

Arduino Ethernet Shield Web Server

Part 1 of the Arduino Ethernet Shield Web Server Tutorial

This multi-part tutorial shows how to set up an Arduino with Ethernet shield as a
web server. The web servers in this tutorial are used to serve up web pages that
can be accessed from a web browser running on any computer connected to the
same network as the Arduino.
Some of the Arduino web server pages allow access to the Arduino hardware – this
allows hardware to be controlled (e.g. switching on and off an LED from the web
page) and monitored (e.g. reading the state of a switch and displaying it on a web
page).

The tutorial teaches what is required to build a web server including all the
technology such as HTTP, HTML, CSS, JavaScript, AJAX, etc. It starts with the
very basics of hosting a simple web page on the Arduino and advances step-by-
step from there.

Hardware Components

The hardware required for following this series of tutorials is:

 An Arduino board such as the Arduino Uno
 An Arduino Ethernet shield
 An Ethernet cable, wired straight for connecting to your network router
 A USB cable for powering and programming the Arduino
A micro SD card, e.g. a 2Gb card that is SPI compatible – only required for some of
the servers
A computer with a micro SD card slot or a card reader with a micro SD card slot –
only required for SD card servers
There will be additional components required as listed in each tutorial, such as
LEDs, resistors, switches, etc. and a breadboard and wire kit for building the
circuits.

Hardware Setup

Before starting:

 Plug the Ethernet shield into the Arduino, connect it to the network and test it.
Test the SD card in the Ethernet shield.

Basic Arduino Web Server
Part 2 of the Arduino Ethernet Shield Web Server Tutorial

http://www.startingelectronics.com/reviews/tools/arduino-breadboard-review-a000032
http://www.startingelectronics.com/articles/arduino/arduino-ethernet-shield-plugging-testing
http://www.startingelectronics.com/articles/arduino/arduino-ethernet-shield-SD-card-testing

A very basic web server that serves up a single web page using the Arduino
Ethernet shield. An SD card is not used in this example as the web page forms part
of the Arduino sketch.

Serving Up a Web Page from the Arduino

The following Arduino sketch will enable the Arduino with Ethernet shield to serve
up a single web page that can be viewed in a web browser.

#include <SPI.h>
#include <Ethernet.h>

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10, 0, 0, 20); // IP address, may need to change depending on network
EthernetServer server(80); // create a server at port 80

void setup()
{
 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: close");
 client.println();
 // send web page
 client.println("<!DOCTYPE html>");
 client.println("<html>");
 client.println("<head>");
 client.println("<title>Arduino Web Page</title>");
 client.println("</head>");
 client.println("<body>");
 client.println("<h1>Hello from Arduino!</h1>");
 client.println("<p>A web page from the Arduino server</p>");

 client.println("</body>");
 client.println("</html>");
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

Important Note!

If an uninitialized SD card is left in the SD card socket of the shield, it can cause
problems with code in the sketch that is accessing the Ethernet chip. This may
cause symptoms such as the sketch running once or twice, then hanging up.

This is because both the Ethernet chip and the SD card are accessed by the
Arduino using the same SPI bus.

If the SD card is not being used with an Ethernet application, either remove it from
the socket or add the following code to disable the SD card:

void setup()
{
 // disable the SD card by switching pin 4 high
 // not using the SD card in this program, but if an SD card is left in the socket,
 // it may cause a problem with accessing the Ethernet chip, unless disabled
 pinMode(4, OUTPUT);
 digitalWrite(4, HIGH);

 // other initialization code goes here...
}

Using the Sketch

Copy the above sketch and paste it into the Arduino IDE. Change the MAC address
in the sketch to match the numbers on the sticker on the bottom of your Ethernet
shield. Change the IP address in the sketch to match the IP address range of your
network.

Your hardware must be set up as described in part 1 of this tutorial.

Load the sketch to the Arduino and then open a web browser on a computer that is
connected to the same network as the Arduino.

Surf to the Arduino by typing the IP address of the Arduino into the URL field of the
browser, e.g. 10.0.0.20 in the above sketch.

The browser should display a web page as shown below.

Web Page Served by Arduino Web Server

Problem Solving

Resetting

If you were not able to connect to the Arduino, try resetting it by pressing the reset
button on the Ethernet shield and then surf to the web server again.

IP Address and Address Range

Make sure that you have set the correct Arduino IP address for the address range
of your network. The first three numbers of the IP address must match your
network. The last number must be unique – i.e. it must be the only device on the
network with that number.

Gateway and Subnet Mask

Try specifying the network gateway and subnet mask in the sketch if there are still
network connection problems. You will need to change the addresses in the code
below to match your network.

Add the gateway and subnet under the MAC address in the sketch:

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

// the router's gateway address:

byte gateway[] = { 10, 0, 0, 1 };

// the subnet:

byte subnet[] = { 255, 255, 0, 0 };

And then initialize the Ethernet device with these settings in the setup() part of the
sketch:

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial

Ethernet.begin(mac, ip, gateway, subnet);

Ethernet Cable

When connecting to the network through an Ethernet router/hub/switch, an Ethernet
cable that is wired one-to-one must be used to connect the Arduino. Do not use a
crossover cable.

Basic Web Server Explained

Read the comments in the above sketch to see what specific lines of code do. This
explanation shows what request the server must respond to and what data it must
send back.

Client Request

When you surf to the IP address of the Arduino server, the web browser (client) will
send a request, such as the one shown below, to the server.

GET / HTTP/1.1\r\n

Host: 10.0.0.20\r\n

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:17.0)

Gecko/20100101 Firefox/17.0\r\n

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0

.8\r\n

Accept-Language: en-ZA,en-GB;q=0.8,en-US;q=0.5,en;q=0.3\r\n

Accept-Encoding: gzip, deflate\r\n

Connection: keep-alive\r\n

\r\n

The information in the request will differ, depending on the browser and operating
system that the request is sent from.

The \r\n characters that you see at the end of every line of text in the request are
non-visible characters (non-printable characters). \r is the carriage return character
and \n is the linefeed character (or newline character).

The last line of the request is simply \r\n without and preceding text. This is the
blank line that the Arduino sketch checks for before sending a response to the client
web browser.

In other words, the sketch reads every character from the above request and knows
when the end of the request has been reached because it finds the blank line.

Server Response

After receiving the request for a web page from the client, the server first sends a
standard HTTP response and then the web page itself.

The response sent from the Arduino is as follows:

HTTP/1.1 200 OK\r\n

Content-Type: text/html\r\n

Connection: close\r\n

\r\n

Again the non-visible characters \r\n are shown in the above response. The
println() function in the the sketch automatically adds the \r\n characters to the end
of each line. The empty println() function at the end of the HTTP response simply
sends the \r\n with no text in front of it.

The above request and response are part of HTTP (Hypertext Transfer Protocol).

Web Page

After the server has sent the HTTP response, it sends the actual web page which is
then displayed in the browser.

The web page consists of text with HTML tags. You do not see the tags in the
browser as these tags are interpreted by the browser.

To see the actual HTML source code, in the browser right-click on the page from
the Arduino server and then click View Page Source.

The actual HTML markup tags are shown below.

Web Page HTML Code (Markup)

HTML and other web page code is explained in the next part of this tutorial.

Web Page Structure (HTML)
Part 3 of the Arduino Ethernet Shield Web Server Tutorial

http://www.jmarshall.com/easy/http/

The Arduino web servers in this tutorial are used to serve up HTML web pages, so it
makes sense at this stage to find out more about HTML, which is what this part of
the tutorial covers.

HTML Structure and Pages

The basic structure of an HTML page is shown below (this code is from the previous
tutorial).

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino Web Page</title>

 </head>

 <body>

 <h1>Hello from Arduino!</h1>

 <p>A web page from the Arduino server</p>

 </body>

</html>

HTML Tags

HTML markup code consists of tags between angle brackets: < >

The name of the html tag is put between the opening and closing angle brackets.

Most tags will have an opening and closing tag. The text or resource placed
between the opening and closing set of tags will be formatted by the browser
according to the type of tag. The closing tag is exactly the same as the opening tag,
except that the closing tag has a forward slash after the opening angle bracket.
e.g.:  <p>Paragraph text...</p> – here the paragraph tag (<p>) is used to tell the
browser that the text between the opening <p> and closing </p> is a paragraph of
text. The browser will format it accordingly.

An example of a tag that does not have a closing tag is the line break which moves
to the next line in the web page. This is written as
 (following the HTML
standard) or
 (following the XHTML standard).

Learning HTML is about learning HTML tags – what tags are available, what they
do and which tags can be inserted between which other tags.

Web Page Structure

Web pages consist of two main sections – a head section and a body section.
These two sections are placed between opening and closing html tags as shown
here.

<html>

 <head>

 </head>

 <body>

 </body>

</html>

Things that are to be visible on the web page or apply to the web page content are
placed between the body tags.

Things that do not appear on the page are placed between the head tags, e.g. the
text for the title of the page that appears on the top bar of the web browser window.
Also files such as style sheets can be included here.

Basic HTML Tags

We have already seen the paragraph HTML tag – <p>, and the invisible tags that
make up sections of an HTML page – <html>, <head> and <body>. Below are two
more HTML tags that were used in the first Arduino server example.

Additional tags will be introduced in this tutorial as they are used.

Heading Tag
Heading tags create heading text which is normally made bold and larger than the
paragraph text by the browser. In our first Arduino server, the heading 1 tag was
used – <h1>. This is a top level heading and has a corresponding closing tag. All
text placed between <h1> and </h1> is marked as heading level 1.

Sub-heading text is normally smaller than h1 text and is designated h2, h3, h4, etc.
(<h2>, <h3>, <h4>, etc)

The main heading h1 is used to mark a chapter heading for example – e.g. Chapter
1, the h2 marks a sub heading, e.g. heading 1.1, 1.2, 2.1, etc., h3 marks a sub
heading of an h2 heading, e.g. 1.1.1 and 1.1.2, etc.

Each additional heading level will be rendered in smaller text by the browser.

Title Tag
The title tag, <title>, is placed in the <head> section of the HTML page and will
display text in the top bar of the web browser. This tag is intended to display the
web page title.

Web Server Example
The WebServer example sketch found in the Arduino software (found under File →
Examples → Ethernet → WebServer – already covered in the article Plugging In
and Testing the Arduino Ethernet Shield) actually does not conform to the full HTML
page structure, but instead places text directly between the opening and closing
<html> tags.

In the WebServer example, each line is ended with a line break so that the next line
is shown below the previous line in the browser. The following image shows the
output of the WebServer sketch in the browser and the HTML code used to produce
the output text.

http://www.startingelectronics.com/articles/arduino/arduino-ethernet-shield-plugging-testing
http://www.startingelectronics.com/articles/arduino/arduino-ethernet-shield-plugging-testing

Output from the WebServer Sketch – Web Page on Left, HTML Code on Right

Learning HTML

HTML tags will be introduced as needed in this tutorial, but if you would like to learn
more about HTML, either search on the Internet or pick up an HTML book.

Arduino SD Card Web Server

Part 4 of the Arduino Ethernet Shield Web Server Tutorial

The Arduino, Arduino Ethernet shield and micro SD card are used to make a web
server that hosts a web page on the SD card. When a browser requests a web
page from the Arduino web server, the Arduino will fetch the web page from the SD
card.

Creating the Web Page

Because the web page is to be stored on the SD card, it must first be created using
a text editor and then copied to the SD card.

Web Page Editor

A text editor such as Geany can be used – it is available to download for Windows
and will be in the repositories for most Ubuntu based Linux distributions. Geany has
syntax highlighting and will automatically close HTML tags for you which makes
web page editing easier. It is possible to use any other text editor, even Windows
Notepad.

Web Page

Create the following web page in a text editor. When you save the text file, give it
the name: index.htm

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 </head>

 <body>

 <h1>Hello from the Arduino SD Card!</h1>

 <p>A web page from the Arduino SD card server.</p>

 </body>

</html>

Nothing new here, it is the same as the web page from the first web server in this
tutorial with just the text changed. Test this web page by opening it in a web
browser.

Copying the Web Page

You will need a micro SD card slot on your computer or a card reader that is
capable of reading and writing a micro SD card.

Insert the micro SD card into the slot on the computer or card reader that is plugged
into the computer and copy the index.htm file to the micro SD card.

Now plug the SD card into the micro SD card slot on the Ethernet shield.

SD Card Web Server

http://www.geany.org/

Hardware

You should now have the micro SD card with web page copied to it inserted into the
card slot on the Arduino Ethernet shield. The Ethernet shield should be plugged into
a compatible Arduino and into an Ethernet cable connected to your network. The
Arduino / Ethernet shield should be powered from a USB cable.

Arduino Sketch

The Arduino sketch that fetches the web page from the SD card and sends it to the
browser is shown below.

#include <SPI.h>
#include <Ethernet.h>
#include <SD.h>

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10, 0, 0, 20); // IP address, may need to change depending on network
EthernetServer server(80); // create a server at port 80

File webFile;

void setup()
{
 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
 Serial.begin(9600); // for debugging

 // initialize SD card
 Serial.println("Initializing SD card...");
 if (!SD.begin(4)) {
 Serial.println("ERROR - SD card initialization failed!");
 return; // init failed
 }
 Serial.println("SUCCESS - SD card initialized.");
 // check for index.htm file
 if (!SD.exists("index.htm")) {
 Serial.println("ERROR - Can't find index.htm file!");
 return; // can't find index file
 }
 Serial.println("SUCCESS - Found index.htm file.");
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;

 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: close");
 client.println();
 // send web page
 webFile = SD.open("index.htm"); // open web page file
 if (webFile) {
 while(webFile.available()) {
 client.write(webFile.read()); // send web page to client
 }
 webFile.close();
 }
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

Using the Sketch

Copy the above sketch and paste it into the Arduino IDE. Load the sketch to the
Arduino and then surf to the IP address set in the sketch with your web browser.
The web page that you created should be displayed in the browser as it is served
up by the Arduino SD card web server.

Fault Finding

If the previous sketch in this tutorial worked, then the only thing that can go wrong is

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server

with initializing the SD card and finding the index.htm file on the card. If the file is
not on the card or does not have the exact name index.htm, then the server will not
be able to display the web page.

Open up the Arduino serial monitor window to see SD card diagnostic information.

Sketch Explanation

This sketch is a modified version of the eth_websrv_page sketch from the Basic
Arduino Web Server part of this tutorial.

Additional Code
The sketch now initializes the SD card in the setup() function and sends diagnostic
information out of the serial port that can be viewed in the Arduino serial monitor
window.

Instead of sending the web page line by line from within the code as in the
eth_websrv_page sketch, this new sketch now opens the index.htm file from the
SD card and sends the contents to the web client (the web browser).

Arduino Web Server LED Control

http://www.startingelectronics.com/beginners/start-electronics-now/tut9-using-the-arduino-serial-port
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server

Part 5 of the Arduino Ethernet Shield Web Server Tutorial
In this part of the tutorial, the Arduino and Ethernet shield serves up a web page
that allows an LED to be switched on and off. The LED is connected to one of the
Arduino pins – this simple circuit can be built on a breadboard.

Arduino Web Server LED Controller Hardware

The LED is interfaced to the Arduino as shown in the circuit diagram in the Starting
with Arduino tutorial. It is simply an LED and series resistor connected between
Arduino pin 2 and GND.

An SD card is not used in this web server.

The hardware is shown in the image below.

