Formation : Arduino ↔ Matlab/Simulink

Commande d'un système thermique à l'aide de la carte ARDUINO UNO

Hammamet 3/4 Mai 2014

CHELLY Nizar et CHARED Amine

Comment établir une communication série Arduino/Matlab?

- L'utilisation des fonctions Arduino/Matlab pour la communication série :
 - Pré-programmer la carte Arduino pour l'envoie et l'acquisition des données
 - Exploiter les fonctions pour la communication série sous Matlab ou bien Simulink

Les fonctions permettant la communication série pour Arduino

Les fonctions pour la communication série :

- Serial : établir la communication série (via USB)
- available(): obtenir le nombre de bit disponible pour la lecture
- read(): permet la lecture des bits entrants
- write(): permet l'écriture des bits sur le port série

Les fonctions permettant la communication série pour Matlab/Simulink

M-files:

- fscanf :
- fprintf :

Modèle Simulink:

- Serial configuration : configurer les paramétrés du port série
- Serial Receive : Acquisition des données
- Serial Send : Envoie des données via le port série

ArduinolO Library

L'utilisation du package ArduinolO :

- Pré-charger le programme 'adiosrv.pde' dans la carte Arduino (Analog and Digital Input and Output Server)
- Exploiter la bibliothèque ArduinolO Library sous Simulink ou bien Matlab
- Exemple d'exploitation sous Matlab :
 - »a=arduino('port') → accès à la carte et aux commandes spécifiques d'arduino
 - »a.analogWrite(3,127);→ envoyer sur la pin 3 un signal PWM de rapport cyclique 127/255
- Exemple d'exploitation sous Simulink :

Installation du package ArduinolO

Pré-chargement du programme dans la carte Arduino :

- Télécharger le package ArduinolO
- ② Décompresser vers "par exemple E :\arduinoio"
- Ouvrir le dossier décompressé.
- Aller vers : "ArduinoIO\pde\adiosrv" *
- 6 Charger le fichier adiosrv.pde vers le logiciel Arduino.
- Televerser!

Installation du package ArduinolO :

- Lancer Matlab et placer vous sous "E :\arduinoio"
- ② Exécuter la commande : install-arduino
- Fermer et relancer Matlab puis Simulink
- Oans les bibliothèques se trouvent maintenant Arduino IO library.

Exploitation d'ArduinolO Library sous Simulink

Les blocs nécessaires pour notre objectif d'asservissement :

- Real-Time Pacer : Ralentir le temps de simulation de sorte qu'il synchronise avec le temps réel écoulé.
- Arduino IO Setup : Pour configurer sur quel port la carte Arduino UNO est connectée.
- Arduino Analog Read : Pour configurer à partir de quel pin on va acquérir les données du capteur.
- Arduino Analog Write: Pour configurer à partir de quel pin on va envoyer la commande PWM vers l'actionneur.

Arduino Target

Arduino Target:

- Cette solution consiste à utiliser la carte Arduino comme une cible.
 - Matlab compile le programme saisi depuis Simulink.
 - Transfert ce programme directement dans la carte Arduino.

Présentation du ADC

Caractéristique:

- 6 entrées analogiques A0..A5.
- 1 seul CAN, durée de conversion $100~\mu s$.
- Résolution 10 bits
 - ⇒ valeur numérique entre 0 et 1023.

Acquisition de distance : HC SR04

Présentation du capteur :

- 4 pins : Vcc, Trig, Echo, GND
- Alimenation 5V
- Gamme de mesure de distance entre 2cm et 4m.

Fonctionnent du capteur :

- Envoyer une impulsion niveau haut (+5v) pendant au moins 10μ sur la broche 'Trig'→ déclenche la mesure.
- Si le module détecte un objet, la pin 'Echo', va fournir une impulsion (+5v) dont la durée est proportionnelle à la distance.

Acquisition de température : LM35

Présentation du capteur :

- Alimenter les pattes VCC et GND.
- Brancher la patte centrale à une entrée analogique.

Lecture du capteur :

- $10mV \rightarrow C^o$
- $1V \rightarrow 100C^o$
- La lecture analogique d'un signal de 0 à 5V étant codée de 0 à 1023.
- Temp = Volt * (5/1023) * 100
- Volt est entre 0 et 1023

Acquisition de température : LM35 Exploitation du package ArduinolO Library sous Simulink

- Pré-chargement du programme *adiosrv.pde* sur la carte Arduino
 - Développement du modèle Simulink :

Exploitation de la bibliotheque Instrument control toolbox sous Simulink

Pré-programmation de la carte Arduino UNO :

```
int temp;
void setup()
{
   Serial.begin(9600);
}
void loop()
{
   temp = analogRead(A0);//lecture CAN (valeur entre 0 et 1023)
   Serial.write(temp); //envoie de la donnee via le port serie
   delay(1000); //delai de 1s avant nouvelle acquisition
}
```

② Développement du modèle Simulink :

Présentation des sorties analogiques (mode PWM)

La carte Arduino Uno dispose :

 6 sorties (3,5,6,9,10 et 11) qui peuvent être utilisées en mode PWM.

C'est quoi un signal PWM?

- des signaux logiques binaires.
- de fréquence constante (500Hz).
- de rapport cyclique variable.

une tension continue ajustable entre 0V (rapport cyclique= 0) et 5V (rapport cyclique=255). $V_{out} = V_s \times \frac{\tau_o}{\tau_c}$;avec : $\tau_c = 2ms$

$$V_{out} = V_s imes rac{ au_o}{ au_c}$$
 ;avec : $au_c = 2ms$

Commande PWM d'un moteur à courant continu

Utilisation du shield 2A Motor pour Arduino :

Avantage du shield 2A Motor :

- Ajouter directement sur la carte Arduino UNO
- Équipé du CI L298 qui permet la commande du moteur dans les deux sens

Branchement du shield 2A Motor

Commande de l'intensité lumineuse d'une Lampe

Branchement pour la commande de la lampe

Commande de l'intensité lumineuse d'une Lampe

Exploitation de la bibliotheque Instrument control toolbox sous Simulink

Pré-programmation de la carte Arduino UNO

```
int cmd; //commande
void setup()
{
    Serial.begin(9600);//ouvre le port s rie, fixe le d bit 9600 bauds
    pinMode(6,OUTPUT); //Configuration du pin 6 comme sortie
}
void loop()
{
    if (Serial.available())// si des donn es entrantes sont pr sentes
{
        cmd-Serial.read();//lecture des donn es arriv es
        analogWrite(6,cmd);//Transfert de ces donn es sur la pin 6 pour g n rer le signal
}
delay(100); //delai de 100ms avant la nouvelle acquisition
}
```

Développement du modèle Simulink

Commande de l'intensité lumineuse d'une Lampe Exploitation de la bibliotheque ArduinolO Library sous Simulink

- Pré-chargement de adiosrv.pde sur la carte Arduino UNO
- Développement du modèle Simulink

Réponse à un échelon :System Identification sous Matlab

Make Titles Informative.

Choix de la commande P,PI :PID Tuning sous Matlab

Make Titles Informative.

Commande du procédé thermique