Controllers
When I build a controller, I think it should perform the following roles:

Data Sanitation/Validation
A controller receives a request that often contains data, whether it is from a form
or the URL. This data needs to be sanitized and validated. This is demonstrated
throughout this book where the controller is checking that the ModelState is
valid. However, the controller is not responsible for performing business valida‐
tion. It doesn’t need to know. It simply should make sure an email is an email or a
first name is populated, etc.

Convert Data for the Fat Model
Chapter 7 introduced server-side ViewModels. The actions that accepted data
(Create and Edit) were updated to accept ViewModels. The fat model speaks
only in data models and does not even know that ViewModels exist. It is the con‐
troller’s job to accept ViewModels from the request and convert them to data
models for the business layer to execute on.

Convert Data for the View
The controller requests data from the fat model and then converts this to a View‐
Model before binding the data to the View. Just like the fat model doesn’t speak in
ViewModels, the View doesn’t speak in data models.

Services
I like to think of services as the middleman between controllers and the business
logic. A controller calls a service to fetch data, save data, apply the business logic, etc.

This is where the layers can really start to grow, depending on the size of your appli‐
cation. A first stage refactoring that would provide a lot of reusability would be to
move the access of the BookContext from the AuthorsController into an AuthorSer
vice. This is demonstrated in the next section.

It might be immediately evident that services are responsible for a lot of different
things. This is where even more layers can be added beneath (and above) the services
layer to further seperate these concerns.

164 | Chapter 12: Fat Model, Skinny Controller

Behaviors
The idea of the behavior layer is to perform as much logic as possible, whether it is
simple math, complex business validation, manipulation of data, or other types of
logic.

Behaviors accept models and often manipulate or validate them. If a behavior
requires data, it should be provided.

By limiting the number of dependencies to your behavior, it can be extremely easy to
test. By placing all (or as much as humanly possible) logic within behaviors, the com‐
plex business logic is both easy to reuse and easy to test. Both are very important fac‐
tors for making your application easy to mainain.

The next section will demonstrate how behaviors are called by the service layer to
perform business logic.

Repositories
The purpose of the repository layer is two-fold. The first is to place common queries
that are used by multiple services in a reusable spot. The second is to remove the
database framework dependency in the service layer. This allows the service layer to
not concern itself with how to access the data, but just request the data it requires.

Ideally, the only thing to call a repository would be the service layer. If you adopt this
layer, you might second-guess yourself when the service layer is a one-liner call to the
repository because this is where it feels like an unneeded layer. The minute you have
the service layer calling a repository, taking the results, and calling a behavior, it pro‐
vides a more readable function because it is orchestrating the fetching of the data and
the application of business logic.

Orchestrations
In a small application where there is a single entry point (e.g., a controller), the con‐
troller is often treated like an orchestrator. It is responsible for calling one service,
taking the results of that, and potentially calling another service.

In the current application that is being built, orchestrations aren’t required yet
because the controllers are only calling the same single service. If this were to expand,
introducing the orchestration layer would make a lot of sense.

The orchestration layer allows your controller to focus on its job, which is to convert
data from the request and convert data for the response.

Separation of Concerns | 165

Unit of Work
With ORMs like Entity Framework, when you query data from the database, the
ORM is tracking the data in its internal context. EF uses this to know whether the
data has changed and what data it needs to update when the transaction is commit‐
ted. Similarly, before you commit a transaction when you are adding a new record, it
needs to be added to EF’s context.

In the previous examples shown over the past few chapters, the AuthorsController
marks the Author model as added, modified, or deleted. This is followed by a call to
the SaveChanges function. No data is ever persisted to the database until this function
is called.

Enter the Unit of Work pattern. By maintaining a single Unit of Work throughout
the entire request, different services can insert or manipulate data. When the business
transaction is done, the owner of the Unit of Work can commit the final transaction.

Picking the layer that owns the Unit of Work is based on complexity. You need to
decide which layer knows when the final business transaction is completed. The layer
that has this context is the layer that should own the Unit of Work.

For example, if you implement all of the layers, starting with a controller communi‐
cating with an orchestrator, an orchestrator communicating with one or more serv‐
ices, and then a service communicating with one or more repositories and one or
more behaviors, the owner of the Unit of Work would then be the orchestrator. The
service understands when it has finished its job, but it is unaware if there are other
side effects that will be executed afterward.

In the next section, because this is a small application, I will demonstrate integrating
the service and behavior layer only. In this scenario, I have deemed the service to be
the owner of the Unit of Work because it knows when the business transaction is
completed.

Figure 12-1 demonstrates how the Unit of Work encapsulates the entire business
transaction that is owned by the orchestrator.

166 | Chapter 12: Fat Model, Skinny Controller

Figure 12-1. Unit of Work

Services and Behaviors
There has been a bit too much copying and pasting for me, and I’m starting to find
the controllers to be disorganized. This section will refactor the two AuthorsControl
lers and split the work into one service and one behavior. The BookContext will also
be completely removed from the AuthorsController and now owned by the service.

The first piece of work that needs to be refactored is the duplicated logic to get a list
of authors. Example 12-1 contains the code in question.

Example 12-1. Duplicated retrieval of authors

var start = (queryOptions.CurrentPage - 1) * queryOptions.PageSize;
var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

queryOptions.TotalPages =
 (int)Math.Ceiling((double)db.Authors.Count() / queryOptions.PageSize);

Let’s start with the behavior. The block of code performs two different calculations.
You can guarantee that if you were to build another controller that contained a list of
objects, these calculations would need to be made again.

Example 12-2 creates a new class called QueryOptionsCalculator. For organization
purposes, I have created a new folder called Behaviors and placed the class within it.

Services and Behaviors | 167

Example 12-2. QueryOptionsCalculator

using BootstrapIntroduction.ViewModels;
using System;

namespace BootstrapIntroduction.Behaviors
{
 public class QueryOptionsCalculator
 {
 public static int CalculateStart(QueryOptions queryOptions)
 {
 return (queryOptions.CurrentPage - 1) * queryOptions.PageSize;
 }

 public static int CaclulateTotalPages(int count, int pageSize)
 {
 return (int)Math.Ceiling((double)count / pageSize);
 }
 }
}

The class contains two functions, one for each calculation that was in Example 12-1.

Now it’s time for the service. Example 12-3 creates a new AuthorService class. Once
again for organization purposes, I have created a new Services folder and placed this
class within it.

Example 12-3. AuthorService

using BootstrapIntroduction.Behaviors;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;
using BootstrapIntroduction.ViewModels;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Net;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction.Services
{
 public class AuthorService
 {
 private BookContext db = new BookContext();

 public List<Author> Get(QueryOptions queryOptions)
 {
 var start = QueryOptionsCalculator.CalculateStart(queryOptions);

168 | Chapter 12: Fat Model, Skinny Controller

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages = QueryOptionsCalculator.CaclulateTotalPages(
 db.Authors.Count(), queryOptions.PageSize);

 return authors.ToList();
 }
 }
}

The AuthorService contains a function called Get that accepts the QueryOptions
class. The two calculations are replaced with calls to the new behavior created in
Example 12-2. The same query that was previously in the controllers is now done in
the Get function.

To complete the removal of the BookContext from the AuthorsController, the
AuthorService must implement four other functions: GetById, Insert, Update, and
Delete. Also, previously the BookContext was being disposed via the controller. The
AuthorService will thus implement the IDisposable interface and properly dispose
of the BookContext. The dispose function of AuthorService will then be called by the
AuthorsController. Example 12-4 contains the complete AuthorService.

Example 12-4. Completed AuthorService

using BootstrapIntroduction.Behaviors;
using BootstrapIntroduction.DAL;
using BootstrapIntroduction.Models;
using BootstrapIntroduction.ViewModels;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Linq.Dynamic;
using System.Net;
using System.Web;
using System.Web.Mvc;

namespace BootstrapIntroduction.Services
{
 public class AuthorService : IDisposable
 {
 private BookContext db = new BookContext();

 public List<Author> Get(QueryOptions queryOptions)
 {

Services and Behaviors | 169

 var start = QueryOptionsCalculator.CalculateStart(queryOptions);

 var authors = db.Authors.
 OrderBy(queryOptions.Sort).
 Skip(start).
 Take(queryOptions.PageSize);

 queryOptions.TotalPages = QueryOptionsCalculator.CaclulateTotalPages(
 db.Authors.Count(), queryOptions.PageSize);

 return authors.ToList();
 }

 public Author GetById(long id)
 {
 Author author = db.Authors.Find(id);
 if (author == null)
 {
 throw new System.Data.Entity.Core.ObjectNotFoundException
 (string.Format("Unable to find author with id {0}", id));
 }

 return author;
 }

 public void Insert(Author author)
 {
 db.Authors.Add(author);

 db.SaveChanges();
 }

 public void Update(Author author)
 {
 db.Entry(author).State = EntityState.Modified;

 db.SaveChanges();
 }

 public void Delete(Author author)
 {
 db.Authors.Remove(author);

 db.SaveChanges();
 }

 public void Dispose() {
 db.Dispose();
 }
 }
}

170 | Chapter 12: Fat Model, Skinny Controller

With the AuthorService completed, the two AuthorControllers can be updated to
remove the BookContext and replace it with the AuthorService. Example 12-5 con‐
tains the updated MVC AuthorsController.

Example 12-5. Updated MVC AuthorsController

using System;
using System.Collections.Generic;
using System.Net;
using System.Web;
using System.Web.ModelBinding;
using System.Web.Mvc;
using BootstrapIntroduction.Models;
using BootstrapIntroduction.ViewModels;
using BootstrapIntroduction.Filters;
using BootstrapIntroduction.Services;

namespace BootstrapIntroduction.Controllers
{
 public class AuthorsController : Controller
 {
 private AuthorService authorService;

 public AuthorsController()
 {
 authorService = new AuthorService();

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 }

 // GET: Authors
 [GenerateResultListFilterAttribute(typeof(Author), typeof(AuthorViewModel))]
 public ActionResult Index([Form] QueryOptions queryOptions)
 {
 var authors = authorService.Get(queryOptions);

 ViewData["QueryOptions"] = queryOptions;

 return View(authors);
 }

 // GET: Authors/Details/5
 public ActionResult Details(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }

 var author = authorService.GetById(id.Value);

Services and Behaviors | 171

 return View(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

 // GET: Authors/Create
 [BasicAuthorization]
 public ActionResult Create()
 {
 return View("Form", new AuthorViewModel());
 }

 // GET: Authors/Edit/5
 [BasicAuthorization]
 public ActionResult Edit(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }

 var author = authorService.GetById(id.Value);

 return View("Form", AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

 // GET: Authors/Delete/5
 [BasicAuthorization]
 public ActionResult Delete(int? id)
 {
 if (id == null)
 {
 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);
 }

 var author = authorService.GetById(id.Value);

 return View(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

 // POST: Authors/Delete/5
 [HttpPost, ActionName("Delete")]
 [ValidateAntiForgeryToken]
 [BasicAuthorization]
 public ActionResult DeleteConfirmed(int id)
 {
 var author = authorService.GetById(id);

 authorService.Delete(author);

 return RedirectToAction("Index");
 }

 protected override void Dispose(bool disposing)

172 | Chapter 12: Fat Model, Skinny Controller

 {
 if (disposing)
 {
 authorService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

Previously, the AuthorsController was calling Dispose on the BookContext. Like
everything else in the controller that was referencing BookContext, it has been
replaced with a call to dispose of the AuthorService.

Dispose

Disposing of the BookContext is important to ensure that any open
database connections are properly closed at the end of each
request. Leaving orphaned database connections can lead to even‐
tual database connection problems because it is normal to allow
only a limited number of concurrent connections.

There is one other small refactoring within the controllers—the automapping has
been moved to the constructor instead of repeating this in each action. The fewer
lines of code, the easier your application is to maintain.

Example 12-6 contains the final piece of implementing the fat model, which is to
update the Web API AuthorsController.

Example 12-6. Web API AuthorsController

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Http;
using System.Web.Http;
using System.Web.Http.Description;
using BootstrapIntroduction.Models;
using BootstrapIntroduction.ViewModels;
using BootstrapIntroduction.Services;

namespace BootstrapIntroduction.Controllers.Api
{
 public class AuthorsController : ApiController
 {
 private AuthorService authorService;

 public AuthorsController()
 {

Services and Behaviors | 173

 authorService = new AuthorService();

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 AutoMapper.Mapper.CreateMap<AuthorViewModel, Author>();
 }

 // GET: api/Authors
 public ResultList<AuthorViewModel> Get([FromUri]QueryOptions queryOptions)
 {
 var authors = authorService.Get(queryOptions);

 return new ResultList<AuthorViewModel>(
 AutoMapper.Mapper.Map<List<Author>, List<AuthorViewModel>>(authors)
 , queryOptions);
 }

 // GET: api/Authors/5
 [ResponseType(typeof(AuthorViewModel))]
 public IHttpActionResult Get(int id)
 {
 var author = authorService.GetById(id);

 return Ok(AutoMapper.Mapper.Map<Author, AuthorViewModel>(author));
 }

 // PUT: api/Authors/5
 [ResponseType(typeof(void))]
 public IHttpActionResult Put(AuthorViewModel author)
 {
 var model = AutoMapper.Mapper.Map<AuthorViewModel, Author>(author);

 authorService.Update(model);

 return StatusCode(HttpStatusCode.NoContent);
 }

 // POST: api/Authors
 [ResponseType(typeof(AuthorViewModel))]
 public IHttpActionResult Post(AuthorViewModel author)
 {
 var model = AutoMapper.Mapper.Map<AuthorViewModel, Author>(author);

 authorService.Insert(model);

 return CreatedAtRoute("DefaultApi", new { id = author.Id }, author);
 }

 // DELETE: api/Authors/5
 [ResponseType(typeof(Author))]
 public IHttpActionResult DeleteAuthor(int id)
 {
 var author = authorService.GetById(id);

174 | Chapter 12: Fat Model, Skinny Controller

 authorService.Delete(author);

 return Ok(author);
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 authorService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

Summary
I’m very happy with the resulting AuthorsController. Replacing the BookContext
with the AuthorService has made both controllers extremely lean.

This chapter presented you with a possibility of implementing up to six layers of fat
model and skinny controller. The examples implemented three of them (controller,
service, and behavior). In a small project, all six layers would contain unnecessary
class overhead; however, if you are working in a much larger project, you will find
that you will need all six layers (and possibly more).

What I have found to be successful is to start with the minimum number of layers to
separate your concerns properly. As your project evolves and grows, add the new lay‐
ers as required. I’ve often added new layers only to new features and continually
evolve the old code as changes are required. Quite often, you don’t have time to glob‐
ally implement a new layer, but there is no harm in continuing with a structure that is
no longer working for you and slowly changing it over time.

Summary | 175

PART IV

A Practical Example

CHAPTER 13

Building a Shopping Cart

This final section will bring together everything that has been previously demon‐
strated, as well as a variety of new things, into one large example. By the end of this
section, we will have built a fully functional shopping cart.

Shopping Cart Requirements
Before building anything, I prefer to start with a definition of what I am going to
build. The shopping cart that I will build will be targeted at buying books. I envision
four different pages that a user can navigate:

Home page
The home page (all pages actually) will contain a list of categories that will help
filter the genre of books. This will be displayed on the left-hand side. The right‐
hand side will be used to display several featured books. Clicking a book will
direct the user to the book details page.