LED Web Server Hardware

How the LED is Controlled

Web Page and HTML

Web Page and HTML Code with Checkbox Unchecked
The Arduino web server serves up a page that allows the user to click a check box
to switch the LED on and off. The web page is shown here:

Web Page and HTML Code with Checkbox Checked
After clicking the checkbox to switch the LED on, the web page and HTML code
now look as follows:

http://www.startingelectronics.com/beginners/start-electronics-now/tut3-starting-with-arduino
http://www.startingelectronics.com/beginners/start-electronics-now/tut3-starting-with-arduino

LED Web Page with Checkbox Checked

Take note in the above image that the web browser added /?LED2=2 to the end of
the URL field after the checkbox was clicked.

LED Web Server Web Page - Checkbox Unchecked

The HTML code that the Arduino web server sends to the web browser is shown
below.

LED Web Server Web Page HTML Code - Checkbox Unchecked

In the above image, the Arduino changed the HTML page that it sent to the browser
so that the checkbox will be shown with a check mark in it. The change to the code
is highlighted in the image and it can be seen that checked was added.

New HTML Tags

Two new HTML tags are introduced in the above HTML code, namely <form> and
<input>.

HTML <form> Tag
A form tag contains form controls, such as the checkbox used in this example. In
this form, method="get" in the opening form tag will result in the form being
submitted using an HTTP GET request. This also results in the /?LED2=2 text
being added in the URL field of the web browser.

HTML <input> Tag
A single control is added to the HTML form using the <input> tag. The input tag
does not have a corresponding closing tag.

In this example, the input tag is used to create a checkbox. The following fields are
included in the input tag:

 type="checkbox" – displays this input control as a checkbox
 name="LED2" – user defined name of the control
 value="2" – user defined value of the control
 onclick="submit();" – submit the form when the checkbox control is clicked
 checked – when present the checkbox is checked, otherwise it is blank

HTTP Request and Response

When the checkbox is clicked, it will generate an HTTP GET request that sends the
name and value from the checkbox to the Arduino server.

The following is an example of an HTTP request sent from the Firefox browser to
the Arduino server after clicking the checkbox:

GET /?LED2=2 HTTP/1.1

Host: 10.0.0.20

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:18.0)

Gecko/20100101 Firefox/18.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0

.8

Accept-Language: en-ZA,en-GB;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Referer: http://10.0.0.20/

Connection: keep-alive

When unchecking the checkbox, the following HTTP request is sent from the
browser to the Arduino web server:

GET / HTTP/1.1

Host: 10.0.0.20

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:18.0)

Gecko/20100101 Firefox/18.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0

.8

Accept-Language: en-ZA,en-GB;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Referer: http://10.0.0.20/?LED2=2

Connection: keep-alive

The Arduino sketch in this example reads the HTTP request header and checks for
the text LED2=2 and if found, the Arduino will toggle the LED from off to on or on to
off.

Both of the above requests contain the LED2=2 text although in different places.
When checking the box, the text is part of the GET request line. When unchecking
the box, the text is part of the Referer: header.

With this background information, we can now see how the Arduino sketch works.

LED Web Server Sketch

The Arduino sketch for the LED web server is shown below.

#include <SPI.h>
#include <Ethernet.h>

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10, 0, 0, 20); // IP address, may need to change depending on network
EthernetServer server(80); // create a server at port 80

String HTTP_req; // stores the HTTP request
boolean LED_status = 0; // state of LED, off by default

void setup()
{
 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
 Serial.begin(9600); // for diagnostics
 pinMode(2, OUTPUT); // LED on pin 2
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;

 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 HTTP_req += c; // save the HTTP request 1 char at a time
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: close");
 client.println();
 // send web page
 client.println("<!DOCTYPE html>");
 client.println("<html>");
 client.println("<head>");
 client.println("<title>Arduino LED Control</title>");
 client.println("</head>");
 client.println("<body>");
 client.println("<h1>LED</h1>");
 client.println("<p>Click to switch LED on and off.</p>");
 client.println("<form method=\"get\">");
 ProcessCheckbox(client);
 client.println("</form>");
 client.println("</body>");
 client.println("</html>");
 Serial.print(HTTP_req);
 HTTP_req = ""; // finished with request, empty string
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// switch LED and send back HTML for LED checkbox

void ProcessCheckbox(EthernetClient cl)
{
 if (HTTP_req.indexOf("LED2=2") > -1) { // see if checkbox was clicked
 // the checkbox was clicked, toggle the LED
 if (LED_status) {
 LED_status = 0;
 }
 else {
 LED_status = 1;
 }
 }

 if (LED_status) { // switch LED on
 digitalWrite(2, HIGH);
 // checkbox is checked
 cl.println("<input type=\"checkbox\" name=\"LED2\" value=\"2\" \
 onclick=\"submit();\" checked>LED2");
 }
 else { // switch LED off
 digitalWrite(2, LOW);
 // checkbox is unchecked
 cl.println("<input type=\"checkbox\" name=\"LED2\" value=\"2\" \
 onclick=\"submit();\">LED2");
 }
}

Modification to Sketch

This sketch is a modified version of the eth_websrv_page sketch from the basic
Arduino web server.

The sketch creates the HTML page as usual, but calls the ProcessCheckbox()
function to take care of the line that draws the checkbox.

The ProcessCheckbox() function checks to see if the HTTP request contains the
text LED2=2. If the HTTP request does contain this text, then the LED will be
toggled (switched from on to off or from off to on) and the web page is sent again
with the checkbox control also toggled to reflect the state of the LED.

Improvements
The sketch has been kept simple for learning purposes, but some improvements
can be made to this sketch to make it more reliable.

The sketch currently only checks for the presence of the text LED2=2 in the HTTP
request to see if the checkbox was clicked. It would be more reliable to check where
the LED2=2 text is in the HTTP message to determine whether the checkbox is
being checked or unchecked. This would then make it impossible for the state of the
LED and the state of the checkbox to become unsynchronized.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server

Reading Switch State using an Arduino

Web Server
Part 6 of the Arduino Ethernet Shield Web Server Tutorial

A push button switch interfaced to the Arduino is read to see whether it is on or off.
The state of the switch is displayed on a web page. The Arduino with Ethernet
shield is set up as a web server and accessed from a web browser.
The browser refreshes the web page every second, so it can take up to a second
for the new state of the switch to be displayed after pressing or releasing the button.

Arduino Web Server Hardware for Reading the Switch

The switch is interfaced to the Arduino / Ethernet shield as done in the circuit
diagram from this article: Project 4: Switch a LED on when Switch is Closed
(Button) except that the switch is connected to pin 3 and not pin 2 of the
Arduino (the article actually uses the circuit diagram from one of the Arduino
examples on the Arduino website).

Switch Web Server Sketch

The source code for the switch status Arduino web server is shown below.

#include <SPI.h>
#include <Ethernet.h>

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10, 0, 0, 20); // IP address, may need to change depending on network
EthernetServer server(80); // create a server at port 80

void setup()
{
 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
 pinMode(3, INPUT); // input pin for switch
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client

http://www.startingelectronics.com/beginners/start-electronics-now/tut10-ten-arduino-projects-for-absolute-beginners/P4-button
http://www.startingelectronics.com/beginners/start-electronics-now/tut10-ten-arduino-projects-for-absolute-beginners/P4-button

 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connnection: close");
 client.println();
 // send web page
 client.println("<!DOCTYPE html>");
 client.println("<html>");
 client.println("<head>");
 client.println("<title>Arduino Read Switch State</title>");
 client.println("<meta http-equiv=\"refresh\" content=\"1\">");
 client.println("</head>");
 client.println("<body>");
 client.println("<h1>Switch</h1>");
 client.println("<p>State of switch is:</p>");
 GetSwitchState(client);
 client.println("</body>");
 client.println("</html>");
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

void GetSwitchState(EthernetClient cl)
{
 if (digitalRead(3)) {
 cl.println("<p>ON</p>");
 }
 else {
 cl.println("<p>OFF</p>");
 }

}

Modification to Sketch

Again, this sketch is a modified version of the eth_websrv_page sketch from the
basic Arduino web server.

Reading the Switch
The web page is created as usual, except that the function GetSwitchState() is
called when the text for the switch is to be displayed.

In the GetSwitchState() function, the state of the switch is read. The text that is
sent to the browser will be a HTML paragraph that contains either "ON" or "OFF",
depending of the state of the switch.

Refreshing the Browser

A line of HTML in the <head> part of the HTML page sent to the browser is used to
tell the browser to refresh the page every second. This allows the new state of the
switch to be displayed if it has changed.

The line of code in the sketch that does this is shown here:

client.println("<meta http-equiv=\"refresh\"

content=\"1\">");

This will be sent to the browser as the following HTML code:

<meta http-equiv="refresh" content="1">

Remember that you can right-click on the web page in your browser and then select
View Page Source on the pop-up menu (or similar menu item depending on the
browser you are using).

The "1" in the code tells the browser to refresh every 1 second.

This is the same method used to read the analog inputs of the Arduino in the
WebServer example that is built into the Arduino software (found in the Arduino
IDE under File → Examples → Ethernet → WebServer).

Improving this Example

The annoying thing about this method of refreshing the page is that the browser
flashes every second as it updates the page. In the next part of this tutorial we will
use a method called AJAX that will refresh only part of the web page that displays
the switch state.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server

Arduino Web Server Switch Status

Using AJAX Manually
Part 7 of the Arduino Ethernet Shield Web Server Tutorial
The state of a switch connected to the Arduino / Ethernet shield is shown on a web
page that is hosted by the Arduino. AJAX is used to fetch the state of the switch
when a button on the web page is clicked.

The reason for using a button on the web page to refresh the state of the switch is
to keep the code simple for those who are new to AJAX. The next part of this series
will automate the reading of the switch using AJAX for a more practical application.

This video shows the Arduino web server displaying the switch status using AJAX.

What is AJAX?

AJAX stands for Asynchronous JavaScript and XML.

AJAX is basically the use of a set of JavaScript functions for getting information
from the web server (our Arduino). This means that data on a web page can be
updated without fetching the whole page each time.

Using AJAX will be an improvement on the previous part of this tutorial as HTML
refresh code that makes the page flicker each time it is reloaded is no longer
needed. Only the information that has changed (the state of the switch) will be
updated on the page eliminating the flicker.

What is JavaScript?

JavaScript is a client side scripting language. This means that it is code that will run
on the web browser.

JavaScript is included in the HTML page. When you surf to the HTML web page
hosted by the Arduino, the page and the JavaScript is loaded to your browser. Your
browser then runs the JavaScript code (provided that you have not disabled
JavaScript in your browser).

Web Server Hardware

The switch is interfaced to the Arduino / Ethernet shield as done in the circuit
diagram from this article: Project 4: Switch a LED on when Switch is Closed
(Button) except that the switch is connected to pin 3 and not pin 2 of the
Arduino (the article actually uses the circuit diagram from one of the Arduino
examples on the Arduino website).

Arduino AJAX Sketch

The sketch for this part of the tutorial is shown below. Copy it and paste it into your
Arduino IDE and then load it to the Arduino.

http://www.startingelectronics.com/beginners/start-electronics-now/tut10-ten-arduino-projects-for-absolute-beginners/P4-button
http://www.startingelectronics.com/beginners/start-electronics-now/tut10-ten-arduino-projects-for-absolute-beginners/P4-button

#include <SPI.h>
#include <Ethernet.h>

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10, 0, 0, 20); // IP address, may need to change depending on network
EthernetServer server(80); // create a server at port 80

String HTTP_req; // stores the HTTP request

void setup()
{
 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
 Serial.begin(9600); // for diagnostics
 pinMode(3, INPUT); // switch is attached to Arduino pin 3
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 HTTP_req += c; // save the HTTP request 1 char at a time
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: keep-alive");
 client.println();
 // AJAX request for switch state
 if (HTTP_req.indexOf("ajax_switch") > -1) {
 // read switch state and send appropriate paragraph text
 GetSwitchState(client);
 }
 else { // HTTP request for web page
 // send web page - contains JavaScript with AJAX calls
 client.println("<!DOCTYPE html>");
 client.println("<html>");
 client.println("<head>");
 client.println("<title>Arduino Web Page</title>");
 client.println("<script>");

 client.println("function GetSwitchState() {");
 client.println("nocache = \"&nocache=\"\
 + Math.random() * 1000000;");
 client.println("var request = new XMLHttpRequest();");
 client.println("request.onreadystatechange = function() {");
 client.println("if (this.readyState == 4) {");
 client.println("if (this.status == 200) {");
 client.println("if (this.responseText != null) {");
 client.println("document.getElementById(\"switch_txt\")\
.innerHTML = this.responseText;");
 client.println("}}}}");
 client.println(
 "request.open(\"GET\", \"ajax_switch\" + nocache, true);");
 //client.println("request.open(\"GET\", \"ajax_switch\", true);");
 client.println("request.send(null);");
 client.println("}");
 client.println("</script>");
 client.println("</head>");
 client.println("<body>");
 client.println("<h1>Arduino AJAX Switch Status</h1>");
 client.println(
 "<p id=\"switch_txt\">Switch state: Not requested...</p>");
 client.println("<button type=\"button\"\
 onclick=\"GetSwitchState()\">Get Switch State</button>");
 client.println("</body>");
 client.println("</html>");
 }
 // display received HTTP request on serial port
 Serial.print(HTTP_req);
 HTTP_req = ""; // finished with request, empty string
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// send the state of the switch to the web browser
void GetSwitchState(EthernetClient cl)
{
 if (digitalRead(3)) {
 cl.println("Switch state: ON");
 }
 else {
 cl.println("Switch state: OFF");
 }
}

HTML and JavaScript

The above sketch will send the following HTML and JavaScript to the web browser.

HTML and JavaScript Hosted by the Arduino

Page Structure
In the <head> part of the HTML code, a JavaScript function can be found between
the opening and closing <script> tags.

Whenever the button on the web page is clicked, the GetSwitchState() JavaScript
function is called.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-using-AJAX/HTML-code.jpg

JavaScript Function
When the web page button is clicked and the GetSwitchState() function is called, it
sends a HTTP GET request to the Arduino that contains the text "ajax_switch". This
request looks as follows:

GET /ajax_switch&nocache=29860.903564600583 HTTP/1.1

Host: 10.0.0.20

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:18.0)

Gecko/20100101 Firefox/18.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0

.8

Accept-Language: en-ZA,en-GB;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Referer: http://10.0.0.20/

Connection: keep-alive

When the Arduino receives this request (containing the ajax_switch text), it
responds with a standard HTTP response header followed by text that contains the
state of the switch.

In the Arduino code, the function GetSwitchState() will read the switch state on the
Arduino pin and send the text Switch state: ON or Switch state: OFF.

When the JavaScript in the browser receives this response, it runs the code in the
unnamed function request.onreadystatechange = function(). This function runs
every time that the Arduino sends a response to the browser. It replaces the Switch
state: x text on the web page (or the default text Switch state: Not requested...)
with the new text received from the Arduino.

This JavaScript request from the browser and response from the Arduino is AJAX in
action.

AJAX Summarized

The AJAX operation performed in this example can be summarized as follows:

1. AJAX Request from Browser

When the button on the web page is clicked, the JavaScript function
GetSwitchState() is run. This function does the following:

1. Generates a random number to send with the GET request: nocache =

"&nocache=" + Math.random() * 1000000;
2. Creates a XMLHttpRequest() object called request: var request = new

XMLHttpRequest();

3. Assigns a function to handle the response from the web server:

request.onreadystatechange = function() (and following code between braces
{ }).

