

Criminal Face Identification

System

INDEX

1. Abstract

2. Introduction

3. System Analysis

a. Existing System

b. proposed System

4. Feasibility Report

 a. Technical Feasibility

 b. Operational Feasibility

 c. Economical Feasibility

5. System Requirement Specification Document

 a. Modules Description

b. Process Flow

c. SDLC Methodology

d. Software Requirements

e. Hardware Requirements

6. System Design

 A.E-R Diagram

 b. DFD

 c. UML

7. Technology Description

8. Coding

9. Testing & Debugging Techniques

10. Output Screens

11. Future Enhancements

12. Bibliography

ABSTRACT:

Title: Criminal Face Identification System

Objective:

Criminal record generally contains personal information about particular

person along with photograph. To identify any Criminal we need some identification

regarding person, which are given by eyewitness. In most cases the quality and

resolution of the recorded image segments is poor and hard to identify a face. To

overcome this sort of problem we are developing software. Identification can be

done in many ways like finger print, eyes, DNA etc. One of the applications is face

identification. The face is our primary focus of attention in social inters course

playing a major role in conveying identify and emotion. Although the ability to infer

intelligence or character from facial appearance is suspect, the human ability to

recognize face is remarkable.

INTRODUCTION

PURPOSE OF THE PROJECT:

 This project is aimed to identify the criminals in any investigation department.

Here the technique is we already store some images of the criminals in our

database along with his details and that images are segmented into many slices say

eyes, hairs, lips, nose, etc. These images are again stored in another database

record so to identify any criminals; eyewitnesses will see the images or slices that

appear on the screen by using it we develop the face, which may or may not be

matched with our images. If any image is matched up to 99% then we predict that

he is only the criminal. Thus using this project it provides a very friendly

environment for both operator and eyewitness to easily design any face can identify

criminals very easy.

PROJECT OBJECTIVE:

 This project is intended to identify a person using the images previously

taken. The identification will be done according the previous images of different

persons.

PROJECT SCOPE:

 The scope of the project is confined to store the image and store in the

database. When a person has to be identified the images stored in the database are

compared with the existing details.

OVERVIEW OF THE PROJECT:

 This project is aimed to identify the criminals in any

investigation department. Here the technique is we already store some images of

the criminals in our database along with his details and those images are

segmented into many slices say eyes, hairs, lips, nose, etc. These images are again

stored in another database record so to identify any criminals; eyewitnesses will

see the images or slices that appear on the screen by using it we develop the face,

which may or may not be matched with our images. If any image is matched up to

99% then we predict that he is only the criminal. Thus using this project it provides

a very friendly environment for both operator and eyewitness to easily design any

face can identify criminals very easy.

PROBLEM AREA DESCRIPTION

 The project is aimed at identifying the criminals with the help of

eye witness. There are mainly four modules in our project. They are Adding,

Deleting, Updating and identifying the criminals. There are mainly three roles in our

project. They are:

 Administrator

 Operator

 Eyewitness

 The administrator is responsible for providing User id’s and

passwords. He provides authentication to the users. He creates deletes and Updates

the User ids and Passwords.

 The operator, who belongs to the investigating department, is

responsible for entering the criminal details and maintains them. He adds, deletes

and updates the criminal details. He also constructs the criminal face with the help

of eye witness.

 The eyewitness identifies the criminals with the help of

cropped parts stored in a different database by the operator. The eyewitness

selects a cropped part from the database and that cropped part will be freeze by

the operator in this way, complete face of the criminal is constructed and the

details of that criminal is retrieved from the database. We can also construct a new

image from those cropped parts which we consider as an imaginary face of the

criminal.

SYSTEM ANALYSIS

The first step in developing anything is to state the requirements. This

applies just as much to leading edge research as to simple programs and to

personal programs, as well as to large team efforts. Being vague about your

objective only postpones decisions to a later stage where changes are much

more costly.

 The problem statement should state what is to be done and not how it

is to be done. It should be a statement of needs, not a proposal for a

solution. A user manual for the desired system is a good problem statement.

The requestor should indicate which features are mandatory and which are

optional, to avoid overly constraining design decisions. The requestor should

avoid describing system internals, as this restricts implementation flexibility.

Performance specifications and protocols for interaction with external

systems are legitimate requirements. Software engineering standards, such

as modular construction, design for testability, and provision for future

extensions, are also proper.

 Many problems statements, from individuals, companies, and

government agencies, mixture requirements with design decisions. There

may sometimes be a compelling reason to require a particular computer or

language; there is rarely justification to specify the use of a particular

algorithm. The analyst must separate the true requirements from design and

implementation decisions disguised as requirements. The analyst should

challenge such pseudo requirements, as they restrict flexibility. There may

be politics or organizational reasons for the pseurequirements, but at least

the analyst should recognize that these externally imposed design decisions

are not essential features of the problem domain.

 A problem statement may have more or less detail. A requirement for

a conventional product, such as a payroll program or a billing system, may

have considerable detail. A requirement for a research effort in a new area

may lack many details, but presumably the research has some objective,

which should be clearly stated.

 Most problem statements are ambiguous, incomplete, or even

inconsistent. Some requirements are just plain wrong. Some requirements,

although precisely stated, have unpleasant consequences on the system

behavior or impose unreasonable implementation costs. Some requirements

seem reasonable at first but do not work out as well as the request or

thought. The problem statement is just a starting point for understanding

the problem, not an immutable document. The purpose of the subsequent

analysis is to fully understand the problem and its implications. There is no

reasons to expect that a problem statement prepared without a fully analysis

will be correct.

 The analyst must work with the requestor to refine the requirements

so they represent the requestor’s true intent. This involves challenging the

requirements and probing for missing information. The psychological,

organizational, and political considerations of doing this are beyond the

scope of this book, except for the following piece of advice: If you do exactly

what the customer asked for, but the result does not meet the customer’s

real needs, you will probably be blamed anyway.

Existing System:

 This system is manual system only. Here, have a facility to store the

criminal images. If you want to compare the criminal images with the

existing images it is manual process. This process is very slow to give the

result. It is very critical to find the criminal images.

Proposed System:

To overcome the drawbacks that were in the existing system we develop a

system that will be very useful for any investigation department. Here the program

keeps track of the record number of each slice during the construction of

identifiable human face and calculate maximum number of slices of the similar

record number. Based on this record number the program retrieves the personal

record of the suspect (whose slice constituted the major parts of the constructed

human face) on exercising the “locate” option.

Advantages:

 Very fast and accurate.

 No need of any extra manual effort.

 No fever of data loss.

 Just need a little knowledge to operate the system.

 Doesn’t require any extra hardware device.

 At last very easy to find the criminals

Overview:

Addition, Clipping, Construction and updating of the criminal record and face.