Books by category
If a user clicks a category on the left-hand side, a list of books in that category
will be displayed (similar to how featured books are displayed). Clicking a book
will direct the user to the book details page.

Book details
The book details page is where users will go when they select a book. This page
will display some basic information about the book and the all-important “Add to
Cart” feature.

179

Cart details
Once an item is added to the cart, the cart details page will display all items cur‐
rently in the user’s cart. This page will allow the user to edit the quantity or
remove the item from the cart.

Using a shared layout, the category listing will be displayed on every page, allowing
the user to find a different book quickly. A cart summary will be displayed in the top
menu that will contain a visible indicator of how many items are currently in the
user’s cart. Clicking the icon will display a small summary of the items in the cart
with a link to the cart details page.

Bootstrap will be used to create a nice user interface for the shopping cart. Knock‐
out.js will be used to provide a slick user interface when adding/editing/deleting
items from the cart. And, of course, MVC 5 will be used to enable the catalog of
books to be stored/retrieved from a database.

The Shopping Cart Project
In the first three parts of this book, you have been extending a single project. For this
final example, I have decided to make a new project; however, I will be leveraging
many of the existing code created in the previous project.

With Visual Studio open, click File → New Project. Just like in Chapter 1, select the
ASP.NET Web Application template. For the project name, I have chosen Shopping
Cart. Select OK to continue. Once again, for the Web Templates, you will select the
MVC template. This time, select the Web API checkbox as well, because Web API
controllers will be leveraged in building the various AJAX endpoints. I have chosen
No authentication because this example will be focusing on the CRUD of a shopping
cart and not require authentication.

Once your new project is created, I would suggest that you immediately open the
NuGet Package Manager and update all currently installed NuGet packages.

With the NuGet Package Manager still open, you need to install several new
packages:

• Knockout.js
• Entity Framework
• Automapper

jQuery UI will also be used to perform some basic animations when items are added
and removed from the user’s shopping cart. Visit the jQuery UI website to download
the latest version. Once downloaded, I added it to the Scripts folder of my project.

180 | Chapter 13: Building a Shopping Cart

http://jquery.com

JavaScript Bundling and Minification
Before we get started with creating the shopping cart, I want to touch upon JavaScript
bundling. You may have noticed that in the original layout, jQuery was slightly differ‐
ent from Knockout and other JavaScript ViewModels that were created.

jQuery was included with a bundle that was generated by C# when the project was
compiled, thus it was included like this: @Scripts.Render("~/bundles/jquery").
Other scripts were included like this: @Scripts.Render("~/Scripts/

knockout-3.2.0.js"). The latter contains a relative path to the full JavaScript file‐
name. The former contains the name of the bundle.

Bundles are defined in the BundleConfig.cs file inside the App_Start folder. Example
13-1 contains the default config file that is created with the project.

Example 13-1. Default BundleConfig

using System.Web;
using System.Web.Optimization;

namespace ShoppingCart
{
 public class BundleConfig
 {
 // For more information on bundling, visit http://go.microsoft.com/fwlink
 public static void RegisterBundles(BundleCollection bundles)
 {
 bundles.Add(new ScriptBundle("~/bundles/jquery").Include(
 "~/Scripts/jquery-{version}.js"));

 bundles.Add(new ScriptBundle("~/bundles/jqueryval").Include(
 "~/Scripts/jquery.validate*"));

 bundles.Add(new ScriptBundle("~/bundles/modernizr").Include(
 "~/Scripts/modernizr-*"));

 bundles.Add(new ScriptBundle("~/bundles/bootstrap").Include(
 "~/Scripts/bootstrap.js",
 "~/Scripts/respond.js"));

 bundles.Add(new StyleBundle("~/Content/css").Include(
 "~/Content/bootstrap.css",
 "~/Content/site.css"));

 // Set EnableOptimizations to false for debugging. For more information,
 // visit http://go.microsoft.com/fwlink/?LinkId=301862
 BundleTable.EnableOptimizations = true;
 }
 }
}

JavaScript Bundling and Minification | 181

Creating a bundle requires adding a new ScriptBundle to the BundleCollection.
The ScriptBundle requires two important things: a name and which files to include.
The files to include can contain some logic to easily include more than one file. For
example, the jqueryval bundle uses an asterisk (*) as a wildcard to include any file
that contains the name jquery.validate.

My personal opinion is to create a single bundle with only the files required on most,
if not all, pages. For this project, it will include jQuery, jQuery Validation, jQuery UI,
Bootstrap, and Knockout. Example 13-2 contains an updated BundleConfig class that
defines the single bundle to include in the shared layout view.

Example 13-2. Updated BundleConfig

using System.Web;
using System.Web.Optimization;

namespace ShoppingCart
{
 public class BundleConfig
 {
 // For more information on bundling, visit http://go.microsoft.com/fwlink
 public static void RegisterBundles(BundleCollection bundles)
 {
 bundles.Add(new ScriptBundle("~/bundles/shoppingCart").Include(
 "~/Scripts/jquery-{version}.js", "~/Scripts/jquery.validate*",
 "~/Scripts/jquery-ui.js", "~/Scripts/bootstrap.js",
 "~/Scripts/respond.js", "~/Scripts/knockout-{version}.js"));

 bundles.Add(new ScriptBundle("~/bundles/modernizr").Include(
 "~/Scripts/modernizr-*"));

 bundles.Add(new StyleBundle("~/Content/css").Include(
 "~/Content/bootstrap.css",
 "~/Content/site.css"));

 // Set EnableOptimizations to false for debugging. For more information,
 // visit http://go.microsoft.com/fwlink/?LinkId=301862
 BundleTable.EnableOptimizations = true;
 }
 }
}

The bundle was renamed to be shoppingCart, and I’ve comma-separated the six dif‐
ferent JavaScript libraries that I want to be included on every page.

To complete the update, in Views/Shared/_Layout.cshtml, replace the previously
added jQuery bundle with the new shoppingCart bundle using @Scripts.Ren
der("~/bundles/shoppingCart").

182 | Chapter 13: Building a Shopping Cart

Summary
The new ShoppingCart project is now created and updated with the necessary NuGet
packages. Our requirements have been defined and will be implemented over the next
several chapters.

Summary | 183

CHAPTER 14

Building the Data Model

Once again, Entity Framework will be used as the ORM of choice for fetching and
saving data for the shopping cart. This chapter will create the Code-First data models,
instantiate some sample data, and create the necessary ViewModels that will be used
by the MVC application.

Code-First Models
I am envisioning five models that will be required for the shopping cart:

Author model
This model will contain information about the book’s author.

Book model
This model will contain information about the book being sold, including things
like the price, an author foreign key, and a category foreign key.

Category model
This model will contain an ID and name of the category. Each book will belong
to one category (for simplicity).

Cart model
This model will contain a unique identifier of the user who owns the shopping
cart. Each visitor to the site will be associated to a Cart model.

CartItem model
This model will contain which book and how many are being purchased. This
object is a child to the Cart model.

185

The following examples contain these model definitions, as well as their inter-
relationships with each other. Inside the Models folder, one file per model can be cre‐
ated. I’ve named each file the same as the class name.

Example 14-1 contains the Author model, which introduces a new feature of Entity
Framework with the attribute NotMapped. I have created a FullName variable, which
concantenates the first and last name into a single variable. By tagging the property
with the attribute, EF knows that this property should not be persisted to the data‐
base. The FullName property will be used by the ViewModel that will be created in a
later section.

Example 14-1. Author model

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations.Schema;

namespace ShoppingCart.Models
{
 public class Author
 {
 public int Id { get; set; }
 public string FirstName { get; set; }
 public string LastName { get; set; }
 public string Biography { get; set; }

 [NotMapped]
 public string FullName
 {
 get
 {
 return FirstName + ' ' + LastName;
 }
 }

 public virtual ICollection<Book> Books { get; set; }
 }
}

Example 14-2 contains the Book model. This model has been expanded from the ear‐
lier version used to include pricing information, as well as a Boolean to indicate
whether the book will be featured on the home page.

Example 14-2. Book model

namespace ShoppingCart.Models
{
 public class Book
 {
 public int Id { get; set; }

186 | Chapter 14: Building the Data Model

 public int AuthorId { get; set; }
 public int CategoryId { get; set; }
 public string Title { get; set; }
 public string Isbn { get; set; }
 public string Synopsis { get; set; }
 public string Description { get; set; }
 public string ImageUrl { get; set; }
 public decimal ListPrice { get; set; }
 public decimal SalePrice { get; set; }
 public bool Featured { get; set; }

 public virtual Author Author { get; set; }
 public virtual Category Category { get; set; }
 }
}

Example 14-3 contains the Category model, which contains an ID, name, and a col‐
lection of books that are associated with this category.

Example 14-3. Category model

using System.Collections.Generic;
namespace ShoppingCart.Models
{
 public class Category
 {
 public int Id { get; set; }
 public string Name { get; set; }

 public virtual ICollection<Book> Books { get; set; }
 }
}

The Cart model (shown in Example 14-4) is much like the Category model in that it
contains only an Id, SessionId, and a collection of the associated cart items. The Ses
sionId is the unique identifier that will be used to identify who owns the cart.

Example 14-4. Cart model

using System.Collections.Generic;
using System.ComponentModel.DataAnnotations;
using System.ComponentModel.DataAnnotations.Schema;

namespace ShoppingCart.Models
{
 public class Cart
 {
 public int Id { get; set; }

 [Index(IsUnique=true)]

Code-First Models | 187

 [StringLength(255)]
 public string SessionId { get; set; }

 public virtual ICollection<CartItem> CartItems { get; set; }
 }
}

The SessionId is also decorated with two EF attributes. The first attribute identifies
that this property should be created as a unique index. Because this field will be
searched on for each page load to find the user’s cart, this is a good performance
improvement. The second attribute defines a maximum string length. By default, if
no string length is identified, EF will create string fields as nvarchar(max), and an
index is not compatible with this type of field.

And finally, Example 14-5 contains the CartItem model definition. Apart from track‐
ing the quantity of books being purchased, this table contains nothing but relation‐
ships to the cart and the book being purchased.

Example 14-5. CartItem model

namespace ShoppingCart.Models
{
 public class CartItem
 {
 public int Id { get; set; }
 public int CartId { get; set; }
 public int BookId { get; set; }
 public int Quantity { get; set; }

 public virtual Cart Cart { get; set; }
 public virtual Book Book { get; set; }
 }
}

Defining the DbContext and Initializing Data
Before the data models will be used, several additional Entity Framework setup steps
are required. Just like I did in Chapter 4, I have created a new DAL (Data Access
Layer) folder and created my ShoppingCartContext file that defines my five datasets
(as shown in Example 14-6).

Example 14-6. ShoppingCartContext

using ShoppingCart.Models;
using System.Data.Entity;
using System.Data.Entity.ModelConfiguration.Conventions;

namespace ShoppingCart.DAL

188 | Chapter 14: Building the Data Model

{
 public class ShoppingCartContext : DbContext
 {
 public DbSet<Category> Categories { get; set; }
 public DbSet<Book> Books { get; set; }
 public DbSet<Author> Authors { get; set; }
 public DbSet<Cart> Carts { get; set; }
 public DbSet<CartItem> CartItems { get; set; }

 protected override void OnModelCreating(DbModelBuilder modelBuilder)
 {
 modelBuilder.Conventions.Remove<PluralizingTableNameConvention>();

 base.OnModelCreating(modelBuilder);
 }
 }
}

To ensure that I have some data to test out my shopping cart with, I have a created a
DataInitialization class (also inside the DAL folder) that will create some books,
authors, and categories as shown in Example 14-7.

Example 14-7. DataInitialization

using ShoppingCart.Models;
using System.Collections.Generic;
using System.Data.Entity;

namespace ShoppingCart.DAL
{
 public class DataInitialization :
 DropCreateDatabaseIfModelChanges<ShoppingCartContext>
 {
 protected override void Seed(ShoppingCartContext context)
 {
 var categories = new List<Category>
 {
 new Category {
 Name = "Technology"
 },
 new Category {
 Name = "Science Fiction"
 },
 new Category {
 Name = "Non Fiction"
 },
 new Category {
 Name = "Graphic Novels"
 }
 };

Defining the DbContext and Initializing Data | 189

 categories.ForEach(c => context.Categories.Add(c));

 var author = new Author
 {
 Biography = "...",
 FirstName = "Jamie",
 LastName = "Munro"
 };

 var books = new List<Book>
 {
 new Book {
 Author = author,
 Category = categories[0],
 Description = "...",
 Featured = true,
 ImageUrl =
 "http://ecx.images-amazon.com/images/I/51T%2BWt430bL._AA160_.jpg",
 Isbn = "1491914319",
 ListPrice = 19.99m,
 SalePrice = 17.99m,
 Synopsis = "...",
 Title = "Knockout.js: Building Dynamic Client-Side Web Applications"
 },
 new Book {
 Author = author,
 Category = categories[0],
 Description = "...",
 Featured = true,
 ImageUrl = "http://ecx.images-amazon.com/images/I/51AkFkNeUxL._AA160_.jpg",
 Isbn = "1449319548",
 ListPrice = 14.99m,
 SalePrice = 13.99m,
 Synopsis = "...",
 Title = "20 Recipes for Programming PhoneGap"
 },
 new Book {
 Author = author,
 Category = categories[0],
 Description = "...",
 Featured = false,
 ImageUrl = "http://ecx.images-amazon.com/images/I/51LpqnDq8-L._AA160_.jpg",
 Isbn = "1449309860",
 ListPrice = 19.99m,
 SalePrice = 16.99m,
 Synopsis = "...",
 Title = "20 Recipes for Programming MVC 3: Faster, Smarter Web Development"
 },
 new Book {
 Author = author,
 Category = categories[0],
 Description = "...",

190 | Chapter 14: Building the Data Model

 Featured = false,
 ImageUrl = "http://ecx.images-amazon.com/images/I/41JC54HEroL._AA160_.jpg",
 Isbn = "1460954394",
 ListPrice = 14.99m,
 SalePrice = 13.49m,
 Synopsis = "...",
 Title = "Rapid Application Development With CakePHP"
 }
 };

 books.ForEach(b => context.Books.Add(b));

 context.SaveChanges();
 }
 }
}

I’ve created four categories, one author, and four books. The four books are all related
to the first category created, as well as the one author created. All of these objects are
added to the corresponding EF dataset prior to calling SaveChanges to save the nine
objects in the database.

To ensure that the database is initialized upon first start, the Global.asax.cs file inside
the root of the project requires updating, as shown in Example 14-8, to initialize the
database.