4. Sets up a HTTP GET request to send to the web server: request.open("GET",

"ajax_switch" + nocache, true);
 5. Sends the HTTP request: request.send(null);

2. Response from Arduino Web Server

When the Arduino web server receives the HTTP GET request, it sends back a
standard HTTP response followed by text that represents the state of the switch.
The state of the switch and the text sent is obtained from the Arduino's own
GetSwitchState() function.

3. Browser JavaScript Handles Response

The HTTP response from the Arduino web server is handled by the JavaScript
code. The JavaScript event handler function runs when the response from the
Arduino is received (the event handler function is the unnamed function assigned to
request.onreadystatechange).

If the received response is OK and not empty, then this line of JavaScript is run:

document.getElementById("switch_txt").innerHTML =

this.responseText;

This JavaScript finds the paragraph in the HTML that is marked with the ID
switch_txt and replaces the current text with the text received from the Arduino.
The HTML for this paragraph looks as follows:

<p id="switch_txt">Switch state: Not requested...</p>

This example has illustrated the use of AJAX used to update a single paragraph of
text in the browser. The next part of this tutorial will automate the AJAX request so
that a button does not have to be clicked to initiate the request.

Reading Switch Status Automatically

using AJAX on the Arduino Web Server
Part 8 of the Arduino Ethernet Shield Web Server Tutorial
With a slight modification to the HTML and JavaScript code in the Arduino sketch
from the previous part of this tutorial, the Arduino web server can be made to
automatically update the status of a switch on the web page. The button on the web
page used to make the AJAX call from the previous part of this tutorial is no longer
needed.

Before continuing with this part of the tutorial, you will need to have completed the
previous part of this tutorial and understand it.

This video shows the Arduino web server displaying the switch status automatically
using AJAX.

Arduino AJAX Web Server Sketch

Use the same hardware as the previous part of this tutorial – a push button switch
interfaced to pin 3 of the Arduino with Ethernet shield.

Only three modifications need to be made to the previous sketch
(eth_websrv_AJAX_switch) to automate the AJAX call that updates the switch
status on the web page.

The modified sketch is shown here:

#include <SPI.h>
#include <Ethernet.h>

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10, 0, 0, 20); // IP address, may need to change depending on network
EthernetServer server(80); // create a server at port 80

String HTTP_req; // stores the HTTP request

void setup()
{
 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
 Serial.begin(9600); // for diagnostics
 pinMode(3, INPUT); // switch is attached to Arduino pin 3
}

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-using-AJAX
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-using-AJAX

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 HTTP_req += c; // save the HTTP request 1 char at a time
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: keep-alive");
 client.println();
 // AJAX request for switch state
 if (HTTP_req.indexOf("ajax_switch") > -1) {
 // read switch state and send appropriate paragraph text
 GetSwitchState(client);
 }
 else { // HTTP request for web page
 // send web page - contains JavaScript with AJAX calls
 client.println("<!DOCTYPE html>");
 client.println("<html>");
 client.println("<head>");
 client.println("<title>Arduino Web Page</title>");
 client.println("<script>");
 client.println("function GetSwitchState() {");
 client.println("nocache = \"&nocache=\"\
 + Math.random() * 1000000;");
 client.println("var request = new XMLHttpRequest();");
 client.println("request.onreadystatechange = function() {");
 client.println("if (this.readyState == 4) {");
 client.println("if (this.status == 200) {");
 client.println("if (this.responseText != null) {");
 client.println("document.getElementById(\"switch_txt\")\
.innerHTML = this.responseText;");
 client.println("}}}}");
 client.println(
 "request.open(\"GET\", \"ajax_switch\" + nocache, true);");
 client.println("request.send(null);");
 client.println("setTimeout('GetSwitchState()', 1000);");
 client.println("}");
 client.println("</script>");
 client.println("</head>");

 client.println("<body onload=\"GetSwitchState()\">");
 client.println("<h1>Arduino AJAX Switch Status</h1>");
 client.println(
 "<p id=\"switch_txt\">Switch state: Not requested...</p>");
 client.println("</body>");
 client.println("</html>");
 }
 // display received HTTP request on serial port
 Serial.print(HTTP_req);
 HTTP_req = ""; // finished with request, empty string
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// send the state of the switch to the web browser
void GetSwitchState(EthernetClient cl)
{
 if (digitalRead(3)) {
 cl.println("Switch state: ON");
 }
 else {
 cl.println("Switch state: OFF");
 }
}

Modification to HTML and JavaScript

The image below shows the modifications that were made to the HTML file that the
Arduino sketch sends to the web browser (this file is sent line by line using
client.println() in the sketch).

Web Page Button Code
Firstly, the code that creates a button on the web page has been removed as the
button is no longer needed. It can be seen commented out in the above image.

Calling the GetSwitchState() Function
The GetSwitchState() function that was previously being called each time the button
was pressed is now being called when the page is loaded. This is done by calling
the function when the page load event occurs by modifying the <body> tag of the
HTML: <body onload="GetSwitchState()">

This is added to the Arduino sketch with the following line of code: 
client.println("<body onload=\"GetSwitchState()\">");

Making the AJAX Call Every Second
The GetSwitchState() function would only be called once when the web page loads,
unless we change the code to periodically call this function.

The following line of code is added to the bottom of the GetSwitchState() function to
make sure that this function is called every second: 
setTimeout('GetSwitchState()', 1000);

What this line of JavaScript code does is call GetSwitchState() every 1000
milliseconds (every second). An AJAX call is therefore made every one second
which fetches the status of the switch and updates it on the web page.

This code is added to the web page by adding this line to the Arduino sketch: 
client.println("setTimeout('GetSwitchState()', 1000);");

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-automatically-using-AJAX/AJAX-HTML-file.jpg

Analog Inputs and Switches using AJAX

Part 9 of the Arduino Ethernet Shield Web Server Tutorial
Updating the status of more than one switch that is interfaced to the Arduino web
server, as well as showing the value of one of the analog inputs.

JavaScript is used to make AJAX calls to request the switch status and analog
value from the web server.

This video shows the switches and analog input updated on the web page without
flicker. Only parts of the web page are updated using AJAX.

Circuit Diagram

The circuit diagram below shows how the switches are interfaced to the Arduino
(with Ethernet shield plugged into it). A potentiometer is interfaced to analog input
A2 so that the value on A2 can be changed and updated on the web page.

The Sketch

The Arduino sketch is a modified version of the sketch from the previous tutorial.

#include <SPI.h>
#include <Ethernet.h>

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(10, 0, 0, 20); // IP address, may need to change depending on network
EthernetServer server(80); // create a server at port 80

String HTTP_req; // stores the HTTP request

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-automatically-using-AJAX

void setup()
{
 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
 Serial.begin(9600); // for diagnostics
 pinMode(7, INPUT); // switch is attached to Arduino pin 7
 pinMode(8, INPUT); // switch is attached to Arduino pin 8
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 HTTP_req += c; // save the HTTP request 1 char at a time
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: keep-alive");
 client.println();
 // AJAX request for switch state
 if (HTTP_req.indexOf("ajax_switch") > -1) {
 // read switch state and analog input
 GetAjaxData(client);
 }
 else { // HTTP request for web page
 // send web page - contains JavaScript with AJAX calls
 client.println("<!DOCTYPE html>");
 client.println("<html>");
 client.println("<head>");
 client.println("<title>Arduino Web Page</title>");
 client.println("<script>");
 client.println("function GetSwitchAnalogData() {");
 client.println(
 "nocache = \"&nocache=\" + Math.random() * 1000000;");
 client.println("var request = new XMLHttpRequest();");
 client.println("request.onreadystatechange = function() {");
 client.println("if (this.readyState == 4) {");
 client.println("if (this.status == 200) {");
 client.println("if (this.responseText != null) {");

 client.println("document.getElementById(\"sw_an_data\")\
.innerHTML = this.responseText;");
 client.println("}}}}");
 client.println(
 "request.open(\"GET\", \"ajax_switch\" + nocache, true);");
 client.println("request.send(null);");
 client.println("setTimeout('GetSwitchAnalogData()', 1000);");
 client.println("}");
 client.println("</script>");
 client.println("</head>");
 client.println("<body onload=\"GetSwitchAnalogData()\">");
 client.println("<h1>Arduino AJAX Input</h1>");
 client.println("<div id=\"sw_an_data\">");
 client.println("</div>");
 client.println("</body>");
 client.println("</html>");
 }
 // display received HTTP request on serial port
 Serial.print(HTTP_req);
 HTTP_req = ""; // finished with request, empty string
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// send the state of the switch to the web browser
void GetAjaxData(EthernetClient cl)
{
 int analog_val;

 if (digitalRead(7)) {
 cl.println("<p>Switch 7 state: ON</p>");
 }
 else {

 cl.println("<p>Switch 7 state: OFF</p>");
 }
 if (digitalRead(8)) {
 cl.println("<p>Switch 8 state: ON</p>");
 }
 else {
 cl.println("<p>Switch 8 state: OFF</p>");
 }
 // read analog pin A2
 analog_val = analogRead(2);
 cl.print("<p>Analog A2: ");
 cl.print(analog_val);
 cl.println("</p>");
}

Web Page Code

The above sketch produces the following HTML code:

HTML Code Produced by Arduino Sketch - click for a bigger image

Modifications to the Sketch

Arduino pins 7 and 8 are both configured as inputs in the setup() part of the sketch.

The JavaScript function that handles the AJAX call has been renamed. The Arduino
function that responds to the AJAX call has also been renamed.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/AJAX-read-switches-analog/html-ajax-in-code.png

A HTML <div> has been created below the H1 header in the HTML code and given
the id "sw_an_data". The div is invisible on the page, but it serves as a place for the
JavaScript to put the information (switch and analog values) sent back from the
Arduino.

Sending the Request for Data from the Browser

The JavaScript function GetSwitchAnalogData() is called every second. Every
second, it sends a GET request to the Arduino web server.

Receiving and Processing the AJAX Request on the Arduino

When the Arduino receives the AJAX request, it runs the GetAjaxData() function.
This function reads the state of the two switches and sends the switches' statuses
(ON or OFF) back to the web browser. The function also reads the value on the A2
analog pin and sends the value back to the browser.

Displaying the New Data in the Web Browser

When the web browser receives the data requested from the Arduino, it simply
inserts it into the div that has the ID sw_an_data.

Arduino SD Card Web Server

 Linking Pages
Part 10 of the Arduino Ethernet Shield Web Server Tutorial

This part of the Arduino Ethernet shield web server tutorial shows how to create
links between web pages that are hosted on the micro SD card of the Arduino web
server.

These are links on a hosted web page that can be clicked in order to go to or open
a different web page.

Creating Links in HTML

Links are created in HTML by using the HTML <a> tag. Text between the opening
<a> tag and closing tag becomes a clickable link on the web page.

The value of the href attribute of the <a> tag must contain the file name of the web
page that is linked to, e.g.:

<p>Go to page 2.</p>

The above line of HTML will create a paragraph of text with the page 2 part of the
paragraph becoming a link to a file called page2.htm.

The file page2.htm must exist and also be in the same directory as the page that
contains the link to it.

Example HTML Files

Two HTML files will be used as examples in this part of the tutorial. They must be
saved to the micro SD card and the micro SD card must be plugged into the
Ethernet shield.

The main page that will be loaded first from the server is made from the following
HTML code (file name is index.htm):

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 </head>

 <body>

 <h1>Arduino SD Card Page with Link</h1>

 <p>Go to page 2.</p>

 </body>

</html>

The above page links to a second page called page2.htm:

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page 2</title>

 </head>

 <body>

 <h1>Arduino SD Card Page 2</h1>

 <p>Go back to main page.</p>

 </body>

</html>

page2.htm links back to the main page index.htm.

Create the above two files (index.htm and page2.htm) and copy them to your micro
SD card. Insert the micro SD card into the Ethernet shield micro SD card holder.

These pages can be tested on a computer (with the two files in the same folder on
the hard-drive) by opening index.htm in a browser and clicking the link. page2.htm
should open when the link is clicked. Clicking the link on page2.htm should send the
browser back to index.htm.

HTTP Page Requests

When a web browser first requests a page from the Arduino web server, it sends an
HTTP request similar to this:

GET / HTTP/1.1

Host: 10.0.0.20

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:19.0)

Gecko/20100101 Firefox/19.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0

.8

Accept-Language: en-ZA,en-GB;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Connection: keep-alive

We have already seen this HTTP request in previous parts of this tutorial.

When the link on the page is clicked (the link on the index.htm page to the
page2.htm page in our example), the web browser sends the following HTTP
request:

GET /page2.htm HTTP/1.1

Host: 10.0.0.20

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:19.0)

Gecko/20100101 Firefox/19.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0

.8

Accept-Language: en-ZA,en-GB;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Referer: http://10.0.0.20/

Connection: keep-alive

So the initial HTTP request contains a GET request for the root file: GET / (this
would be our index.htm file).

When the link is clicked, the request is now for a specific page: GET /page2.htm –
now we know that we must check the HTTP request to see whether it is requesting
the root file or a specific file that was linked to. This check will be done in the
Arduino sketch.

Arduino Sketch for Linked Web Pages on Web Server

The sketch below is a modified version of the first SD card web server from part 4 of
this series.

The eth_websrv_SD_link Arduino sketch:

#include <SPI.h>
#include <Ethernet.h>
#include <SD.h>

// size of buffer used to capture HTTP requests
#define REQ_BUF_SZ 20

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 0, 20); // IP address, may need to change depending on
network
EthernetServer server(80); // create a server at port 80
File webFile; // handle to files on SD card
char HTTP_req[REQ_BUF_SZ] = {0}; // buffered HTTP request stored as null
terminated string
char req_index = 0; // index into HTTP_req buffer

void setup()
{
 // disable Ethernet chip
 pinMode(10, OUTPUT);
 digitalWrite(10, HIGH);

 Serial.begin(9600); // for debugging

 // initialize SD card
 Serial.println("Initializing SD card...");
 if (!SD.begin(4)) {
 Serial.println("ERROR - SD card initialization failed!");
 return; // init failed
 }

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server

 Serial.println("SUCCESS - SD card initialized.");
 // check for index.htm file
 if (!SD.exists("index.htm")) {
 Serial.println("ERROR - Can't find index.htm file!");
 return; // can't find index file
 }
 Serial.println("SUCCESS - Found index.htm file.");

 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 // buffer first part of HTTP request in HTTP_req array (string)
 // leave last element in array as 0 to null terminate string (REQ_BUF_SZ - 1)
 if (req_index < (REQ_BUF_SZ - 1)) {
 HTTP_req[req_index] = c; // save HTTP request character
 req_index++;
 }
 Serial.print(c); // print HTTP request character to serial monitor
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connnection: close");
 client.println();
 // open requested web page file
 if (StrContains(HTTP_req, "GET / ")
 || StrContains(HTTP_req, "GET /index.htm")) {
 webFile = SD.open("index.htm"); // open web page file
 }
 else if (StrContains(HTTP_req, "GET /page2.htm")) {
 webFile = SD.open("page2.htm"); // open web page file
 }
 // send web page to client
 if (webFile) {
 while(webFile.available()) {
 client.write(webFile.read());

 }
 webFile.close();
 }
 // reset buffer index and all buffer elements to 0
 req_index = 0;
 StrClear(HTTP_req, REQ_BUF_SZ);
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// sets every element of str to 0 (clears array)
void StrClear(char *str, char length)
{
 for (int i = 0; i < length; i++) {
 str[i] = 0;
 }
}

// searches for the string sfind in the string str
// returns 1 if string found
// returns 0 if string not found
char StrContains(char *str, char *sfind)
{
 char found = 0;
 char index = 0;
 char len;

 len = strlen(str);

 if (strlen(sfind) > len) {
 return 0;
 }
 while (index < len) {

 if (str[index] == sfind[found]) {
 found++;
 if (strlen(sfind) == found) {
 return 1;
 }
 }
 else {
 found = 0;
 }
 index++;
 }
 return 0;
}

NOTE: The IP address is set to 192.168.0.20 in this sketch and not 10.0.0.20 as in
other sketches in this tutorial, so change it for your system if necessary.

