Tutorial 1: Introduction to Microsoft (MS) Access

After reading this tutorial and completing the associated exercises, you will be able to:

- Open MS Access
- Create tables using MS Access
- Create forms and use them to enter data into tables

Note: Be sure to work through the examples in this tutorial as you read. This is the way you will learn by doing.

Microsoft Access: A Relational Database Application

Microsoft Access is a relational database application that is part of the Microsoft Office suite of applications. A database is an organized way to store data and database software usually provides features that allow a user to add, delete, update, and manipulate (transform) data. A relational database, like MS Access, stores data in tables. A table consists of rows (records) and columns (fields). Although the appearance of the records and the fields resembles the rows and columns you may have seen in a MS Excel worksheet, Access is a much more powerful tool than Excel for organizing, storing, and retrieving data. Much of this additional power comes from the relational model that is implemented by MS Access.

If you have already used and studied Excel, you may recall that data tables list all data for a particular entity (customer, product, etc) in a row of the worksheet. So, if a customer makes 100 purchases and a business tracks their address in a database, that address would be listed 100 times. The relational model used by MS Access allows us to store data in separate tables and then link tables via common fields – the primary key/foreign key relationship.

A primary key is a field in a table that will contain a unique value for each and every record in the table. In other words, if a field is a primary key, you can’t use a specific value more than once in that column. A foreign key is a field in one table that contains values that are stored in a primary key in another table. If we look at the foreign key for a specific record, we can use the value to look up more data in the table where that field is used as a primary key. We are then guaranteed to find only one record that matches that value. Basically, a foreign key field provides a reference to a record in another table.

For example, we would relate tables via the CustomerID (the primary key) in one table, say, the Customer table and a copy of the CustomerID (a foreign key) in another table, say, the CustomerLoan table. The customer’s address is stored only once in the Customer table. This reduces data redundancy and improves updating and other database functions.

Most of this module will be spent learning by building. First you will create a database consisting of one table and then you will create a form to enter data. In later modules, you will learn how to query this table for information and to create reports based on this information. You will also learn how to add tables to this
data, then you will create the remaining tables, and finally you will link the tables by creating relationships and to query a multi-table database.

Starting a New Access Database

Let’s start by opening a new Access database and taking a quick look at the MS Access interface.

1. Open MS Access by clicking its icon on the desktop or selecting it from a Windows menu.

 You should now see the “Getting Started with Microsoft Office Access” screen shown in Figure 1.

 ![Figure 1 – Opening MS Access](image)

 With this screen you have several options. You can work on a database that you created earlier by selecting it from a list of **Recent Databases** on the right side of the screen or you can start a new database. If you choose to start a new database, it can be a blank one for which you will build all components from scratch or you can choose from a library of pre-built templates. Microsoft has supplied a large library of templates of commonly used database applications. For our purposes, we’ll start a new blank database.

 ![Figure 2 – Starting a New Blank Database](image)

 2. Click on the **Blank Database** icon.

 A window will appear on the right of the screen that will prompt you to enter a file name for your database.

 We’ll enter **Example_Database** for now.

 ![Figure 2 – Starting a New Blank Database](image)

 Note that Access 2007 uses **.accdb** as the file extension for Access database files.

 After entering the file name click on the Create button.

 Note that in Figure 2 you can see the location where the new database will be stored just below the textbox where you enter the new database name. To
change this, click on the folder to the right of the textbox, then navigate to the location where you want to store the file.

The MS Access Interface

You should now see the main Access interface that you will be working with as you create or modify an Access database. The basic structure of the Access user interface is shown in Figure 3 and its components are listed in Table 1.