Example 14-8. Global.asax.cs

using ShoppingCart.DAL;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;
using System.Web;
using System.Web.Http;
using System.Web.Mvc;
using System.Web.Optimization;
using System.Web.Routing;

namespace ShoppingCart
{
 public class MvcApplication : System.Web.HttpApplication
 {
 protected void Application_Start()
 {
 AreaRegistration.RegisterAllAreas();
 GlobalConfiguration.Configure(WebApiConfig.Register);
 FilterConfig.RegisterGlobalFilters(GlobalFilters.Filters);
 RouteConfig.RegisterRoutes(RouteTable.Routes);
 BundleConfig.RegisterBundles(BundleTable.Bundles);

Defining the DbContext and Initializing Data | 191

 var dbContext = new ShoppingCartContext();
 Database.SetInitializer(new DataInitialization());
 dbContext.Database.Initialize(true);
 }

 protected void Session_Start(object sender, EventArgs e)
 {
 HttpContext.Current.Session.Add("__MyAppSession", string.Empty);
 }
 }
}

Example 14-8 also includes a new Session_Start function. Because the SessionId
string in the Cart model will contain that user’s HTTP Session ID, ASP.NET requires
that the session be initialized with something. Typically, this would be accomplished
if some user information were saved and retrieved on each request from the session;
however, no data needs to be stored in the session, so instead, I just initialize with an
empty string.

This appears to be a minor flaw in ASP.NET, because if this isn’t done, the SessionId
appears to be reset at random points.

The ViewModels
The ViewModels are almost identical to the models with a few minor adjustments to
some of them. Just like the models, there are five ViewModels that serve much the
same as their counterparts. The following examples contain the five different View‐
Models. I have created a new folder called ViewModels and have named the files the
same as their class names. In each case, it is the name of the model postfixed by
ViewModel. This helps separate them when the controller needs to work with both
the data models and the ViewModels.

Example 14-9 contains the AuthorViewModel. You will notice that there are no fields
for the first and last name, just the concantenated full name. This is a good example
where the ViewModel only contains the full name because that is how it will always
be used by the views created later.

Example 14-9. AuthorViewModel

using Newtonsoft.Json;
namespace ShoppingCart.ViewModels
{
 public class AuthorViewModel
 {
 [JsonProperty(PropertyName="id")]
 public int Id { get; set; }

192 | Chapter 14: Building the Data Model

 [JsonProperty(PropertyName = "fullName")]
 public string FullName { get; set; }

 [JsonProperty(PropertyName = "biography")]
 public string Biography { get; set; }
 }
}

The BookViewModel is shown in Example 14-10. For the most part, the fields match
identically to the Book model with the exception of a calculated field called SavePer
centage. This field performs a math calculation that will determine the difference (in
percentage) between the sale and list price of the book. This will allow a view to list a
savings percentage to the user.

Example 14-10. BookViewModel

using Newtonsoft.Json;
namespace ShoppingCart.ViewModels
{
 public class BookViewModel
 {
 [JsonProperty(PropertyName = "id")]
 public int Id { get; set; }

 [JsonProperty(PropertyName = "title")]
 public string Title { get; set; }

 [JsonProperty(PropertyName = "isbn")]
 public string Isbn { get; set; }

 [JsonProperty(PropertyName = "synopsis")]
 public string Synopsis { get; set; }

 [JsonProperty(PropertyName = "description")]
 public string Description { get; set; }

 [JsonProperty(PropertyName = "imageUrl")]
 public string ImageUrl { get; set; }

 [JsonProperty(PropertyName = "listPrice")]
 public decimal ListPrice { get; set; }

 [JsonProperty(PropertyName = "salePrice")]
 public decimal SalePrice { get; set; }

 [JsonProperty(PropertyName = "featured")]
 public bool Featured { get; set; }

 [JsonProperty(PropertyName = "savePercentage")]
 public int SavePercentage

The ViewModels | 193

 {
 get
 {
 return (int)(100 - (SalePrice / ListPrice * 100));
 }
 }

 [JsonProperty(PropertyName = "author")]
 public virtual AuthorViewModel Author { get; set; }

 [JsonProperty(PropertyName = "category")]
 public virtual CategoryViewModel Category { get; set; }
 }
}

Example 14-11 contains the CategoryViewModel that has been stripped down from
its Category model to not include the list of books because the view that uses this
ViewModel does not need to display the books.

Example 14-11. CategoryViewModel

using Newtonsoft.Json;

namespace ShoppingCart.ViewModels
{
 public class CategoryViewModel
 {
 [JsonProperty(PropertyName = "id")]
 public int Id { get; set; }

 [JsonProperty(PropertyName = "name")]
 public string Name { get; set; }
 }
}

The CartViewModel (shown in Example 14-12) does not include the SessionId
because this is the server’s unique identifier that does not need to be exposed publicly.

Example 14-12. CartViewModel

using Newtonsoft.Json;
using System.Collections.Generic;

namespace ShoppingCart.ViewModels
{
 public class CartViewModel
 {
 [JsonProperty(PropertyName = "id")]
 public int Id { get; set; }

194 | Chapter 14: Building the Data Model

 [JsonProperty(PropertyName = "cartItems")]
 public virtual ICollection<CartItemViewModel> CartItems { get; set; }
 }
}

And finally, Example 14-13 contains the CartItemViewModel, which is almost identi‐
cal to its data model with the exception that data validation has been added to the
Quantity property. The Range attribute forces the property to be within a min and
max value. I have specified 1 for the minimum and the max value for an Int32. I’ve
also specified a custom error message that will be displayed to the users if they do not
enter a valid quantity range.

Example 14-13. CartItemViewModel

using Newtonsoft.Json;
using System;
using System.ComponentModel.DataAnnotations;

namespace ShoppingCart.ViewModels
{
 public class CartItemViewModel
 {
 [JsonProperty(PropertyName = "id")]
 public int Id { get; set; }

 [JsonProperty(PropertyName = "cartId")]
 public int CartId { get; set; }

 [JsonProperty(PropertyName = "bookId")]
 public int BookId { get; set; }

 [JsonProperty(PropertyName = "quantity")]
 [Range(1, Int32.MaxValue, ErrorMessage="Quantity must be greater than 0")]
 public int Quantity { get; set; }

 [JsonProperty(PropertyName = "book")]
 public BookViewModel Book { get; set; }
 }
}

Summary
The shopping cart project is starting to come together nicely. The database has been
fully designed, created, and populated with some initial seed data. The next chapter
will begin to create the layout for the shopping cart, including several items that will
appear on every page of the site.

Summary | 195

CHAPTER 15

Implementing the Layout

The shopping cart project is now fully prepared and ready to be implemented. This
chapter will implement the two common elements that will be on each page of the
site. The first is the menu of book categories, and the second is the cart summary that
will allow the users to see a snapshot of what is in their cart.

The Shared Layout
When the shopping cart project was created by Visual Studio, it also created a Home
Controller (along with the accompanying views) and a shared layout view. Example
15-1 contains an updated Views/Shared/_Layout.cs file that includes the two common
elements.

Example 15-1. Shared layout

<!DOCTYPE html>
<html>
<head>
 <meta charset="utf-8" />
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>@ViewBag.Title - My ASP.NET Application</title>
 @Styles.Render("~/Content/css")
 @Scripts.Render("~/bundles/modernizr")
</head>
<body>
 <div class="navbar">
 <div class="container">
 <div class="navbar-header">
 <button type="button" class="navbar-toggle"
 data-toggle="collapse" data-target=".navbar-collapse">

197

 </button>
 @Html.ActionLink("Jamie's Shopping Cart", "Index", "Home",
 new { area = "" }, new { @class = "navbar-brand" })
 </div>
 <div class="navbar-collapse collapse">
 <ul class="nav navbar-nav">
 @Html.ActionLink("Home", "Index", "Home")
 @Html.ActionLink("About", "About", "Home")
 @Html.ActionLink("Contact", "Contact", "Home")

 <div class="navbar-right" id="cart-details">
 @Html.Action("Summary", "Carts")
 </div>
 </div>
 </div>
 </div>
 <div class="container body-content">
 <div class="well well-lg col-lg-3">
 @Html.Action("Menu", "Categories",
 new { selectedCategoryId = ViewBag.SelectedCategoryId != null ?
 ViewBag.SelectedCategoryId : 0 })
 </div>
 <div class="col-lg-9">
 @RenderBody()
 </div>
 <hr />
 <footer>
 <p>© @DateTime.Now.Year - My ASP.NET Application</p>
 </footer>
 </div>

 @Scripts.Render("~/bundles/shoppingCart")
 @RenderSection("scripts", required: false)
</body>
</html>

The cart summary has been added to the top menu. After the three scaffolded links
for Home, About, and Contact, the cart summary is aligned on the far right. It is
implemented by using the HtmlHelper and calling the Action method. The input to
this function is the action and controller name that should be called by the MVC
framework. The resulting view will be rendered inside the containing div. This is a
good method to separate code properly. As you can see, the controller that will be
executed is the CartsController (this will be created shortly) and the action of
Summary.

Similar to the cart summary, the menu of categories is included the same way, this
time calling the CategoriesController and the Menu action. This time, additional
data is passed into the Action function. A new dynamic object is created with a prop‐
erty called selectedCategoryId. This property is set by checking if there is a ViewBag

198 | Chapter 15: Implementing the Layout

variable named SelectedCategoryId. The CategoriesController will use this vari‐
able to be able to highlight the category the user has selected.

The category menu is placed inside the main container, which has been split into two
columns. The first column will use up 3/12ths of the screen to display the categories.
The second column will use the remaining 9/12ths to display the body of the page
being rendered.

The Cart Summary
Several different pieces need to be created and put together to make the fully func‐
tional interactive cart summary. Example 15-2 is the CartsController, which is a
new controller that should be added to the Controllers folder.

Example 15-2. CartsController

using ShoppingCart.Models;
using ShoppingCart.Services;
using ShoppingCart.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace ShoppingCart.Controllers
{
 public class CartsController : Controller
 {
 private readonly CartService _cartService = new CartService();

 public CartsController()
 {
 AutoMapper.Mapper.CreateMap<Cart, CartViewModel>();
 AutoMapper.Mapper.CreateMap<CartItem, CartItemViewModel>();
 AutoMapper.Mapper.CreateMap<Book, BookViewModel>();
 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 AutoMapper.Mapper.CreateMap<Category, CategoryViewModel>();
 }

 [ChildActionOnly]
 public PartialViewResult Summary()
 {
 var cart = _cartService.GetBySessionId(HttpContext.Session.SessionID);

 return PartialView(
 AutoMapper.Mapper.Map<Cart, CartViewModel>(cart)
);
 }

The Cart Summary | 199

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 _cartService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

The CartsController defines one public action called Summary, which is tagged with
the attribute ChildActionOnly. This attribute, in combination with the layout loading
this method via the HtmlHelper and the Action method, lets me use the MVC frame‐
work without the overhead of a full request.

The CartsController also instantiates a private variable to the CartService (shown
in Example 15-3). This variable is then disposed of at the end of the request life cycle.
The Summary method uses the CartService to get the cart by the user’s SessionID,
which is stored in the HttpContext.

Inside a new folder called Services, add the CartService class shown in Example 15-3

Example 15-3. CartService

using ShoppingCart.DAL;
using ShoppingCart.Models;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;

namespace ShoppingCart.Services
{
 public class CartService : IDisposable
 {
 private ShoppingCartContext _db = new ShoppingCartContext();

 public Cart GetBySessionId(string sessionId)
 {
 var cart = _db.Carts.
 Include("CartItems").
 Where(c => c.SessionId == sessionId).
 SingleOrDefault();

 cart = CreateCartIfItDoesntExist(sessionId, cart);

 return cart;
 }

200 | Chapter 15: Implementing the Layout

 private Cart CreateCartIfItDoesntExist(string sessionId, Cart cart)
 {
 if (null == cart)
 {
 cart = new Cart
 {
 SessionId = sessionId,
 CartItems = new List<CartItem>()
 };
 _db.Carts.Add(cart);
 _db.SaveChanges();
 }

 return cart;
 }

 public void Dispose()
 {
 _db.Dispose();
 }
 }
}

Just like I did with the previous service I created, a private variable is instantiated to
the EF DbContext. This service implements the IDisposable interface, which will
then dispose of the ShoppingCartContext when the controller’s Dispose function is
called to dispose of the CartService.

The GetBySessionId function searches the Carts DbSet for a cart with a matching
sessionId. The CartItems collection is also included because this will be used by the
view to show all of the items. Inside the GetBySessionId function is a private func‐
tion named CreateCartIfItDoesntExist, which will create a new cart with the ses
sionId when there is not an existing cart.

Next up is the view. If a Carts folder was not created automatically under the Views
folder, you should create it now. Once created, add a new view called Summary. Be
sure to check that this is a partial view. Example 15-4 contains the finished Summary
view.

Example 15-4. Carts/Summary.cshtml

@model ShoppingCart.ViewModels.CartViewModel

 @Model.CartItems.Count

The Cart Summary | 201

<div id="cart-summary" style="display: none">

 You currently have no items in your cart.

 <div data-bind="visible: cart.cartItems().length > 0">

 <!-- ko foreach: { data: cart.cartItems, afterAdd: fadeIn } -->
 <li data-bind="text: book.title">
 <!-- /ko -->

 <p>Total: $</p>

 View cart details
 </div>
</div>

<script>
 var cartSummaryData = @Html.HtmlConvertToJson(Model);
</script>

The Summary view is bound to the CartViewModel that was created in Chapter 14.
Remember that this view is included in the shared layout inside a class that aligns to
the far right. So this view defines an HTML link with an id of cart and a Knockout
data binding for the click event to the function showCart. Inside this link are two
span tags. The first one displays a shopping cart glyphicon. The second defines a
badge that is data bound via the text binding to the cart.cartItems array.

Beneath the link is a div with the id of cart-summary. It is hidden by default. When
the user clicks the shopping cart icon, this div will be displayed inside a popover.
Inside the div, a span tag is created and is data bound to the visible binding to show
when there are no items in the cart. Beneath this span tag is a div that is data bound
to the visible binding to only show when there are items in the cart. An unordered
list (ul) contains a foreach data binding, which creates a list item (li) with the title
of the book that is in the cart.

You might have noticed that the foreach binding looks different than some of the
previous bindings. I’ve indicated that after an item is added to the cartItems array,
an event will be triggered by Knockout and call the fadeIn function that will be
defined in the Knockout ViewModel. This will provide the ability to perform a little
animation when items are added to the cart.

Beneath the list of items in the cart is the cart’s total and a link to view the full cart
details.

A global JavaScript variable is defined at the bottom of this view that serializes the
CartViewModel. Normally, the ViewModel would be instantiated here as well; how‐
ever, here is a minor downside to using a partial view. Partial views don’t support

202 | Chapter 15: Implementing the Layout

sections, so I’m unable to define the scripts section that would be rendered at the bot‐
tom of the shared layout. Instead, when the CartSummaryViewModel is defined (as
shown in Example 15-5), it will use this global variable that I’ve defined in this view.

I personally am not the biggest fan of using global JavaScript variables; however, in
this scenario I think the pros of separating my code with a partial view and controller
outweigh having to use a global JavaScript variable.

The Summary view is leveraging the HtmlHelperExtension that was created in Exam‐
ple 5-4. In the root of the project, create the Extensions folder and copy the previously
created HtmlHelperExtension to this folder.

The cart summary is starting to come together, and now it’s time to create the Knock‐
out ViewModel. Inside the Scripts folder, create a new folder called ViewModels. Then
create a new CartSummaryViewModel.js file as shown in Example 15-5.