The changes to the original SD card sketch from part 4 are described below.

HTTP Request

The sketch was modified to store the HTTP request from the web browser in the
string HTTP_req. This string can then be searched to find out which page is being
requested.

The HTTP request is sent out of the serial port and can be viewed in the Arduino
serial monitor window for diagnostics and debugging purposes.

Sending the Correct Web Page

After the Arduino has received the HTTP request from the browser, it responds with
a standard HTTP header and then sends the requested web page.

The code that selects which web page to send is shown here:

// open requested web page file

if (StrContains(HTTP_req, "GET / ")

 || StrContains(HTTP_req, "GET /index.htm")) {

 webFile = SD.open("index.htm"); // open web page file

}

else if (StrContains(HTTP_req, "GET /page2.htm")) {

 webFile = SD.open("page2.htm"); // open web page file

}

All this code does is open either index.htm or page2.htm from the SD card. The
code that sends the file is the same as the code from part 4 of this series.

The code to select the correct file looks at the received HTTP request using the
StrContains() function. HTTP_req is the string in our sketch that contains the
HTTP request. If the HTTP request contains "GET / ", then this is a request for our
root file index.htm.

If the HTTP request string contains "GET /page2.htm", then page2.htm will be
opened and sent to the web browser.

When the link on page2.htm is clicked, it links back to index.htm and not /. This is
the reason for checking if the HTTP request contains "GET / " or "GET /index.htm"
in the first if statement in the above code listing.

Sketch Improvements

The above sketch is used to demonstrate the mechanism for opening page links on
the Arduino web server, so was kept simple. Some improvements that could be
made to the code would be firstly to extract the file name after the GET in the HTTP
request and then open the file without checking for the specific name in the code. A
second improvement would be to handle the case where a page is requested by the
browser, but it does not exist on the SD card.

Arduino SD Card Web Server

 Displaying Images
Part 11 of the Arduino Ethernet Shield Web Server Tutorial
A page hosted by the Arduino web server on the SD card contains an image. This
tutorial shows how to insert a JPEG image into a HTML web page and how to send
the image to the web browser when an HTTP request for the image is received by
the web server.

Uses the Arduino Uno with Ethernet shield and micro SD card.

HTML for Displaying an Image

The HTML tag is used to insert an image into a web page. The web pages
from the previous part of this tutorial series are used again. The index.htm file is
modified to add an image – the HTML for this file is shown below.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 </head>

 <body>

 <h1>Arduino SD Card Page with Image and Link</h1>

 <p>Go to page 2.</p>

 </body>

</html>

In the above HTML code, an image called pic.jpg is inserted into the web page
using the following line of HTML code:

The src attribute is used to specify the name of the image to display.

Source Code

The three files for this example can be downloaded and copied to a micro SD card
that will be inserted into the card slot of the Arduino Ethernet shield.

SD_card_image.zip (8.2 kB) – contains index.htm, page2.htm and pic.jpg used in
this part of the tutorial.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page 2</title>

 </head>

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server-links
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server-image/SD_card_image.zip

 <body>

 <h1>Arduino SD Card Page 2</h1>

 <p>Go back to main page.</p>

 </body>

</html>

HTTP Requests

When connecting to the Arduino web server in this example, the web browser will
first send an HTTP request to the server as normal. After the web browser has
received the web page, it will find that the web page contains an image. It will then
send a second HTTP request for the image.

Arduino Sketch

The Arduino sketch for this example is called eth_websrv_SD_image and is shown
below. It is a modified version of the sketch from the previous part of this tutorial
series.

#include <SPI.h>

#include <Ethernet.h>
#include <SD.h>

// size of buffer used to capture HTTP requests
#define REQ_BUF_SZ 20

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 0, 20); // IP address, may need to change depending on
network
EthernetServer server(80); // create a server at port 80
File webFile;
char HTTP_req[REQ_BUF_SZ] = {0}; // buffered HTTP request stored as null
terminated string
char req_index = 0; // index into HTTP_req buffer

void setup()
{
 // disable Ethernet chip
 pinMode(10, OUTPUT);
 digitalWrite(10, HIGH);

 Serial.begin(9600); // for debugging

 // initialize SD card
 Serial.println("Initializing SD card...");
 if (!SD.begin(4)) {
 Serial.println("ERROR - SD card initialization failed!");
 return; // init failed

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server-links
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server-links

 }
 Serial.println("SUCCESS - SD card initialized.");
 // check for index.htm file
 if (!SD.exists("index.htm")) {
 Serial.println("ERROR - Can't find index.htm file!");
 return; // can't find index file
 }
 Serial.println("SUCCESS - Found index.htm file.");

 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 // buffer first part of HTTP request in HTTP_req array (string)
 // leave last element in array as 0 to null terminate string (REQ_BUF_SZ - 1)
 if (req_index < (REQ_BUF_SZ - 1)) {
 HTTP_req[req_index] = c; // save HTTP request character
 req_index++;
 }
 // print HTTP request character to serial monitor
 Serial.print(c);
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // open requested web page file
 if (StrContains(HTTP_req, "GET / ")
 || StrContains(HTTP_req, "GET /index.htm")) {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connnection: close");
 client.println();
 webFile = SD.open("index.htm"); // open web page file
 }
 else if (StrContains(HTTP_req, "GET /page2.htm")) {
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connnection: close");
 client.println();
 webFile = SD.open("page2.htm"); // open web page file

 }
 else if (StrContains(HTTP_req, "GET /pic.jpg")) {
 webFile = SD.open("pic.jpg");
 if (webFile) {
 client.println("HTTP/1.1 200 OK");
 client.println();
 }
 }
 if (webFile) {
 while(webFile.available()) {
 client.write(webFile.read()); // send web page to client
 }
 webFile.close();
 }
 // reset buffer index and all buffer elements to 0
 req_index = 0;
 StrClear(HTTP_req, REQ_BUF_SZ);
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// sets every element of str to 0 (clears array)
void StrClear(char *str, char length)
{
 for (int i = 0; i < length; i++) {
 str[i] = 0;
 }
}

// searches for the string sfind in the string str
// returns 1 if string found
// returns 0 if string not found
char StrContains(char *str, char *sfind)

{
 char found = 0;
 char index = 0;
 char len;

 len = strlen(str);

 if (strlen(sfind) > len) {
 return 0;
 }
 while (index < len) {
 if (str[index] == sfind[found]) {
 found++;
 if (strlen(sfind) == found) {
 return 1;
 }
 }
 else {
 found = 0;
 }
 index++;
 }

 return 0;
}
The sketch works the same way as the sketch from the previous part of this tutorial,
except for the following code which handles the JPEG image:

 else if (StrContains(HTTP_req, "GET /pic.jpg")) {

 webFile = SD.open("pic.jpg");

 if (webFile) {

 client.println("HTTP/1.1 200 OK");

 client.println();

 }

}

This code checks to see if the HTTP request from the web browser is requesting the
JPEG image pic.jpg.

If the request for the image is received and it can be opened from the SD card, a
OK response is sent back to the web browser. The JPEG file is then sent using the
same code that sends back an HTML page.

Again, as in the previous part of this tutorial, the code was made very basic for
teaching purposes. It does not handle cases where the resource (HTML file or
image file) can't be found on the SD card. It also specifically only handles an image
with the name "pic.jpg".

For practical use, it would be better to obtain the requested HTML page name or
image file name from the HTTP request and then try to find it on the SD card. Code

should be in place to handle the case where the file can not be found on the SD
card.

CSS Introduction
Part 12 of the Arduino Ethernet Shield Web Server Tutorial

We first looked at HTML in this tutorial which has to do with structuring the content
of a web page into paragraphs, headings, form controls, etc.

We now look at CSS (Cascading Style Sheets). CSS controls the appearance of the
content on a web page. CSS acts on the HTML tags to change attributes of the text
or elements between the HTML tags. For example, the font type, colour and size of
a paragraph of text can be changed. CSS can also be used to position HTML
elements on a web page.

In this part of the tutorial, we will look at only the basics of CSS so that the
newcomer to CSS can get an idea of what CSS can do and what CSS looks like.
Further CSS will be explained as it is used in this tutorial.

A CSS Example
In this example, CSS markup is used to style a page so that it appears as follows:

A Web Page Styled with CSS

HTML and CSS Markup

The HTML and CSS markup that produces the above web page can be seen below.

Including the CSS
In this example the actual CSS markup is included in the HTML page. The CSS is
inserted between opening and closing <style> tags. The style tags are placed in the
<head> part of the HTML file.

There are two other methods of including CSS in an HTML file:  1) In-line – the
CSS is inserted into the HTML tags.  2) An external style sheet – all the CSS is
written in an external file and included at the top of the HTML file.

Examining the CSS
The CSS that is used in this example is shown on its own here:

Header Text
The first part of the CSS applies styles to the <h1> part of the HTML code. The
styles between the opening and closing braces after h1 in the above listing will be
applied to every h1 header on the web page.

The line of CSS code below sets the font type to courier. If courier is not found on

the system, then courier-new will be used. If courier-new is not found on the system
then any serif font will be used.

font-family: courier, courier-new, serif;

The next two lines set the size of the h1 font and the font colour.

The last style that is applied to h1 headers is to put a two pixel wide (2px) solid blue
line below the header text.

Paragraph Text
The next style in the CSS markup is applied to paragraph text (<p>). The styles
between the opening and closing braces after p are applied to all paragraph text on
the web page.

A font type and size are specified first. The colour of the paragraph text is specified
using a RGB hexadecimal number.

Overriding a Style
In the HTML, a paragraph has been given a class name. This name is any name
that the person writing the HTML and CSS chooses:

<p class="red_txt">This text is red.</p>

By creating a CSS class style called red_txt, the paragraph style can be overridden
for all paragraphs that are marked as of the red_txt class.

.red_txt {

 color: red;

}

In this case, only the colour of the paragraph is overridden because it is the only
style specified in the CSS red_txt class.

When writing a CSS class, the name must start with a full-stop as in .red_txt and as
shown above.

Changing the Style of a Single Word
To change the style of a single word in a paragraph, the word must first be isolated
by using HTML code. The following line of HTML uses the tag to isolate a
single word. It then applies the same style from the red_txt class to the single word.

<p>This paragraph has one word that uses <span

class="red_txt" >red text.</p>

Further CSS Learning

This has been a very brief introduction to CSS and was intended only to show you
what CSS is, what it does and what it looks like.

There are very many more styles that can be applied to a large range of HTML
tags. In fact there are whole books dedicated to CSS.

If you would like to learn more about CSS, then search for a more in-depth CSS
tutorial on the Internet or pick up a good CSS book.

Running the CSS Example

To load the above CSS example to the Arduino web server, just put the HTML and
CSS code into a file called index.htm and copy it to a micro SD card. Insert the
micro SD card into the Arduino Ethernet shield card socket and then load the sketch
from the Arduino SD card web server.

To save you from having to type out the above code, it has been included here so
that it can be copied and pasted:

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 <style type="text/css">

 h1 {

 font-family: courier, courier-new, serif;

 font-size: 20pt;

 color: blue;

 border-bottom: 2px solid blue;

 }

 p {

 font-family: arial, verdana, sans-serif;

 font-size: 12pt;

 color: #6B6BD7;

 }

 .red_txt {

 color: red;

 }

 </style>

 </head>

 <body>

 <h1>Arduino SD Card Page with CSS</h1>

 <p>Welcome to the Arduino web page with CSS

styling.</p>

 <p class="red_txt">This text is red.</p>

 <p>This paragraph has one word that uses <span

class="red_txt">red text.</p>

 </body>

</html>

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server/

Arduino SD Card Ajax Web Server
Part 13 of the Arduino Ethernet Shield Web Server Tutorial

An Arduino Ethernet shield web server that hosts a web page on the SD card. The
web page displays the status of a switch and uses Ajax to update the status of the
switch.

In previous parts of this tutorial, an SD card hosted web page was never used to
display the status of Arduino inputs – all the web pages displaying I/O were part of
the Arduino sketch.

This part of the tutorial now displays an Arduino input on an SD card hosted web
page.

Circuit Diagram

A switch is interfaced to pin 3 of the Arduino for this example.

Code and Web Page

The code (Arduino sketch) and web page for this part of the tutorial are basically a
combination of part 4 (Arduino SD card web server) and part 8 (reading switch
status automatically using Ajax) of this tutorial.

No video has been included with this tutorial as the output will look the same as part
8 of this tutorial, but with the title and heading text changed.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-automatically-using-AJAX
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-automatically-using-AJAX

Web Page

The web page consisting of HTML and JavaScript (to implement Ajax) is shown
below:

Web Page Hosted on SD Card (index.htm)

This web page is saved to the micro SD card as index.htm – it is basically the
same HTML/JavaScript that was produced by the Arduino sketch in part 8 (reading
switch status automatically using Ajax), but with the title and heading text changed.

Copy and paste the web page from the listing below.

Arduino Sketch

The Arduino sketch for this part of the tutorial is shown below. It requires the above
HTML/JavaScript to be available on the micro SD card in the index.htm file.

#include <SPI.h>
#include <Ethernet.h>
#include <SD.h>

// size of buffer used to capture HTTP requests
#define REQ_BUF_SZ 40

// MAC address from Ethernet shield sticker under board

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-automatically-using-AJAX
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-automatically-using-AJAX

byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 0, 20); // IP address, may need to change depending on
network
EthernetServer server(80); // create a server at port 80
File webFile;
char HTTP_req[REQ_BUF_SZ] = {0}; // buffered HTTP request stored as null
terminated string
char req_index = 0; // index into HTTP_req buffer

void setup()
{
 // disable Ethernet chip
 pinMode(10, OUTPUT);
 digitalWrite(10, HIGH);

 Serial.begin(9600); // for debugging

 // initialize SD card
 Serial.println("Initializing SD card...");
 if (!SD.begin(4)) {
 Serial.println("ERROR - SD card initialization failed!");
 return; // init failed
 }
 Serial.println("SUCCESS - SD card initialized.");
 // check for index.htm file
 if (!SD.exists("index.htm")) {
 Serial.println("ERROR - Can't find index.htm file!");
 return; // can't find index file
 }
 Serial.println("SUCCESS - Found index.htm file.");
 pinMode(3, INPUT); // switch is attached to Arduino pin 3

 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 // buffer first part of HTTP request in HTTP_req array (string)
 // leave last element in array as 0 to null terminate string (REQ_BUF_SZ - 1)
 if (req_index < (REQ_BUF_SZ - 1)) {

 HTTP_req[req_index] = c; // save HTTP request character
 req_index++;
 }
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 client.println("Content-Type: text/html");
 client.println("Connection: keep-alive");
 client.println();
 // Ajax request
 if (StrContains(HTTP_req, "ajax_switch")) {
 // read switch state and send appropriate paragraph text
 GetSwitchState(client);
 }
 else { // web page request
 // send web page
 webFile = SD.open("index.htm"); // open web page file
 if (webFile) {
 while(webFile.available()) {
 client.write(webFile.read()); // send web page to client
 }
 webFile.close();
 }
 }
 // display received HTTP request on serial port
 Serial.println(HTTP_req);
 // reset buffer index and all buffer elements to 0
 req_index = 0;
 StrClear(HTTP_req, REQ_BUF_SZ);
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)

}

// send the state of the switch to the web browser
void GetSwitchState(EthernetClient cl)
{
 if (digitalRead(3)) {
 cl.println("Switch state: ON");
 }
 else {
 cl.println("Switch state: OFF");
 }
}

// sets every element of str to 0 (clears array)
void StrClear(char *str, char length)
{
 for (int i = 0; i < length; i++) {
 str[i] = 0;
 }
}

// searches for the string sfind in the string str
// returns 1 if string found
// returns 0 if string not found
char StrContains(char *str, char *sfind)
{
 char found = 0;
 char index = 0;
 char len;

 len = strlen(str);

 if (strlen(sfind) > len) {
 return 0;
 }
 while (index < len) {
 if (str[index] == sfind[found]) {
 found++;
 if (strlen(sfind) == found) {
 return 1;
 }
 }
 else {
 found = 0;
 }
 index++;
 }

 return 0;
}

How the Sketch Works
This sketch works in the same way as the sketch from part 8 (reading switch status
automatically using Ajax), except that instead of sending the web page line by line
from the Arduino sketch code, the web page is sent from the index.htm file on the
SD card.

