
 

 

 

 

 

 

 

 

 

 

 

 

 



Bootstrap 4 

Get started with Bootstrap, the world’s most popular framework for building responsive, mobile-

first sites, with BootstrapCDN and a template starter page. 

Quick start 

Looking to quickly add Bootstrap to your project? Use BootstrapCDN, provided for free by the folks 

at StackPath. Using a package manager or need to download the source files?   

CSS 

Copy-paste the stylesheet <link> into your <head> before all other stylesheets to load our CSS. 

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" 

integrity="sha384-

MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" 

crossorigin="anonymous"> 

JS 

Many of our components require the use of JavaScript to function. Specifically, they require jQuery, 

Popper.js, and our own JavaScript plugins. Place the following <script>s near the end of your pages, 

right before the closing </body> tag, to enable them. jQuery must come first, then Popper.js, and 

then our JavaScript plugins. 

We use jQuery’s slim build, but the full version is also supported. 

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-

q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" 

crossorigin="anonymous"></script> 

<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" 

integrity="sha384-

ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" 

crossorigin="anonymous"></script> 

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js" 

integrity="sha384-

ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy" 

crossorigin="anonymous"></script> 

Curious which components explicitly require jQuery, our JS, and Popper.js? Click the show 

components link below. If you’re at all unsure about the general page structure, keep reading for 

an example page template. 

Our bootstrap.bundle.js and bootstrap.bundle.min.js include Popper, but not jQuery. For more 

information about what’s included in Bootstrap, please see our contents section. 



Show components requiring JavaScript 

Starter template 

Be sure to have your pages set up with the latest design and development standards. That means 

using an HTML5 doctype and including a viewport meta tag for proper responsive behaviors. Put it 

all together and your pages should look like this: 

<!doctype html> 

<html lang="en"> 

  <head> 

    <!-- Required meta tags --> 

    <meta charset="utf-8"> 

    <meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> 

<!-- Bootstrap CSS --> 

    <link rel="stylesheet" 

href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" integrity="sha384-

MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" 

crossorigin="anonymous"> 

<title>Hello, world!</title> 

  </head> 

  <body> 

    <h1>Hello, world!</h1> 

<!-- Optional JavaScript --> 

    <!-- jQuery first, then Popper.js, then Bootstrap JS --> 

    <script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-

q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" 

crossorigin="anonymous"></script> 

    <script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" 

integrity="sha384-

ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" 

crossorigin="anonymous"></script> 



    <script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js" 

integrity="sha384-

ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy" 

crossorigin="anonymous"></script> 

  </body> 

</html> 

That’s all you need for overall page requirements. Visit the Layout docs or our official examples to 

start laying out your site’s content and components. 

Important globals 

Bootstrap employs a handful of important global styles and settings that you’ll need to be aware 

of when using it, all of which are almost exclusively geared towards the normalization of cross 

browser styles. Let’s dive in. 

HTML5 doctype 

Bootstrap requires the use of the HTML5 doctype. Without it, you’ll see some funky incomplete 

styling, but including it shouldn’t cause any considerable hiccups. 

<!doctype html> 

<html lang="en"> 

  ... 

</html> 

Responsive meta tag 

Bootstrap is developed mobile first, a strategy in which we optimize code for mobile devices first 

and then scale up components as necessary using CSS media queries. To ensure proper rendering 

and touch zooming for all devices, add the responsive viewport meta tag to your <head>. 

<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no"> 

You can see an example of this in action in the starter template. 

Box-sizing 

For more straightforward sizing in CSS, we switch the global box-sizing value from content-

box to border-box. This ensures padding does not affect the final computed width of an element, but it 



can cause problems with some third party software like Google Maps and Google Custom Search 

Engine. 

On the rare occasion you need to override it, use something like the following: 

.selector-for-some-widget { 

  box-sizing: content-box; 

} 

With the above snippet, nested elements—including generated content via ::before and ::after—will 

all inherit the specified box-sizingfor that .selector-for-some-widget. 

Learn more about box model and sizing at CSS Tricks. 

Reboot 

For improved cross-browser rendering, we use Reboot to correct inconsistencies across browsers 

and devices while providing slightly more opinionated resets to common HTML elements. 

Accessibility 

A brief overview of Bootstrap’s features and limitations for the creation of accessible content. 

Bootstrap provides an easy-to-use framework of ready-made styles, layout tools, and interactive 

components, allowing developers to create websites and applications that are visually appealing, 

functionally rich, and accessible out of the box. 

Overview and Limitations 

The overall accessibility of any project built with Bootstrap depends in large part on the author’s 

markup, additional styling, and scripting they’ve included. However, provided that these have been 

implemented correctly, it should be perfectly possible to create websites and applications with 

Bootstrap that fulfill WCAG 2.0 (A/AA/AAA), Section 508 and similar accessibility standards and 

requirements. 

Structural markup 

Bootstrap’s styling and layout can be applied to a wide range of markup structures. This 

documentation aims to provide developers with best practice examples to demonstrate the use of 

Bootstrap itself and illustrate appropriate semantic markup, including ways in which potential 

accessibility concerns can be addressed. 

Interactive components 

Bootstrap’s interactive components—such as modal dialogs, dropdown menus and custom 

tooltips—are designed to work for touch, mouse and keyboard users. Through the use of 



relevant WAI-ARIA roles and attributes, these components should also be understandable and 

operable using assistive technologies (such as screen readers). 