Example 15-5. CartSummaryViewModel

function CartSummaryViewModel(model) {
 var self = this;

 self.cart = model;

 for (var i = 0; i < self.cart.cartItems.length; i++) {
 var cartItem = self.cart.cartItems[i];
 cartItem.quantity = ko.observable(cartItem.quantity)
 .extend({ subTotal: cartItem.book.salePrice });
 }

 self.cart.cartItems = ko.observableArray(self.cart.cartItems);

 self.cart.total = self.cart.cartItems.total();

 self.showCart = function () {
 $('#cart').popover('toggle');
 };

 self.fadeIn = function (element) {
 setTimeout(function () {
 $('#cart').popover('show');

 $(element).slideDown(function () {
 setTimeout(function () {
 $('#cart').popover('hide');
 }, 2000);
 });
 }, 100);
 };

 $('#cart').popover({

The Cart Summary | 203

 html: true,
 content: function () {
 return $('#cart-summary').html();
 },
 title: 'Cart Details',
 placement: 'bottom',
 animation: true,
 trigger: 'manual'
 });
};

if (cartSummaryData !== undefined) {
 var cartSummaryViewModel = new CartSummaryViewModel(cartSummaryData);
 ko.applyBindings(cartSummaryViewModel, document.getElementById("cart-details"));
} else {
 $('.body-content').prepend('<div class="alert alert-danger">
 Error! Could not find cart summary.</div>');
}

The CartSummaryViewModel is defined as a function that accepts the CartViewModel
that was serialized in the view. This is assigned to a local cart variable. After this, the
cartItems array is looped through, and the quantity property of the CartItemView
Model is converted to an observable variable. This is required because if the same
item is added multiple times, the quantity will be updated, and this will allow the cart
total to be recalculated. The cartItems array is also converted to an observableAr
ray because items will be added and removed from this array.

When the quantity is defined as an observable, it is extended with a subTotal prop‐
erty that passes in the book’s salePrice. The subTotal is a custom Knockout exten‐
sion that I created (shown in Example 15-6) that can be used to extend any
observable property that will take the variable passed in and multiply it by the prop‐
erty that is being extended.

The total property on the cart variable is defined as a custom function on the
observableArray cartItems. The total extension function is also shown in Example
15-6 below.

After the observables are created, the showCart function is defined. This function is
bound to the click event for the cart icon and will toggle the display of the cart sum‐
mary popover (i.e., if it is hidden, it will be shown, and when it is clicked again, it will
be closed).

The next function is the fadeIn function. It accepts an element parameter that is
passed by Knockout when the new item is added to the cartItems array. A setTime
out is defined that will be executed 100 milliseconds after the function is called. This
is done to ensure that the new element has been added to the list by Knockout. Once
the 100 milliseconds have passed, the popover is shown (if it is not already being

204 | Chapter 15: Implementing the Layout

shown), and the jQuery UI slideDown effect will show the new item. After 2,000 mil‐
liseconds, the popover is then hidden. This provides a nice effect that shows the cart
summary for roughly two seconds, and then disappears providing visual feedback to
the user that the new item was added to the cart.

The final thing the CartSummaryViewModel function does is instantiate the link with
the id of cart to be a popover. The popover is created with the title Cart Details,
and the content is loaded from the div with the id of cart-summary.

Outside of the CartSummaryViewModel function, there is an if statement that ensures
that the global JavaScript variable that was defined in the view exists. If it does exist, it
creates the view model and applies the Knockout bindings limited to the element
with the id of cart-details. The cart-details ID was added in the shared layout to
the element that wraps the Html.Action method call. Limiting the Knockout bind‐
ings to only the content within the cart-details div allows you to add multiple
Knockout bindings on the same page.

If the global variable doesn’t exist, an error alert is written on-screen. This will help
any future developer if this variable is not defined.

The next thing that needs to be created is the custom subTotal Knockout extension
and total custom function. I’ve placed these in a file called knockout.custom.js inside
the Scripts folder. Example 15-6 defines these functions.

Example 15-6. knockout.custom.js

ko.extenders.subTotal = function (target, multiplier) {
 target.subTotal = ko.observable();

 function calculateTotal(newValue) {
 target.subTotal((newValue * multiplier).toFixed(2));
 };

 calculateTotal(target());

 target.subscribe(calculateTotal);

 return target;
};

ko.observableArray.fn.total = function () {
 return ko.pureComputed(function () {
 var runningTotal = 0;

 for (var i = 0; i < this().length; i++) {
 runningTotal += parseFloat(this()[i].quantity.subTotal());
 }

The Cart Summary | 205

 return runningTotal.toFixed(2);
 }, this);
};

The subTotal is defined as function under the ko.extenders. By default, the func‐
tion will have one parameter, the target observable. This extender also includes a sec‐
ond property of multiplier. The function adds a new observable property called
subTotal to the target observable. Then a function is defined called calculateTotal.
This will be called each time the target observable’s value changes. The calculateTo
tal function is called on first load and will be called automatically each time the value
changes.

The total function is defined slightly differently. It is defined as a function on the
ko.observableArray. By adding it here, it will be available to any observableArray.
If it were added to the ko.observable, the function would be available to both
observable and observableArray variables.

A pureComputed function is defined inside the function definition. This function
loops through the observableArray and adds the results of the previously defined
subTotal function to the runningTotal variable. At the end of this function, the run
ningTotal is returned fixed to two decimal places.

This pureComputed function will be recalculated when either the cartItems array
changes or when the quantity within the cartItem changes.

Why Custom Functions?

Instead of creating an extension, the subTotal and total could be
calculated with a computedObservable. I’ve gone with the exten‐
sion approach because when I create the cart details page, it also
needs to calculate the same subTotal and total for each cart item.
This is a great way to avoid duplicating the calculation across mul‐
tiple ViewModels.

The final thing that needs to be done is to include the new JavaScript files that have
been created. This can be accomplished one of two ways. The first would be to
include the scripts in the layout after the bundle created in Chapter 13 is added. The
second way would be to update the previously created bundle to include these new
files. Because these files are required on every page, I think it makes more sense to
update the bundle with them. Example 15-7 contains an updated BundleConfig with
the two additional files.

206 | Chapter 15: Implementing the Layout

Example 15-7. Updated BundleConfig

using System.Web;
using System.Web.Optimization;

namespace ShoppingCart
{
 public class BundleConfig
 {
 // For more information on bundling, visit http://go.microsoft.com/fwlink
 public static void RegisterBundles(BundleCollection bundles)
 {
 bundles.Add(new ScriptBundle("~/bundles/shoppingCart").Include(
 "~/Scripts/jquery-{version}.js", "~/Scripts/jquery.validate*",
 "~/Scripts/jquery-ui.js", "~/Scripts/bootstrap.js",
 "~/Scripts/respond.js", "~/Scripts/knockout-{version}.js",
 "~/Scripts/knockout.custom.js",
 "~/Scripts/ViewModels/CartSummaryViewModel.js"));

 bundles.Add(new StyleBundle("~/Content/css").Include(
 "~/Content/bootstrap.css",
 "~/Content/site.css"));

 // Set EnableOptimizations to false for debugging. For more information,
 // visit http://go.microsoft.com/fwlink/?LinkId=301862
 BundleTable.EnableOptimizations = true;
 }
 }
}

At this point, the application can be run. Clicking the cart icon will display the
popover with the message, “You currently have no items in your cart” (as shown in
Figure 15-1).

Figure 15-1. The cart summary

The Categories Menu
The list of categories is implemented in a similar fashion to the cart summary with far
fewer pieces to put together. To begin, create a new CategoriesController in the
Controllers folder. Example 15-8 contains its definition.

The Categories Menu | 207

Example 15-8. CategoriesController

using ShoppingCart.Models;
using ShoppingCart.Services;
using ShoppingCart.ViewModels;
using System.Collections.Generic;
using System.Web;
using System.Web.Mvc;

namespace ShoppingCart.Controllers
{
 public class CategoriesController : Controller
 {
 private readonly CategoryService _categoryService = new CategoryService();

 [ChildActionOnly]
 public PartialViewResult Menu(int selectedCategoryId)
 {
 var categories = _categoryService.Get();

 AutoMapper.Mapper.CreateMap<Category, CategoryViewModel>();

 ViewBag.SelectedCategoryId = selectedCategoryId;

 return PartialView(
 AutoMapper.Mapper.Map<List<Category>, List<CategoryViewModel>>(categories)
);
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 _categoryService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

The CategoriesController is following the same methodology of creating a service
and ensuring that it is disposed of when the request is finished. The Menu action is
also tagged as a ChildActionOnly like the Summary action in the CartsController.

Using the CategoryService (shown in Example 15-9), all categories are retrieved.
These are then automapped and passed to the partial view (shown in Example 15-10).
If you recall in the shared layout, when the Html.Action method was called, a new
dynamic object was created to pass in the selectedCategoryId property. This value
is set in the ViewBag to be used by the view to identify the selected category (if one is
selected).

208 | Chapter 15: Implementing the Layout

Example 15-9 contains the CategoryService. This file should be created in the Serv‐
ices folder.

Example 15-9. CategoryService

using ShoppingCart.DAL;
using ShoppingCart.Models;
using System;
using System.Collections.Generic;
using System.Linq;

namespace ShoppingCart.Services
{
 public class CategoryService : IDisposable
 {
 private ShoppingCartContext _db = new ShoppingCartContext();

 public List<Category> Get()
 {
 return _db.Categories.OrderBy(c => c.Name).ToList();
 }

 public void Dispose()
 {
 _db.Dispose();
 }
 }
}

The CategoryService follows the same paradigm as other services where it creates a
new ShoppingCartContext, implements the IDisposable interface, and disposes of
the DbContext when the class is disposed of from the controller.

The Get function simply returns the DbSet of Categories ordered alphabetically by
their name.

The final piece to the category menu is the view. Inside the Views folder, if a Cate‐
gories folder was not automatically created with the controller, add it now. Inside of
this folder create a new view called Menu. Once again, ensure that the partial view is
checked. Example 15-10 contains the view.

Example 15-10. Categories/Menu

@model List<ShoppingCart.ViewModels.CategoryViewModel>
@{
 var selectedCategoryId = ViewBag.SelectedCategoryId;
}

<div class="list-group">

The Categories Menu | 209

 <h4 class="list-group-item-heading">Categories</h4>
@foreach (var category in Model)
{
 <a href="@Url.Action("Index", "Books", new { categoryId = category.Id })"
 class="list-group-item @if (selectedCategoryId == category.Id) {
 @Html.Raw("active") }">@category.Name
}
</div>

The view is data bound to a list of CategoryViewModels and the ViewBag.SelectedCa
tegoryId is stored in a local variable. A Razor foreach statement is placed within a
div with the class of list-group. A new HTML link is created for each category. The
link is assigned the class list-group-item, and if the ID of the category matches the
selectedCategoryId, a secondary class of active is added. This class will highlight
the selected menu. This is shown in Figure 15-2.

Figure 15-2. The categories

Where’s the Knockout?

It’s a good question. I have chosen Knockout to perform my client-
side data binding; however, because I know the categories will not
change when a user interacts with them, there is no need to add the
additional override of Knockout bindings.
You will notice throughout the remainder of these examples that
Knockout is only used when dynamic user interaction is required;
otherwise, a standard MVC view with Razor will do the trick just
fine.

210 | Chapter 15: Implementing the Layout

Summary
The shopping cart layout is now complete. The list of book categories will be dis‐
played on the left, and the cart summary will be displayed in the upper-right corner.
These items will appear on every page. The cart summary contains a nice mix of
MVC, Bootstrap, and Knockout to style it as a popover and include some simple ani‐
mations when new items are added to the cart. The next chapter will build the home
page to include a list of featured books.

Summary | 211

CHAPTER 16

Lists of Books

This chapter will update the home page to display a list of featured books. Because
the Book model contained both a list price and sale price, a savings label will be added
to attract the user into buying the book! Another list of books needs to be displayed
filtered to the category selected from the left-hand menu created in Chapter 15. Both
the featured books and the filtered-by-category books will leverage a shared view as
shown later in this chapter.

The Home Page
Before the books are displayed, I’ve made some minor changes to the home page that
was previously scaffolded by Visual Studio. Example 16-1 contains the updated
Views/Home/Index.cshtml view with the tweaks.

Example 16-1. Views/Home/Index.cshtml

@{
 ViewBag.Title = "Home Page";
}

<div class="jumbotron">
 <h1>Jamie's Shopping Cart</h1>
 <p class="lead">Shop for your favorite books, we've got the best prices.</p>
 <p>
 Learn more »</p>
</div>

@Html.Action("Featured", "Books")

213

The view leverages the stylish jumbotron feature of Bootstrap. This is a great way to
create a noticable call-to-action that users cannot miss. My jumbotron is quite simple
in that it tells the users I have the best prices, and they can click a link to learn more.

After the jumbotron, the featured books are included via the Html.Action method,
just like the cart summary and categories were included in the shared layout. This
was done to leverage both a HomeController and a BooksController and keep each
related to their respective objects. The next section will implement the featured
books.

No changes are required to the HomeController because it does not contain any logic.
It simply loads the view.

The Featured Books
To create the featured books, create a BooksController inside the Controllers folder.
Example 16-2 contains the Featured action of the BooksController.

Example 16-2. BooksController

using ShoppingCart.Models;
using ShoppingCart.Services;
using ShoppingCart.ViewModels;
using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Mvc;

namespace ShoppingCart.Controllers
{
 public class BooksController : Controller
 {
 private readonly BookService _bookService = new BookService();

 public BooksController()
 {
 AutoMapper.Mapper.CreateMap<Book, BookViewModel>();
 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 AutoMapper.Mapper.CreateMap<Category, CategoryViewModel>();
 }

 [ChildActionOnly]
 public PartialViewResult Featured()
 {
 var books = _bookService.GetFeatured();

 return PartialView(
 AutoMapper.Mapper.Map<List<Book>, List<BookViewModel>>(books)
);

214 | Chapter 16: Lists of Books

 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 _bookService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

Hopefully, the BooksController is looking quite familiar. I have once again followed
the previously defined pattern. A BookService is instantiated (shown in Example
16-3) and is disposed of at the end of the request.

Next is the Featured action. Just like the cart summary and categories menu, this
action is attributed with ChildActionOnly. The Featured action uses the BookSer
vice to retrieve the list of featured books. These books are then automapped to the
BookViewModel and passed through to the view (shown in Example 16-4).

The BookService class can now be created inside the existing Services folder. Exam‐
ple 16-3 contains the BookService with the GetFeatured method.

Example 16-3. BookService

using ShoppingCart.DAL;
using ShoppingCart.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace ShoppingCart.Services
{
 public class BookService : IDisposable
 {
 private ShoppingCartContext _db = new ShoppingCartContext();

 public List<Book> GetFeatured()
 {
 return _db.Books.
 Include("Author").
 Where(b => b.Featured).
 ToList();
 }

 public void Dispose()
 {

The Featured Books | 215

 _db.Dispose();
 }
 }
}

Like the previous services, the BookService implements the IDisposable interface
and creates a ShoppingCartContext that is disposed of when the request is finished.

The GetFeatured method returns a list of books with the Featured Boolean set to
true. The related Author object is also included so that it can be rendered along with
the book.

It’s now time to create the view. If a Books folder was not created in the Views folder,
create it now. Inside this folder create a new Featured view. Be sure to check the par‐
tial view because this is a Child Action Only view. Example 16-4 contains the nearly
empty view (because the logic is contained within another shared view that is shown
in Example 16-5).