Because we are using Ajax, the web page (when loaded in the web browser) sends
the same request for the switch status as the sketch in part 8 of this tutorial. If we
were not using Ajax, then the Arduino would need to read the index.htm file from
the SD card and modify the part that shows the switch status, then send back the
whole web page with the modified part – depending on if the switch is on or off.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-automatically-using-AJAX
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/web-server-read-switch-automatically-using-AJAX

Arduino Inputs using Ajax with XML on

the Arduino Web Server
Part 14 of the Arduino Ethernet Shield Web Server Tutorial
The Arduino web server hosts a web page (stored on the SD card) that displays the
status of two push button switches and an analog (analogue) input.

The status of the two switches and the analog input are updated on the web page
using Ajax. An XML file containing the switch statuses and the analog value is sent
from the Arduino to the web browser.

This example produces the same output on the web page (with only the text
changed) as part 9 of this tutorial – Analog Inputs and Switches using AJAX, with
the following changes:

 Switch statuses and an analog value are sent in an XML file and not as a block of
HTML.

JavaScript responseXML is used instead of responseText to get the received
values from the Arduino out of the XML file.

The values from the XML file (Arduino inputs) are inserted into HTML paragraphs in
the web page instead of replacing the entire paragraph.

 The web page is stored on the micro SD card of the Ethernet shield.
Why use Ajax with XML?

The advantage of using Ajax with an XML file is that individual values can easily be
extracted by JavaScript on the web page, rather than having to write JavaScript
code to extract values from a text file.

XML File Structure

An XML file uses tags like HTML or XHTML. The file has an initial tag that identifies
it as an XML file. A main user defined tag follows that contains all other tags for the
file.

This listing shows the structure of the XML file used in this example:

<?xml version = "1.0" ?>

<inputs>

 <button1></button1>

 <button2></button2>

 <analog1></analog1>

</inputs>

The inputs tag and all other tags contained in it are user defined names. The above
XML could also be created as follows:

<?xml version = "1.0" ?>

<inputs>

 <button></button>

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/AJAX-read-switches-analog

 <button></button>

 <analog></analog>

</inputs>

This file shows a button type and analog type that can be used to contain any
button state or analog value. By adding more <button> or more <analog> tags, the
state of additional buttons or analog inputs can be added.

The difference between the above two files is that the first uses unique names for
all tags, whereas the second uses the tags to identify an input type.

Arduino XML File

In this example the Arduino creates an XML file and inserts the status of the
switches and the analog input between the tags. The XML file is sent to the web
browser in response to an Ajax request for data.

The image below shows an example of the XML file sent from the Arduino.

XML File Sent by Arduino

How Ajax with XML Works

If you have been following each part of this tutorial, then a lot of this will look
familiar.

To update the Arduino input values on the web page, the following must occur:

1. Requesting a web page

As usual, the web browser is used to access the Arduino web server at the IP
address that it has been set at in the Arduino sketch.

Connecting to the Arduino Web Server

This causes the web browser to sent an HTTP request:

GET / HTTP/1.1

Host: 10.0.0.20

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:19.0)

Gecko/20100101 Firefox/19.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0

.8

Accept-Language: en-ZA,en-GB;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip, deflate

Connection: keep-alive

2. Sending the web page

The Arduino web server receives the above request and responds with an HTTP
header followed by the web page:

HTTP/1.1 200 OK

Content-Type: text/html

Connection: keep-alive

The Arduino reads the web page from the SD card and sends it to the web browser.

After receiving the web page, it will be displayed in the web browser.

The web page contains JavaScript that is used as part of the Ajax process.

Note that the content type in the HTTP header for the HTML web page is text/html.

3. Ajax request

The JavaScript code on the web page sends an Ajax request to the Arduino (and
continues to send a request every second).

GET /ajax_inputs&nocache=299105.2747379479 HTTP/1.1

Host: 10.0.0.20

User-Agent: Mozilla/5.0 (X11; Ubuntu; Linux i686; rv:19.0)

Gecko/20100101 Firefox/19.0

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0

.8

Accept-Language: en-ZA,en-GB;q=0.8,en-US;q=0.5,en;q=0.3

Accept-Encoding: gzip

4. The Arduino responds to the Ajax request

After receiving the request for the XML file, the Arduino responds with an HTTP
header followed by the XML file which contains input values from the Arduino.

HTTP/1.1 200 OK

Content-Type: text/xml

Connection: keep-alive

Note that the content type in the HTTP header is now text/xml.

5. Displaying the data

Finally the JavaScript in the web page extracts the three values from the Arduino
from the XML file and displays them on the web page.

Arduino Sketch and Web Page

Web Page

The Arduino hosts the following web page on the SD card:

This is basically the same web page as sent by the Arduino in part 9 of this tutorial,
but with the following changes (besides the text changes):

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/AJAX-read-switches-analog

Arduino Web Page index.htm - click for a bigger image

Function
The JavaScript function in the web page has been renamed to GetArduinoInputs().

The function still sends out an Ajax request every second. It now sends ajax_inputs
with the GET request.

Because an XML file is being sent back from the Arduino, the function now checks if
responseXML contains data instead of responseText:

if (this.responseXML != null) {

The data is extracted from the received XML as explained shortly.

HTML
The HTML is modified to display three paragraphs of text, one each for each value
sent from the Arduino. Each paragraph contains an HTML span, each span has a
unique ID.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-AJAX-XML-web-server/web-page.jpg

The JavaScript function will insert the extracted values from the XML file into each
span. This will replace only the default text (...) in each paragraph with the value
from the Arduino.

The function uses the following code to get hold of each span for inserting data
(code for getting "input1" shown here):

document.getElementById("input1").innerHTML =

Extracting the XML Data
The XML data is extracted from the received XML file using the following line of
code:

this.responseXML.getElementsByTagName('button1')[0].childNode

s[0].nodeValue;

In this code, this.responseXML is used instead of this.responseText as used in
previous examples.

Now every tag in the XML can be accessed using
this.responseXML.getElementsByTagName('button1') as can be seen in the
JavaScript function.

If you refer back to the top of this part of the tutorial under XML File Structure, and
the second XML file example, you will see that there can be tags with the same
name. If we used this for the button tags, then each button tag value can be
accessed as follows:

this.responseXML.getElementsByTagName('button')[0].childNodes

[0].nodeValue;

this.responseXML.getElementsByTagName('button')[1].childNodes

[0].nodeValue;

This is usefull if there were a number of buttons that you did not want to give unique
tags to. The values can then also be accessed in the JavaScript by using a loop.

The button values will then be extracted in the order that they have been inserted
into the file.

The number of buttons in the XML file can then be obtained by using:

this.responseXML.getElementsByTagName('button').length

Arduino Sketch

The Arduino sketch for this example is shown below.

#include <SPI.h>
#include <Ethernet.h>
#include <SD.h>

// size of buffer used to capture HTTP requests
#define REQ_BUF_SZ 50

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 0, 20); // IP address, may need to change depending on
network
EthernetServer server(80); // create a server at port 80
File webFile; // the web page file on the SD card
char HTTP_req[REQ_BUF_SZ] = {0}; // buffered HTTP request stored as null
terminated string
char req_index = 0; // index into HTTP_req buffer

void setup()
{
 // disable Ethernet chip
 pinMode(10, OUTPUT);
 digitalWrite(10, HIGH);

 Serial.begin(9600); // for debugging

 // initialize SD card
 Serial.println("Initializing SD card...");
 if (!SD.begin(4)) {
 Serial.println("ERROR - SD card initialization failed!");
 return; // init failed
 }
 Serial.println("SUCCESS - SD card initialized.");
 // check for index.htm file
 if (!SD.exists("index.htm")) {
 Serial.println("ERROR - Can't find index.htm file!");
 return; // can't find index file
 }
 Serial.println("SUCCESS - Found index.htm file.");
 pinMode(7, INPUT); // switch is attached to Arduino pin 7
 pinMode(8, INPUT); // switch is attached to Arduino pin 8

 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {

 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 // buffer first part of HTTP request in HTTP_req array (string)
 // leave last element in array as 0 to null terminate string (REQ_BUF_SZ - 1)
 if (req_index < (REQ_BUF_SZ - 1)) {
 HTTP_req[req_index] = c; // save HTTP request character
 req_index++;
 }
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 // remainder of header follows below, depending on if
 // web page or XML page is requested
 // Ajax request - send XML file
 if (StrContains(HTTP_req, "ajax_inputs")) {
 // send rest of HTTP header
 client.println("Content-Type: text/xml");
 client.println("Connection: keep-alive");
 client.println();
 // send XML file containing input states
 XML_response(client);
 }
 else { // web page request
 // send rest of HTTP header
 client.println("Content-Type: text/html");
 client.println("Connection: keep-alive");
 client.println();
 // send web page
 webFile = SD.open("index.htm"); // open web page file
 if (webFile) {
 while(webFile.available()) {
 client.write(webFile.read()); // send web page to client
 }
 webFile.close();
 }
 }
 // display received HTTP request on serial port
 Serial.print(HTTP_req);
 // reset buffer index and all buffer elements to 0
 req_index = 0;
 StrClear(HTTP_req, REQ_BUF_SZ);
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text

 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// send the XML file with switch statuses and analog value
void XML_response(EthernetClient cl)
{
 int analog_val;

 cl.print("<?xml version = \"1.0\" ?>");
 cl.print("<inputs>");
 cl.print("<button1>");
 if (digitalRead(7)) {
 cl.print("ON");
 }
 else {
 cl.print("OFF");
 }
 cl.print("</button1>");
 cl.print("<button2>");
 if (digitalRead(8)) {
 cl.print("ON");
 }
 else {
 cl.print("OFF");
 }
 cl.print("</button2>");
 // read analog pin A2
 analog_val = analogRead(2);
 cl.print("<analog1>");
 cl.print(analog_val);
 cl.print("</analog1>");
 cl.print("</inputs>");
}

// sets every element of str to 0 (clears array)
void StrClear(char *str, char length)
{

 for (int i = 0; i < length; i++) {
 str[i] = 0;
 }
}

// searches for the string sfind in the string str
// returns 1 if string found
// returns 0 if string not found
char StrContains(char *str, char *sfind)
{
 char found = 0;
 char index = 0;
 char len;

 len = strlen(str);

 if (strlen(sfind) > len) {
 return 0;
 }
 while (index < len) {
 if (str[index] == sfind[found]) {
 found++;
 if (strlen(sfind) == found) {
 return 1;
 }
 }
 else {
 found = 0;
 }
 index++;
 }

 return 0;
}

This sketch is basically a modified version of the sketch from the previous part of
this tutorial.

Creating the XML File
The XML_response() function takes care of generating and sending the XML file in
the format that has already been explained.

The switches and analog values are inserted into the XML file and sent to the web
browser.

HTTP Response
Because the HTTP response must send a different content type for the HTML page
and XML file (text/html or text/xml), it has been split up in the sketch to send the
correct file type in each HTTP header.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-AJAX-web-server
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-AJAX-web-server

As with the previous part of this tutorial, the web page is stored on the SD card as
index.htm and sent when the browser accesses the Arduino web server.

Running the Sketch

Wire up the push button switches and the potentiometer as shown in the circuit
diagram from part 9 of this tutorial.

Copy the index.htm file to a micro SD card and insert it into the micro SD card
socket of the Ethernet shield. The index.htm file can be copied below.

Load the above sketch to the Arduino and connect to the Arduino with Ethernet
shield using a web browser.

You will not seen any significant difference between this part of the tutorial and part
9 of the tutorial, but we now have an easy way of extracting values sent from the
Arduino to be used on a web page.

Web Page Source Code

The web page can be copied here and pasted to a file called index.htm:

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page using Ajax with

XML</title>

 <script>

 function GetArduinoInputs()

 {

 nocache = "&nocache=" + Math.random() * 1000000;

 var request = new XMLHttpRequest();

 request.onreadystatechange = function()

 {

 if (this.readyState == 4) {

 if (this.status == 200) {

 if (this.responseXML != null) {

 // extract XML data from XML file

(containing switch states and analog value)

document.getElementById("input1").innerHTML =

this.responseXML.getElementsByTagName('button1')[0].childNode

s[0].nodeValue;

document.getElementById("input2").innerHTML =

this.responseXML.getElementsByTagName('button2')[0].childNode

s[0].nodeValue;

document.getElementById("input3").innerHTML =

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/AJAX-read-switches-analog

this.responseXML.getElementsByTagName('analog1')[0].childNode

s[0].nodeValue;

 }

 }

 }

 }

 request.open("GET", "ajax_inputs" + nocache,

true);

 request.send(null);

 setTimeout('GetArduinoInputs()', 1000);

 }

 </script>

 </head>

 <body onload="GetArduinoInputs()">

 <h1>Arduino Inputs from SD Card Web Page using Ajax

with XML</h1>

 <p>Button 1 (pin 7): ...</p>

 <p>Button 2 (pin 8): ...</p>

 <p>Analog (A2): ...</p>

 </body>

</html>

Arduino Web Server Gauge Displaying

Analog Value
Part 15 of the Arduino Ethernet Shield Web Server Tutorial

A gauge component is used to display the analog value from one of the Arduino's
analog pins on a web page. The dial gauge is updated using Ajax.

The gauge is written in JavaScript and uses the HTML5 canvas. The gauge is used
as a component (unmodified) and is simply set up to display the analog value of
one of the Arduino analog pins. The value is updated every 200ms.

Getting the Gauge Component

The gauge component is written by Mykhailo Stadnyk and can be downloaded from
Mikhus at github. Also see a blog article on the gauge.

The JavaScript code from the file gauge.min.js (downloaded from the above github
link) was used on the web page in this part of the tutorial.

Arduino Sketch and Web Page

Arduino Sketch

The Arduino sketch for this part of the tutorial is shown here.