Because Bootstrap’s components are purposely designed to be fairly generic, authors may need to 

include further ARIA roles and attributes, as well as JavaScript behavior, to more accurately convey 

the precise nature and functionality of their component. This is usually noted in the documentation. 

Color contrast 

Most colors that currently make up Bootstrap’s default palette—used throughout the framework 

for things such as button variations, alert variations, form validation indicators—lead 

to insufficient color contrast (below the recommended WCAG 2.0 color contrast ratio of 4.5:1) when 

used against a light background. Authors will need to manually modify/extend these default colors 

to ensure adequate color contrast ratios. 

Visually hidden content 

Content which should be visually hidden, but remain accessible to assistive technologies such as 

screen readers, can be styled using the .sr-only class. This can be useful in situations where additional 

visual information or cues (such as meaning denoted through the use of color) need to also be 

conveyed to non-visual users. 

<p class="text-danger"> 

  <span class="sr-only">Danger: </span> 

  This action is not reversible 

</p> 

For visually hidden interactive controls, such as traditional “skip” links, .sr-only can be combined with 

the .sr-only-focusable class. This will ensure that the control becomes visible once focused (for sighted 

keyboard users). 

<a class="sr-only sr-only-focusable" href="#content">Skip to main content</a> 

Reduced motion 

Bootstrap includes support for the prefers-reduced-motion media feature. In browsers/environments 

that allow the user to specify their preference for reduced motion, most CSS transition effects in 

Bootstrap (for instance, when a modal dialog is opened or closed) will be disabled. Currently, 

support is limited to Safari on macOS and iOS. 

Browsers and devices 

Learn about the browsers and devices, from modern to old, that are supported by Bootstrap, 

including known quirks and bugs for each. 



Supported browsers 

Bootstrap supports the latest, stable releases of all major browsers and platforms. On 

Windows, we support Internet Explorer 10-11 / Microsoft Edge. 

Alternative browsers which use the latest version of WebKit, Blink, or Gecko, whether directly or via 

the platform’s web view API, are not explicitly supported. However, Bootstrap should (in most cases) 

display and function correctly in these browsers as well. More specific support information is 

provided below. 

"browserslist": [ 

  "last 1 major version", 

  ">= 1%", 

  "Chrome >= 45", 

  "Firefox >= 38", 

  "Edge >= 12", 

  "Explorer >= 10", 

  "iOS >= 9", 

  "Safari >= 9", 

  "Android >= 4.4", 

  "Opera >= 30" 

] 

We use Autoprefixer to handle intended browser support via CSS prefixes, which uses Browserslist 

to manage these browser versions. Consult their documentation for how to integrate these tools 

into your projects. 

Mobile devices 

Generally speaking, Bootstrap supports the latest versions of each major platform’s default 

browsers. Note that proxy browsers (such as Opera Mini, Opera Mobile’s Turbo mode, UC Browser 

Mini, Amazon Silk) are not supported. 

 

Chrome Firefox Safari 
Android Browser & 

WebView 

Microsoft 

Edge 

Android Supported Supported N/A Android v5.0+ 

supported 

Supported 

iOS Supported Supported Supported N/A Supported 

Windows 10 

Mobile 

N/A N/A N/A N/A Supported 

Desktop browsers 

Similarly, the latest versions of most desktop browsers are supported. 

 
Chrome Firefox Internet 

Explorer 

Microsoft 

Edge 

Opera Safari 

Mac Supported Supported N/A N/A Supported Supported 

Windows Supported Supported Supported, 

IE10+ 

Supported Supported Not 

supported 



For Firefox, in addition to the latest normal stable release, we also support the latest Extended 

Support Release (ESR) version of Firefox. 

Unofficially, Bootstrap should look and behave well enough in Chromium and Chrome for Linux, 

Firefox for Linux, and Internet Explorer 9, though they are not officially supported. 

For a list of some of the browser bugs that Bootstrap has to grapple with, see our Wall of browser 

bugs. 

Internet Explorer 

Internet Explorer 10+ is supported; IE9 and down is not. Please be aware that some CSS3 

properties and HTML5 elements are not fully supported in IE10, or require prefixed properties for 

full functionality. Visit Can I use… for details on browser support of CSS3 and HTML5 features. 

If you require IE8-9 support, use Bootstrap 3. It’s the most stable version of our code and is 

still supported by our team for critical bugfixes and documentation changes. However, no new 

features will be added to it. 

Modals and dropdowns on mobile 

Overflow and scrolling 

Support for overflow: hidden; on the <body> element is quite limited in iOS and Android. To that 

end, when you scroll past the top or bottom of a modal in either of those devices’ browsers, the 

<body> content will begin to scroll. See Chrome bug #175502 (fixed in Chrome v40) and WebKit 

bug #153852. 

iOS text fields and scrolling 

As of iOS 9.2, while a modal is open, if the initial touch of a scroll gesture is within the boundary 

of a textual <input> or a <textarea>, the <body> content underneath the modal will be scrolled 

instead of the modal itself. See WebKit bug #153856. 

Navbar Dropdowns 

The .dropdown-backdrop element isn’t used on iOS in the nav because of the complexity of z-

indexing. Thus, to close dropdowns in navbars, you must directly click the dropdown element (or 

any other element which will fire a click event in iOS). 