Example 16-4. Views/Books/Featured.cshtml

@model List<ShoppingCart.ViewModels.BookViewModel>
@Html.Partial("_List", Model)

This view defines the model binding a list of BookViewModels. After this, another
HtmlHelper method is used—Partial—that defines the name of the partial view to
load. The second parameter is the optional data that the partial view can be data
bound to.

The final piece of the featured books is the HTML code to list the books. In the
Views/Books folder, create another partial view named _List. The underscore in the
name is a common convention to help identify partial views not associated directly
with a controller action. Example 16-5 shows the _List.cshtml view.

Example 16-5. Views/Books/_List.cshtml

@model List<ShoppingCart.ViewModels.BookViewModel>
@{
 const int maxPerRow = 3;
 int counter = 0;
}

<div class="row">
 @foreach (var book in Model)
 {
 counter++;
 if (counter > maxPerRow)
 {
 counter = 0;

216 | Chapter 16: Lists of Books

@Html.Raw("</div>")
@Html.Raw("<div class=\"row\">")
 }
 <div class="col-md-4">

 Save @book.SavePercentage %

 <h4>
 @book.Title</h4>
 <p>@book.Author.FullName</p>
 <p>Your Price: $@book.SalePrice</p>
 <p>List Price:
 $@book.ListPrice</p>
 </div>
 }
</div>

Like the Featured view, this view is also data bound to a list of BookViewModels. After
this, a couple of variables are defined that will help split the books into rows of three.
Before looping through the list of books, a div with the class of row is defined. This
div is closed after the end of the loop. During the loop of books, the counter is incre‐
mented. When the counter surpasses the maxPerRow, the div with the class of row is
closed, and the new div is created.

Next up is creating the column with the book information. Another div is created
with the class of col-md-4. This will make each book use up to one-third of the
screen width. The book’s thumbnail is added inside an HTML link. The image inside
of the link is specially stylized because of the thumbnail class on the link. Under the
image, a span tag is defined with the label and label-success classes that contain
the book’s savings percentage.

And finally, the book’s title, author, and the prices are displayed with a strikethrough
on the list price as shown in Figure 16-1.

The Featured Books | 217

Figure 16-1. Featured books

Filtered Books by Category
In the last chapter when the category menu was created, each category was linked to
the Index action on the BooksController. The link also provided the categoryId.
Example 16-6 contains an updated BooksController with the new Index action.

Example 16-6. Updated BooksController

using ShoppingCart.Models;
using ShoppingCart.Services;
using ShoppingCart.ViewModels;
using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Mvc;

namespace ShoppingCart.Controllers
{
 public class BooksController : Controller
 {
 private readonly BookService _bookService = new BookService();

 public BooksController()
 {
 AutoMapper.Mapper.CreateMap<Book, BookViewModel>();
 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 AutoMapper.Mapper.CreateMap<Category, CategoryViewModel>();
 }

218 | Chapter 16: Lists of Books

 // GET: Books
 public ActionResult Index(int categoryId)
 {
 var books = _bookService.GetByCategoryId(categoryId);

 ViewBag.SelectedCategoryId = categoryId;

 return View(
 AutoMapper.Mapper.Map<List<Book>, List<BookViewModel>>(books)
);
 }

 [ChildActionOnly]
 public PartialViewResult Featured()
 {
 var books = _bookService.GetFeatured();

 return PartialView(
 AutoMapper.Mapper.Map<List<Book>, List<BookViewModel>>(books)
);
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 _bookService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

The Index method leverages the BookService to fetch the list of books by the cate
goryId parameter. This list is then automapped and passed through to the view.

Recall that in the shared layout, when the Html.Action to include the category menu
was called, the selectedCategoryId was populated with a ViewBag variable if it exis‐
ted. This is the controller that sets the variable so that the selected category will be
highlighted when the view is rendered.

The BookService requires updating to include the new GetByCategoryId function.
This is shown in Example 16-7.

Example 16-7. Updated BookService

using ShoppingCart.DAL;
using ShoppingCart.Models;
using System;

Filtered Books by Category | 219

using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace ShoppingCart.Services
{
 public class BookService : IDisposable
 {
 private ShoppingCartContext _db = new ShoppingCartContext();

 public List<Book> GetByCategoryId(int categoryId)
 {
 return _db.Books.
 Include("Author").
 Where(b => b.CategoryId == categoryId).
 OrderByDescending(b => b.Featured).
 ToList();
 }

 public List<Book> GetFeatured()
 {
 return _db.Books.
 Include("Author").
 Where(b => b.Featured).
 ToList();
 }

 public void Dispose()
 {
 _db.Dispose();
 }
 }
}

The GetByCategoryId function is quite similar to the GetFeatured function; how‐
ever, this time the books are filtered where their CategoryId is equal to the categor
yId parameter. The Author object is also included, and to provide more upsell, the
books with the Featured flag set to true are displayed first.

To finish displaying the books, an Index view needs to be created in the Views/Books
folder. This time ensure that the partial view is not checked! The completed view is
displayed in Example 16-8.

Example 16-8. Views/Books/Index.cshtml

@model List<ShoppingCart.ViewModels.BookViewModel>
@{
 ViewBag.Title = "Books";
}

220 | Chapter 16: Lists of Books

<h2>Books</h2>

@if (Model.Count > 0) {
 @Html.Partial("_List", Model)
} else {
<div class="alert alert-info">
 There are currently no books to display.
</div>
}

Like the previously created book views, the Index view is also data bound to a list of
BookViewModels. A Razor if statement is then used to show the partial _List view
(shown in Example 16-5) to show the books. If there are no books, an alert is dis‐
played letting the user know there are no books in this category.

When you run the completed example, you will see the category highlighted on the
left, letting you easily know which category you are currently browsing.

Summary
Like the category menu, this entire chapter did not require any dynamic user interac‐
tion, so Knockout was not used. Bootstrap was leveraged throughout in an attempt to
make the books visually appealing to the user with minimal effort.

Get ready for the next chapter. More Knockout will be required to add the ability to
add a book to your shopping cart!

Summary | 221

CHAPTER 17

Adding Items to the Cart

As my product owner at work likes to say, this is the chapter where “the rubber meets
the road.” The previous chapters have been providing the necessary setup before
building the “why,” and when it comes to shopping carts, the “why” is adding the item
to the cart.

The Book Details
Before a book can be added to the cart, the book details page needs to be created. In
the last chapter when the book listings were created, the link to the book sent the user
to Books/Details/id. To start, the BooksController needs to be updated to add this
new action. Example 17-1 contains an updated BooksController.

Example 17-1. Updated BooksController

using ShoppingCart.Models;
using ShoppingCart.Services;
using ShoppingCart.ViewModels;
using System;
using System.Collections.Generic;
using System.Web;
using System.Web.Mvc;

namespace ShoppingCart.Controllers
{
 public class BooksController : Controller
 {
 private readonly BookService _bookService = new BookService();

 public BooksController()
 {
 AutoMapper.Mapper.CreateMap<Book, BookViewModel>();

223

 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 AutoMapper.Mapper.CreateMap<Category, CategoryViewModel>();
 }

 // GET: Books
 public ActionResult Index(int categoryId)
 {
 var books = _bookService.GetByCategoryId(categoryId);

 ViewBag.SelectedCategoryId = categoryId;

 return View(
 AutoMapper.Mapper.Map<List<Book>, List<BookViewModel>>(books)
);
 }

 public ActionResult Details(int id)
 {
 var book = _bookService.GetById(id);

 return View(
 AutoMapper.Mapper.Map<Book, BookViewModel>(book)
);
 }

 [ChildActionOnly]
 public PartialViewResult Featured()
 {
 var books = _bookService.GetFeatured();

 return PartialView(
 AutoMapper.Mapper.Map<List<Book>, List<BookViewModel>>(books)
);
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 _bookService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

The Details action is quite similar to the other actions in the BooksController. It
uses the BookService to fetch an individual book by its ID. This book is then auto‐
mapped to the view.

224 | Chapter 17: Adding Items to the Cart

The BookService needs to be updated to include the new GetById function as shown
in Example 17-2.

Example 17-2. Updated BookService

using ShoppingCart.DAL;
using ShoppingCart.Models;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;

namespace ShoppingCart.Services
{
 public class BookService : IDisposable
 {
 private ShoppingCartContext _db = new ShoppingCartContext();

 public List<Book> GetByCategoryId(int categoryId)
 {
 return _db.Books.
 Include("Author").
 Where(b => b.CategoryId == categoryId).
 OrderByDescending(b => b.Featured).
 ToList();
 }

 public List<Book> GetFeatured()
 {
 return _db.Books.
 Include("Author").
 Where(b => b.Featured).
 ToList();
 }

 public Book GetById(int id)
 {
 var book = _db.Books.
 Include("Author").
 Where(b => b.Id == id).
 SingleOrDefault();

 if (null == book)
 throw new System.Data.Entity.Core.ObjectNotFoundException
 (string.Format("Unable to find book with id {0}", id));

 return book;
 }

 public void Dispose()
 {

The Book Details | 225

 _db.Dispose();
 }
 }
}

Once again, the BookService updates are almost identical. This time instead of
returning a list, it returns only a single book. There is an additional check to see if the
book exists. If it does not, an exception is thrown.

To complete the display of the book, a Details view is required. Inside the Views/
Books folder, create a new view called Details. Like the Index view, this should not be
a partial view. Example 17-3 contains the finished view.

Example 17-3. Views/Books/Details.cshtml

@model ShoppingCart.ViewModels.BookViewModel
@{
 ViewBag.Title = Model.Title;
}

<h1>@Model.Title</h1>

<div id="bookDetails" class="row">
 <div class="col-md-2">
 <img src="@Model.ImageUrl" alt="@Model.Title" title="@Model.Title"
 class="img-rounded" />
 </div>
 <div class="col-md-5 col-md-offset-1">
 <h3>@Model.Author.FullName</h3>
 <p>Your Price: $@Model.SalePrice</p>
 <p>List Price:
 $@Model.ListPrice</p>
 <p class="label label-success">Save @Model.SavePercentage %</p>
 <p>@Model.Description</p>
 </div>
 <div class="col-md-2 col-md-offset-2 bg-info">
 <upsert-cart-item params="cartItem: cartItem, showButton: true">
 </upsert-cart-item>
 </div>
</div>

@Html.Partial("_CartItemForm")

@section Scripts {
 @Scripts.Render("~/Scripts/ViewModels/BookDetailViewModel.js",
 "~/Scripts/ViewModels/CartItemViewModel.js")

 <script>
 var model = @Html.HtmlConvertToJson(Model);

 var bookDetailViewModel = new BookDetailViewModel(model);

226 | Chapter 17: Adding Items to the Cart

 ko.applyBindings(bookDetailViewModel, document.getElementById("bookDetails"));
 </script>
}

There is quite a bit going on inside this view. First, the view is data bound to a single
BookViewModel. After this, the page title is set to the name of the book, and this is also
displayed inside a header (h1).

After this, the main book details are displayed inside a div attributed with the id of
bookDetails. At the end of the view, the Knockout BookDetailViewModel is data
bound to this div. The Knockout ViewModel will be described in the next section.

Inside this div, the book thumbnail, author, description, and pricing information are
displayed. The book details are split into three columns. The first and second contain
the preceding information. The last column contains the form to add the book to the
cart. This is accomplished by using a custom Knockout component. I’ve named the
component upsert-cart-item because it is also used on the cart details page that will
be implemented in the next chapter.

The upsert-cart-item component accepts two parameters: the first is the item being
added or edited (hence the term upsert), and the second parameter is a Boolean vari‐
able that indicates whether or not the form’s button should always be displayed.
When the cart details page is implemented, the button will only be shown when the
book’s quantity changes.

The final part of the Details view is to include the partial view that will be used by the
Knockout component, load the necessary JavaScript files, and create an instance of
the ViewModel with the BookViewModel.

Inside the Scripts/ViewModels folder, create a new BookDetailViewModel.js JavaScript
file as shown in Example 17-4.

Example 17-4. BookDetailViewModel

function BookDetailViewModel(model) {
 var self = this;

 self.cartItem = {
 cartId: cartSummaryViewModel.cart.id,
 quantity: ko.observable(1),
 book: model
 };
};

This ViewModel accepts the BookViewModel, which is bound to a book property
inside the cartItem variable. This ViewModel also leverages the global cartSummary
ViewModel to set the cartId for the cartItem. The quantity property is made

The Book Details | 227

observable to allow the user to change this value to order more copies. The cartItem
variable is the object that is data bound to the Knockout custom component that will
be reviewed in the next section. Figure 17-1 is an example of a fully functional book
details page.

Figure 17-1. Book details

Custom Components and Custom Bindings
The previous section set everything in place to show the book details and the add-to-
cart form. The add-to-cart was accomplished using a custom Knockout component.
Inside the component, a custom Knockout binding is also used to show or hide the
Submit button. This is a nice effect when the cart details page is implemented because
the Update button will only show when the quantity has been changed.

Knockout custom components are quite powerful. They let you encapsulate both
HTML and a Knockout ViewModel together in a standalone and reusable compo‐
nent. To create a component, you need three things:

A unique name
The custom component I created is called upsert-cart-item.

A ViewModel
The ViewModel can be inline or an existing ViewModel. I’ve chosen the latter for
better organization.

A template
The template can be inline, or it can reference a template by ID. I’ve chosen the
latter once again for better organization.

To start, the component needs to be registered with Knockout. Example 17-5 contains
the code required to register my component.

228 | Chapter 17: Adding Items to the Cart

Example 17-5. Component registration

ko.components.register('upsert-cart-item', {
 viewModel: CartItemViewModel,
 template: { element: 'cart-item-form' }
});

The ViewModel that the component uses is called CartItemViewModel (shown in
Example 17-6), and the template parameter identifies that Knockout should use the
element with the id of cart-item-form. This will be shown in Example 17-7.

Inside the Scripts/ViewModels folder, create a new JavaScript file called CartItemView
Model. The class is shown in Example 17-6. Notice at the bottom of this file is where I
placed the component registration from Example 17-5.

Example 17-6. CartItemViewModel

function CartItemViewModel(params) {
 var self = this;

 self.sending = ko.observable(false);

 self.cartItem = params.cartItem;
 self.showButton = params.showButton;

 self.upsertCartItem = function (form) {
 if (!$(form).valid())
 return false;

 self.sending(true);

 var data = {
 id: self.cartItem.id,
 cartId: self.cartItem.cartId,
 bookId: self.cartItem.book.id,
 quantity: self.cartItem.quantity()
 };

 $.ajax({
 url: '/api/cartitems',
 type: self.cartItem.id === undefined ? 'post' : 'put',
 contentType: 'application/json',
 data: ko.toJSON(data)
 })
 .success(self.successfulSave)
 .error(self.errorSave)
 .complete(function () { self.sending(false) });
 };

 self.successfulSave = function (data) {
 var msg = '<div class="alert alert-success">Success!