#include <SPI.h>
#include <Ethernet.h>
#include <SD.h>

// size of buffer used to capture HTTP requests
#define REQ_BUF_SZ 50

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 0, 20); // IP address, may need to change depending on
network
EthernetServer server(80); // create a server at port 80
File webFile; // the web page file on the SD card
char HTTP_req[REQ_BUF_SZ] = {0}; // buffered HTTP request stored as null
terminated string
char req_index = 0; // index into HTTP_req buffer

void setup()
{
 // disable Ethernet chip

https://github.com/Mikhus/canv-gauge
http://www.wwvalue.com/web-design/jquery/pure-javascript-and-html5-canvas-gauge-canvgauge.html

 pinMode(10, OUTPUT);
 digitalWrite(10, HIGH);

 Serial.begin(9600); // for debugging

 // initialize SD card
 Serial.println("Initializing SD card...");
 if (!SD.begin(4)) {
 Serial.println("ERROR - SD card initialization failed!");
 return; // init failed
 }
 Serial.println("SUCCESS - SD card initialized.");
 // check for index.htm file
 if (!SD.exists("index.htm")) {
 Serial.println("ERROR - Can't find index.htm file!");
 return; // can't find index file
 }
 Serial.println("SUCCESS - Found index.htm file.");

 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 // buffer first part of HTTP request in HTTP_req array (string)
 // leave last element in array as 0 to null terminate string (REQ_BUF_SZ - 1)
 if (req_index < (REQ_BUF_SZ - 1)) {
 HTTP_req[req_index] = c; // save HTTP request character
 req_index++;
 }
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 // remainder of header follows below, depending on if
 // web page or XML page is requested
 // Ajax request - send XML file
 if (StrContains(HTTP_req, "ajax_inputs")) {
 // send rest of HTTP header

 client.println("Content-Type: text/xml");
 client.println("Connection: keep-alive");
 client.println();
 // send XML file containing input states
 XML_response(client);
 }
 else { // web page request
 // send rest of HTTP header
 client.println("Content-Type: text/html");
 client.println("Connection: keep-alive");
 client.println();
 // send web page
 webFile = SD.open("index.htm"); // open web page file
 if (webFile) {
 while(webFile.available()) {
 client.write(webFile.read()); // send web page to client
 }
 webFile.close();
 }
 }
 // display received HTTP request on serial port
 Serial.print(HTTP_req);
 // reset buffer index and all buffer elements to 0
 req_index = 0;
 StrClear(HTTP_req, REQ_BUF_SZ);
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// send the XML file containing analog value
void XML_response(EthernetClient cl)
{
 int analog_val;

 cl.print("<?xml version = \"1.0\" ?>");
 cl.print("<inputs>");
 // read analog pin A2
 analog_val = analogRead(2);
 cl.print("<analog>");
 cl.print(analog_val);
 cl.print("</analog>");
 cl.print("</inputs>");
}

// sets every element of str to 0 (clears array)
void StrClear(char *str, char length)
{
 for (int i = 0; i < length; i++) {
 str[i] = 0;
 }
}

// searches for the string sfind in the string str
// returns 1 if string found
// returns 0 if string not found
char StrContains(char *str, char *sfind)
{
 char found = 0;
 char index = 0;
 char len;

 len = strlen(str);

 if (strlen(sfind) > len) {
 return 0;
 }
 while (index < len) {
 if (str[index] == sfind[found]) {
 found++;
 if (strlen(sfind) == found) {
 return 1;
 }
 }
 else {
 found = 0;
 }
 index++;
 }

 return 0;
}

This sketch is a slightly modified version of the sketch from the previous part of this
tutorial (part 14).

The sketch sends a single analog value from Arduino pin A2 to the web browser
which is then fed to the dial on the web page. The analog value is updated on the
web page using Ajax and the value is sent as part of an XML file from the Arduino.

The web page hosted by the Arduino web server is stored on a micro SD card on
the Arduino Ethernet shield.

Web Page

The web page for this example is shown here.

The Web Page for Displaying the Gauge with Gauge Code Cut Off – click for a
bigger image

The web page is a modified version of the web page used in the previous part of
this tutorial.

The Gauge
The gauge is made available to the web page by inserting the gauge code between
the script tags in the head of the web page HTML code.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-AJAX-XML-web-server
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-AJAX-XML-web-server
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-gauge/gauge-web-page.png

The gauge is displayed by using the HTML5 canvas tag in the body of the HTML.

Updating the Gauge
The analog value from the Arduino is received in the same way as it was in the
previous part of this tutorial and displayed at the top of the web page in the same
way as the previous part of this tutorial. The analog value is also saved to the
JavaScript variable data_val so that it can be used by the gauge.

The value in data_val is fed to the gauge by using the line of JavaScript in the data-
onready property of the canvas tag:

setInterval(function() {Gauge.Collection.get('an_gauge_1').

setValue(data_val);}, 200);

The 200 in the above line tells the gauge to update every 200ms (200 milliseconds).

Timing

The gauge updates every 200ms, and the Ajax request for an analog value is also
set to 200ms.

The timing for the Ajax refresh of the analog data is done in this line of JavaScript
code from the web page:

setTimeout('GetArduinoInputs()', 200);

This refresh rate may cause a problem on a busy or slow network. If there are any
problems, try changing this value to 1000 to make the analog value refresh every
second.

Running the Gauge Sketch

Wire up the potentiometer as shown in the circuit diagram of part 9 of this tutorial –
leave the push buttons shown in the diagram off, they will not be used.

Copy the web page (index.htm) to a micro SD card and insert it into the card slot of
the Arduino Ethernet shield.

Load the above sketch to the Arduino web server. The web page is available for
download below.

Web Page Source Code

Download the web page source code (index.htm) for this part of the tutorial here:

Arduino_web_gauge.zip (6.3 kB)

The license for the gauge is included in the download as a text file.

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/AJAX-read-switches-analog
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-gauge/Arduino_web_gauge.zip

SD Card Web Server I/O
Part 16 of the Arduino Ethernet Shield Web Server Tutorial

In this part of the tutorial, everything covered so far comes together. HTML,
JavaScript, CSS, HTTP, Ajax and the SD card are used to make a web page that
displays Arduino analog and digital inputs and allows digital outputs to be
controlled.

The Arduino web server hosts a web page that displays four analog input values
and the state of three switches. The web page allows four LEDs to be controlled –
two LEDs are controlled using checkboxes and two LEDs are controlled using
buttons.

When more than one computer (web browser) is connected to the Arduino web
server, then outputs (LEDs) switched on using one computer will be updated on the
other computer – i.e. when a checkbox is clicked to switch an LED on from one
computer, the checkbox will also be checked on the other computer automatically.

Web Server I/O Circuit Diagram

The circuit diagram for this part of the tutorial is shown here:

In the video, A3 was connected to a voltage divider, A4 was connected through a
resistor to GND and A5 was connected through a resistor to +5V – not shown in the
circuit diagram.

Overview of How the Web Server Works

After a web browser has requested and loaded the web page from the Arduino web

server, the JavaScript in the web page will send an Ajax request for data from the
Arduino every second.

The web page that the Arduino web server hosts is shown here:

Web Page Hosted by the Arduino Web Server

The Arduino will respond to every Ajax request by sending an XML file back to the
web browser. The XML file contains the values from the four analog inputs of the
Arduino (A2 to A5), the state of three pins (switches on pins 2, 3 and 5) and the
state of the four LEDs.

XML File Sent by Arduino

When an LED is switched on from the web page by checking a checkbox, the
JavaScript will send the state of the checkbox (send an instruction to switch the
LED on) with the next Ajax request. The same will occur if the LED is switched off or
if one of the buttons is used to switch an LED on or off.

Source Code

The source code for both the Arduino sketch and web page are a bit big to include
on this page. It is suggested to download these files below and open them in your
favourite editor when following the explanation below.

Arduino sketch and web page:   web_server_IO.zip (4.7 kB)

#include <SPI.h>
#include <Ethernet.h>
#include <SD.h>
// size of buffer used to capture HTTP requests
#define REQ_BUF_SZ 60

// MAC address from Ethernet shield sticker under board
byte mac[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };
IPAddress ip(192, 168, 0, 20); // IP address, may need to change depending on
network
EthernetServer server(80); // create a server at port 80
File webFile; // the web page file on the SD card
char HTTP_req[REQ_BUF_SZ] = {0}; // buffered HTTP request stored as null
terminated string
char req_index = 0; // index into HTTP_req buffer
boolean LED_state[4] = {0}; // stores the states of the LEDs

void setup()
{
 // disable Ethernet chip
 pinMode(10, OUTPUT);
 digitalWrite(10, HIGH);

 Serial.begin(9600); // for debugging

 // initialize SD card
 Serial.println("Initializing SD card...");
 if (!SD.begin(4)) {
 Serial.println("ERROR - SD card initialization failed!");
 return; // init failed
 }
 Serial.println("SUCCESS - SD card initialized.");
 // check for index.htm file
 if (!SD.exists("index.htm")) {
 Serial.println("ERROR - Can't find index.htm file!");
 return; // can't find index file
 }
 Serial.println("SUCCESS - Found index.htm file.");
 // switches on pins 2, 3 and 5

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-IO/web_server_IO.zip

 pinMode(2, INPUT);
 pinMode(3, INPUT);
 pinMode(5, INPUT);
 // LEDs
 pinMode(6, OUTPUT);
 pinMode(7, OUTPUT);
 pinMode(8, OUTPUT);
 pinMode(9, OUTPUT);

 Ethernet.begin(mac, ip); // initialize Ethernet device
 server.begin(); // start to listen for clients
}

void loop()
{
 EthernetClient client = server.available(); // try to get client

 if (client) { // got client?
 boolean currentLineIsBlank = true;
 while (client.connected()) {
 if (client.available()) { // client data available to read
 char c = client.read(); // read 1 byte (character) from client
 // limit the size of the stored received HTTP request
 // buffer first part of HTTP request in HTTP_req array (string)
 // leave last element in array as 0 to null terminate string (REQ_BUF_SZ - 1)
 if (req_index < (REQ_BUF_SZ - 1)) {
 HTTP_req[req_index] = c; // save HTTP request character
 req_index++;
 }
 // last line of client request is blank and ends with \n
 // respond to client only after last line received
 if (c == '\n' && currentLineIsBlank) {
 // send a standard http response header
 client.println("HTTP/1.1 200 OK");
 // remainder of header follows below, depending on if
 // web page or XML page is requested
 // Ajax request - send XML file
 if (StrContains(HTTP_req, "ajax_inputs")) {
 // send rest of HTTP header
 client.println("Content-Type: text/xml");
 client.println("Connection: keep-alive");
 client.println();
 SetLEDs();
 // send XML file containing input states
 XML_response(client);
 }
 else { // web page request
 // send rest of HTTP header

 client.println("Content-Type: text/html");
 client.println("Connection: keep-alive");
 client.println();
 // send web page
 webFile = SD.open("index.htm"); // open web page file
 if (webFile) {
 while(webFile.available()) {
 client.write(webFile.read()); // send web page to client
 }
 webFile.close();
 }
 }
 // display received HTTP request on serial port
 Serial.print(HTTP_req);
 // reset buffer index and all buffer elements to 0
 req_index = 0;
 StrClear(HTTP_req, REQ_BUF_SZ);
 break;
 }
 // every line of text received from the client ends with \r\n
 if (c == '\n') {
 // last character on line of received text
 // starting new line with next character read
 currentLineIsBlank = true;
 }
 else if (c != '\r') {
 // a text character was received from client
 currentLineIsBlank = false;
 }
 } // end if (client.available())
 } // end while (client.connected())
 delay(1); // give the web browser time to receive the data
 client.stop(); // close the connection
 } // end if (client)
}

// checks if received HTTP request is switching on/off LEDs
// also saves the state of the LEDs
void SetLEDs(void)
{
 // LED 1 (pin 6)
 if (StrContains(HTTP_req, "LED1=1")) {
 LED_state[0] = 1; // save LED state
 digitalWrite(6, HIGH);
 }
 else if (StrContains(HTTP_req, "LED1=0")) {
 LED_state[0] = 0; // save LED state
 digitalWrite(6, LOW);

 }
 // LED 2 (pin 7)
 if (StrContains(HTTP_req, "LED2=1")) {
 LED_state[1] = 1; // save LED state
 digitalWrite(7, HIGH);
 }
 else if (StrContains(HTTP_req, "LED2=0")) {
 LED_state[1] = 0; // save LED state
 digitalWrite(7, LOW);
 }
 // LED 3 (pin 8)
 if (StrContains(HTTP_req, "LED3=1")) {
 LED_state[2] = 1; // save LED state
 digitalWrite(8, HIGH);
 }
 else if (StrContains(HTTP_req, "LED3=0")) {
 LED_state[2] = 0; // save LED state
 digitalWrite(8, LOW);
 }
 // LED 4 (pin 9)
 if (StrContains(HTTP_req, "LED4=1")) {
 LED_state[3] = 1; // save LED state
 digitalWrite(9, HIGH);
 }
 else if (StrContains(HTTP_req, "LED4=0")) {
 LED_state[3] = 0; // save LED state
 digitalWrite(9, LOW);
 }
}

// send the XML file with analog values, switch status
// and LED status
void XML_response(EthernetClient cl)
{
 int analog_val; // stores value read from analog inputs
 int count; // used by 'for' loops
 int sw_arr[] = {2, 3, 5}; // pins interfaced to switches

 cl.print("<?xml version = \"1.0\" ?>");
 cl.print("<inputs>");
 // read analog inputs
 for (count = 2; count <= 5; count++) { // A2 to A5
 analog_val = analogRead(count);
 cl.print("<analog>");
 cl.print(analog_val);
 cl.println("</analog>");
 }
 // read switches

 for (count = 0; count < 3; count++) {
 cl.print("<switch>");
 if (digitalRead(sw_arr[count])) {
 cl.print("ON");
 }
 else {
 cl.print("OFF");
 }
 cl.println("</switch>");
 }
 // checkbox LED states
 // LED1
 cl.print("<LED>");
 if (LED_state[0]) {
 cl.print("checked");
 }
 else {
 cl.print("unchecked");
 }
 cl.println("</LED>");
 // LED2
 cl.print("<LED>");
 if (LED_state[1]) {
 cl.print("checked");
 }
 else {
 cl.print("unchecked");
 }
 cl.println("</LED>");
 // button LED states
 // LED3
 cl.print("<LED>");
 if (LED_state[2]) {
 cl.print("on");
 }
 else {
 cl.print("off");
 }
 cl.println("</LED>");
 // LED4
 cl.print("<LED>");
 if (LED_state[3]) {
 cl.print("on");
 }
 else {
 cl.print("off");
 }
 cl.println("</LED>");

 cl.print("</inputs>");
}

// sets every element of str to 0 (clears array)
void StrClear(char *str, char length)
{
 for (int i = 0; i < length; i++) {
 str[i] = 0;
 }
}

// searches for the string sfind in the string str
// returns 1 if string found
// returns 0 if string not found
char StrContains(char *str, char *sfind)
{
 char found = 0;
 char index = 0;
 char len;

 len = strlen(str);

 if (strlen(sfind) > len) {
 return 0;
 }
 while (index < len) {
 if (str[index] == sfind[found]) {
 found++;
 if (strlen(sfind) == found) {
 return 1;
 }
 }
 else {
 found = 0;
 }
 index++;
 }

 return 0;
}

/////////////////////////////////
<!DOCTYPE html>

<html>

 <head>

 <title>Arduino Ajax I/O</title>

 <script>

 strLED1 = "";

 strLED2 = "";

 strLED3 = "";

 strLED4 = "";

 var LED3_state = 0;

 var LED4_state = 0;

 function GetArduinoIO()

 {

 nocache = "&nocache=" + Math.random() * 1000000;

 var request = new XMLHttpRequest();

 request.onreadystatechange = function()

 {

 if (this.readyState == 4) {

 if (this.status == 200) {

 if (this.responseXML != null) {

 // XML file received -

contains analog values, switch values and LED states

 var count;