Comparing the image with the faces that are there in our database. If any new

images are found then it should be entered into our database by add image module

and then it should be segmented into different slices.

FEASIBILITY REPORT

Feasibility Study

A feasibility study is a high-level capsule version of the entire System

analysis and Design Process. The study begins by classifying the problem

definition. Feasibility is to determine if it’s worth doing. Once an acceptance

problem definition has been generated, the analyst develops a logical model

of the system. A search for alternatives is analyzed carefully. There are 3

parts in feasibility study.

Operational Feasibility:

Question that going to be asked are

 Will the system be used if it developed and implemented.

 If there was sufficient support for the project from the management and

from the users.

 Have the users been involved in planning and development of the

Project.

 Will the system produce poorer result in any respect or area?

This system can be implemented in the organization because there is

adequate support from management and users. Being developed in Java

so that the necessary operations are carried out automatically.

Technical feasibility:

 Does the necessary technology exist to do what is been suggested

 Does the proposed equipment have the technical capacity for using the new

system?

 Are there technical guarantees of accuracy, reliability and data security?

 The project is developed on Pentium IV with 256 MB RAM.

 The environment required in the development of system is any windows

platform

 The observer pattern along with factory pattern will update the results

eventually

 The language used in the development is JAVA 1.5 & Windows Environment

Financial and Economical Feasibility:

The system developed and installed will be good benefit to the

organization. The system will be developed and operated in the existing

hardware and software infrastructure. So there is no need of additional

hardware and software for the system.

SYSTEM REQUIREMENT SPECIFICATION

Functional Requirements:

By conducting the requirements analysis we listed out the requirements that are

useful to restate the problem definition.

 Insert the image into database

 Split the image into no of parts.

 Merge the parts.

 Identify the image.

 Draw image manually.

 Maintain separate login for admin and operator.

 Maintain information about each criminal

Module Description

 Well structured designs improve the maintainability of a system. A structured

system is one that is developed from the top down and modular, that is, broken

down into manageable components. In this project we modularized the system so

that they have minimal effect on each other.

This application is designed into five independent modules which take care of

different tasks efficiently.

1. User Interface Module.

2. Admin Module.

3. Client Module.

4. Database Operations Module.

5. Splitting and Merging Module.

6. Identify Module.

User Interface Module:

 Actually every application has one user interface for accessing the entire

application. In this application also we are providing one user interface for

accessing this application. The user interface designed completely based on the end

users. It is provide friendly accessing to the users. This user interface has attractive

look and feel. Technically I am using the swings in core java for preparing this user

interface.

Admin Module:

User requirements Elaboration Further Elaboration

Create Assign new user id &

password for an employee.

Delete Administrator can delete the

user id & password of

unwanted employee.

Update First the details of

employees are to be

obtained by using user id &

password.

After obtaining the original

details the updated details are

submitted.

Client Module:

User requirements Elaboration Further Elaboration

Login Employee log in to home

page by entering id &

password.

Adding details Personal details of criminal

store in to data base

Images are cropped and saved in

database.

Update process Enter criminal id and obtain

his details

Update the details and images of

existing criminal

Delete process Enter criminal id Delete the details and image of

unwanted criminal

Logout Logout in to the home page

Splitting and Merging Module:

Requirements Elaboration Further Elaboration

View clippings View all clips and select the

clip shown by eyewitness

Compare the clippings with

images of criminals

Construction Construct the face of

criminal by clubbing all

freezed clippings

Database Operations Module:

ADD MODULE: The add module is helpful in adding the details of the criminals

along with the details of the criminal photo. While adding the details of the criminal,

we crop the image of the criminal and store those cropped parts in a separate

database.

DELETE MODULE : This module deletes the criminal details along with the photo.

The operator first submits the criminal id and searches for the availability of the id

in the database. If that id is available in the database, then the operator may delete

the record of that particular r criminal.

UPDATE MODULE : The operator first enters the criminal id and searches for the

availability of that id .If that id is available in the database , then the details of that

criminal are retrieved and the operator can update the details of that criminal and

that updated details of the criminal are stored in the database again for future

retrieval.

Identify Module:

The cropped parts of the criminals, along with the criminal Id are viewed by the

eyewitness .The eyewitness selects particular cropped part of the criminal and it is

freeze by the operator., then complete face of the criminal is constructed and the

details of the criminal is retrieved.

SDLC METHDOLOGIES

SDLC METHDOLOGIES:

This document play a vital role in the development of life cycle (SDLC) as

it describes the complete requirement of the system. It means for use by

developers and will be the basic during testing phase. Any changes made

to the requirements in the future will have to go through formal change

approval process.

SPIRAL MODEL was defined by Barry Boehm in his 1988 article, “A spiral

Model of Software Development and Enhancement. This model was not

the first model to discuss iterative development, but it was the first model

to explain why the iteration models.

As originally envisioned, the iterations were typically 6 months to 2 years

long. Each phase starts with a design goal and ends with a client

reviewing the progress thus far. Analysis and engineering efforts are

applied at each phase of the project, with an eye toward the end goal of

the project.

The steps for Spiral Model can be generalized as follows:

 The new system requirements are defined in as much details as

possible. This usually involves interviewing a number of users

representing all the external or internal users and other aspects of

the existing system.

 A preliminary design is created for the new system.

 A first prototype of the new system is constructed from the

preliminary design. This is usually a scaled-down system, and

represents an approximation of the characteristics of the final

product.

 A second prototype is evolved by a fourfold procedure:

1. Evaluating the first prototype in terms of its strengths,

weakness, and risks.

2. Defining the requirements of the second prototype.

3. Planning an designing the second prototype.

4. Constructing and testing the second prototype.

 At the customer option, the entire project can be aborted if the risk

is deemed too great. Risk factors might involve development cost

overruns, operating-cost miscalculation, or any other factor that

could, in the customer’s judgment, result in a less-than-satisfactory

final product.

 The existing prototype is evaluated in the same manner as was the

previous prototype, and if necessary, another prototype is

developed from it according to the fourfold procedure outlined

above.

 The preceding steps are iterated until the customer is satisfied that

the refined prototype represents the final product desired.

 The final system is constructed, based on the refined prototype.

 The final system is thoroughly evaluated and tested. Routine

maintenance is carried on a continuing basis to prevent large scale

failures and to minimize down time.

The following diagram shows how a spiral model acts like:

Fig 1.0-Spiral Model

ADVANTAGES:

 Estimates(i.e. budget, schedule etc .) become more relistic as work

progresses, because important issues discoved earlier .

 It is more able to cope with the changes that are software

development generally entails.

 Software engineers can get their hands in and start woring on the

core of a project earlier.