Browser zooming 

Page zooming inevitably presents rendering artifacts in some components, both in Bootstrap and 

the rest of the web. Depending on the issue, we may be able to fix it (search first and then open 

an issue if need be). However, we tend to ignore these as they often have no direct solution other 

than hacky workarounds. 



Sticky :hover/:focus on iOS 

While :hover isn’t possible on most touch devices, iOS emulates this behavior, resulting in “sticky” 

hover styles that persist after tapping one element. These hover styles are only removed when 

users tap another element. This behavior is considered largely undesirable and appears to not be 

an issue on Android or Windows devices. 

Throughout our v4 alpha and beta releases, we included incomplete and commented out code for 

opting into a media query shim that would disable hover styles in touch device browsers that 

emulate hovering. This work was never fully completed or enabled, but to avoid complete 

breakage, we’ve opted to deprecate this shim and keep the mixins as shortcuts for the pseudo-

classes. 

Printing 

Even in some modern browsers, printing can be quirky. 

As of Safari v8.0, use of the fixed-width .container class can cause Safari to use an unusually small 

font size when printing. See issue #14868and WebKit bug #138192 for more details. One 

potential workaround is the following CSS:@media print { 

  .container { 

    width: auto; 

  } 

} 

Android stock browser 

Out of the box, Android 4.1 (and even some newer releases apparently) ship with the Browser app 

as the default web browser of choice (as opposed to Chrome). Unfortunately, the Browser app has 

lots of bugs and inconsistencies with CSS in general. 

Select menu 

On <select> elements, the Android stock browser will not display the side controls if there is 

a border-radius and/or border applied. (See this StackOverflow question for details.) Use the snippet 

of code below to remove the offending CSS and render the <select> as an unstyled element on the 

Android stock browser. The user agent sniffing avoids interference with Chrome, Safari, and 

Mozilla browsers. 

<script> 



$(function () { 

  var nua = navigator.userAgent 

  var isAndroid = (nua.indexOf('Mozilla/5.0') > -1 && nua.indexOf('Android ') > -1 && 

nua.indexOf('AppleWebKit') > -1 && nua.indexOf('Chrome') === -1) 

  if (isAndroid) { 

    $('select.form-control').removeClass('form-control').css('width', '100%') 

  } 

}) 

</script> 

Validators 

In order to provide the best possible experience to old and buggy browsers, Bootstrap uses CSS 

browser hacks in several places to target special CSS to certain browser versions in order to work 

around bugs in the browsers themselves. These hacks understandably cause CSS validators to 

complain that they are invalid. In a couple places, we also use bleeding-edge CSS features that 

aren’t yet fully standardized, but these are used purely for progressive enhancement. 

These validation warnings don’t matter in practice since the non-hacky portion of our CSS does 

fully validate and the hacky portions don’t interfere with the proper functioning of the non-hacky 

portion, hence why we deliberately ignore these particular warnings. 

Our HTML docs likewise have some trivial and inconsequential HTML validation warnings due to 

our inclusion of a workaround for a certain Firefox bug. 

Build tools 

Learn how to use Bootstrap’s included npm scripts to build our documentation, compile source 

code, run tests, and more. 

Tooling setup 

Bootstrap uses NPM scripts for its build system. Our package.json includes convenient methods 

for working with the framework, including compiling code, running tests, and more. 

To use our build system and run our documentation locally, you’ll need a copy of Bootstrap’s 

source files and Node. Follow these steps and you should be ready to rock: 

1. Download and install Node.js, which we use to manage our dependencies. 



2. Navigate to the root /bootstrap directory and run npm install to install our local 

dependencies listed in package.json. 

3. Install Ruby, install Bundler with gem install bundler, and finally run bundle install. This will 

install all Ruby dependencies, such as Jekyll and plugins. 

• Windows users: Read this guide to get Jekyll up and running without problems. 

When completed, you’ll be able to run the various commands provided from the command line. 

Using NPM scripts 

Our package.json includes the following commands and tasks: 

Task Description 

npm run 

dist 
npm run dist creates the /dist directory with compiled files. Uses Sass, Autoprefixer, 

and UglifyJS. 

npm test Same as npm run dist plus it runs tests locally 

npm run 

docs 
Builds and lints CSS and JavaScript for docs. You can then run the documentation 

locally via npm run docs-serve. 

Run npm run to see all the npm scripts. 

Autoprefixer 

Bootstrap uses Autoprefixer (included in our build process) to automatically add vendor prefixes 

to some CSS properties at build time. Doing so saves us time and code by allowing us to write key 

parts of our CSS a single time while eliminating the need for vendor mixins like those found in v3. 

We maintain the list of browsers supported through Autoprefixer in a separate file within our 

GitHub repository. See /package.json for details. 

Local documentation 

Running our documentation locally requires the use of Jekyll, a decently flexible static site 

generator that provides us: basic includes, Markdown-based files, templates, and more. Here’s 

how to get it started: 

1. Run through the tooling setup above to install Jekyll (the site builder) and other Ruby 

dependencies with bundle install. 

2. From the root /bootstrap directory, run npm run docs-serve in the command line. 

3. Open http://localhost:9001 in your browser, and voilà. 

Troubleshooting 

Should you encounter problems with installing dependencies, uninstall all previous dependency 

versions (global and local). Then, rerun npm install. 



Contents 

Discover what’s included in Bootstrap, including our precompiled and source code flavors. 

Remember, Bootstrap’s JavaScript plugins require jQuery. 