 // get analog inputs

 var num_an =

this.responseXML.getElementsByTagName('analog').length;

 for (count = 0; count <

num_an; count++) {

 document.getElementsByClassName("analog")[count].innerHTM

L =

 this.responseXML.getElementsByTagName('analog')[count].ch

ildNodes[0].nodeValue;

 }

 // get switch inputs

 var num_an =

this.responseXML.getElementsByTagName('switch').length;

 for (count = 0; count <

num_an; count++) {

 document.getElementsByClassName("switches")[count].innerH

TML =

 this.responseXML.getElementsByTagName('switch')[count].ch

ildNodes[0].nodeValue;

 }

 // LED 1

 if

(this.responseXML.getElementsByTagName('LED')[0].childNodes[0

].nodeValue === "checked") {

 document.LED_form.LED1.checked = true;

 }

 else {

 document.LED_form.LED1.checked = false;

 }

 // LED 2

 if

(this.responseXML.getElementsByTagName('LED')[1].childNodes[0

].nodeValue === "checked") {

 document.LED_form.LED2.checked = true;

 }

 else {

 document.LED_form.LED2.checked = false;

 }

 // LED 3

 if

(this.responseXML.getElementsByTagName('LED')[2].childNodes[0

].nodeValue === "on") {

 document.getElementById("LED3").innerHTML = "LED 3 is ON

(D8)";

 LED3_state = 1;

 }

 else {

 document.getElementById("LED3").innerHTML = "LED 3 is OFF

(D8)";

 LED3_state = 0;

 }

 // LED 4

 if

(this.responseXML.getElementsByTagName('LED')[3].childNodes[0

].nodeValue === "on") {

 document.getElementById("LED4").innerHTML = "LED 4 is ON

(D9)";

 LED4_state = 1;

 }

 else {

 document.getElementById("LED4").innerHTML = "LED 4 is OFF

(D9)";

 LED4_state = 0;

 }

 }

 }

 }

 }

 // send HTTP GET request with LEDs to switch

on/off if any

 request.open("GET", "ajax_inputs" + strLED1 +

strLED2 + strLED3 + strLED4 + nocache, true);

 request.send(null);

 setTimeout('GetArduinoIO()', 1000);

 strLED1 = "";

 strLED2 = "";

 strLED3 = "";

 strLED4 = "";

 }

 // service LEDs when checkbox checked/unchecked

 function GetCheck()

 {

 if (LED_form.LED1.checked) {

 strLED1 = "&LED1=1";

 }

 else {

 strLED1 = "&LED1=0";

 }

 if (LED_form.LED2.checked) {

 strLED2 = "&LED2=1";

 }

 else {

 strLED2 = "&LED2=0";

 }

 }

 function GetButton1()

 {

 if (LED3_state === 1) {

 LED3_state = 0;

 strLED3 = "&LED3=0";

 }

 else {

 LED3_state = 1;

 strLED3 = "&LED3=1";

 }

 }

 function GetButton2()

 {

 if (LED4_state === 1) {

 LED4_state = 0;

 strLED4 = "&LED4=0";

 }

 else {

 LED4_state = 1;

 strLED4 = "&LED4=1";

 }

 }

 </script>

 <style>

 .IO_box {

 float: left;

 margin: 0 20px 20px 0;

 border: 1px solid blue;

 padding: 0 5px 0 5px;

 width: 120px;

 }

 h1 {

 font-size: 120%;

 color: blue;

 margin: 0 0 10px 0;

 }

 h2 {

 font-size: 85%;

 color: #5734E6;

 margin: 5px 0 5px 0;

 }

 p, form, button {

 font-size: 80%;

 color: #252525;

 }

 .small_text {

 font-size: 70%;

 color: #737373;

 }

 </style>

 </head>

 <body onload="GetArduinoIO()">

 <h1>Arduino Ajax I/O</h1>

 <div class="IO_box">

 <h2>Analog Inputs</h2>

 <p class="small_text">A0 used by Ethernet

shield</p>

 <p class="small_text">A1 used by Ethernet

shield</p>

 <p>A2: ...</p>

 <p>A3: ...</p>

 <p>A4: ...</p>

 <p>A5: ...</p>

 </div>

 <div class="IO_box">

 <h2>Switch Inputs</h2>

 <p class="small_text">D0: used by serial RX</p>

 <p class="small_text">D1: used by serial TX</p>

 <p>Switch 1 (D2): <span

class="switches">...</p>

 <p>Switch 2 (D3): <span

class="switches">...</p>

 <p class="small_text">D4: used by Ethernet

shield</p>

 <p>Switch 3 (D5): <span

class="switches">...</p>

 </div>

 <div class="IO_box">

 <h2>LEDs Using Checkboxes</h2>

 <form id="check_LEDs" name="LED_form">

 <input type="checkbox" name="LED1"

value="0" onclick="GetCheck()" />LED 1 (D6)

 <input type="checkbox" name="LED2"

value="0" onclick="GetCheck()" />LED 2 (D7)

 </form>

 </div>

 <div class="IO_box">

 <h2>LEDs Using Buttons</h2>

 <button type="button" id="LED3"

onclick="GetButton1()">LED 3 is OFF (D8)</button>

 <button type="button" id="LED4"

onclick="GetButton2()">LED 4 is OFF (D9)</button>

 <p class="small_text">D10 to D13 used by

Ethernet shield</p>

 </div>

 </body>

</html>

//

Running the Example
To run this example, first copy the web page (index.htm) from the above download
to a micro SD card. Insert the micro SD card in the card slot of the Ethernet shield.
The Ethernet shield must be plugged into an Arduino board, connected to your
network and powered by USB or an external power supply.

Build as much of the circuit as you want. If you don't connect anything to the input
pins, they may just toggle randomly as they pick up noise. Inputs can always be
pulled high or low through a resistor if you do not want to connect them to switches
or a potentiometer.

Load the Arduino sketch (eth_websrv_SD_Ajax_in_out) from the above download
to the Arduino.

Surf to the IP address set in the sketch using a web browser – you should see the
web page loaded and the analog values and switch values updated every second.

How the Example Works

The Arduino sketch and web page are basically modified versions of code from
previous examples in this multi-part tutorial. The files are modified versions from the
examples that use Ajax with XML (part 14 and part 15).

Analog and Digital Inputs

The analog inputs (analog values) and digital inputs (switch states) are requested
and received the same ways as explained in part 14 of this tutorial, except that the

http://startingelectronics/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-AJAX-XML-web-server/
http://startingelectronics/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-gauge/
http://startingelectronics/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-AJAX-XML-web-server/

analog values are all enclosed in <analog> tags and the switch states are all
enclosed in <switch> tags – i.e. they do not use unique tag names for each input.

When the JavaScript in the web page receives the XML file from the Arduino, it
uses one for loop to extract the analog values and a second for loop to extract the
switch states.

The JavaScript code for extracting the analog values from the XML file is shown
here:

var num_an =

this.responseXML.getElementsByTagName('analog').length;

for (count = 0; count < num_an; count++) {

document.getElementsByClassName("analog")[count].innerHTML =

this.responseXML.getElementsByTagName('analog')[count].childN

odes[0].nodeValue;

}

The first line of the above code gets the number of items in the XML file that are
enclosed in <analog> tags and stores it in the variable num_an which is then be
used in the for loop to get the correct number of analog values.

In the for loop, the following code gets hold of each HTML span that has the class
analog:

document.getElementsByClassName("analog")[count].innerHTML

Which gets hold of each span element in the following HTML:

<p>A2: ...</p>

<p>A3: ...</p>

<p>A4: ...</p>

<p>A5: ...</p>

This line of code then gets each analog value from the XML file in turn:

this.responseXML.getElementsByTagName('analog')[count].childN

odes[0].nodeValue;

So the above two lines of JavaScript code working together get each analog value
from the XML file in the order that they appear in the file and insert these values into
each span in the order that they appear in the HTML.

The switch values work the same way, but each HTML span with the class name
switches has a value from the XML file with the tag switch inserted into it in the
order that they appear.

LEDs

The Arduino keeps track of which LEDs are on and which LEDs are off. This
information is sent back as part of the XML file in response to the Ajax request that
occurs every second.

In the Arduino sketch, the following array stores the LED states (stores 1 for 'on'
LED and 0 for 'off' LED):

boolean LED_state[4] = {0}; // stores the states of the LEDs

This array is initialized with zeros – all LEDs off. Each element of the array
corresponds to an LED in order from LED1 to LED4, i.e. LED_state[0] stores the
state of LED 1, LED_state[1] stores the state of LED 2, etc.

LEDs Using Checkboxes
In the JavaScript code, the following lines of code show how the state of LED 1 is
extracted from the received XML file and used to update the checkbox – i.e. to mark
it as checked or unchecked, depending on the state of the LED.

// LED 1

if

(this.responseXML.getElementsByTagName('LED')[0].childNodes[0

]. nodeValue === "checked") {

 document.LED_form.LED1.checked = true;

}

else {

 document.LED_form.LED1.checked = false;

}

In the above code, if the first value (i.e. for LED 1) from the XML file in an <LED>
tag contains the text checked then the corresponding checkbox is checked using
this line of JavaScript:

document.LED_form.LED1.checked = true;

Otherwise the checkbox is unchecked.

This ensures that every browser that connects to the Arduino web server displays
the correct states of the LEDs because they are receiving the LED states every
second.

When a user checks or unchecks a checkbox, then the next Ajax request will
include the LED name and state with the next HTTP GET request.

The JavaScript function GetCheck() is run whenever a checkbox is clicked. If the
checkbox for LED 1 is checked, then the value of a string for LED 1 is set:

strLED1 = "&LED1=1";

If the checkbox is unchecked, the the string is set as follows:

strLED1 = "&LED1=0";

The next time that GetArduinoIO() function is called, which occurs every second,
the strLED1 string will now not be empty. This string will now be included with the
GET request:

request.open("GET", "ajax_inputs" + strLED1 + strLED2 +

strLED3 + strLED4 + nocache, true);

All the other LED strings will be empty if a checkbox or button has not been clicked,
so will not be included with the GET request.

After the get request has occured, all LED strings are set back to empty:

strLED1 = "";

strLED2 = "";

strLED3 = "";

strLED4 = "";

When the Arduino receives the Ajax GET request, the SetLEDs() function in the
Arduino sketch checks for a change of LED state in the received GET request and if
it finds one will switch the corresponding LED on or off and then save the state of
the LED to the LED_state[] array.

LEDs Using Buttons
The buttons that control the LEDs work in the same way as the checkboxes, except
that each button has its own JavaScript function that runs when a button is clicked.

The text on the buttons is updated to show the state of the LEDs that they control.

Buttons do not have a 'checked' property, so the current state of each button's LED
is stored in a variable:

var LED3_state = 0;

var LED4_state = 0;

Storing the button state is necessary so that when the button is clicked again, it
knows whether to update the string that is sent with the GET request to switch the
LED on or off.

When the Arduino sends the state of the LEDs in the XML file that are controlled by
the buttons, it inserts "on" or "off" between the <LED> tags instead of "checked" or
"unchecked" as it does for the checkboxes.

CSS

The CSS used in this example puts each set of inputs or outputs in their own boxes
with a blue border. It also positions the boxes next to each other. If the browser
windows is resized along its width, then the boxes on the right will move below the
boxes on the left.

The CSS in this part of the tutorial will not be explained here, but will be explained
in the next parts of this tutorial where we look at more CSS.

Accessing HTML Tags with CSS

and JavaScript
Part 17 of the Arduino Ethernet Shield Web Server Tutorial

How to access HTML elements (tags) with CSS and JavaScript in order to apply
CSS styles to the elements and manipulate the elements using JavaScript. Shows
how to reference HTML tags by using ID and class names.

Running the Examples

Each of the examples below can be copied from this page and saved as an HTML
file (e.g. index.htm). The file can then be loaded to the Arduino if desired by
following the example in part 4 of this tutorial.

Alternatively each example can be opened from the computer in a web browser
without using the Arduino.

Accessing HTML Elements

HTML elements need to be accessed so that CSS styles can be applied to them
and so that we can get hold of these elements with JavaScript in order to change or
manipulate them.

Accessing HTML Elements in CSS

There are three main methods of accessing or referring to HTML elements in CSS:

By referring to the HTML element by its HTML tag name, e.g. p to refer to the
paragraph HTML tag – <p>

 By using an ID, e.g. <p id="red_text">Some text</p>
 By using a class, e.g. <p class="red_text">Some text</p>
A combination of the above methods can also be used to access an HTML element.

We will now look at an example of each of the above methods.

Reference by HTML Element Name
This method was already demonstrated in part 12 of this tutorial and was used in
part 16 (the previous part).

<!DOCTYPE html>

<html>

 <head>

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-web-server
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/CSS-introduction
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-IO

 <title>Arduino SD Card Web Page</title>

 <style type="text/css">

 p {

 font-family: arial, verdana, sans-serif;

 font-size: 12pt;

 color: #6B6BD7;

 }

 </style>

 </head>

 <body>

 <h1>Arduino SD Card Page with CSS</h1>

 <p>Welcome to the Arduino web page with CSS

styling.</p>

 </body>

</html>

In the above HTML with CSS, the CSS part is applied to every paragraph in the
web page. This is done by referring to the paragraph by its HTML element name, p:

Styles can be applied to other HTML elements in the same way by referring to their
HTML tag names, e.g. h1, h2, h3, div, span, b, etc.

This method is used to set the default style for HTML elements on a page. It is
possible to override these default styles by giving an HTML element an ID or class
name.

Reference by ID
An ID of a specific name can only be used once on a web page. The name of the ID
is chosen by the person writing the HTML and CSS. An ID would normally be used
for something like a menu that occurs only once per page. Using an ID also allows
JavaScript to access the element using the unique ID.

This example code shows the use of an ID:

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 <style type="text/css">

 h1 {

 font-family: arial, verdana, sans-serif;

 font-size: 16pt;

 color: blue;

 }

 p {

 font-family: arial, verdana, sans-serif;

 font-size: 12pt;

 color: #6B6BD7;

 }

 #green_small {

 font-size: 9pt;

 color: green;

 }

 </style>

 </head>

 <body>

 <h1>Arduino SD Card Page with CSS</h1>

 <p>Welcome to the Arduino web page with CSS

styling.</p>

 <p id="green_small">This is a second paragraph.</p>

 <p>This is a third paragraph.</p>

 </body>

</html>

The above markup code produces the following text on the web page when loaded
in a browser:

As can be seen in the above markup, when an HTML element is referred to by its
ID, the # character is used before its name in the CSS style:

This style is then applied to the HTML element with that ID:

<p id="green_small">This is a second paragraph.</p>

Because it is an ID, it may not be used again on the web page – other IDs may be
used, but each must have a unique name.

Also notice that the ID overrides the p default style that applies to all paragraphs.
The other paragraphs that do not have an ID are then formatted with the default
paragraph style.

Reference by Class
A class works the same way as an ID, except that it may be used more than once

on a web page. A class uses a dot (.) in front of the class name in the CSS style to
show that it is referring to a class and not an ID or HTML element.

The following example shows how to apply a CSS style to HTML elements that
have class names.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 <style type="text/css">

 h1 {

 font-family: arial, verdana, sans-serif;

 font-size: 16pt;

 color: blue;

 }

 p {

 font-family: arial, verdana, sans-serif;

 font-size: 12pt;

 color: #6B6BD7;

 }

 .red_big {

 font-size: 14pt;

 color: red;

 }

 </style>

 </head>

 <body>

 <h1>Arduino SD Card Page with <span

class="red_big">CSS</h1>

 <p>Welcome to the <span

class="red_big">Arduino web page

with CSS styling.</p>

 <p>This is a second paragraph.</p>

 <p class="red_big">This is a third paragraph.</p>

 </body>

</html>

The above markup produces the following web page:

Notice that the class style has been applied both to the HTML span tag as well as
the HTML p (paragraph) tag. The style applied to the HTML elements that have
class names overrides the default style.