APPLICATION DEVELOPMENT

N-TIER APPLICATIONS

N-Tier Applications can easily implement the concepts of Distributed

Application Design and Architecture. The N-Tier Applications provide

strategic benefits to Enterprise Solutions. While 2-tier, client-server can help

us create quick and easy solutions and may be used for Rapid Prototyping,

they can easily become a maintenance and security night mare

The N-tier Applications provide specific advantages that are vital to the

business continuity of the enterprise. Typical features of a real life n-tier

may include the following:

 Security

 Availability and Scalability

 Manageability

 Easy Maintenance

 Data Abstraction

The above mentioned points are some of the key design goals of a

successful n-tier application that intends to provide a good Business

Solution.

DEFINITION

Simply stated, an n-tier application helps us distribute the overall

functionality into various tiers or layers:

 Presentation Layer

 Business Rules Layer

 Data Access Layer

 Database/Data Store

Each layer can be developed independently of the other provided that it

adheres to the standards and communicates with the other layers as per the

specifications.

This is the one of the biggest advantages of the n-tier application. Each

layer can potentially treat the other layer as a ‘Block-Box’.

In other words, each layer does not care how other layer processes the data

as long as it sends the right data in a correct format.

Fig 1.1-N-Tier Architecture

1. THE PRESENTATION LAYER

Also called as the client layer comprises of components that are

dedicated to presenting the data to the user. For example:

Windows/Web Forms and buttons, edit boxes, Text boxes, labels,

grids, etc.

2. THE BUSINESS RULES LAYER

This layer encapsulates the Business rules or the business logic of the

encapsulations. To have a separate layer for business logic is of a

great advantage. This is because any changes in Business Rules can be

easily handled in this layer. As long as the interface between the

layers remains the same, any changes to the functionality/processing

logic in this layer can be made without impacting the others. A lot of

client-server apps failed to implement successfully as changing the

business logic was a painful process.

3. THE DATA ACCESS LAYER

This layer comprises of components that help in accessing the

Database. If used in the right way, this layer provides a level of

abstraction for the database structures. Simply put changes made to

the database, tables, etc do not affect the rest of the application

because of the Data Access layer. The different application layers send

the data requests to this layer and receive the response from this

layer.

4. THE DATABASE LAYER

This layer comprises of the Database Components such as DB Files,

Tables, Views, etc. The Actual database could be created using SQL

Server, Oracle, Flat files, etc.

In an n-tier application, the entire application can be implemented in

such a way that it is independent of the actual Database. For instance,

you could change the Database Location with minimal changes to Data

Access Layer. The rest of the Application should remain unaffected.

SOFTWARE REQUIREMENT

Software Requirements:

Operating System : Windows

Graphical User Interface : Java Swing, AWT.

Application Logic : Java 7.

Database : Oracle 10g

IDE/Workbench : My Eclipse 6.0.

HARDWARE REQUIREMENT

Hardware Requirements:

 System Configuration

Processor : Pentium III – 900 MHz

Hard Disk : 20 GB

RAM : 128 MB

SYSTEM DESIGN

During analysis, the focus is on what needs to be done, independent of how it is

done. During design, decisions are made about how the problem will be solved, first

at high level, then at increasingly detailed levels.

 System design is the first design stage in which the basic approach to solving

the problem is selected. During system design, the overall structure and style are

decided. The system architecture is the overall organization of the system into

components called subsystems. The architecture provides the context in which

more detailed decisions are made in later design stages. By making high level

decisions that apply to the entire system, the system designer partitions the

problem into subsystems so that further work can be done by several designers

working independently on different subsystems.

The system designer must make the following decisions:

 Organize the system into subsystems.

 Identify the concurrency inherent in the problem.

 Allocate subsystems to processors and tasks.

 Choose an approach for management of data stores.

 Handle access to global resources.

 Choose the implementation of control in software.

 Handle boundary conditions.

 Set trade-off priorities.

Breaking the System into Subsystems:

 The first step in system design is to divide the system into small number of

components. Each major component of a system is called a sub system. Each

subsystem encompasses aspects of the system that share some common property

– similar functionality, the same physical location, or execution on the same kind of

hardware.

 A subsystem not an object nor a function but a package of classes,

associations, operations, events, and constraints that are interrelated and that have

a reasonably well-defined and small interface with other subsystems. A subsystem

usually identified by the services it provides. A service is a group of related

functions that share some common purpose such as I/O processing. A subsystem

defines a coherent way of looking at one aspect of the problem.

 Each subsystem has a well-defined interface to the rest of the system. The

interface specifies the form of all interactions and the information flow across

subsystem boundaries but does not specify how the sub system is implemented

internally. Each subsystem then can be designed independently without affecting

the others.

 The decomposition of systems into subsystems may be organized as a

sequence of horizontal layers or vertical partitions.

 A layered system is an ordered set of virtual worlds, each built in terms of

the ones below it and providing the basis of implementation for the ones above it.

The objects in each layer can be independent, although there is often some

correspondence between objects in different layers. Knowledge is one-way only: a

subsystem knows about the layers below it, but has no knowledge of the above

layers. Each layer may have its own set of classes and operations. Each layer is

implemented in terms of the classes and operations of lower layers.

 Layered architecture comes in two forms: closed and open. In a closed

architecture, each layer is built only in terms of the immediate lower layer. In a

open architecture, a layer can use features of any lower layer to any depth.

 We decomposed our system into three subsystems as layers. The three

layers are closed architecture form. The three layers are GUI layer, Network layer

and I/O layer. The purpose of GUI layer is to provide an efficient user interface to

the user to interact with the system. It is built upon the Network layer which

provides basic FTP services. The lowest layer is the I/O layer that provides services

like reading or writing file to and from local and remote systems.

GUI subsystem

N/W subsystem

I/O subsystem

When top-level subsystems are identified, the designer should show the

information flow among the sub systems. There are several architectural

frameworks that are common in existing systems. They are batch transformation,

continuous transformation, interactive interface, dynamic simulation, real-time

system and transaction manager.

 In the architectural frameworks specified above, our system will best suit in

interactive interface architecture, since there are large number of interactions

between system and user.

 An interactive interface is a system that is dominated by interactions

between the system and external agents, such as humans, devices or other

programs. The external agents are independent of system, so their inputs can’t be

controlled, although the system may solicit responses from them.

Identifying Concurrency:

 One important goal of system design is to identify which objects must be

active concurrently and which objects have activity that is mutually exclusive. The

latter objects can be folded together in a single thread of control or task. But there

is no part that is concurrent in our system.

Allocating Subsystems to Processor:

 In this step system designer estimates the hardware resources required and

the implementation choice of either hardware or software. In our system all the

subsystems will be implemented in software. The hardware requirements are

general such as Pentium – III, 128 MB of RAM.

Management of Data Stores:

 In this stage the system designer decides what format is used to store the

data stores. There are DBMS systems or file systems and others. Here in our

project there are no data stores except files. We then definitely prefer files to

download and upload.