Custom Components and Custom Bindings | 229

 The item has been ';
 if (self.cartItem.id === undefined)
 msg += 'added to';
 else
 msg += 'updated in';

 $('.body-content').prepend(msg + ' your cart.</div>');

 self.cartItem.id = data.id;

 cartSummaryViewModel.updateCartItem(ko.toJS(self.cartItem));
 };

 self.errorSave = function () {
 var msg = '<div class="alert alert-danger">Error!
 There was an error ';
 if (self.cartItem.id === undefined)
 msg += 'adding';
 else
 msg += 'updating';

 $('.body-content').prepend(msg + ' the item to your cart.</div>');
 };
};

ko.components.register('upsert-cart-item', {
 viewModel: CartItemViewModel,
 template: { element: 'cart-item-form' }
});

The ViewModel accepts a params parameter. This contains the objects passed into the
component as they were named when the component was added. These are then
stored into local copies—one for the cartItem being added or edited, and the other
for whether or not the button should always show.

The upsertCartItem function is defined next. This is called when the form is submit‐
ted. It first checks that the form is valid, and then the sending observable is set to
true; this will make the progress bar show. After this, a new variable named data is
defined. This builds the object that will be sent to the server with only the informa‐
tion that is required by the server. This is not mandatory, but is a good thing to do
because if you recall, the cartItem object contains the full book object, and there is
no need to send this information to the server.

This function finishes by performing the AJAX request. The endpoint it calls is api/
cartItems (this controller will be created shortly). Depending on whether the cartI
tem is being added or edited, it will either perform a POST or PUT request, respec‐
tively. The data is then serialized to JSON, and finally, the success and error functions
are set for when the request finishes. At the completion of the AJAX request

230 | Chapter 17: Adding Items to the Cart

(regardless of success or fail), the sending observable is set back to false to hide the
progress bar.

The successfulSave function is called when the cart item is successfully saved. This
function builds a message to identify whether the item was added or updated in the
cart. This message is then displayed in a success alert near the top of the screen. The
final thing this function does is call a new function in the global cartSummaryViewMo
del. The function accepts the cartItem that was just added or edited.

The final function in this class is the errorSave function. This function builds and
displays an error alert if the save is not successful.

That completes the component’s ViewModel. It’s now time to create the template. I’ve
placed the template in a partial view called _CartItemForm (shown in Example 17-7).
Because this will be used by both a view in the Books folder and the future CartItems
folder, I created the _CartItemForm in the Shared folder under Views.

Example 17-7. Views/Shared/_CartItemForm.cshtml

@{
 var cartItem = new ShoppingCart.ViewModels.CartItemViewModel();
}

<template id="cart-item-form">
 <form class="center-block" data-bind="submit: upsertCartItem">
 <div class="form-group">
 <!-- ko if: cartItem.id === undefined -->
 @Html.LabelFor(m => cartItem.Quantity)
 <!-- /ko -->
 <div class="input-group form-group-sm">
 <div class="col-sm-8">
 @Html.TextBoxFor(m => cartItem.Quantity,
 new { data_bind = "textInput: cartItem.quantity",
 @class = "form-control" })
 @Html.ValidationMessageFor(m => cartItem.Quantity, "",
 new { @class = "text-danger" })
 </div>
 </div>
 </div>
 <div class="form-group" data-bind="isDirty: cartItem.quantity">
 <button type="submit" class="btn btn-primary" data-bind="visible: !sending(),
 text: cartItem.id === undefined ? 'Add To Cart' : 'Update'"></button>
 </div>
 </form>

 <div class="progress" data-bind="visible: sending">
 <div class="progress-bar progress-bar-info progress-bar-striped active"
 role="progressbar" aria-valuenow="100"
 aria-valuemin="0" aria-valuemax="100"
 style="width: 100%">

Custom Components and Custom Bindings | 231

 </div>
 </div>
</template>

The view begins by instantiating the CartItemViewModel class. This will be used to
strongly bind the form to it when using the HtmlHelper.

The HTML begins by defining the template tag with the ID that matches the compo‐
nent registration, cart-item-form. Inside the template is the HTML to build the
form. The form is data bound on the submit event to the upsertCartItem function
defined in the ViewModel. Next, if this is being used to add an item to the cart, a
quantity label is created. When this is used on the cart details page, it will be in a table
with a header identifying that the form is for the quantity. Then the textbox is created.
It is data bound to the cartItem quantity property. Instead of using the value data
binding, it is using the textInput data binding. This acts quite similarly to the other
binding, with the exception that Knockout tracks every character change and not just
when the textbox loses focus. This helps provide instant feedback to the isDirty data
binding that will be discussed next.

To complete the form, the submit button is added. It contains a conditional attribute
to display the text “Add to Cart” or “Update” depending on whether the item is being
added or updated. The button is contained within a div that has a custom Knockout
binding called isDirty on it. The isDirty binding extends the visible binding to
hide the button when editing until the quantity has changed.

The view is completed with a progress bar that is displayed when the sending observ‐
able is set to true.

Example 17-8 contains the custom isDirty binding. I’ve placed this in the existing
knockout.custom.js file.

Example 17-8. Updated knockout.custom.js

ko.bindingHandlers.isDirty = {
 init: function (element, valueAccessor, allBindings, viewModel, bindingContext) {
 var originalValue = ko.unwrap(valueAccessor());

 var interceptor = ko.pureComputed(function () {
 return (bindingContext.$data.showButton !== undefined &&
 bindingContext.$data.showButton)
 || originalValue != valueAccessor()();
 });

 ko.applyBindingsToNode(element, {
 visible: interceptor
 });
 }

232 | Chapter 17: Adding Items to the Cart

};

ko.extenders.subTotal = function (target, multiplier) {
 target.subTotal = ko.observable();

 function calculateTotal(newValue) {
 target.subTotal((newValue * multiplier).toFixed(2));
 };

 calculateTotal(target());

 target.subscribe(calculateTotal);

 return target;
};

ko.observableArray.fn.total = function () {
 return ko.pureComputed(function () {
 var runningTotal = 0;

 for (var i = 0; i < this().length; i++) {
 runningTotal += parseFloat(this()[i].quantity.subTotal());
 }

 return runningTotal.toFixed(2);
 }, this);
};

The isDirty binding is added to the ko.bindingHandlers. It contains an init prop‐
erty that is defined as a function. This function accepts five parameters: the element
that is being data bound, the property the binding is attached to, all other bindings on
this element, the ViewModel (this is being deprecated), and the binding context. This
is the new way to access the ViewModel.

Inside the init function, the starting quantity value is stored to a variable. After this,
a pureComputed observable is defined that returns true or false, depending on
whether the button should be shown or hidden. It will return true when the showBut
ton variable is set to true or when the originalValue does not equal the current
value. This observable is then used to tell Knockout that this binding extends the
visible binding.

This same logic could be applied to the visible binding directly; however, creating
the custom binding is much cleaner and reusable.

The CartItemViewModel called a function in the global CartSummaryViewModel.
Example 17-9 contains an updated CartSummaryViewModel with the updateCartItem
function.

Custom Components and Custom Bindings | 233

Example 17-9. Updated CartSummaryViewModel

function CartSummaryViewModel(model) {
 var self = this;

 self.cart = model;

 for (var i = 0; i < self.cart.cartItems.length; i++) {
 var cartItem = self.cart.cartItems[i];
 cartItem.quantity = ko.observable(cartItem.quantity)
 .extend({ subTotal: cartItem.book.salePrice });
 }

 self.cart.cartItems = ko.observableArray(self.cart.cartItems);

 self.cart.total = self.cart.cartItems.total();

 self.updateCartItem = function (cartItem) {
 var isNewItem = true;

 for (var i = 0; i < self.cart.cartItems().length; i++) {
 if (self.cart.cartItems()[i].id == cartItem.id) {
 self.cart.cartItems()[i].quantity(cartItem.quantity);
 isNewItem = false;
 break;
 }
 }

 if (isNewItem) {
 cartItem.quantity = ko.observable(cartItem.quantity)
 .extend({ subTotal: cartItem.book.salePrice });
 self.cart.cartItems.push(cartItem);
 }
 };

 self.showCart = function () {
 $('#cart').popover('toggle');
 };

 self.fadeIn = function (element) {
 setTimeout(function () {
 $('#cart').popover('show');

 $(element).slideDown(function () {
 setTimeout(function () {
 $('#cart').popover('hide');
 }, 2000);
 });
 }, 100);
 };

 $('#cart').popover({

234 | Chapter 17: Adding Items to the Cart

 html: true,
 content: function () {
 return $('#cart-summary').html();
 },
 title: 'Cart Details',
 placement: 'bottom',
 animation: true,
 trigger: 'manual'
 });
};

if (cartSummaryData !== undefined) {
 var cartSummaryViewModel = new CartSummaryViewModel(cartSummaryData);
 ko.applyBindings(cartSummaryViewModel, document.getElementById("cart-details"));
} else {
 $('.body-content').prepend('<div class="alert alert-danger">
 Error! Could not find cart summary.</div>');
}

This function accepts the newly added or edited cartItem as input. The existing
cartItems array is looped through to see if the same item was added again. If it was,
quantity is updated to the quantity in the updated cartItem. If it doesn’t already
exist, the item is added to the end of the cartItems array. This will trigger the previ‐
ously defined fadeIn function.

This completes the custom Knockout component and data binding. The next section
will finish the add-to-cart process by defining the CartItemsController.

Saving the Cart Item
Because the add-to-cart is accomplished via AJAX, the saving will leverage a WebAPI
controller to accept and return JSON data instead of full HTML forms and views. To
begin, create an Api folder inside the Controllers folder and add a new WebAPI con‐
troller called CartItemsController to it (as shown in Example 17-10).

Example 17-10. CartItemsController

using ShoppingCart.Models;
using ShoppingCart.Services;
using ShoppingCart.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;

namespace ShoppingCart.Controllers.Api
{

Saving the Cart Item | 235

 public class CartItemsController : ApiController
 {
 private readonly CartItemService _cartItemService = new CartItemService();

 public CartItemsController()
 {
 AutoMapper.Mapper.CreateMap<Cart, CartViewModel>();
 AutoMapper.Mapper.CreateMap<CartItem, CartItemViewModel>();
 AutoMapper.Mapper.CreateMap<Book, BookViewModel>();

 AutoMapper.Mapper.CreateMap<CartItemViewModel, CartItem>();
 AutoMapper.Mapper.CreateMap<BookViewModel, Book>();
 AutoMapper.Mapper.CreateMap<AuthorViewModel, Author>();
 AutoMapper.Mapper.CreateMap<CategoryViewModel, Category>();
 }

 public CartItemViewModel Post(CartItemViewModel cartItem)
 {
 var newCartItem = _cartItemService.AddToCart(
 AutoMapper.Mapper.Map<CartItemViewModel, CartItem>(cartItem));

 return AutoMapper.Mapper.Map<CartItem, CartItemViewModel>(newCartItem);
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 _cartItemService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

Unlike the previous controllers, because this is a WebAPI controller, it extends the
ApiController instead of the Controller. Otherwise, this controller follows the
same pattern. It creates a CartItemService and disposes of it when the request is fin‐
ished.

Previously, the other controllers have contained Automapper definitions from the
Model to the ViewModel. This controller also contains definitions from the ViewMo‐
del to the Model because it does two-way mapping: once on the input and again on
the output.

The Post method calls the AddToCart function in the CartService and then returns
the newCartItem (after it is mapped from a Model to a ViewModel). The Put and
Delete methods will be created in the next chapter when the cart details can be
edited.

236 | Chapter 17: Adding Items to the Cart

The CartItemService should be added as a class to the Services folder. It is defined in
Example 17-11.

Example 17-11. CartItemService

using ShoppingCart.DAL;
using ShoppingCart.Models;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;

namespace ShoppingCart.Services
{
 public class CartItemService : IDisposable
 {
 private ShoppingCartContext _db = new ShoppingCartContext();

 public CartItem GetByCartIdAndBookId(int cartId, int bookId)
 {
 return _db.CartItems.SingleOrDefault(ci => ci.CartId == cartId &&
 ci.BookId == bookId);
 }

 public CartItem AddToCart(CartItem cartItem)
 {
 var existingCartItem = GetByCartIdAndBookId(cartItem.CartId, cartItem.BookId);

 if (null == existingCartItem)
 {
 _db.Entry(cartItem).State = EntityState.Added;
 existingCartItem = cartItem;
 }
 else
 {
 existingCartItem.Quantity += cartItem.Quantity;
 }

 _db.SaveChanges();

 return existingCartItem;
 }

 public void Dispose()
 {
 _db.Dispose();
 }
 }
}

Saving the Cart Item | 237

Like all other services, the CartItemService implements the IDisposable interface
to properly dispose of the ShoppingCartContext that is created as a private variable.

The GetByCartIdAndBookId function accepts the cartId and bookId as parameters.
The CartItems DbSet is then searched for a matching CartItem. This function is used
by the AddToCart function to determine if the book being added already exists in the
user’s cart.

The AddToCart function calls GetByCartIdAndBookId. If there is no existing cart
item, it is added to the CartItems DbSet, and the previously unset existingCartItem
variable is set to the cartItem parameter because it will be used as the return value of
the function. When there is an existing cart item, the quantity of that object is
increased with the new quantity specified. After this, the changes are persisted to the
database, and the existingCartItem is returned.

A book can now be successfully added to a user’s shopping cart. The next chapter will
both leverage and extend upon this code to allow users to edit or delete items in their
cart.

Summary
The shopping cart is really taking shape now. This chapter extended Knockout with
custom components and data bindings to create reusable functionality that will be
leveraged in the next chapter to complete the shopping cart.

238 | Chapter 17: Adding Items to the Cart

CHAPTER 18

Updating and Deleting Cart Items

To complete a usable shopping cart experience, this chapter will extend upon the pre‐
vious examples to add functionality that will allow the user to increase the quantity of
an item purchased or to remove the item completely.

The Cart Details
When the cart summary was created, a link was added to view the full details. That
link defined the action as the Index of the CartsController. Example 18-1 updates
the CartsController to add the new Index method.

Example 18-1. Updated CartsController

using ShoppingCart.Models;
using ShoppingCart.Services;
using ShoppingCart.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Web;
using System.Web.Mvc;

namespace ShoppingCart.Controllers
{
 public class CartsController : Controller
 {
 private readonly CartService _cartService = new CartService();

 public CartsController()
 {
 AutoMapper.Mapper.CreateMap<Cart, CartViewModel>();
 AutoMapper.Mapper.CreateMap<CartItem, CartItemViewModel>();

239

 AutoMapper.Mapper.CreateMap<Book, BookViewModel>();
 AutoMapper.Mapper.CreateMap<Author, AuthorViewModel>();
 AutoMapper.Mapper.CreateMap<Category, CategoryViewModel>();
 }

 // GET: Carts
 public ActionResult Index()
 {
 var cart = _cartService.GetBySessionId(HttpContext.Session.SessionID);

 return View(
 AutoMapper.Mapper.Map<Cart, CartViewModel>(cart)
);
 }

 [ChildActionOnly]
 public PartialViewResult Summary()
 {
 var cart = _cartService.GetBySessionId(HttpContext.Session.SessionID);

 return PartialView(
 AutoMapper.Mapper.Map<Cart, CartViewModel>(cart)
);
 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 _cartService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

The Index function is nearly identical to the previously created Summary with two key
differences. First, it’s not attributed with ChildActionOnly, and second, it returns a
regular view and not a partial one. Otherwise, they use the same CartService func‐
tion and automap to the same CartViewModel.

Unlike previous controller updates, no service updates are required because it is using
an existing function. The Index view can now be created inside the Views/Carts
folder. It should not be a partial view. Example 18-2 contains the new view.