![Image of Access interface components](image)

Figure 3 – Starting a New Blank Database

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Context tab</td>
<td>The tabs on the ribbon allow you display different commands based on the category that you choose.</td>
</tr>
<tr>
<td>Status bar</td>
<td>Provides information about the progress of any ongoing process.</td>
</tr>
<tr>
<td>Navigation Pane</td>
<td>Displays the objects that are included in your current database. You can use this to navigate to the object that you want to work on.</td>
</tr>
<tr>
<td>Ribbon</td>
<td>Contains commands that reflect the active context tab and the object that you are currently working on.</td>
</tr>
<tr>
<td>Object Window</td>
<td>The object window displays any open database objects.</td>
</tr>
</tbody>
</table>

Table 1 – Components of the Access User Interface

In order to understand the names of a couple of components you need to understand that an Access database is generally a collection of **objects**. These objects could be tables, forms, queries, reports and macros. In this tutorial, we will work with two of these types of Access objects, tables and forms. You’ll see
other object types in later tutorials. As indicated on in Figure 3 and Table 1, the object window will display the object that you are currently working on. The look of this window will change depending on what the object is. To select an object to work, we usually find it in the navigation pane.

Access Ribbons

In Figure 3, there are 4 main Access ribbon contexts displayed that make it easy to find the commands that you need. (You can actually customize Access and add one or two more if needed) In addition, other ribbons will become available as you work with various objects. For example, the Datasheet ribbon tab is shown in Figure 1 since we started a new Access database and the software assumes that we are currently working with a new table.

The next several figures will provide a quick overview of the primary Access ribbons. You will get very familiar with these as you work through these tutorials so no need to memorize them now. Just take a quick look now and then refer back to these pages as needed.

Notice that each ribbon has some things in common. Commands are arranged in a series of groups. Each group includes a set of commands that let you do related tasks. Some controls are accompanied by downward pointing arrows. When these are clicked a menu or palette with more related options is displayed. You should also notice that each group has a small arrow in the lower right corner. By clicking this arrow you can open a dialog box for the group that provides even more options that you can use to complete your work.

![Figure 4 – The Home Ribbon](image)

The **Home ribbon** contains the most commonly used Access commands. The **Views group** provides command that let you change how a particular object is displayed. Commands such as copy, cut and paste are located here in the **Clipboard group**. Formatting commands are provided in the **Font**, and **Rich Text groups**. The **Records group** provides commands for working with the records (rows) of an Access data table. The **Sort & Filter group** commands can be used to display only items that fit a given criteria. Finally, the **Find group** provides tools for searching for items in your database.

![Figure 5 – The Create Ribbon](image)

The **Create Ribbon** includes commands that are used to create various Access object. The **Tables group** provides commands for creating tables, the **Forms group** provides commands for creating forms, and the **Reports group** provides commands for creating Reports. The **Other group** provides commands for other types of objects like queries and macros.
The primary purpose of Access is to work with data. The **External Data ribbon** provides commands that let you do more with your data. The **Import group** provides commands for bringing data in to your database from external sources. The **Export group** provides commands that allow you to use the data in your current database in other applications. The **Collect Data group** provides commands that let you collaborate to communicate or collect data. The **SharePoint Lists group** provides commands that allow you to collaborate using Microsoft Windows SharePoint services.

The **Database Tools ribbon** provides commands that let you work with your database in various ways. The **Macro group** has commands that let you work with macros. A **macro** is a saved set of instructions for doing something in Access. The **Show/Hide group** has commands for working with relationships between objects in your database. The **Analyze group** has tools for checking your database and improving its performance. The **Move Data group** commands let you make connections to a server to send or retrieve data. The **Database Tools group** provides miscellaneous commands that do not fit well in the other groups.

Building an Access Table

For this unit on MS Access, we will use a database example involving an Internet-based bank. We will start with a table that has information on the types of loans that the bank makes, home, auto, student, and so on. This information will include an ID number for each type of loan, the name of the loan type, the interest rate on this type of loan, and the minimum amount on this type of loan that the bank will extend. Later on we will add tables on the bank’s customers and the loans made to customers.
1. Start by opening Access and creating a new database.
 Name the database: **Bank_Database_Example.accdb**
 You should be looking at a screen like that shown in Figure 8.
 A new database table is shown in the Access object Window.
 Notice that the navigator pane shows only one object, i.e. the current table.