Precompiled Bootstrap 

Once downloaded, unzip the compressed folder and you’ll see something like this: 

bootstrap/ 

├── css/ 

│   ├── bootstrap-grid.css 

│   ├── bootstrap-grid.css.map 

│   ├── bootstrap-grid.min.css 

│   ├── bootstrap-grid.min.css.map 

│   ├── bootstrap-reboot.css 

│   ├── bootstrap-reboot.css.map 

│   ├── bootstrap-reboot.min.css 

│   ├── bootstrap-reboot.min.css.map 

│   ├── bootstrap.css 

│   ├── bootstrap.css.map 

│   ├── bootstrap.min.css 

│   └── bootstrap.min.css.map 

└── js/ 

    ├── bootstrap.bundle.js 

    ├── bootstrap.bundle.js.map 

    ├── bootstrap.bundle.min.js 



    ├── bootstrap.bundle.min.js.map 

    ├── bootstrap.js 

    ├── bootstrap.js.map 

    ├── bootstrap.min.js 

    └── bootstrap.min.js.map 

This is the most basic form of Bootstrap: precompiled files for quick drop-in usage in nearly any 

web project. We provide compiled CSS and JS (bootstrap.*), as well as compiled and minified CSS 

and JS (bootstrap.min.*). source maps (bootstrap.*.map) are available for use with certain 

browsers’ developer tools. Bundled JS files (bootstrap.bundle.js and minified 

bootstrap.bundle.min.js) include Popper, but not jQuery. 

CSS files 

Bootstrap includes a handful of options for including some or all of our compiled CSS. 

CSS files Layout Content Components Utilities 

bootstrap.css 
bootstrap.min.css 

Included Included Included Included 

bootstrap-grid.css 
bootstrap-grid.min.css 

Only grid system Not included Not included Only flex utilities 

bootstrap-reboot.css 
bootstrap-reboot.min.css 

Not included Only Reboot Not included Not included 

JS files 

Similarly, we have options for including some or all of our compiled JavaScript. 

JS files Popper jQuery 

bootstrap.bundle.js 
bootstrap.bundle.min.js 

Included Not included 

bootstrap.js 
bootstrap.min.js 

Not included Not included 

Bootstrap source code 

The Bootstrap source code download includes the precompiled CSS and JavaScript assets, along 

with source Sass, JavaScript, and documentation. More specifically, it includes the following and 

more: 

bootstrap/ 



├── dist/ 

│   ├── css/ 

│   └── js/ 

├── docs/ 

│   └── examples/ 

├── js/ 

└── scss/ 

The scss/ and js/ are the source code for our CSS and JavaScript. The dist/ folder includes everything 

listed in the precompiled download section above. The docs/ folder includes the source code for 

our documentation, and examples/ of Bootstrap usage. Beyond that, any other included file 

provides support for packages, license information, and development. 

Download 

Download Bootstrap to get the compiled CSS and JavaScript, source code, or include it with your 

favorite package managers like npm, RubyGems, and more. 

Compiled CSS and JS 

Download ready-to-use compiled code for Bootstrap v4.1.3 to easily drop into your project, 

which includes: 

 Compiled and minified CSS bundles  

 Compiled and minified JavaScript plugins 

This doesn’t include documentation, source files, or any optional JavaScript dependencies (jQuery 

and Popper.js). 

Source files 

Compile Bootstrap with your own asset pipeline by downloading our source Sass, JavaScript, and 

documentation files. This option requires some additional tooling: 

 Sass compiler (Libsass or Ruby Sass is supported) for compiling your CSS. 

 Autoprefixer for CSS vendor prefixing 

Should you require build tools, they are included for developing Bootstrap and its docs, but 

they’re likely unsuitable for your own purposes. 



BootstrapCDN 

Skip the download with BootstrapCDN to deliver cached version of Bootstrap’s compiled CSS and 

JS to your project. 

<link rel="stylesheet" href="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/css/bootstrap.min.css" 

integrity="sha384-

MCw98/SFnGE8fJT3GXwEOngsV7Zt27NXFoaoApmYm81iuXoPkFOJwJ8ERdknLPMO" 

crossorigin="anonymous"> 

<script src="https://stackpath.bootstrapcdn.com/bootstrap/4.1.3/js/bootstrap.min.js" 

integrity="sha384-

ChfqqxuZUCnJSK3+MXmPNIyE6ZbWh2IMqE241rYiqJxyMiZ6OW/JmZQ5stwEULTy" 

crossorigin="anonymous"></script> 

If you’re using our compiled JavaScript, don’t forget to include CDN versions of jQuery and 

Popper.js before it. 

<script src="https://code.jquery.com/jquery-3.3.1.slim.min.js" integrity="sha384-

q8i/X+965DzO0rT7abK41JStQIAqVgRVzpbzo5smXKp4YfRvH+8abtTE1Pi6jizo" 

crossorigin="anonymous"></script> 

<script src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.14.3/umd/popper.min.js" 

integrity="sha384-

ZMP7rVo3mIykV+2+9J3UJ46jBk0WLaUAdn689aCwoqbBJiSnjAK/l8WvCWPIPm49" 

crossorigin="anonymous"></script> 

Package managers 

Pull in Bootstrap’s source files into nearly any project with some of the most popular package 

managers. No matter the package manager, Bootstrap will require a Sass compiler 

and Autoprefixer for a setup that matches our official compiled versions. 

npm 

Install Bootstrap in your Node.js powered apps with the npm package: 

npm install bootstrap 

require('bootstrap') will load all of Bootstrap’s jQuery plugins onto the jQuery object. 