Choosing Software Control Implementation:

 During the analysis, all interactions are shown as events between objects.

But the system designer must choose among several ways to implement control in

software. There are two kinds of control flows in a software system: internal and

external. External control is the flow of externally visible events among the objects

in the system. There are three kinds of control for external events: procedure

driven, event driven sequential and concurrent. Internal control is the flow of

control within a process.

 Our system falls in external control flow like event driven control. Events are

fired by external agent such as user in different order but sequential not

concurrent.

PROCESS FLOW

E-RDIAGRAMS BETWEEN ADMINISTRATOR AND EMPLOYEE:

 1

E-R DIAGRAMS BETWEEN EMPLOYEE AND EYEWITNESS:

Administrator Authentication
 Employee

User id Pwd

User id Pwd

 Employee
Viewing &

selecting,

images

 Eyewitness

 User id Pwd

User id Pwd

Criminal

details

Criminal

images

Criminal

images

E-R DIAGRAM BETWEEN EYEWITNESS AND CRIMINAL:

E-R DIAGRAM BETWEEN EMPLOYEE AND CRIMINAL:

 Eyewitness

Identification
 Criminal

Criminal

images
Criminal id Criminal

details

 Employee
Getting

details

of

criminal

User id Pwd

Criminal Id Criminal

details

Criminal

E-R DIAGRAM BETWEEN EYEWITNESS AND ADMINISTTRATOR

 Administrator

Authent

ication Eyewitness

User

id

Pwd

User id Pwd

DATA FLOW DIAGRAMS

DATA FLOW DIAGRAMS:

A graphical tool used to describe and analyze the moment of data through a

system manual or automated including the process, stores of data, and

delays in the system. Data Flow Diagrams are the central tool and the basis

from which other components are developed. The transformation of data

from input to output, through processes, may be described logically and

independently of the physical components associated with the system. The

DFD is also know as a data flow graph or a bubble chart.

DFDs are the model of the proposed system. They clearly should show the

requirements on which the new system should be built. Later during design

activity this is taken as the basis for drawing the system’s structure charts.

The Basic Notation used to create a DFD’s are as follows:

1. Dataflow: Data move in a specific direction from an origin to a

destination.

2. Process: People, procedures, or devices that use or produce (Transform)

Data. The physical component is not identified.

3. Source: External sources or destination of data, which may be People,

programs, organizations or other entities.

4. Data Store: Here data are stored or referenced by a process in the

System.

Data Flow Diagrams:

LEVEL 1

 LEVEL 2

 23

DFD FOR Client:

LEVEL-2:

DFD FOR Split & Merge:

LEVEL 1:

LEVEL 2:

UML Diagrams

The Unified Modeling Language (UML) is an open method used to specify,

visualize, modify, construct and document the artifacts of an object-oriented

software intensive system under development. UML offers a standard way to

write a system's blueprints, including conceptual components such as:

 actors,

 business processes and

 system components and activities

as well as concrete things such as:

 programming language statements,

 database schemas, and

 Reusable software components.

UML combines best practices from data modeling concepts such as entity

relationship diagrams, business modeling (work flow), object modeling and

http://en.wikipedia.org/wiki/Artifact_%28software_development%29
http://en.wikipedia.org/wiki/Object-oriented
http://en.wikipedia.org/wiki/Blueprint
http://en.wikipedia.org/wiki/Actor_%28UML%29
http://en.wikipedia.org/wiki/Business_process
http://en.wikipedia.org/wiki/Component_%28UML%29
http://en.wikipedia.org/wiki/Activity_%28UML%29
http://en.wikipedia.org/wiki/Programming_language
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Data_modeling
http://en.wikipedia.org/wiki/Entity_relationship_diagram
http://en.wikipedia.org/wiki/Entity_relationship_diagram
http://en.wikipedia.org/wiki/Business_modeling
http://en.wikipedia.org/wiki/Object_modeling

component modeling. It can be used with all processes, throughout the software

development life cycle, and across different implementation technologies.[3] UML

has succeeded the concepts of the Booch method, the Object-modeling technique

(OMT) and Object-oriented software engineering (OOSE) by fusing them into a

single, common and widely usable modeling language. UML aims to be a standard

modeling language which can model concurrent and distributed systems. UML is not

an industry standard, but is taking shape under the auspices of the Object

Management Group (OMG). OMG has initially called for information on object-

oriented methodologies, that might create a rigorous software modeling language.

Many industry leaders have responded in earnest to help create the standard.[1]

UML models may be automatically transformed to other representations

(e.g. Java) by means of QVT-like transformation languages, supported by

the OMG. UML is extensible, offering the following mechanisms for

customization: profiles and stereotype.

Class Diagram:

http://en.wikipedia.org/wiki/Software_development_life_cycle
http://en.wikipedia.org/wiki/Software_development_life_cycle
http://en.wikipedia.org/wiki/UML_Diagram#cite_note-2
http://en.wikipedia.org/wiki/Booch_method
http://en.wikipedia.org/wiki/Object-modeling_technique
http://en.wikipedia.org/wiki/Object-oriented_software_engineering
http://en.wikipedia.org/wiki/Modeling_language
http://en.wikipedia.org/wiki/Distributed_systems
http://en.wikipedia.org/wiki/Industry
http://en.wikipedia.org/wiki/Standard
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/UML_Diagram#cite_note-Foldoc01-0
http://en.wikipedia.org/wiki/QVT
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Extensible_programming
http://en.wikipedia.org/wiki/Profile_%28UML%29
http://en.wikipedia.org/wiki/Stereotype_%28computing%29

Use case Description:

In software engineering, a use case diagram in the Unified Modeling

Language (UML) is a type of behavioral diagram defined by and created from

a Use-case analysis. Its purpose is to present a graphical overview of the

functionality provided by a system in terms of actors, their goals

(represented as use cases), and any dependencies between those use cases.

The main purpose of a use case diagram is to show what system functions

are performed for which actor. Roles of the actors in the system can be

depicted.

Use Case diagrams are formally included in two modeling languages defined

by the OMG. Both the UML and SysML standards define a graphical notation

for modeling use cases with diagrams. One complaint about the standards

has been that they do not define a format for describing these use cases.

Generally, both graphical notation and descriptions are important as they

document the use case, showing the purpose for which an actor uses a

system.