 A new Access database table is now shown in its **datasheet view**. We’ll see it using another view, the **design view**, a little later. Notice that the current context ribbon matches what you are seeing, namely the datasheet ribbon.

 While the datasheet view of a table resembles the grid that you may have seen if you have used Excel, it does not work the in the same way. When the table has been completely created, you will be able to enter data in rows and columns but the cells (intersection of rows and columns) usually do not refer to each other like they might in Excel.

 Let’s continue and see how we can create a table that fits our requirements. To create the table, we need to define the fields. Remember that a table represents some “things” that we want to keep data about. In this case, the things are types of loans that a bank wants to offer. The fields are the categories of data that we want to remember for each thing.

 Usually, field names are created by combining the name of the entity that corresponds to the table and a logical name for the attribute that will be stored in the field. Since this table will store data about a Loan, all of our fields will start with the word Loan. We will then use a name for the particular field. Note that it is often acceptable to abbreviate the first part of the name. For example, **CustID** might be an acceptable name for the primary key in a **Customer** table. Also, it is customary to capitalize the first letter of each word in the field name. You will do this later in this module when you create the fields **LoanType**, **LoanRate** and **LoanMin**. The goal is to keep the names easily identifiable, understood, and “non-mix-up-able”.

 For this example, we would like to store a Loan ID, a loan type, a loan rate, and a minimum loan amount for each type of loan. These will be our fields. There are several ways to add fields to our table. We’ll show you how to add fields in several of these ways.
2. Our first methods for entering a new field will be right on the datasheet. Double-click on the tab that reads *Add NewField*. Type the field name *LoanType*. That's almost it! You've actually added a new field.

Fields have several settings that we may want to change. The settings for this field are the defaults.

![Figure 9 – Adding the LoanType Field](image)

When you create a field for your database table you need to set several field properties. It turns out that there are a lot of field properties you could set, but only a few are essential. Table 2 lists the most commonly set field properties. Some of these we can set using commands on the Datasheet ribbon.

<table>
<thead>
<tr>
<th>Field Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Type</td>
<td>Used to define the type of data that is to be stored in the field. Some Access data types include: text, number, date/time, currency, autonumber, and others. This is probably the most important field property that you need to set. If not changed, the field is Text data type by default.</td>
</tr>
<tr>
<td>Format</td>
<td>Determines how the data is displayed. Examples are percent and currency formats. The format does not affect the actual data that is stored in the field, only how it looks.</td>
</tr>
<tr>
<td>Unique</td>
<td>Sets whether a value in a field must be unique. When this property is set, Access will not allow you to add a new record if the entered value has been used in another record.</td>
</tr>
<tr>
<td>Is Required</td>
<td>Sets whether a value is required in this field. When this property is set, Access will not allow you to add a new record unless a value is entered for this field.</td>
</tr>
<tr>
<td>Field Size</td>
<td>Technically, this determines the amount of memory needed to store a data value in the field. With Text fields it can be set by specifying the number of characters that can be used in the field (Maximum – 255). With numeric data types, the size is determined by specifying the type of number to be stored in the field (Long Integer, Double, etc.).</td>
</tr>
<tr>
<td>Input Mask</td>
<td>With this property you can specify a pattern for all data values that you want to enter into the field. It's a good way to help make sure that all data will be entered with correct values.</td>
</tr>
<tr>
<td>Default Value</td>
<td>A value that will be included in the field unless changed by the user entering the data.</td>
</tr>
</tbody>
</table>

Table 2 – Commonly Set Field Properties
3. Some of the field properties can be set using the commands in the **Data Type & Formatting** group on the Datasheet ribbon.