Example 18-2. Views/Carts/Index.cshtml

@model ShoppingCart.ViewModels.CartViewModel
@{
 ViewBag.Title = "Cart Details";

240 | Chapter 18: Updating and Deleting Cart Items

}

<h2>Cart Details</h2>

<div id="cartDetails">
 <table class="table table-bordered table-hover table-striped"
 style="display:none" data-bind="visible:cart.cartItems().length > 0">
 <tr>
 <th>Book</th>
 <th>Unit Price</th>
 <th>Quantity</th>
 <th>Price</th>
 <th> </th>
 </tr>
 <!-- ko foreach: { data: cart.cartItems, beforeRemove: fadeOut } -->
 <tr>
 <td>
 <a href="@Url.Action("Details", "Books")"
 data-bind="appendToHref: book.id, text: book.title">
 </td>
 <td data-bind="text: '$' + book.salePrice"></td>
 <td>
 <upsert-cart-item params="cartItem: $data, showButton: false">
 </upsert-cart-item>
 </td>
 <td data-bind="text: '$' + quantity.subTotal()"></td>
 <td>
 <button type="button" class="btn btn-danger"
 data-bind="click: $parent.deleteCartItem, visible:
 !$parent.sending()">
 </button>
 </td>
 </tr>
 <!-- /ko -->
 </table>

 <div class="progress" data-bind="visible: sending">
 <div class="progress-bar progress-bar-info progress-bar-striped active"
 role="progressbar" aria-valuenow="100"
 aria-valuemin="0" aria-valuemax="100"
 style="width: 100%">

 </div>
 </div>

 <div class="alert alert-warning" style="display: none"
 data-bind="visible: cart.cartItems().length == 0">
 Your cart is currently empty.
Continue shopping.
 </div>

 <h3>Total: $</h3>

The Cart Details | 241

</div>

@Html.Partial("_CartItemForm")

@section Scripts {
 @Scripts.Render("~/Scripts/ViewModels/CartDetailViewModel.js",
 "~/Scripts/ViewModels/CartItemViewModel.js")

 <script>
 var model = @Html.HtmlConvertToJson(Model);

 var cartDetailViewModel = new CartDetailViewModel(model);
 ko.applyBindings(cartDetailViewModel, document.getElementById("cartDetails"));
 </script>
}

Like the cart summary view, this view is also data bound to the CartViewModel. The
HTML begins by defining a div tag with the id of cartDetails. The Knockout bind‐
ings will be applied to this div. Inside this div, a table is defined that will show each
cart item. The table contains a visible data binding that will hide the table when
there are no items left in the cartItems array.

When the book index page was created, hiding the table was accomplished via a
Razor if statement. Knockout is being used here because the user can dynamically
delete row elements. After the table, there is an info div that contains a similar visi
ble binding, but will only display when there are no items in the cart.

A foreach Knockout binding is created that will loop through the cartItems array.
A beforeRemove callback function is defined that will call the fadeOut function from
the ViewModel. This callback will do the opposite of the callback that was added in
the cart summary to fade in elements when they are added.

Inside the foreach, an HTML link is defined that will take the user to the book details
page. Previously, when a similar link to this was created, the foreach was being done
by Razor providing server-side access to the ID to build the URL. Because this link
will be created inside a Knockout foreach, the ID needs to be dynamically appended
to the end of the Book/Details URL. This is a very common behavior when building
an index page, so because of this I’ve created another custom binding called append
ToHref that accepts a property to append to the URL defined.

The next column contains the unit price of the book and is data bound with the text
binding. The column after this reuses the previously created upsert-cart-item cus‐
tom component, passing in the current cartItem being looped using the $data prop‐
erty of the foreach context. This time, the showButton is set to false because I only
want the Update button to show when the quantity is changed.

242 | Chapter 18: Updating and Deleting Cart Items

The subTotal is data bound in the next column. This column will dynamically recal‐
culate when the quantity is changed. The final column contains a delete button. It is
using the click data binding and will call the deleteCartItem function. It is prefixed
with the $parent context because when inside a foreach binding, the current context
is the item being looped. Using $parent will go to the first level outside of this where
the function resides in the ViewModel.

After the foreach loop ends, the table is closed. Outside of the table is a progress bar
that will be displayed when the delete button is clicked, providing feedback to the
user that something is happening.

The carts total is bound to a header tag using the text binding. This value will also be
dynamically recalculated when either the quantity changes or an item is removed
from the cartItems array.

The shared _CartItemForm is included next that contains the previously created
template for the custom component. And finally, the JavaScript includes the yet-to-
be-created CartDetailViewModel, as well as the CartItemViewModel for the custom
component. The model is then serialized, the CartDetailViewModel is created, and
the Knockout bindings are applied. The CartDetailViewModel will be created in the
next section. Figure 18-1 contains an example of the fully functional cart details page.

Figure 18-1. Cart summary

Knockout for the Cart Details
The previous section introduced a new custom data binding called appendToHref.
This has been added to the existing knockout.custom.js file and is shown in Example
18-3.

Example 18-3. Updated knockout.custom.js

ko.bindingHandlers.appendToHref = {
 init: function (element, valueAccessor) {
 var currentHref = $(element).attr('href');

Knockout for the Cart Details | 243

 $(element).attr('href', currentHref + '/' + valueAccessor());
 }
}

ko.bindingHandlers.isDirty = {
 init: function (element, valueAccessor, allBindings, viewModel, bindingContext) {
 var originalValue = ko.unwrap(valueAccessor());

 var interceptor = ko.pureComputed(function () {
 return (bindingContext.$data.showButton !== undefined &&
 bindingContext.$data.showButton)
 || originalValue != valueAccessor()();
 });

 ko.applyBindingsToNode(element, {
 visible: interceptor
 });
 }
};

ko.extenders.subTotal = function (target, multiplier) {
 target.subTotal = ko.observable();

 function calculateTotal(newValue) {
 target.subTotal((newValue * multiplier).toFixed(2));
 };

 calculateTotal(target());

 target.subscribe(calculateTotal);

 return target;
};

ko.observableArray.fn.total = function () {
 return ko.pureComputed(function () {
 var runningTotal = 0;

 for (var i = 0; i < this().length; i++) {
 runningTotal += parseFloat(this()[i].quantity.subTotal());
 }

 return runningTotal.toFixed(2);
 }, this);
};

Just like the isDirty custom binding, the appendToHref is added to the ko.binding
Handlers. This time when the init function is defined, it only accepts the first two
parameters: the element and the valueAccessor. Because the other parameters are
not needed in this binding, I have omitted them.

244 | Chapter 18: Updating and Deleting Cart Items

Using jQuery, the current value of the element’s href attribute is stored in a local vari‐
able. This value is used to update the element’s href by appending the value added in
the data binding.

To complete the client-side portion of the cart detail functionality, the CartDetail
ViewModel needs to be created inside the Scripts/ViewsModels folder as shown in
Example 18-4.

Example 18-4. CartDetailViewModel

function CartDetailViewModel(model) {
 var self = this;

 self.sending = ko.observable(false);

 self.cart = model;

 for (var i = 0; i < self.cart.cartItems.length; i++) {
 self.cart.cartItems[i].quantity = ko.observable(self.cart.cartItems[i].quantity)
 .extend({ subTotal: self.cart.cartItems[i].book.salePrice });
 }

 self.cart.cartItems = ko.observableArray(self.cart.cartItems);

 self.cart.total = self.cart.cartItems.total();

 self.cartItemBeingChanged = null;

 self.deleteCartItem = function (cartItem) {
 self.sending(true);

 self.cartItemBeingChanged = cartItem;

 $.ajax({
 url: '/api/cartitems',
 type: 'delete',
 contentType: 'application/json',
 data: ko.toJSON(cartItem)
 })
 .success(self.successfulDelete)
 .error(self.errorSave)
 .complete(function () { self.sending(false) });
 };

 self.successfulDelete = function (data) {
 $('.body-content').prepend('<div class="alert alert-success">
 Success! The item has been deleted from your cart.</div>');

 self.cart.cartItems.remove(self.cartItemBeingChanged);

 cartSummaryViewModel.deleteCartItem(ko.toJS(self.cartItemBeingChanged));

Knockout for the Cart Details | 245

 self.cartItemBeingChanged = null;
 };

 self.errorSave = function () {
 $('.body-content').prepend('<div class="alert alert-danger">
 Error! There was an error updating the item to your cart.</div>');
 };

 self.fadeOut = function (element) {
 $(element).fadeOut(1000, function () {
 $(element).remove();
 });
 };
};

The start of the ViewModel looks quite similar to the CartSummaryViewModel. The
cartItems are looped through, and the quantity is converted to an observable prop‐
erty and extended to use the previously created subTotal extension. The cartItems
array is then converted into an observable array, and the cart total is stored in a vari‐
able leveraging the custom total function for observable arrays.

A nullable cartItemBeingChanged variable is defined. This variable is set inside the
deleteCartItem function and will be used upon successful deletion to remove the
element from the cartItems array. More on this in a moment.

The deleteCartItem is defined next. It works the same as previously defined AJAX
requests. It marks the sending observable as true to display the progress bar and hide
the delete buttons from being clicked multiple times. The AJAX request is then
defined next. It goes to the same api/cartitems as the add and update requests went
before; however, this time the request type is defined as delete. On successful save,
the function successfulDelete will be called. If an error occurs, the errorSave func‐
tion is called. In all scenarios, the complete function is defined to set the sending
observable back to false, hiding the progress bar.

The successfulDelete function adds a success alert on the page, informing the user
that the item has been removed from the cart. The previously set cartItemBeing
Changed variable is used to remove the element from the array. This works because
Knockout is able to remove the reference from the array. This way may seem “hacky,”
but I prefer it to the alternative approach that would require looping through the car
tItems array, finding a match based on the cartItem ID, and then calling the remove
function on that item.

This function also calls a deleteCartItem function in the global CartSummaryViewMo
del (shown in Example 18-5).

246 | Chapter 18: Updating and Deleting Cart Items

The errorSave function adds an error alert message to inform the user the item was
not removed from the cart.

The final function, fadeOut, is called by Knockout before an element is removed
from the cartItems array. This function uses the element and applies the jQuery UI
fadeout function over a period of one second. When the jQuery fade completes, the
element is removed from the HTML.

Example 18-5 updates the existing CartSummaryViewModel to add the deleteCartI
tem function.

Example 18-5. Updated CartSummaryViewModel

function CartSummaryViewModel(model) {
 var self = this;

 self.cart = model;

 for (var i = 0; i < self.cart.cartItems.length; i++) {
 var cartItem = self.cart.cartItems[i];
 cartItem.quantity = ko.observable(cartItem.quantity)
 .extend({ subTotal: cartItem.book.salePrice });
 }

 self.cart.cartItems = ko.observableArray(self.cart.cartItems);

 self.cart.total = self.cart.cartItems.total();

 self.updateCartItem = function (cartItem) {
 var isNewItem = true;

 for (var i = 0; i < self.cart.cartItems().length; i++) {
 if (self.cart.cartItems()[i].id == cartItem.id) {
 self.cart.cartItems()[i].quantity(cartItem.quantity);
 isNewItem = false;
 break;
 }
 }

 if (isNewItem) {
 cartItem.quantity = ko.observable(cartItem.quantity)
 .extend({ subTotal: cartItem.book.salePrice });
 self.cart.cartItems.push(cartItem);
 }
 };

 self.deleteCartItem = function (cartItem) {
 for (var i = 0; i < self.cart.cartItems().length; i++) {
 if (self.cart.cartItems()[i].id == cartItem.id) {
 self.cart.cartItems.remove(self.cart.cartItems()[i]);

Knockout for the Cart Details | 247

 break;
 }
 }
 };

 self.showCart = function () {
 $('#cart').popover('toggle');
 };

 self.fadeIn = function (element) {
 setTimeout(function () {
 $('#cart').popover('show');

 $(element).slideDown(function () {
 setTimeout(function () {
 $('#cart').popover('hide');
 }, 2000);
 });
 }, 100);
 };

 $('#cart').popover({
 html: true,
 content: function () {
 return $('#cart-summary').html();
 },
 title: 'Cart Details',
 placement: 'bottom',
 animation: true,
 trigger: 'manual'
 });
};

if (cartSummaryData !== undefined) {
 var cartSummaryViewModel = new CartSummaryViewModel(cartSummaryData);
 ko.applyBindings(cartSummaryViewModel, document.getElementById("cart-details"));
} else {
 $('.body-content').prepend('<div class="alert alert-danger">
 Error! Could not find cart summary.</div>');
}

As you can see, this function uses my alternative suggestion and loops through the
cartItems array matching on the item’s ID. When a match is found, the item is
removed from the observable array, and the loop is exited.

Removing the cart item will cause the cart total to be recalculated.

Completing the Shopping Cart
The shopping cart is almost completed. The final changes are needed in the Web API
CartItemsController. Example 18-6 contains an updated CartItemsController.

248 | Chapter 18: Updating and Deleting Cart Items

Example 18-6. Updated CartItemsController

using ShoppingCart.Models;
using ShoppingCart.Services;
using ShoppingCart.ViewModels;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Net;
using System.Net.Http;
using System.Web.Http;

namespace ShoppingCart.Controllers.Api
{
 public class CartItemsController : ApiController
 {
 private readonly CartItemService _cartItemService = new CartItemService();

 public CartItemsController()
 {
 AutoMapper.Mapper.CreateMap<Cart, CartViewModel>();
 AutoMapper.Mapper.CreateMap<CartItem, CartItemViewModel>();
 AutoMapper.Mapper.CreateMap<Book, BookViewModel>();

 AutoMapper.Mapper.CreateMap<CartItemViewModel, CartItem>();
 AutoMapper.Mapper.CreateMap<BookViewModel, Book>();
 AutoMapper.Mapper.CreateMap<AuthorViewModel, Author>();
 AutoMapper.Mapper.CreateMap<CategoryViewModel, Category>();
 }

 public CartItemViewModel Post(CartItemViewModel cartItem)
 {
 var newCartItem = _cartItemService.AddToCart(
 AutoMapper.Mapper.Map<CartItemViewModel, CartItem>(cartItem));

 return AutoMapper.Mapper.Map<CartItem, CartItemViewModel>(newCartItem);
 }

 public CartItemViewModel Put(CartItemViewModel cartItem)
 {
 _cartItemService.UpdateCartItem(
 AutoMapper.Mapper.Map<CartItemViewModel, CartItem>(cartItem));

 return cartItem;
 }

 public CartItemViewModel Delete(CartItemViewModel cartItem)
 {
 _cartItemService.DeleteCartItem(
 AutoMapper.Mapper.Map<CartItemViewModel, CartItem>(cartItem));

 return cartItem;

Completing the Shopping Cart | 249

 }

 protected override void Dispose(bool disposing)
 {
 if (disposing)
 {
 _cartItemService.Dispose();
 }
 base.Dispose(disposing);
 }
 }
}

Two new functions were added: Put and Delete. The Put function is called when the
update button is clicked and accepts the CartItemViewModel being updated. This
function maps the ViewModel to the CartItemModel and calls the UpdateCartItem
method in the CartItemService.

The Delete function works the same way with the exception that it calls the Delete
CartItem method in the CartService. Both functions return the CartItemViewModel
back. It doesn’t need to be mapped back because it remains unchanged.