The use case diagram shows the position or context of the use case among

other use cases. As an organizing mechanism, a set of consistent, coherent

use cases promotes a useful picture of system behavior, a common

understanding between the customer/owner/user and the development

team.

http://en.wikipedia.org/wiki/Software_engineering
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Use-case_analysis
http://en.wikipedia.org/wiki/Actor_%28UML%29
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Object_Management_Group
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://en.wikipedia.org/wiki/Use_cases
http://en.wikipedia.org/wiki/Actor_%28UML%29

Use case Diagram:

Administrator:

Login

Inserting/Updating Criminal Details

Splitting/Updating Images

Inserting/Updating Face Details

Already Existed Criminal

New Criminal

Deleting Images

Administrator

criminal

Client (Operator):

operator Login

retriving the images

identifying the images

operator Criminal

Sequence Diagram:

A sequence diagram in Unified Modelling Language (UML) is a kind of interaction

diagram that shows how processes operate with one another and in what order. It

is a construct of a Message Sequence Chart. Sequence diagrams are sometimes

called Event-trace diagrams, event scenarios, and timing diagrams. A sequence

diagram shows, as parallel vertical lines ("lifelines"), different processes or

objects that live simultaneously, and, as horizontal arrows, the messages

exchanged between them, in the order in which they occur. This allows the

specification of simple runtime scenarios in a graphical manner.

Administrator:

http://en.wikipedia.org/wiki/Unified_Modelling_Language
http://en.wikipedia.org/wiki/Interaction_diagram
http://en.wikipedia.org/wiki/Interaction_diagram
http://en.wikipedia.org/wiki/Message_Sequence_Chart
http://en.wikipedia.org/wiki/Timing_diagram

split image() SystemFaceCriminalAuthentication

login into system as administrator()

Ask details()

giving/retrieving Details()

insert/Updat details()

split image()

insert/update face()

delete crimminal()

Operator:

Identifying Images()

Operator Database System

login into system as operator()

setting the Image Id()

Retrieving the Images()

Collaboration Diagram:

A Communication diagram models the interactions between objects or parts

in terms of sequenced messages. Communication diagrams represent a

combination of information taken from Class, Sequence, and Use Case

Diagrams describing both the static structure and dynamic behavior of a

system.

However, communication diagrams use the free-form arrangement of

objects and links as used in Object diagrams. In order to maintain the

ordering of messages in such a free-form diagram, messages are labeled

with a chronological number and placed near the link the message is sent

over. Reading a communication diagram involves starting at message 1.0,

and following the messages from object to object.

http://en.wikipedia.org/wiki/Class_diagram
http://en.wikipedia.org/wiki/Sequence_diagram
http://en.wikipedia.org/wiki/Use_case#UML_Use_Case_diagram
http://en.wikipedia.org/wiki/Use_case#UML_Use_Case_diagram

Communication diagrams show a lot of the same information as sequence

diagrams, but because of how the information is presented, some of it is

easier to find in one diagram than the other. Communication diagrams show

which elements each one interacts with better, but sequence diagrams show

the order in which the interactions take place more clearly.

Administrator:

System
Face

split

image()

Criminal Authentic

ation

1: login into system as administrator()

2: giving/retrieving Details()

3: Ask details()
4: insert/Updat details()

5: split image()

6: insert/update face()

7: delete crimminal()

Operator:

System

Operator Databas

e

1: login into system as operator()

2: setting the Image Id()

3: Retrieving the Images()

4: Identifying Images()

Activity Diagram:

Activity diagrams are a loosely defined diagram technique for showing

workflows of stepwise activities and actions, with support for choice,

iteration and concurrency. In the Unified Modeling Language, activity

diagrams can be used to describe the business and operational step-by-step

workflows of components in a system. n SysML the activity diagram has

been extended to indicate flows among steps that convey physical element

(e.g., gasoline) or energy (e.g., torque, pressure).

http://en.wikipedia.org/wiki/Diagram
http://en.wikipedia.org/wiki/Workflow
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Workflow
http://en.wikipedia.org/wiki/SysML

Administrator:

Administrator

Criminal Details Operations

Insert Update Delete View splitting Merging

check

yes

No

Operator:

Operator

check

yes

No

Retrieve Image

Identify Image

Component Diagram:

A component diagram in the Unified Modeling Language, depicts how

components are wired together to form larger components and or software

systems. Components are wired together by using an assembly connector to

connect the required interface of one component with the provided interface

of another component. This illustrates the service consumer - service

provider relationship between the two components. An assembly connector

is a "connector between two components that defines that one component

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Component_%28UML%29
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Software_system

provides the services that another component requires. An assembly

connector is a connector that is defined from a required interface or port to a

provided interface or port." When using a component diagram to show the

internal structure of a component, the provided and required interfaces of

the encompassing component can delegate to the corresponding interfaces

of the contained components.

Administrator

Operator
Images

Split Merge

Deployment Diagram:

A deployment diagram in the Unified Modeling Language serves to

model the physical deployment of artifacts on deployment targets.

Deployment diagrams show "the allocation of Artifacts to Nodes according to

the Deployments defined between them." Deployment of an artifact to a

node is indicated by placing the artifact inside the node. Instances of nodes

(and devices and execution environments) are used in deployment diagrams

to indicate multiplicity of these nodes. For example, multiple instances of an

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Artifact_%28UML%29
http://en.wikipedia.org/wiki/Artifact_%28UML%29
http://en.wikipedia.org/wiki/Node_%28UML%29
http://en.wikipedia.org/wiki/Artifact_%28UML%29
http://en.wikipedia.org/wiki/Node_%28UML%29
http://en.wikipedia.org/wiki/Node_%28UML%29

application server execution environment may be deployed inside a single

device node to represent application server clustering.

Input Images

Splitting

Getting image Parts

Identify Image

TECHNOLOGY DESCRIPTION

FEATURES OF THE LANGUAGE USED:

About Java:

Initially the language was called as “oak” but it was renamed as “Java” in

1995. The primary motivation of this language was the need for a platform-

independent (i.e., architecture neutral) language that could be used to

create software to be embedded in various consumer electronic devices.

 Java is a programmer’s language.

 Java is cohesive and consistent.

 Except for those constraints imposed by the Internet environment,

Java gives the programmer, full control.

Finally, Java is to Internet programming where C was to system

programming.

Swings:

Swing, which is an extension library to the AWT, includes new and improved

components that enhance the look and functionality of GUIs. Swing can be used to

build Standalone swing GUI Apps as well as Servlets and Applets. It employs a

model/view design architecture. Swing is more portable and more flexible than

AWT.

Swing is built on top of AWT and is entirely written in Java, using AWT’s lightweight

component support. In particular, unlike AWT, t he architecture of Swing

components makes it easy to customize both their appearance and behavior.

Components from AWT and Swing can be mixed, allowing you to add Swing support

to existing AWT-based programs. For example, swing components such as JSlider,

JButton and JCheckbox could be used in the same program with standard AWT

labels, textfields and scrollbars. You could subclass the existing Swing UI, model, or

change listener classes without having to reinvent the entire implementation. Swing

also has the ability to replace these objects on-the-fly.