 While the *LoanType* field is selected, click the arrow for the Data Type list to see the possible data types you can select.

 Select the *Text* data type for this field.

 ![Figure 10 – Setting the LoanType Data Type](image)

 Note the other field properties that you can set using the commands on this group.

4. Let’s try another way to add a new field.

 Click on the **New Field** command in the **Fields & Columns** group on the Datasheet ribbon.

 ![Figure 11 – Using the New Field Command](image)

5. You should now see the **Field Template** list appear on the right of the Access workspace.

 This is a list of predefined fields that you can choose from. Most of the commonly used field types are there.

 You can choose one that should be close to what you want and then adjust field properties to tailor the field to your needs.

 Select a Number field from

 ![Figure 12 – Selecting the Number Field Template](image)
the list.

6. A new field has now been added to the table with the Number data type. Notice that the field name has also been filled in with the rather unimaginable name Number. Let’s change that quickly.

7. To rename the field, double-click on the field name in the table. Then type the field name LoanRate.

8. Interest Rates on loans are generally expressed as percentages. Notice the quick formatting icons available in the Data Type and Formatting group. Click the % icon to format this field to percents. You should see that the Format box now displays the word Percent.

We’ve been working in the Data Sheet view. We’ll find that we have far more options if we work in design view.
9. To get to there, select **Design View** from the View options on the DataSheet ribbon.

Before switching to design view, Access will prompt you to save your new table.

10. Type the name loans into the textbox and click OK.

Important: Saving in Access is unlike other Office software like Word or Excel. Access saves the components that you create and the data that you enter as you work. You only have to hit the Save icon on special, rare occasions.

11. The object window should now change to display a listing of the fields in your table.

Notice that the names and data types of the fields that we have entered are already listed in the upper table.

We’ll use the Design View to add another field and change some properties of the fields we already have.
12. To add a new field in the Design View, simply type a new field name in the Field Name list in the upper part of the Object Window.

Add the field name LoanMin to the list.

When you do, the Data Type will automatically show up as Text and the lower part of the Window will display a list of field settings with their default values.

13. A minimum loan amount is a number that represents currency.

Click the arrow on the data type box for this field and select the Currency data type from the list.

You should notice that the field setting list will change to present options available for fields of this data type.

Let’s take a look at the fields in our table and make any adjustments needed to complete the table. First, have a look at the first field name ID. Recall that this field was automatically included when we created a new table. This is the primary key for the table. Remember, a primary key is a field in a table that will contain a unique value for each and every record in the table. It’s important that all tables in your databases include a field that can serve as the primary key. So, Access simply assumes that you want a field that can do this and includes the ID field by default. You can tell that this is the primary key field because there is a key icon displayed to the right of the field name in the list.

Access also assumes that you want this field to use the AutoNumber data type. AutoNumber is a special data type provided by the Access software to use with primary keys. Access will automatically fill a field using the AutoNumber data type with the next unique value. Access makes sure that an AutoNumber field is unique by never assigning a value to the field again – even after a record is erased. The default Field Size for an AutoNumber field is Long Integer. The field size determines how much memory will be used to store numeric data in each field. For numbers, the amount of memory and format is set when you choose a
numeric data type for the field type. You need to be aware of this. When a primary key is used as a foreign key in another table, you need to make sure that the foreign key uses a data type that is compatible with data type of the primary key (Long Integer for AutoNumber.)

Thinking Critically: Would you use the AutoNumber data type if the bank has its own loan identification system? Why or why not?

For our needs, the AutoNumber data type will work well, but it would be nice to have a more descriptive field name.

14. Click the field name for *ID* and change the name to *LoanID*.

Have a look at the field properties available for this field and their current settings. We'll leave the rest of these settings as is.

15. Let’s also add a description for this field.

Type “A unique ID for a Loan Type” in the Description column for the *LoanID* field.