The bootstrap module itself does not export anything. You can manually load Bootstrap’s jQuery 

plugins individually by loading the /js/*.js files under the package’s top-level directory. 

Bootstrap’s package.json contains some additional metadata under the following keys: 

 sass - path to Bootstrap’s main Sass source file 

 style - path to Bootstrap’s non-minified CSS that’s been precompiled using the default settings (no 

customization) 



RubyGems 

Install Bootstrap in your Ruby apps using Bundler (recommended) and RubyGems by adding the 

following line to your Gemfile: 

gem 'bootstrap', '~> 4.1.3' 

Alternatively, if you’re not using Bundler, you can install the gem by running this command: 

gem install bootstrap -v 4.1.3 

Composer 

You can also install and manage Bootstrap’s Sass and JavaScript using Composer: 

composer require twbs/bootstrap:4.1.3 

NuGet 

If you develop in .NET, you can also install and manage Bootstrap’s CSS or Sass and JavaScript 

using NuGet:  

Install-Package bootstrap 

Install-Package bootstrap.sass 

JavaScript 

Bring Bootstrap to life with our optional JavaScript plugins built on jQuery. Learn about each 

plugin, our data and programmatic API options, and more. 

Individual or compiled 

Plugins can be included individually (using Bootstrap’s individual js/dist/*.js), or all at once 

using bootstrap.js or the minified bootstrap.min.js (don’t include both). 

If you use a bundler (Webpack, Rollup…), you can use /js/dist/*.js files which are UMD ready. 

Dependencies 

Some plugins and CSS components depend on other plugins. If you include plugins individually, 

make sure to check for these dependencies in the docs. Also note that all plugins depend on 

jQuery (this means jQuery must be included before the plugin files).   

  



Data attributes 

Nearly all Bootstrap plugins can be enabled and configured through HTML alone with data 

attributes (our preferred way of using JavaScript functionality). Be sure to only use one set of 

data attributes on a single element (e.g., you cannot trigger a tooltip and modal from the same 

button.) 

However, in some situations it may be desirable to disable this functionality. To disable the data 

attribute API, unbind all events on the document namespaced with data-api like so: 

$(document).off('.data-api') 

Alternatively, to target a specific plugin, just include the plugin’s name as a namespace along with 

the data-api namespace like this: 

$(document).off('.alert.data-api') 

Escaping selectors 

If you use special selectors, for example: collapse:Example, be sure to escape them, because they’ll 

be passed through jQuery. 

Events 

Bootstrap provides custom events for most plugins’ unique actions. Generally, these come in an 

infinitive and past participle form - where the infinitive (ex. show) is triggered at the start of an 

event, and its past participle form (ex. shown) is triggered on the completion of an action. 

All infinitive events provide preventDefault() functionality. This provides the ability to stop the 

execution of an action before it starts. Returning false from an event handler will also 

automatically call preventDefault(). 

$('#myModal').on('show.bs.modal', function (e) { 

  if (!data) return e.preventDefault() // stops modal from being shown 

}) 

Programmatic API 

We also believe you should be able to use all Bootstrap plugins purely through the JavaScript API. 

All public APIs are single, chainable methods, and return the collection acted upon. 

$('.btn.danger').button('toggle').addClass('fat') 



All methods should accept an optional options object, a string which targets a particular method, 

or nothing (which initiates a plugin with default behavior): 

$('#myModal').modal()                      // initialized with defaults 

$('#myModal').modal({ keyboard: false })   // initialized with no keyboard 

$('#myModal').modal('show')                // initializes and invokes show immediately 

Each plugin also exposes its raw constructor on a Constructor property: $.fn.popover.Constructor. If 

you’d like to get a particular plugin instance, retrieve it directly from an 

element: $('[rel="popover"]').data('popover'). 

Asynchronous functions and transitions 

All programmatic API methods are asynchronous and returns to the caller once the transition is 

started but before it ends. 

In order to execute an action once the transition is complete, you can listen to the corresponding 

event. 

$('#myCollapse').on('shown.bs.collapse', function (e) { 

  // Action to execute once the collapsible area is expanded 

}) 

In addition a method call on a transitioning component will be ignored. 

$('#myCarousel').on('slid.bs.carousel', function (e) { 

  $('#myCarousel').carousel('2') // Will slide to the slide 2 as soon as the transition to slide 1 is finished 

}) 

 

$('#myCarousel').carousel('1') // Will start sliding to the slide 1 and returns to the caller 

$('#myCarousel').carousel('2') // !! Will be ignored, as the transition to the slide 1 is not finished !! 

Default settings 

You can change the default settings for a plugin by modifying the 

plugin’s Constructor.Default object: 



$.fn.modal.Constructor.Default.keyboard = false // changes default for the modal plugin's `keyboard` 

option to false 

No conflict 

Sometimes it is necessary to use Bootstrap plugins with other UI frameworks. In these 

circumstances, namespace collisions can occasionally occur. If this happens, you may 

call .noConflict on the plugin you wish to revert the value of. 

var bootstrapButton = $.fn.button.noConflict() // return $.fn.button to previously assigned value 

$.fn.bootstrapBtn = bootstrapButton            // give $().bootstrapBtn the Bootstrap functionality 

Version numbers 

The version of each of Bootstrap’s jQuery plugins can be accessed via the VERSION property of 

the plugin’s constructor. For example, for the tooltip plugin: 

$.fn.tooltip.Constructor.VERSION // => "4.1.3" 

No special fallbacks when JavaScript is disabled 

Bootstrap’s plugins don’t fall back particularly gracefully when JavaScript is disabled. If you care 

about the user experience in this case, use <noscript> to explain the situation (and how to re-

enable JavaScript) to your users, and/or add your own custom fallbacks. 