The final changes need to be made to the existing CartItemService as shown in
Example 18-7.

Example 18-7. Updated CartItemService

using ShoppingCart.DAL;
using ShoppingCart.Models;
using System;
using System.Collections.Generic;
using System.Data.Entity;
using System.Linq;

namespace ShoppingCart.Services
{
 public class CartItemService : IDisposable
 {
 private ShoppingCartContext _db = new ShoppingCartContext();

 public CartItem GetByCartIdAndBookId(int cartId, int bookId)
 {
 return _db.CartItems.SingleOrDefault(ci => ci.CartId == cartId &&
 ci.BookId == bookId);
 }

 public CartItem AddToCart(CartItem cartItem)
 {
 var existingCartItem = GetByCartIdAndBookId(cartItem.CartId, cartItem.BookId);

250 | Chapter 18: Updating and Deleting Cart Items

 if (null == existingCartItem)
 {
 _db.Entry(cartItem).State = EntityState.Added;
 existingCartItem = cartItem;
 }
 else
 {
 existingCartItem.Quantity += cartItem.Quantity;
 }

 _db.SaveChanges();

 return existingCartItem;
 }

 public void UpdateCartItem(CartItem cartItem)
 {
 _db.Entry(cartItem).State = EntityState.Modified;
 _db.SaveChanges();
 }

 public void DeleteCartItem(CartItem cartItem)
 {
 _db.Entry(cartItem).State = EntityState.Deleted;
 _db.SaveChanges();
 }

 public void Dispose()
 {
 _db.Dispose();
 }
 }
}

The two functions, UpdateCartItem and DeleteCartItem, are nearly identical. One
marks the item as updated in the ShoppingCartContext while the other marks it as
deleted. SaveChanges is then called to commit the changes to the database.

Summary
The shopping cart is now fully functional. Users can browse the catalog of books, and
when they find one they like, they can add it to the shopping cart. The cart summary
is animated into view, providing the user with feedback on the newly added item.

Clicking the shopping cart item displays the summary of items in their cart with a
total and a button to view the full details. Clicking the full details will direct the users
to a new page that contains a table of the items in their cart. The item’s quantity can
be changed or removed completely from the cart. In either case, the totals are auto‐
matically recalculated by leveraging Knockout observables.

Summary | 251

The shopping cart used a lot of the great features of Knockout—reusable custom
components, bindings, functions, and extensions—to build a nice user interface.

This book has attempted to demonstrate a variety of the features of the three technol‐
ogies used—ASP.NET MVC 5, Bootstrap, and Knockout.js—both together and sepa‐
rately. I’ve attempted to pass on best practices and my personal experiences having
used these three technologies every day for nearly two years.

Mixing three technologies can be a big balancing act. The biggest takeaway I’ve
learned is to constantly analyze what you are trying to accomplish and pick the right
mix of the technologies being used. This is important, because it can be easy to use
Knockout for every page in the website. But as I’ve demonstrated, I use it sparingly
where dynamic interaction is required. Picking the right technology for the job will
provide a much better user experience than blindly picking one and sticking with it.

When it comes to using client-side libraries like Knockout, there is a lot of rave over
single-page web applications. I think they look and act quite nice; however, I don’t
think it is the be-all and end-all of web design either. In certain situations, they make
sense, and in others, they don’t. If the website contains a single focus, single-page
designs are great; why direct the user away when the UI can be updated dynamically?
When the context of the pages change, though, I think it makes more sense to avoid
the single-page design. Using the shopping cart as an example, the book details page
and the cart details page contain similar functionality; however, what the user is
attempting to accomplish is quite different. Just like picking the right technology,
picking the right design is equally important.

I hope you have enjoyed this book as much as I enjoyed writing it. You can find me
online through my blog End Your If and on Twitter, where I would be happy to
answer questions about the book.

252 | Chapter 18: Updating and Deleting Cart Items

http://www.endyourif.com
https://twitter.com/endyourif

Index

A
Action filters, 120, 122
add-to-cart form, 227
AJAX, 70, 85, 99, 105, 111, 112, 246
alert messages, 19
ASP.NET MVC 5 (see MVC 5; MVC frame‐

work)
attribute routing, 153-162

nonpluralized URL, 157
overview, 153
route prefixes, 157-158
routing constraints, 158-162

Authentication filters, 119
implementing, 139-148
overview, 137-138

Authorization filters, 120
implementing, 148-152
overview, 138-139

Automapper, 94-95, 97
Automapping, 125-129, 173, 224

B
Basic Access Authentication, 137

(see also Authentication filters)
behaviors, 165, 167-175
Bootstrap, 11-20, 180

alerts, 19
buttons, 17-19
collapse button, 13
data-target attribute, 13-14
data-toggle attribute, 13
default menu, 11-14
jumbotron feature, 214

menu with drop-downs and search box,
14-17

navigation elements, 12
pagination in, 61-66
pill menu, 14
responsive web layout, 12
themes, 20
updating, 67

bundling, 181-182
buttons, 17-19

C
Code-First workflow, 32, 33-37, 185-188
controllers

converting Models to ViewModels, 92
fat model, skinny controller, 163-175

(see also MVC framework)
roles of, 164

CRUD (Create-Read-Update-Delete) function‐
ality, 47

custom functions, 206

D
data bindings, 52-54

attr , 71, 82
click, 83-85, 107, 243
css, 21, 24, 28, 108
custom , 228-235
foreach, 52-53, 84, 202, 210, 242
submit, 71, 87
text , 21-29
textinput, 232

data model building, 185-195
Code-First models, 185-188

253

defining datasets, 188-189
initializing data, 189-192
ViewModels, 192-195

database initializers, 44, 189-192
Database-First workflow, 32, 37-41
databases, 31-44

choosing, 31
creation, 37-39

default routes, 8, 153
delete functionality, and modal windows, 83-87
dispose, 173
drop-down menus, 14-17

E
EDMX file, 39
Entity Framework (EF), 31-44, 166, 185

Code-First workflow, 32, 33-37
connection strings, 36-37
conventions, 36
creating test data, 41-44
database initializers, 44
Database-First workflow, 32, 37-41
EDMX file creation, 39
EF context, 35
installing, 33
Model-First workflow, 32
string fields, 188
tables creation, 38
workflow options, 32

error handling
MVC framework, 132-135
Web APIs, 129-132

Exception filters, 120, 129-132

F
fat model, 163-175
Fiddler, 123
filtered lists, 218-221
filters (see global filters)
forms , 67-90

delete functionality, 83-87
empty tables in, 88-90
integrating in Knockout, 67-75
in server-side ViewModels, 95-97
sharing the view and ViewModel, 75-83
updating in Web API, 112-115

G
global filters, 119-135, 137-152

Action filters, 120, 122
Authentication filters, 119, 137-138,

139-148
Authorization filters, 120, 138-139, 148-152
Exception filters, 120, 129-132
Result filters, 120, 125-129
Web APIs, 121-125

H
HTTP Status Codes, 115

I
IDisposable interface, 216, 238
Index view, 240

J
JavaScript, 26-27

bundling and minification, 181-182
global variables, 203

jQuery, 68-69, 180-182
JSON, 115
jumbotron, 214

K
Knockout.js, 21-29, 180

adding items to shopping cart, 223-238
create view, 71
custom components, 228-235
data bindings (see data bindings)
execution steps, 24, 28
functions, 70
installing, 21-23
integrating with a form, 67-75
observable variables, 70, 73
self=this, 28
single-page design, 252
UI updating, 104-112
updating and deleting shopping cart items,

242-250
ViewModels and, 25-29

L
layout, implementing, 197-211

cart summary, 198-207
categories menu, 207-210

254 | Index

shared layout, 197-199
lazy loading, 35
LINQ, 32, 55
lists of items, 51-54, 213-221

M
modal windows, 83-87
model creation, 33-44

(see also Entity Framework (EF))
Model-First workflow, 32
Model-View-Controller (see MVC; MVC

framework)
Model-View-ViewModel pattern (MVVM), 21,

25-26
MVC 5, 1, 119, 137, 153, 158, 180
MVC framework, 1-9

actions, 5
add controller, 47
authentication options, 2
behaviors layer, 165, 167-175
controllers layer, 164
default website, 4
error handling, 132-135
fat model, skinny controller, 163-175
folders, 3
orchestrations layer, 165
repository layer, 165
scaffolding, 47-54
separation of concerns, 163-175
services layer, 164, 167-175
sorting in, 55-61
Unit of Work pattern, 166-167
URL routing, 8, 153-162

(see also attribute routing)
using templates, 1-9
validation, 68-69
ViewBag property, 5
Views, 6-8
Views folder, 3

MVC template, 1

N
namespaces, 92
NuGet Package Manager, 21-23, 33, 55, 67

O
object-oriented programming (OOP), 27
observable variables, 70, 73, 81

orchestrations, 165
ORMs (Object-Relational-Mapper), 31-33

(see also Entity Framework (EF))

P
paging, 61
partial views, 202, 209, 216

R
Razor, 6-7, 23, 24, 210
repositories, 165
responsive web layout, 12
REST APIs, 1, 123
Result filters, 120, 125-129
routing (see URL routing; attribute routing)

S
scaffolding, 47-54, 198
@section scripts, 24
server-side ViewModels, 91-98

delete modal updating, 97-98
lists updating, 94-95
reasons for creating, 91
updating add/edit form, 95-97

services, 164, 167-175
shared layout, 197-199
shopping cart

add-to-cart form, 227
adding items to, 223-238
building the data model (see data model

building)
cart summary, 198-207
categories menu, 207-210
implementing layout, 197-211
initial setup, 179-183
pages and layout, 179-180
project requirements, 180
saving items, 235-238
shared layout, 197-199
updating and deleting items, 239-251

single-page web design, 252
skinny controller, 163-175
sorting, 55-61
SQL, 31, 32

T
tables, empty, 88-90
test data , 41-44

Index | 255

themes, 20
ToList, 52

U
Unit of Work pattern, 166-167
URL routing

with attributes, 153-162
default routes, 8, 153
for static pages, 154
nonpluralized URL, 157

V
validation, 68-69, 121-125
ViewModels, 23-24, 25, 164, 192-195

client-side versus server-side, 91
for custom components, 228-235
definition, 92

management of, 69-70
partial views, 202
server-side, 91-98

(see also server-side ViewModels)
sharing, 75-83

views, sharing, 75-83
virtual properties, 35

W
Web API, 99-116

controller differences from MVC, 102-103
error handling, 129-132
global validation, 121-125
HTTP Status Codes, 115
installing, 99-101
templates, 1

256 | Index

About the Author
Jamie Munro is the author of Knockout.js: Building Dynamic Client-Side Web Applica‐
tions, 20 Recipes for Programming MVC 3, and 20 Recipes for Programming PhoneGap.
He has been developing websites and web applications for over 15 years. For the past
eight years, Jamie has been acting as a lead developer by mentoring younger develop‐
ers to enhance their skills.

Using his love of mentoring people, Jamie began his writing career on his personal
blog back in 2009. As the success of Jamie’s blog grew, he turned his writing passion
to books about web development in hopes that his many years of experience could be
passed on to his readers.

Colophon
The animal on the cover of ASP.NET MVC 5 with Bootstrap and Knockout.js is a
checkerboard wrasse (Halichoeres hortulanus). This common fish can be found any‐
where from the Red Sea to the Great Barrier Reef, and also goes by marbled or Hortu‐
lanus wrasse.

Both sexes of this species sport the distinctive checkerboard pattern from which it
gets its name, but only the males have a bright yellow dorsal stripe as well. Juveniles
are black and white, but they gradually change color and develop the pattern as they
grow.

The checkerboard wrasse prefers to live in lagoons and near seaward reefs at depths
from one to 30 meters. They mostly eat mollusks, crustaceans, and sea urchins, and
males tend to be very territorial about their habitats.

Due to its bright pattern, medium size (anywhere between one and five inches), var‐
ied diet, and easy availability, the checkerboard wrasse is popular in home aquariums.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The cover image is from Wood’s Natural History. The cover fonts are URW Type‐
writer and Guardian Sans. The text font is Adobe Minion Pro; the heading font is
Adobe Myriad Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Preface
	
	Why These Technologies?
	What Is a Web Developer?
	Who Is This Book For?
	Getting Started
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgements

	Part I. Getting Started
	Chapter 1. Introduction to MVC
	Creating Your First Project
	Examining the HomeController
	Examining the Views
	Understanding the URL Structure
	Summary

	Chapter 2. Introduction to Bootstrap
	Examining the Default Menu
	A Menu with Drop-Downs and a Search Box
	Buttons
	Alerts
	Themes
	Summary

	Chapter 3. Introduction to Knockout.js
	Installing Knockout.js
	A Basic Example
	What Is MVVM?
	Creating ViewModels
	Summary

	Chapter 4. Working with a Database
	Introduction to Entity Framework
	Code First
	Database First
	Creating Test Data
	Summary

	Part II. Working with Data
	Chapter 5. Listing, Sorting, and Paging Through Tables
	Scaffolding the Author Model
	Sorting the Authors
	Paging the Authors
	Summary

	Chapter 6. Working with Forms
	Integrating Knockout with a Form
	Sharing the View and ViewModel
	Deleting with a Modal
	Empty Table Listings
	Summary

	Chapter 7. Server-Side ViewModels
	Why Create Server-Side ViewModels?
	The Authors ViewModel
	Updating the Authors Listing
	Updating the Add/Edit Form
	Updating the Delete Modal
	Summary

	Chapter 8. Introduction to Web API
	Installing Web API
	Updating the List of Authors
	Updating the Add/Edit Authors Form
	Summary

	Part III. Code Architecture
	Chapter 9. Creating Global Filters
	Authentication Filters
	Authorization Filters
	Action Filters
	Result Filters
	Exception Filters
	Global Web API Validation
	Automapping with a Result Filter
	Web API Error Handling
	MVC Error Handling
	Summary

	Chapter 10. Adding Authentication and Authorization
	Authentication Overview
	Authorization Overview
	Implementing an Authentication Filter
	Implementing an Authorization Filter
	Summary

	Chapter 11. URL Routing Using Attributes
	Attribute Routing Basics
	Route Prefixes
	Routing Constraints
	Summary

	Chapter 12. Fat Model, Skinny Controller
	Separation of Concerns
	Controllers
	Services
	Behaviors
	Repositories
	Orchestrations
	Unit of Work

	Services and Behaviors
	Summary

	Part IV. A Practical Example
	Chapter 13. Building a Shopping Cart
	Shopping Cart Requirements
	The Shopping Cart Project
	JavaScript Bundling and Minification
	Summary

	Chapter 14. Building the Data Model
	Code-First Models
	Defining the DbContext and Initializing Data
	The ViewModels
	Summary

	Chapter 15. Implementing the Layout
	The Shared Layout
	The Cart Summary
	The Categories Menu
	Summary

	Chapter 16. Lists of Books
	The Home Page
	The Featured Books
	Filtered Books by Category
	Summary

	Chapter 17. Adding Items to the Cart
	The Book Details
	Custom Components and Custom Bindings
	Saving the Cart Item
	Summary

	Chapter 18. Updating and Deleting Cart Items
	The Cart Details
	Knockout for the Cart Details
	Completing the Shopping Cart
	Summary

	Index
	About the Author