Descriptions can be a very important part of documenting your database. They can help others working with your database recognize the purpose of a field.
16. After entering the
description, you'll probably
see an icon that looks like a
lightning bolt with an arrow
next to it.

This provides a list of
Property Update Options.

Whenever you see this
icon, you should click the
arrow (Don't ignore it!) to
see available options and
select the one more
appropriate for your use.

For now, select the option that starts: “Update Status Bar…”

17. You'll probably get the
same message that we got:
“No objects needed to
update”

This is because we have no
other objects in our
database besides this table.

If there were, it’s a good
idea to update the property
as we did in step 16. So, it’s
good to start getting into the
habit now.

18. Now go ahead and add
field descriptions for the
rest of the fields as shown
in figure 25.
19. The default field width for a text field is 255 characters. This is longer than we will need for our LoanType field.

Select the LoanType field.

Now, adjust the Field Size in the field property list to 100.

This means we can enter any text into this field that is 100 characters or less.

20. Now have a look at the LoanRate data type.

The default field size for a Number data type is Long Integer. This means that we can only store integer values (values with no fractional part) in the field.

Of course, percents are all about fractions.

Click the arrow for the field size box and select Double.

Double will allow us to store values with decimal portions. The difference between Double and Single is that the values stored in a Double field can be more precise.

Thinking Critically – Are there any other field properties that you think should be changed? If so, what? Go ahead and make those changes before moving on.

At this point, we are finished with designing the structure for our table. Next, we will take a look at how we can enter data into the table. In general, we could enter data using the datasheet view or, even better, we can create a form object to use for data entry. If you are creating a database with more than one table, you should wait to enter data only after all tables and their relationships are created. We’ll add more tables to this example database in a later tutorial.

Using an Access DataSheet for Data Entry

With the table in DataSheet view we can simply type a data value into its appropriate field (column.) To do this, we need to return to the DataSheet view.
1. Click the View command on the Design ribbon. You’ll notice that you have a few more options this time to choose from including PivotTable and PivotChart Views. We’ll select DataSheet view. Go ahead and select that now.

2. Access requires that you save significant changes to the database as you go along. So, before moving to the DataSheet view, you will be prompted to save the table. Click Yes to save the table and move to the DataSheet view.

3. Now you’ll see the table in the DataSheet view once again. Only this time all of the fields that you’ve added to the table are displayed. Notice the bar at the bottom of the DataSheet that shows which record you are currently highlighting (1 of 1). Later, you can use these controls here to browse through the table if desired.
4. To enter data using the DataSheet view, you simply click in the field where you want to type data and type it. Click the LoanType field.

Now type the loan type: “15 Year Mortgage”

Notice that the number 1 appeared automatically in the LoanID field. Why?

5. As you enter data into a field, the (New) record moves to the line below the one in which you are typing.

Go ahead and enter the two records shown in Figure 32.

In the next section, we’ll see another way to enter data into a database table.

Using an Access Form for Data Entry

You will now learn how to create a MS Access form to use in data entry. Forms are used to provide a more formal and sometimes easier method of data entry than simply using the datasheet view of a table. They are also important when you want users to enter data but you don’t want them to have access to the actual table. To enter more data into the loans table, you will create the loans form. Let’s begin.
1. While viewing the table, click on the Form command. You'll find it in the Forms group of the Create ribbon.

Figure 33 – Creating a Form

2. You should now see a form for the loans table. Notice that this form contains a label and textbox pair for each of the fields in our database. These textboxes are provided for data entry. This form is bound to our table. When a value is entered into a textbox, the value will be entered into the corresponding field of the table.

As you can see in Figure 34, the binding between the form and the table works both ways. The data in the currently selected record, record 1, is displayed in the form. You can move through the records using the browsing buttons at the bottom of the form. The ⬅️ and ⬆️ arrows will move one record at a time and the ⬠ and ⬠ arrows will move either to the first record in the table or the last. The number indicates the number of the record that is currently displayed.