Third-party libraries 

Bootstrap does not officially support third-party JavaScript libraries like Prototype or jQuery 

UI. Despite .noConflict and namespaced events, there may be compatibility problems that you need 

to fix on your own. 

Util 

All Bootstrap’s JavaScript files depend on util.js and it has to be included alongside the other 

JavaScript files. If you’re using the compiled (or minified) bootstrap.js, there is no need to include 

this—it’s already there. 

util.js includes utility functions and a basic helper for transitionEnd events as well as a CSS transition 

emulator. It’s used by the other plugins to check for CSS transition support and to catch hanging 

transitions. 

Theming Bootstrap 

Customize Bootstrap 4 with our new built-in Sass variables for global style preferences for easy 

theming and component changes. 



Introduction 

In Bootstrap 3, theming was largely driven by variable overrides in LESS, custom CSS, and a 

separate theme stylesheet that we included in our dist files. With some effort, one could 

completely redesign the look of Bootstrap 3 without touching the core files. Bootstrap 4 provides 

a familiar, but slightly different approach. 

Now, theming is accomplished by Sass variables, Sass maps, and custom CSS. There’s no more 

dedicated theme stylesheet; instead, you can enable the built-in theme to add gradients, 

shadows, and more. 

Sass 

Utilize our source Sass files to take advantage of variables, maps, mixins, and more. 

File structure 

Whenever possible, avoid modifying Bootstrap’s core files. For Sass, that means creating your own 

stylesheet that imports Bootstrap so you can modify and extend it. Assuming you’re using a 

package manager like npm, you’ll have a file structure that looks like this: 

your-project/ 

├── scss 

│   └── custom.scss 

└── node_modules/ 

    └── bootstrap 

        ├── js 

        └── scss 

If you’ve downloaded our source files and aren’t using a package manager, you’ll want to 

manually setup something similar to that structure, keeping Bootstrap’s source files separate from 

your own. 

your-project/ 

├── scss 

│   └── custom.scss 

└── bootstrap/ 



    ├── js 

    └── scss 

Importing 

In your custom.scss, you’ll import Bootstrap’s source Sass files. You have two options: include all of 

Bootstrap, or pick the parts you need. We encourage the latter, though be aware there are some 

requirements and dependencies across our components. You also will need to include some 

JavaScript for our plugins. 

// Custom.scss 

// Option A: Include all of Bootstrap 

 

@import "../node_modules/bootstrap/scss/bootstrap"; 

// Custom.scss 

// Option B: Include parts of Bootstrap 

 

// Required 

@import "../node_modules/bootstrap/scss/functions"; 

@import "../node_modules/bootstrap/scss/variables"; 

@import "../node_modules/bootstrap/scss/mixins"; 

 

// Optional 

@import "../node_modules/bootstrap/scss/reboot"; 

@import "../node_modules/bootstrap/scss/type"; 

@import "../node_modules/bootstrap/scss/images"; 

@import "../node_modules/bootstrap/scss/code"; 



@import "../node_modules/bootstrap/scss/grid"; 

With that setup in place, you can begin to modify any of the Sass variables and maps in 

your custom.scss. You can also start to add parts of Bootstrap under the // Optional section as 

needed. We suggest using the full import stack from our bootstrap.scss file as your starting point. 

Variable defaults 

Every Sass variable in Bootstrap 4 includes the !default flag allowing you to override the variable’s 

default value in your own Sass without modifying Bootstrap’s source code. Copy and paste 

variables as needed, modify their values, and remove the !default flag. If a variable has already 

been assigned, then it won’t be re-assigned by the default values in Bootstrap. 

You will find the complete list of Bootstrap’s variables in scss/_variables.scss. 

Variable overrides within the same Sass file can come before or after the default variables. 

However, when overriding across Sass files, your overrides must come before you import 

Bootstrap’s Sass files. 

Here’s an example that changes the background-color and color for the <body> when importing and 

compiling Bootstrap via npm: 

// Your variable overrides 

$body-bg: #000; 

$body-color: #111; 

 

// Bootstrap and its default variables 

@import "../node_modules/bootstrap/scss/bootstrap"; 

Repeat as necessary for any variable in Bootstrap, including the global options below. 

Maps and loops 

Bootstrap 4 includes a handful of Sass maps, key value pairs that make it easier to generate 

families of related CSS. We use Sass maps for our colors, grid breakpoints, and more. Just like 

Sass variables, all Sass maps include the !default flag and can be overridden and extended. 

Some of our Sass maps are merged into empty ones by default. This is done to allow easy 

expansion of a given Sass map, but comes at the cost of making removing items from a map 

slightly more difficult. 