 100% Java implementation of components

 Pluggable Look & Feel

 Lightweight components

 Uses MVC Architecture

Model represents the data

View as a visual representation of the data

Controller takes input and translates it to changes in data

 Three parts

Component set (subclasses of JComponent)

Support classes

Interfaces

In Swing, classes that represent GUI components have names beginning

with the letter J. Some examples are JButton, JLabel, and JSlider. Altogether

there are more than 250 new classes and 75 interfaces in Swing — twice as

many as in AWT.

Java Swing class hierarchy

The class JComponent, descended directly from Container, is the root class for most

of Swing’s user interface components.

Swing contains components that you’ll use to build a GUI. I am listing you some of

the commonly used Swing components. To learn and understand these swing

programs, AWT Programming knowledge is not required.

Applications and Applets

An application is a program that runs on our Computer under the operating

system of that computer. It is more or less like one creating using C or C++.

Java’s ability to create Applets makes it important. An Applet is an

application designed, to be transmitted over the Internet and executed by a

Java –compatible web browser. An applet is actually a tiny Java program,

dynamically downloaded across the network, just like an image. But the

difference is, it is an intelligent program, not just a media file. It can react to

the user input and dynamically change.

FEATURES OF JAVA:

Security

Every time you that you download a “normal” program, you are risking a

viral infection. Prior to Java, most users did not download executable

programs frequently, and those who did scan them for viruses prior to

execution. Most users still worried about the possibility of infecting their

systems with a virus. In addition, another type of malicious program

exists that must be guarded against. This type of program can gather

private information, such as credit card numbers, bank account balances,

and passwords. Java answers both of these concerns by providing a

“firewall” between a networked application and your computer. When you

use a Java-compatible Web browser, you can safely download Java

applets without fear of virus infection or malicious intent.

Portability

For programs to be dynamically downloaded to all the various types of platforms

connected to the Internet, some means of generating portable executable code is

needed .As you will see, the same mechanism that helps ensure security also helps

create portability. Indeed, Java’s solution to these two problems is both elegant and

efficient.

The Byte code

The key that allows the Java to solve the security and portability problem is that

the output of Java compiler is Byte code. Byte code is a highly optimized set of

instructions designed to execute by the Java run-time system, which is called the

Java Virtual Machine (JVM). That is, in its standard form, the JVM is an interpreter

for byte code.

Translating a Java program into byte code helps makes it much easier to run a

program in a wide variety of environments. The reason is, once the run-time

package exists for a given system, any Java program can run on it.

Although Java was designed for interpretation, there is technically nothing

about Java that prevents on-the-fly compilation of byte code into native

code. Sun has just completed its Just In Time (JIT) compiler for byte code.

When the JIT compiler is a part of JVM, it compiles byte code into executable

code in real time, on a piece-by-piece, demand basis. It is not possible to

compile an entire Java program into executable code all at once, because

Java performs various run-time checks that can be done only at run time.

The JIT compiles code, as it is needed, during execution.

Java Virtual Machine (JVM)

Beyond the language, there is the Java virtual machine. The Java virtual

machine is an important element of the Java technology. The virtual

machine can be embedded within a web browser or an operating system.

Once a piece of Java code is loaded onto a machine, it is verified. As part of

the loading process, a class loader is invoked and does byte code verification

makes sure that the code that’s has been generated by the compiler will not

corrupt the machine that it’s loaded on. Byte code verification takes place at

the end of the compilation process to make sure that is all accurate and

correct. So byte code verification is integral to the compiling and executing

of Java code.

 .Java .Class

The above picture shows the development process a typical Java

programming uses to produce byte codes and executes them. The first box

indicates that the Java source code is located in a. Java file that is processed

with a Java compiler called JAVA. The Java compiler produces a file called a.

class file, which contains the byte code. The class file is then loaded across

the network or loaded locally on your machine into the execution

environment is the Java virtual machine, which interprets and executes the

byte code.

Java

Source

Java byte code Java

Virtual

Machine

Javac

Java Architecture

Java architecture provides a portable, robust, high performing environment

for development. Java provides portability by compiling the byte codes for

the Java Virtual Machine, which is then interpreted on each platform by the

run-time environment. Java is a dynamic system, able to load code when

needed from a machine in the same room or across the planet.

Compilation of Code

When you compile the code, the Java compiler creates machine code (called

byte code) for a hypothetical machine called Java Virtual Machine (JVM). The

JVM is supposed to execute the byte code. The JVM is created for

overcoming the issue of portability. The code is written and compiled for one

machine and interpreted on all machines. This machine is called Java Virtual

Machine.

Compiling and interpreting Java Source Code

During run-time the Java interpreter tricks the byte code file into thinking

that it is running on a Java Virtual Machine. In reality this could be a Intel

Pentium Windows 95 or Suns ARC station running Solaris or Apple Macintosh

running system and all could receive code from any computer through

Internet and run the Applets.

SIMPLE

Java was designed to be easy for the Professional programmer to learn and to use

effectively. If you are an experienced C++ programmer, learning Java will be even

easier. Because Java inherits the C/C++ syntax and many of the object oriented

features of C++. Most of the confusing concepts from C++ are either left out of

Java or implemented in a cleaner, more approachable manner. In Java there are a

small number of clearly defined ways to accomplish a given task.

Object-Oriented

Java was not designed to be source-code compatible with any other language. This

allowed the Java team the freedom to design with a blank slate. One outcome of

this was a clean usable, pragmatic approach to objects. The object model in Java is

simple and easy to extend, while simple types, such as integers, are kept as high-

performance non-objects.

Robust

The multi-platform environment of the Web places extraordinary demands on a

program, because the program must execute reliably in a variety of systems. The

ability to create robust programs was given a high priority in the design of Java.

Java is strictly typed language; it checks your code at compile time and run time.

Java virtually eliminates the problems of memory management and de-allocation,

which is completely automatic. In a well-written Java program, all run time errors

can –and should –be managed by your program.

What is networking?

Computers running on the Internet communicate to each other using either the

Transmission Control Protocol (TCP) or the User Datagram Protocol (UDP), as this

diagram illustrates:

When you write Java programs that communicate over the network, you are

programming at the application layer. Typically, you don't need to concern yourself

with the TCP and UDP layers. Instead, you can use the classes in the java.net

package. These classes provide system-independent network communication.

However, to decide which Java classes your programs should use, you do need to

understand how TCP and UDP differ.

TCP

When two applications want to communicate to each other reliably, they

establish a connection and send data back and forth over that

connection.This is analogous to making a telephone call. If you want to

speak to Aunt Beatrice in Kentucky, a connection is established when you

dial her phone number and she answers. You send data back and forth over

the connection by speaking to one another over the phone lines. Like the

phone company, TCP guarantees that data sent from one end of the

connection actually gets to the other end and in the same order it was sent.

Otherwise, an error is reported.