The form is functional as is, but it's not very pretty. Let's first make the form look a little better. Then, we'll use it to add a new record or two. The new form is currently in Layout View. While in Layout View, you'll notice that two form related ribbons are available, the Format and Arrange ribbons. These ribbons include commands that let us change how the format looks and how its elements are arranged.
3. On the Format menu you'll find the AutoFormat group. Click the More arrow to get a menu of format choices. Pick one that you like and see how the look for the form changes. We chose one called “Trek.”

4. We can also easily adjust the labels on the form. Notice that the labels used are derived from the table name and the field names. As users (not you the designer) may be likely to enter data, we want to make these labels clearer for them. Click on the Form title. Replace “loans” with the form title “Loan Type Entry Form.”

5. You can edit the field labels in the same way. Click the label “LoanID.” Edit it by adding a space to make “Loan ID.”
6. Edit the rest of the field labels to be more user friendly as shown in Figure 38.

7. Let’s make sure that our changes to the form have been changed.
 Click the **Save** icon on the **quick access toolbar** at the top of the Access window.
 Save the form with the name **loans**.
 You’ll notice that this is the same name as the table.
 Won’t it cause a problem to name two components with the same name?

8. After saving, you’ll notice a change in the navigation pane.
 You should see that the components in your database, the **loans** table and the **loans** form are listed in separate areas by object type.
 If you don’t see this, click the arrow at the top of the navigation pane and select **All Access Objects**.

 Now that our form looks like we want and we have it saved, let’s use it to add some new data records.
9. Make sure that the form is in Form View so that we can add data. Do this by selecting Form View from the View menu.

![Figure 41 – Changing to Form View](image1)

10. Now click on the New Record button, ![Figure 42 – The New Record Navigation Button](image2), that is part of the form navigation button.

![Figure 42 – The New Record Navigation Button](image2)

11. You’ll see a new, blank record on the form. Notice that the LoanID field gives you a big clue that this is a new record.

![Figure 43 – A New Blank Record in the Form](image3)
12. To enter data, simply type data into the appropriate textbox.

For this example, enter “Auto Loan 36-Month” for the loan type, 8.5 for the loan rate, and 5000 for the loan minimum.

No need to type the % or $ symbols for the loan rate and minimum. They are automatically added because of the field data types and formats.

Using your form, add data until you have all six of the records shown in Table 3. If you have been following along, then the first three records should already be entered.

<table>
<thead>
<tr>
<th>Loan ID</th>
<th>Loan Type</th>
<th>Loan Rate</th>
<th>Loan Minimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15 Year Mortgage</td>
<td>4.50%</td>
<td>$50,000.00</td>
</tr>
<tr>
<td>2</td>
<td>30 year Mortgage</td>
<td>5.50%</td>
<td>$75,000.00</td>
</tr>
<tr>
<td>3</td>
<td>Auto Loan 36-Month</td>
<td>8.50%</td>
<td>$5,000.00</td>
</tr>
<tr>
<td>4</td>
<td>Auto Loan 48-Month</td>
<td>9.50%</td>
<td>$7,500.00</td>
</tr>
<tr>
<td>5</td>
<td>Auto Loan 60-Month</td>
<td>10.50%</td>
<td>$10,000.00</td>
</tr>
<tr>
<td>6</td>
<td>Student</td>
<td>5.00%</td>
<td>$2,000.00</td>
</tr>
</tbody>
</table>

Table 3 – loans Data

13. When completed, you should see the last record in the form.

You can use the navigation buttons to browse the records and make any necessary correction.

Let’s check to see what the new records look like in the DataSheet View of the table.
14. Click on the *loans* table in the Navigation pane.
Select the DataSheet view from the View options.
What’s this? Only the first two records that we entered directly into the DataSheet are listed. What the heck is going on?

![Figure 46 – The *loans* Table DataSheet View](image)

15. It turns out that there’s nothing wrong. The view just needs to be refreshed.
To do this, go to the Home ribbon and click **Refresh All**.