The CSS style applied to the HTML elements with the class name red_big can be
seen here using the dot to show that it is referring to a class:

Mixing Access Methods
The same CSS style can be applied to more than one HTML element. HTML
elements can also be referred to more specifically, e.g. every paragraph inside a div
element. This example demonstrates:

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 <style type="text/css">

 h1, p {

 font-family: arial, verdana, sans-serif;

 color: cyan;

 }

 h1 {

 font-size: 16pt;

 }

 p {

 font-size: 12pt;

 }

 div p {

 font-style: italic;

 letter-spacing: 5px;

 }

 </style>

 </head>

 <body>

 <h1>Arduino SD Card Page with CSS</h1>

 <p>Welcome to the Arduino web page with CSS

styling.</p>

 <div><p>This is a second paragraph.</p></div>

 <p>This is a third paragraph.</p>

 <div><p>This is a fourth paragraph.</p></div>

 </body>

</html>

When a CSS style has HTML tag names, id names or class names separated by a
comma, then the specified style applies to each of the elements.

The following CSS style applies to both the h1 tag and the p tag and specifies the
font family for both as well as the colour as cyan:

In the above HTML with CSS listing, the sizes of the h1 tag and paragraph are then
specified separately.

When the CSS style has HTML tag names, id names or class names that are not
separated by a comma, then the style is applied to the elements as they occur
inside each other. In the above HTML with CSS listing, a CSS style is applied to
every paragarph that occurrs in an HTML div element. The style is shown here:

The above style makes the font italic and separates paragraph letters by 5 pixels in
every paragraph that occurs inside an HTML div.

Accessing HTML Elements in JavaScript

HTML ID and class names allow JavaScript to get hold of these HTML tags to
modify or manipulate them.

If you have been following each part of this tutorial, you will recognize these
methods of accessing HTML elements using JavaScript.

Accessing HTML Elements with ID Names in JavaScript
The following example shows how to access an HTML element that has an ID
name from JavaScript:

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 <script>

 var btn_count = 0;

 function ButtonCount()

 {

 btn_count++;

document.getElementById("btn_clicks").innerHTML = btn_count;

 }

 </script>

 </head>

 <body>

 <h1>Arduino SD Card Page with JavaScript</h1>

 <button type="button" onclick="ButtonCount()">Click

to Count</button>

 <p>The button has been clicked <span

id="btn_clicks">0 times.</p>

 </body>

</html>

The JavaScript function ButtonCount() is run every time that the button is clicked.
The function adds 1 to the variable btn_count every time that the function is run.

The JavaScript gets hold of the HTML span tag with the ID btn_clicks by using the
following code:

document.getElementById("btn_clicks").innerHTML = btn_count;

Which accesses the span in this line of HTML:

<p>The button has been clicked 0

times.</p>

The current value of btn_count is then inserted into the HTML span.

Remember that only one element on the page can use the ID with the name
btn_clicks.

Accessing HTML Elements with Class Names in JavaScript
The following code accesses HTML tags that have the same class name:

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino SD Card Web Page</title>

 <script>

 var btn_count = 0;

 var btn_count_0 = 0;

 var num_classes = 0;

 function ButtonCount()

 {

 btn_count++;

document.getElementsByClassName("btn_clicks")[0].innerHTML =

btn_count;

document.getElementsByClassName("btn_clicks")[1].innerHTML =

btn_count_0;

 btn_count_0++;

 // get the number of btn_clicks classes on

the page

document.getElementById("btn_classes").innerHTML =

document.getElementsByClassName("btn_clicks").length;

 }

 </script>

 </head>

 <body>

 <h1>Arduino SD Card Page with JavaScript</h1>

 <button type="button" onclick="ButtonCount()">Click

to Count</button>

 <p>The button has been clicked <span

class="btn_clicks">0 times.</p>

 <p>Or counting from 0 clicked <span

class="btn_clicks">? times.</p>

 <p>Number of "btn_clicks" classes on page: <span

id="btn_classes"></p>

 </body>

</html>

Two HTML span tags have the same class name (btn_clicks) and are accessed in
the JavaScript code as shown here:

document.getElementsByClassName("btn_clicks")[0].innerHTML =

btn_count;

document.getElementsByClassName("btn_clicks")[1].innerHTML =

btn_count_0;

The number of HTML tags on the page that use this class name can be obtained
using this code:

document.getElementsByClassName("btn_clicks").length;

Each tag with this class name can then be accessed in a loop if needed.

The HTML tags with the same class name are accessed on the page in the order
that they occur from top to bottom.

CSS for Positioning, Sizing and Spacing
Part 18 of the Arduino Ethernet Shield Web Server Tutorial

Part 16 of this tutorial uses CSS to position HTML div elements that contain Arduino
inputs and outputs. The CSS also sizes and spaces the div elements. This part of
the tutorial explains the CSS used for positioning, sizing and spacing as used in
part 16.

Making a HTML div Element Visible

The following basic web page consists of a paragraph of text inside a div element.
The div is given a class name of txt_block and a CSS style is applied to the class.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino CSS Position, Size and Space</title>

 </head>

 <style>

 .txt_block {

 border: 1px solid red;

 }

 </style>

 <body>

 <h1>Arduino CSS Example 1</h1>

 <div class="txt_block">

 <p>A paragraph of text for this example.</p>

 </div>

 </body>

</html>

To make the div visible, a 1 pixel wide, solid red border is drawn around the div
using the following CSS style:

border: 1px solid red;

http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-IO

This produces the following output in a web browser:

Another way to make the div visible is to change its background colour, e.g. to
change the div to green:

background-color: green;

As can be seen in the above image, the div extends to the edge of the web
browser. If the web browser is resized, the div will always extend the width of the
browser with a small margin of empty space on either side.

Sizing the div

The div can be sized by applying CSS width and height styles to it. The
HTML/CSS listing below adds sizing to the div.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino CSS Position, Size and Space</title>

 </head>

 <style>

 .txt_block {

 border: 1px solid red;

 width: 140px;

 height: 120px;

 }

 </style>

 <body>

 <h1>Arduino CSS Example 2</h1>

 <div class="txt_block">

 <p>A paragraph of text for this example.</p>

 </div>

 </body>

</html>

The above markup produces the following in a web browser:

The size of the div is now 140 pixels wide and 120 pixels high. In CSS px means
pixels.

Padding the div

Padding is now applied to the left of the div so that there is a space between the left
of the div and the text inside it.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino CSS Position, Size and Space</title>

 </head>

 <style>

 .txt_block {

 border: 1px solid red;

 width: 140px;

 height: 120px;

 padding-left: 10px;

 }

 </style>

 <body>

 <h1>Arduino CSS Example 3</h1>

 <div class="txt_block">

 <p>A paragraph of text for this example.</p>

 </div>

 </body>

</html>

In the above markup, CSS padding of 10 pixels is applied as follows:

padding-left: 10px;

The result of adding the padding can be seen in this image:

Padding can be added to all sides of the div. Padding makes a space between the
edge of the div and the inside of the div.

Padding for each side can be specified in CSS as follows:

padding-top: 5px;

padding-right: 3px;

padding-bottom: 7px;

padding-left: 10px;

There is a shorter method of specifying padding shown here.

padding: 5px 3px 7px 10px;

When specifying the padding using the above method, the order of the padding
sizes from left to right always apply to the div or other element being padded by
starting at the top and moving clockwise.

In other words, the above line of code applies padding to the div in this order:

padding: top right bottom left;

Adding a Second div

We now add a second div that is formatted the same as the first div by using the
same class name for the second div.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino CSS Position, Size and Space</title>

 </head>

 <style>

 .txt_block {

 border: 1px solid red;

 width: 140px;

 height: 120px;

 padding-left: 10px;

 }

 </style>

 <body>

 <h1>Arduino CSS Example 4</h1>

 <div class="txt_block">

 <p>A paragraph of text for this example.</p>

 </div>

 <div class="txt_block">

 <p>A second paragraph of text for this

example.</p>

 </div>

 </body>

</html>

The above markup produces the following web page:

Positioning the divs

There are a number of different methods for positioning HTML elements on a web
page using CSS. We will look at one method here.

To position the two divs next to each other, we will use the CSS float style as

shown in this next markup lising.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino CSS Position, Size and Space</title>

 </head>

 <style>

 .txt_block {

 border: 1px solid red;

 width: 140px;

 height: 120px;

 padding-left: 10px;

 float: left;

 }

 </style>

 <body>

 <h1>Arduino CSS Example 5</h1>

 <div class="txt_block">

 <p>A paragraph of text for this example.</p>

 </div>

 <div class="txt_block">

 <p>A second paragraph of text for this

example.</p>

 </div>

 </body>

</html>

By adding the CSS float style, the two divs are now floating to the left of the web
page. The causes the first div to be placed on the left of the page and the second
div placed on the left of the page next to the first div.

float: left;

The above markup produces the following web page:

Spacing the divs

To add some space between the divs, we finally add a 20 pixel margin to the right
of the divs as shown in the following listing.

<!DOCTYPE html>

<html>

 <head>

 <title>Arduino CSS Position, Size and Space</title>

 </head>

 <style>

 .txt_block {

 border: 1px solid red;

 width: 140px;

 height: 120px;

 padding-left: 10px;

 float: left;

 margin-right: 20px;

 }

 </style>

 <body>

 <h1>Arduino CSS Example 6</h1>

 <div class="txt_block">

 <p>A paragraph of text for this example.</p>

 </div>

 <div class="txt_block">

 <p>A second paragraph of text for this

example.</p>

 </div>

 </body>

</html>

The above markup produces the following web page.

The margin uses the same format as the padding, except that the margin puts
space between the edge of the div to the outside of the div.

margin-right: 20px;

Margins can be applied individually to each side of the div or other HTML element:

margin-top: 5px;

margin-right: 3px;

margin-bottom: 7px;

margin-left: 10px;

And can also use the short format for specifying margins:

margin: 5px 3px 7px 10px;

Which applies to the HTML element in a clockwise order starting from the top:

margin: top right bottom left;

Further Reading

CSS is a big topic and there is a lot more to learn, in fact there are whole books
dedicated to CSS.

If you would like to learn more about CSS or need to find out how to do something
specific for your own Arduino web server project, then read a good CSS book or
search for more information on the Internet.

Arduino Ethernet Shield Web Server

Tutorial Summary and Conclusion
Final part of the Arduino Ethernet Shield Web Server Tutorial

In this final part of the multi-part Arduino Ethernet shield web server tutorial, we
summarise the technologies covered by the tutorial and provide some extra
information. We also look at where to get further information on the various
technologies and how to progress from here.

HTTP

The first technology to get familiar with when writing code for a web server that
hosts HTML web pages is the Hypertext Transfer Protocol (HTTP). HTTP is
normally invisible to the user of a web browser, except for http:// in the browser
address bar. HTTP is happening behind the scenes for the web surfer.

Because we are writing web server code on our Arduino, we need to know how
HTTP works. When a web browser connects to an Arduino web server by a user
entering the IP address in the address bar of the web browser (the IP address is set
in the Arduino sketch), the web browser sends an HTTP request for the default or
home page of the web server.

The Arduino web server must answer the HTTP request with the text that the
protocol requires and then send the actual web page.

A good resource for learning more about HTTP is HTTP Made Really Easy by
James Marshall.

Part 2 of this Arduino web server tutorial shows how HTTP is handled in the first
Arduino web server sketch.

http://www.jmarshall.com/easy/http/
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/basic-web-server

HTML and XHTML

Every web page consists of a text file written in Hypertext Markup Language
(HTML). HTML structures the web page, marking which portion of the text are
paragraphs, headers, checkboxes, buttons, etc.

There are actually several versions of HTML and also several versions of XHTML.
XHTML is also used for creating web pages, but has a stricter syntax than HTML.
For example, all (X)HTML tags must use lower-case letters in XHTML, but HTML
can use upper or lower-case letters.

A web page can be written in any of the standards and could be HTML or XHTML –
the person browsing a website would normally not know which standard the website
is using unless he looked at the source code of a web page from the site.

HTML 5

We have actually been using HTML 5 in this tutorial. The version of HTML or
XHTML used in a web page is specified by the very first line of markup in the web
page. All the examples in this tutorial have used the following line at the top of the
HTML page:

<!DOCTYPE html>

This lets the browser know that the web page that it is loading is written using HTML
5.

XHTML 1.0

Other HTML and XHTML standards use different markup for the first line of the web
page. For example, strict and transitional XHTML use the following lines
respectively (these are shown on two lines each here to fit on the page, the two
lines are normally written on one line and separated by a space):

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

HTML 4.01

The first line of markup for two of the HTML standards for HTML 4.01 are shown
here (strict and transitional):

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"

"http://www.w3.org/TR/html4/strict.dtd">

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01

Transitional//EN"

"http://www.w3.org/TR/html4/loose.dtd">

CSS

Cascading Style Sheets (CSS) are used to style the HTML elements on a web
page. This means that CSS can be used to change the font style, size and colour.
The size position and colour of various HTML elements can be changed using CSS.

In our examples in this tutorial, the CSS was included as part of the HTML file and
put between opening and closing style tags.

Normally a website will have a separate style sheet file (e.g. style.css) containing all
the CSS. This allows the same style sheet to be used to apply styles to all the
pages on the website.

Because we have mostly been using single web pages on the Arduino web server,
it was easier to include the style in the web page. If more than one web page is
needed using this method, then the same styles would need to be copied to the top
of each page. The advantage of using a separate style sheet means that the style
sheet only needs to be included in the top of each HTML page (the style sheet is
included using a single line of markup).

In the relatively slow Arduino, a faster response will be obtained by including the
CSS styles in the top of the web page when hosting a single web page. This is
because only one HTTP request is then needed to get the page and CSS.

JavaScript and Ajax

We used JavaScript to implement Ajax for sending data to the Arduino from the web
page and getting data back from the Arduino behind the scenes.

Ajax enables parts of the web page to be updated. This reduces the amount of data
that needs be sent from the Arduino making the updates faster because the entire
web page does not need to be reloaded every time new data is to be displayed on
it.

Another advantage of using Ajax is that the web page does not flicker when data is
updated as occurs when the entire page is refreshed.

HTML 5 Canvas

HTML 5 introduces the canvas tag. The canvas HTML element allows JavaScript to
draw to the canvas area of the web page.

We saw the HTML canvas with JavaScript being used by the Gauge component
written by Mykhailo Stadnyk in part 15 of this tutorial.

Only modern web browsers that support the relatively new HTML 5 standard will be
able to run the gauge example.

Conclusion

https://github.com/Mikhus/canv-gauge
https://github.com/Mikhus/canv-gauge
http://www.startingelectronics.com/tutorials/arduino/ethernet-shield-web-server-tutorial/SD-card-gauge

Most of the technologies used to create a web page are rather large topics and
have entire books dedicated to each one.

We have used a small subset of each of these technologies that have hopefully
given you a start in creating your own Arduino web server and web pages.

How far you wish to pursue each of these subjects depends on what you want to
implement on your web server and how good you want to get at each technology.

There are many resources available for web page design covering HTML, CSS,
JavaScript and Ajax such as books and web sites – just do some searching on the
Internet to find more detailed tutorials and references.