Modify map 

To modify an existing color in our $theme-colors map, add the following to your custom Sass file: 



$theme-colors: ( 

  "primary": #0074d9, 

  "danger": #ff4136 

); 

Add to map 

To add a new color to $theme-colors, add the new key and value: 

$theme-colors: ( 

  "custom-color": #900 

); 

Remove from map 

To remove colors from $theme-colors, or any other map, use map-remove. Be aware you must insert it 

between our requirements and options: 

// Required 

@import "../node_modules/bootstrap/scss/functions"; 

@import "../node_modules/bootstrap/scss/variables"; 

@import "../node_modules/bootstrap/scss/mixins"; 

 

$theme-colors: map-remove($theme-colors, "info", "light", "dark"); 

 

// Optional 

@import "../node_modules/bootstrap/scss/root"; 

@import "../node_modules/bootstrap/scss/reboot"; 

@import "../node_modules/bootstrap/scss/type"; 

... 



Required keys 

Bootstrap assumes the presence of some specific keys within Sass maps as we used and extend 

these ourselves. As you customize the included maps, you may encounter errors where a specific 

Sass map’s key is being used. 

For example, we use the primary, success, and danger keys from $theme-colors for links, buttons, and 

form states. Replacing the values of these keys should present no issues, but removing them may 

cause Sass compilation issues. In these instances, you’ll need to modify the Sass code that makes 

use of those values. 

Functions 

Bootstrap utilizes several Sass functions, but only a subset are applicable to general theming. 

We’ve included three functions for getting values from the color maps: 

@function color($key: "blue") { 

  @return map-get($colors, $key); 

} 

 

@function theme-color($key: "primary") { 

  @return map-get($theme-colors, $key); 

} 

 

@function gray($key: "100") { 

  @return map-get($grays, $key); 

} 

These allow you to pick one color from a Sass map much like how you’d use a color variable from 

v3. 

.custom-element { 

  color: gray("100"); 

  background-color: theme-color("dark"); 



} 

We also have another function for getting a particular level of color from the $theme-colors map. 

Negative level values will lighten the color, while higher levels will darken. 

@function theme-color-level($color-name: "primary", $level: 0) { 

  $color: theme-color($color-name); 

  $color-base: if($level > 0, #000, #fff); 

  $level: abs($level); 

 

  @return mix($color-base, $color, $level * $theme-color-interval); 

} 

In practice, you’d call the function and pass in two parameters: the name of the color from $theme-

colors (e.g., primary or danger) and a numeric level. 

.custom-element { 

  color: theme-color-level(primary, -10); 

} 

Additional functions could be added in the future or your own custom Sass to create level 

functions for additional Sass maps, or even a generic one if you wanted to be more verbose. 

Color contrast 

One additional function we include in Bootstrap is the color contrast function, color-yiq. It utilizes 

the YIQ color space to automatically return a light (#fff) or dark (#111) contrast color based on the 

specified base color. This function is especially useful for mixins or loops where you’re generating 

multiple classes. 

For example, to generate color swatches from our $theme-colors map: 

@each $color, $value in $theme-colors { 

  .swatch-#{$color} { 

    color: color-yiq($value); 

  } 



} 

It can also be used for one-off contrast needs: 

.custom-element { 

  color: color-yiq(#000); // returns `color: #fff` 

} 

You can also specify a base color with our color map functions: 

.custom-element { 

  color: color-yiq(theme-color("dark")); // returns `color: #fff` 

} 

Sass options 

Customize Bootstrap 4 with our built-in custom variables file and easily toggle global CSS 

preferences with new $enable-* Sass variables. Override a variable’s value and recompile with npm 

run test as needed. 

You can find and customize these variables for key global options in 

Bootstrap’s scss/_variables.scss file. 

 

Variable Values Description 

$spacer 
1rem (default), or any 

value > 0 

Specifies the default spacer value to programmatically 

generate our spacer utilities. 

$enable-rounded true (default) or false 
Enables predefined border-radius styles on various 

components. 

$enable-shadows true or false (default) 
Enables predefined box-shadow styles on various 

components. 

$enable-gradients true or false (default) 
Enables predefined gradients via background-image styles on 

various components. 

$enable-transitions true (default) or false Enables predefined transitions on various components. 

$enable-hover-

media-query true or false (default) Deprecated 

$enable-grid-

classes true (default) or false 
Enables the generation of CSS classes for the grid system 

(e.g., .container, .row, .col-md-1, etc.). 

$enable-caret true (default) or false Enables pseudo element caret on .dropdown-toggle. 

$enable-print-

styles true (default) or false Enables styles for optimizing printing. 



Color 

Many of Bootstrap’s various components and utilities are built through a series of colors defined 

in a Sass map. This map can be looped over in Sass to quickly generate a series of rulesets. 

All colors 

All colors available in Bootstrap 4, are available as Sass variables and a Sass map 

in scss/_variables.scss file. This will be expanded upon in subsequent minor releases to add 

additional shades, much like the grayscale palette we already include. 

Blue 

Indigo 

Purple 

Pink 

Red 

Orange 

Yellow 

Green 

Teal 

Cyan 

Here’s how you can use these in your Sass: 

// With variable 

.alpha { color: $purple; } 

// From the Sass map with our `color()` function 

.beta { color: color("purple"); } 

Color utility classes are also available for setting color and background-color. 

In the future, we’ll aim to provide Sass maps and variables for shades of each color as we’ve done 

with the grayscale colors below. 

Theme colors 

We use a subset of all colors to create a smaller color palette for generating color schemes, also 

available as Sass variables and a Sass map in Bootstraps’s scss/_variables.scss file. 