TCP provides a point-to-point channel for applications that require reliable

communications. The Hypertext Transfer Protocol (HTTP), File Transfer

Protocol (FTP), and Telnet are all examples of applications that require a

reliable communication channel. The order in which the data is sent and

received over the network is critical to the success of these applications.

When HTTP is used to read from a URL, the data must be received in the

order in which it was sent. Otherwise, you end up with a jumbled HTML file,

a corrupt zip file, or some other invalid information.

Definition: TCP (Transmission Control Protocol) is a connection-based protocol

that provides a reliable flow of data between two computers.

UDP

The UDP protocol provides for communication that is not guaranteed between two

applications on the network. UDP is not connection-based like TCP. Rather, it sends

independent packets of data, called datagrams, from one application to another.

Sending datagrams is much like sending a letter through the postal service: The

order of delivery is not important and is not guaranteed, and each message is

independent of any other.

Definition: UDP (User Datagram Protocol) is a protocol that sends independent

packets of data, called datagram’s, from one computer to another with no

guarantees about arrival. UDP is not connection-based like TCP.

For many applications, the guarantee of reliability is critical to the success of

the transfer of information from one end of the connection to the other.

However, other forms of communication don't require such strict standards.

In fact, they may be slowed down by the extra overhead or the reliable

connection may invalidate the service altogether.

Consider, for example, a clock server that sends the current time to its client

when requested to do so. If the client misses a packet, it doesn't really make

sense to resend it because the time will be incorrect when the client receives

it on the second try. If the client makes two requests and receives packets

from the server out of order, it doesn't really matter because the client can

figure out that the packets are out of order and make another request. The

reliability of TCP is unnecessary in this instance because it causes

performance degradation and may hinder the usefulness of the service.

Another example of a service that doesn't need the guarantee of a reliable

channel is the ping command. The purpose of the ping command is to test

the communication between two programs over the network. In fact, ping

needs to know about dropped or out-of-order packets to determine how

good or bad the connection is. A reliable channel would invalidate this

service altogether.

The UDP protocol provides for communication that is not guaranteed

between two applications on the network. UDP is not connection-based like

TCP. Rather, it sends independent packets of data from one application to

another. Sending datagram’s is much like sending a letter through the mail

service: The order of delivery is not important and is not guaranteed, and

each message is independent of any others.

Note: Many firewalls and routers have been configured not to allow UDP packets.

If you're having trouble connecting to a service outside your firewall, or if clients

are having trouble connecting to your service, ask your system administrator if UDP

is permitted.

FTP Protocol:

File Transfer Protocol (FTP) is a standard network protocol used to exchange

and manipulate files over an Internet Protocol computer network, such as the

Internet. FTP is built on a client-server architecture and utilizes separate control

and data connections between the client and server applications. Client applications

were originally interactive command-line tools with a standardized command

syntax, but graphical user interfaces have been developed for all desktop operating

systems in use today. FTP is also often used as an application component to

automatically transfer files for program internal functions. FTP can be used with

user-based password a While data is being transferred via the data stream, the

control stream sits idle. This can cause problems with large data transfers through

firewalls which time out sessions after lengthy periods of idleness. While the file

http://en.wikipedia.org/wiki/Network_protocol
http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Client-server
http://en.wikipedia.org/wiki/Data_stream
http://en.wikipedia.org/wiki/Firewall_%28networking%29

may well be successfully transferred, the control session can be disconnected by

the firewall, causing an error to be generated.

The FTP protocol supports resuming of interrupted downloads using the REST

command. The client passes the number of bytes it has already received as

argument to the REST command and restarts the transfer. In some commandline

clients for example, there is an often-ignored but valuable command, "reget"

(meaning "get again"), that will cause an interrupted "get" command to be

continued, hopefully to completion, after a communications interruption.

Resuming uploads is not as easy. Although the FTP protocol supports the APPE

command to append data to a file on the server, the client does not know the exact

position at which a transfer got interrupted. It has to obtain the size of the file

some other way, for example over a directory listing or using the SIZE command.

In ASCII mode (see below), resuming transfers can be troublesome if client and

server use different end of line characters.

Understanding Ports

Generally speaking, a computer has a single physical connection to the network. All

data destined for a particular computer arrives through that connection. However,

the data may be intended for different applications running on the computer. So

how does the computer know to which application to forward the data? Through the

use of ports.

Data transmitted over the Internet is accompanied by addressing

information that identifies the computer and the port for which it is destined.

The computer is identified by its 32-bit IP address, which IP uses to deliver

data to the right computer on the network. Ports are identified by a 16-bit

number, which TCP and UDP use to deliver the data to the right application.

http://en.wikipedia.org/wiki/End_of_line

In connection-based communication such as TCP, a server application binds

a socket to a specific port number. This has the effect of registering the

server with the system to receive all data destined for that port. A client can

then rendezvous with the server at the server's port, as illustrated here:

Definition: The TCP and UDP protocols use ports to map incoming data to a

particular process running on a computer.

In datagram-based communication such as UDP, the datagram packet

contains the port number of its destination and UDP routes the packet to the

appropriate application, as illustrated in this figure:

Port numbers range from 0 to 65,535 because ports are represented by 16-bit

numbers. The port numbers ranging from 0 - 1023 are restricted; they are reserved

for use by well-known services such as HTTP and FTP and other system services.

These ports are called well-known ports. Your applications should not attempt to

bind to them.

Networking Classes in the JDK

Through the classes in java.net, Java programs can use TCP or UDP to

communicate over the Internet. The URL, URL Connection, Socket, and Server

Socket classes all use TCP to communicate over the network. The Datagram

Packet, Datagram Socket, and Multicast Socket classes are for use with UDP.

What Is a URL?

If you've been surfing the Web, you have undoubtedly heard the term URL

and have used URLs to access HTML pages from the Web.

It's often easiest, although not entirely accurate, to think of a URL as the

name of a file on the World Wide Web because most URLs refer to a file on

some machine on the network. However, remember that URLs also can point

to other resources on the network, such as database queries and command

output.

Definition: URL is an acronym for Uniform Resource Locator and is a reference

(an address) to a resource on the Internet.

The following is an example of a URL which addresses the Java Web site

hosted by Sun Microsystems:

As in the previous diagram, a URL has two main components:

 Protocol identifier

 Resource name

Note that the protocol identifier and the resource name are separated by a

colon and two forward slashes. The protocol identifier indicates the name of

the protocol to be used to fetch the resource. The example uses the

Hypertext Transfer Protocol (HTTP), which is typically used to serve up

hypertext documents. HTTP is just one of many different protocols used to

access different types of resources on the net. Other protocols include File

Transfer Protocol (FTP), Gopher, File, and News.