![Figure 47 – Refreshing the DataSheet View](image)

16. After refreshing the DataSheet view, you should now see all 6 of the records that you added.
Whew! Nothing lost!

![Figure 48 – The Refreshed DataSheet View](image)

Now, you’ve got a good start at building an Access database. You can build a table for storing data and you can build a related form to use for entering the data. In later tutorials we’ll add to your skills so that you can include multiple tables, ask questions about the data using queries and make reports based on the data in the database.
Exercises to Build Your Knowledge of Access.

Match each of the Access terms with its description.

1. ___ DataSheet view | a. A way to store data by organizing it into tables made up of columns and rows.
2. ___ Design View | b. A collection of data about an entity or object in a relational database.
3. ___ field | c. A data value about an entity. Represented by the columns in a relational database table.
4. ___ foreign key | d. A collection of data about an instance of an entity. Represented by the rows in a relational database table.
5. ___ form | e. A field in a relational database that is required to contain a unique value for each record in the table.
6. ___ object window | f. A field in a relational database table that is used to refer to records in another table.
7. ___ primary key | g. A type of object that you can create in Access that makes it easier for users to enter data.
8. ___ record | h. The section of the Access window where you work on the current object (table, form, query, etc.)
9. ___ relational database | i. A view of a table that shows the data in rows and columns.
10. ___ table | j. A view of a table that lists the fields, field data types and other field parameters.

Fill in the blank with the Access ribbon and group that is home to each of the following commands. Some ribbons only appear with a particular view of an object. You'll have to look for them because we have not discussed some of them yet. Also, for a few there may be more than one correct answer.

<table>
<thead>
<tr>
<th>Command</th>
<th>Ribbon</th>
<th>Group</th>
<th>View</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Refresh All</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
<tr>
<td>12. Query Wizard</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
<tr>
<td>13. Saved Exports</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
<tr>
<td>14. Relationships</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
<tr>
<td>15. Data Type</td>
<td>________</td>
<td>________</td>
<td>________</td>
</tr>
</tbody>
</table>
21. Create the database table and form discussed in the tutorial. You should do the following to complete this exercise:

 Complete the design of the database loans table as described in the tutorial. Note: in this and in all future creations of tables, it is **essential** that you spell the field names *exactly* as they are show in the tutorial. Failure to spell them correctly will result in your database not working as planned!

 Complete the design of the loans form as described in the tutorial.

 Enter the data shown in Table 3 into loans using the loans form.

Use Access Help to find the answers to the following questions:

22. How many different display formats are available for a field with the Date/Time data type?

23. What data type would you use if you want to store a large amount of text (more than 255 characters)?

24. What is a validation rule and how could you create one?

25. What is a split form? What would you use it for?
Access Tutorial 1 - Mini-Case 1:

Scenario: Nick, the owner of a small shop catering to the local fishermen decided to expand his product line when the lake started to dry up due to a drought. Blessed with a large parking area, he decided to add car sales and thus his business was reborn as *Nick’s Bait, Tackle and Used Cars*. Determined to keep his used car inventory as organized as his assortment of shiners and larvae, Nick decided that he needed to build a database. He’d start small with one table and then expand it as necessary. Nick realized that it’s generally better to create a design with all of the tables that would be needed first, but he figured that a one table database would be sufficient for awhile and anyway, it would be a good way to learn how to use Microsoft Access.