Primary 

Secondary 



Success 

Danger 

Warning 

Info 

Light 

Dark 

Grays 

An expansive set of gray variables and a Sass map in scss/_variables.scss for consistent shades of 

gray across your project. 

100 

200 

300 

400 

500 

600 

700 

800 

900 

Within scss/_variables.scss, you’ll find Bootstrap’s color variables and Sass map. Here’s an example of 

the $colors Sass map: 

$colors: ( 

  "blue": $blue, 

  "indigo": $indigo, 

  "purple": $purple, 

  "pink": $pink, 

  "red": $red, 

  "orange": $orange, 

  "yellow": $yellow, 



  "green": $green, 

  "teal": $teal, 

  "cyan": $cyan, 

  "white": $white, 

  "gray": $gray-600, 

  "gray-dark": $gray-800 

) !default; 

Add, remove, or modify values within the map to update how they’re used in many other 

components. Unfortunately at this time, not everycomponent utilizes this Sass map. Future 

updates will strive to improve upon this. Until then, plan on making use of the ${color} variables 

and this Sass map. 

Components 

Many of Bootstrap’s components and utilities are built with @each loops that iterate over a Sass 

map. This is especially helpful for generating variants of a component by our $theme-colors and 

creating responsive variants for each breakpoint. As you customize these Sass maps and 

recompile, you’ll automatically see your changes reflected in these loops. 

Modifiers 

Many of Bootstrap’s components are built with a base-modifier class approach. This means the 

bulk of the styling is contained to a base class (e.g., .btn) while style variations are confined to 

modifier classes (e.g., .btn-danger). These modifier classes are built from the $theme-colorsmap to 

make customizing the number and name of our modifier classes. 

Here are two examples of how we loop over the $theme-colors map to generate modifiers to 

the .alert component and all our .bg-*background utilities. 

// Generate alert modifier classes 

@each $color, $value in $theme-colors { 

  .alert-#{$color} { 

    @include alert-variant(theme-color-level($color, -10), theme-color-level($color, -9), theme-color-

level($color, 6)); 

  } 



} 

 

// Generate `.bg-*` color utilities 

@each $color, $value in $theme-colors { 

  @include bg-variant('.bg-#{$color}', $value); 

} 

Responsive 

These Sass loops aren’t limited to color maps, either. You can also generate responsive variations 

of your components or utilities. Take for example our responsive text alignment utilities where we 

mix an @each loop for the $grid-breakpoints Sass map with a media query include. 

@each $breakpoint in map-keys($grid-breakpoints) { 

  @include media-breakpoint-up($breakpoint) { 

    $infix: breakpoint-infix($breakpoint, $grid-breakpoints); 

 

    .text#{$infix}-left   { text-align: left !important; } 

    .text#{$infix}-right  { text-align: right !important; } 

    .text#{$infix}-center { text-align: center !important; } 

  } 

} 

Should you need to modify your $grid-breakpoints, your changes will apply to all the loops iterating 

over that map. 

CSS variables 

Bootstrap 4 includes around two dozen CSS custom properties (variables) in its compiled CSS. 

These provide easy access to commonly used values like our theme colors, breakpoints, and 

primary font stacks when working in your browser’s Inspector, a code sandbox, or general 

prototyping. 



Available variables 

Here are the variables we include (note that the :root is required). They’re located in 

our _root.scss file. 

:root { 

  --blue: #007bff; 

  --indigo: #6610f2; 

  --purple: #6f42c1; 

  --pink: #e83e8c; 

  --red: #dc3545; 

  --orange: #fd7e14; 

  --yellow: #ffc107; 

  --green: #28a745; 

  --teal: #20c997; 

  --cyan: #17a2b8; 

  --white: #fff; 

  --gray: #6c757d; 

  --gray-dark: #343a40; 

  --primary: #007bff; 

  --secondary: #6c757d; 

  --success: #28a745; 

  --info: #17a2b8; 

  --warning: #ffc107; 

  --danger: #dc3545; 



  --light: #f8f9fa; 

  --dark: #343a40; 

  --breakpoint-xs: 0; 

  --breakpoint-sm: 576px; 

  --breakpoint-md: 768px; 

  --breakpoint-lg: 992px; 

  --breakpoint-xl: 1200px; 

  --font-family-sans-serif: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica 

Neue", Arial, sans-serif, "Apple Color Emoji", "Segoe UI Emoji", "Segoe UI Symbol"; 

  --font-family-monospace: SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", "Courier 

New", monospace; 

} 

Examples 

CSS variables offer similar flexibility to Sass’s variables, but without the need for compilation 

before being served to the browser. For example, here we’re resetting our page’s font and link 

styles with CSS variables. 

body { 

  font: 1rem/1.5 var(--font-family-sans-serif); 

} 

a { 

  color: var(--blue); 

} 

Breakpoint variables 

While we originally included breakpoints in our CSS variables (e.g., --breakpoint-md), these are not 

supported in media queries, but they can still be used within rulesets in media queries. These 

breakpoint variables remain in the compiled CSS for backward compatibility given they can be 

utilized by JavaScript.   



Here’s an example of what’s not supported: 

@media (min-width: var(--breakpoint-sm)) { 

  ... 

} 

And here’s an example of what is supported: 

@media (min-width: 768px) { 

  .custom-element { 

    color: var(--primary); 

  } 

} 

 