Your Task: Create an Access database with a table called *vehicles* to keep up with the list of cars on the lot of Nick’s store. Your database should conform to the following requirements:

Create your *vehicles* table to hold the following data for each vehicle. Set the various parameters for the field to match the description of the field provided.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ID Number</td>
<td>This is a 6-digit identification chosen by Nick that may use both numbers and letters.</td>
</tr>
<tr>
<td>Dealer Cost</td>
<td>The price that Nick paid for the car. Should be stored in the appropriate currency format.</td>
</tr>
<tr>
<td>Blue Book</td>
<td>The estimated used car sales price based on the industry standard “Blue Book” estimates. Should be stored in the appropriate currency format.</td>
</tr>
<tr>
<td>Type</td>
<td>The type of vehicle. Data values here can include car, truck, SUV, etc.</td>
</tr>
<tr>
<td>Sold</td>
<td>A Yes/No field that can be checked as Yes for vehicles that have been sold.</td>
</tr>
</tbody>
</table>

Table 4 – Fields for Mini-case 1 Database

Create a form for entering data into the *vehicles* table.

Use your form to enter the following data:

<table>
<thead>
<tr>
<th>ID</th>
<th>Cost</th>
<th>Blue Book</th>
<th>Type</th>
<th>Sold</th>
</tr>
</thead>
<tbody>
<tr>
<td>01086</td>
<td>$13,550</td>
<td>$17,888</td>
<td>Car</td>
<td>Yes</td>
</tr>
<tr>
<td>01145</td>
<td>$10,500</td>
<td>$12,599</td>
<td>Truck</td>
<td>No</td>
</tr>
<tr>
<td>01319</td>
<td>$8,100</td>
<td>$9,300</td>
<td>SUV</td>
<td>No</td>
</tr>
<tr>
<td>A0554</td>
<td>$11,430</td>
<td>$12,800</td>
<td>Car</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Table 5 – Data for Mini-case 1 Database
Access Tutorial 1 - Mini-Case 2:

Scenario: Since getting their digital cameras the Couleur family takes a lot of pictures. As the family computer expert, Amy, is usually the one who has to upload the photos to the family computer and keep them organized. She noticed that everyone seems to take and keep a lot more photos now that everything is digital. Amy would like to create an application to help her keep track of the photos that her family takes. She wants to be able to search based on date, family member or location to find the file names of the photos on her computer. Having just studied Access at school, Amy has decided that a database might be the perfect application for storing her photo information.

Your Task: Create an Access database with a table called *photos* to keep up with the list of photos on the lot of Amy’s family. Your database should conform to the following requirements:

Create your *photos* table to hold the following data for each digital photo. Set the various parameters for the field to match the description of the field provided.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>photo_ID</td>
<td>A photo ID number that can be automatically generated.</td>
</tr>
<tr>
<td>photographer</td>
<td>The name of the family member who took the photo.</td>
</tr>
<tr>
<td>date</td>
<td>The date when the photo was taken.</td>
</tr>
<tr>
<td>location</td>
<td>The location where the photo was taken.</td>
</tr>
<tr>
<td>subject</td>
<td>A brief description of the photo’s subject matter.</td>
</tr>
<tr>
<td>color</td>
<td>A Yes/No field that can be checked as Yes for color photos and No for black/white photos.</td>
</tr>
<tr>
<td>filename</td>
<td>The filename of the photo stored on Amy’s hard drive.</td>
</tr>
</tbody>
</table>

Table 6 – Fields for Mini-case 2 Database

Create a form for entering data into the *vehicles* table.

Use your form to enter data. Enter about 10 records. An example record is provided in table7

<table>
<thead>
<tr>
<th>Field</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>photo_ID</td>
<td>1</td>
</tr>
<tr>
<td>photographer</td>
<td>Julie</td>
</tr>
<tr>
<td>date</td>
<td>8/7/2007</td>
</tr>
<tr>
<td>location</td>
<td>Burgundy, France</td>
</tr>
<tr>
<td>subject</td>
<td>The Roche de Solutre. A natural and pre-historic site in France.</td>
</tr>
<tr>
<td>color</td>
<td>Yes</td>
</tr>
<tr>
<td>filename</td>
<td>roche001.jpg</td>
</tr>
</tbody>
</table>

Table 7 – Example Data for Mini-case 2 Database