The resource name is the complete address to the resource. The format of

the resource name depends entirely on the protocol used, but for many

protocols, including HTTP, the resource name contains one or more of the

components listed in the following table:

Host Name The name of the machine on which the resource

lives.

Filename
The pathname to the file on the machine.

Port Number The port number to which to connect (typically

optional).

Reference
A reference to a named anchor within a resource

that usually identifies a specific location within a

file (typically optional).

For many protocols, the host name and the filename are required, while the

port number and reference are optional. For example, the resource name for

an HTTP URL must specify a server on the network (Host Name) and the

path to the document on that machine (Filename); it also can specify a port

number and a reference. In the URL for the Java Web site java.sun.com is the

host name and the trailing slash is shorthand for the file named /index.html.

Sequence of socket calls for connection-oriented protocol:

System Calls

Socket - create a descriptor for use in network communication. On success, socket

system call returns a small integer value similar to a file descriptor Name.

Bind - Bind a local IP address and protocol port to a socket

When a socket is created it does not have nay notion of endpoint address. An

application calls bind to specify the local; endpoint address in a socket. For TCP/IP

protocols, the endpoint address uses the socket address in structure. Servers use

bind to specify the well-known port at which they will await connections.

Connect - connect to remote client

After creating a socket, a client calls connect to establish an actual connection to a

remote server. An argument to connect allows the client to specify the remote

endpoint, which include the remote machines IP address and protocols port

number. Once a connection has been made, a client can transfer data across it.

Accept () - accept the next incoming connection

Accept creates a new socket for each new connection request and returns the

descriptor of the new socket to its caller. The server uses the new socket only for

the new connections it uses the original socket to accept additional connection

requests once it has accepted connection, the server can transfer data on the new

socket.

Return Value:

This system-call returns up to three values

 An integer return code that is either an error indication or a new socket

description

 The address of the client process

 The size of this address

Listen - place the socket in passive mode and set the number of incoming TCP

connections the system will en-queue. Backlog - specifies how many connections

requests can be queued by the system while it wants for the server to execute the

accept system call it us usually executed after both the socket and bind system

calls, and immediately before the accept system call.

Send; send to, recv and recvfrom system calls

These system calls are similar to the standard read and write system calls, but

additional arguments are requested.

Close - terminate communication and de-allocate a descriptor. The normal UNIX

close system call is also used to close a socket.

 CODING

import java.awt.*;

Import java.awt.event.*;

Import javax.swing.*;

public class Operator extends JFrame implements ActionListener

 {

Label l,l3;

JLabel l2,l1;

Font f;

Button b1,b2,b3,b4,b5,b8,b9,b10;

Container c1;

Operator()

 {

 c1=getContentPane();

 c1.setLayout(new FlowLayout());

 setBackground(Color.LIGHT_GRAY);

 f=new Font("Arial",Font.BOLD,20);

 setFont(f);

 ImageIcon i=new ImageIcon("criminal1.jpg");

 l=new Label(" Welcome Chandu!!!!!!!!

");

 l2=new JLabel(" Hi,

",i,JLabel.LEADING);

 l3=new Label(" This is Operator

",Label.CENTER);

 b3=new Button(" Identifying of Images ");

 b4=new Button(" Images from Data Base ");

 //b5=new Button(" Images from Eyewitnesses ");

 b8=new Button(" Drawing of Images ");

 // b9=new Button(" Matching of Images ");

 //b10=new Button(" Data to Administrator ");

 addWindowListener(new WindowAdapter()

 {

 public void windowClosing(WindowEvent e)

 {

 System.exit(0);

 }

 });

 l.setForeground(new Color(100,100,100));

 l.setFont(new Font("Arial",Font.BOLD,30));

 l2.setForeground(new Color(100,100,100));

 l2.setFont(new Font("Arial",Font.BOLD,20));

 l3.setForeground(new Color(0,64,64));

 l3.setFont(new Font("Arial",Font.BOLD,20));

 b3.setForeground(new Color(255,255,255));

 b3.setBackground(new Color(0,64,64));

 b3.setFont(new Font("Arial",Font.BOLD,15));

 b4.setForeground(new Color(255,255,255));

 b4.setFont(new Font("Arial",Font.BOLD,15));

 b4.setBackground(new Color(0,64,64));

 // b5.setForeground(new Color(255,255,255));

 // b5.setFont(new Font("Arial",Font.BOLD,15));

 // b5.setBackground(new Color(0,64,64));

 b8.setForeground(new Color(255,255,255));

 b8.setFont(new Font("Arial",Font.BOLD,15));

 b8.setBackground(new Color(0,64,64));

 /*b9.setForeground(new Color(255,255,255));

 b9.setFont(new Font("Arial",Font.BOLD,15));

 b9.setBackground(new Color(0,64,64));

 b10.setForeground(new Color(255,255,255));

 b10.setFont(new Font("Arial",Font.BOLD,15));

 b10.setBackground(new Color(0,64,64));*/

 b3.addActionListener(this);

 b4.addActionListener(this);

 //b5.addActionListener(this);

 b8.addActionListener(this);

 //b10.addActionListener(this);

 //b9.addActionListener(this);

 c1.add(l);

 c1.add(l2);

 c1.add(l3);

 // c1.add(b5);

 c1.add(b4);

 c1.add(b3);

 c1.add(b8);

 // c1.add(b9);

 // c1.add(b10);

 setSize(500,600);

 setVisible(true);

 }

public void actionPerformed(ActionEvent ae)

 {

 if(ae.getSource()==b5)

 {

 Insert1 d=new Insert1();

 d.setSize(700,600);

 d.setVisible(true);

 }

 if(ae.getSource()==b3)

 {

 System.out.println("Face Framing page opening");

 faceIdMain1 f1=new faceIdMain1();

 f1.setSize(800,800);

 f1.setVisible(true);

 }

 if(ae.getSource()==b8)

 {

 Draw d1=new Draw();

 d1.setSize(600,400);

 d1.setVisible(true);

 }

 if(ae.getSource()==b9)

 {

 MatchingImg mi=new MatchingImg();

 mi.setSize(700,600);

 mi.setVisible(true);

 }

 if(ae.getSource()==b10)

 {

 DatafromOp da=new DatafromOp();

 da.setSize(600,400);

 da.setVisible(true);

 }

 if(ae.getSource()==b4)

 {

 Retr r1=new Retr();

 r1.setSize(600,600);

 r1.setVisible(true);

 }

 }

 public static void main(String args[])

 {

 Operator op= new Operator();

 }}

TESTING

Software testing is a critical element of software quality assurance and

represents the ultimate reviews of specification, design and coding. Testing

represents an interesting anomaly for the software. During earlier definition and

development phases, it was attempted to build software from an abstract concept

to a tangible implementation. No system is error free because it is so till the next

error crops up during any phase of the development or usage of the product. A

sincere effort however needs to be put to bring out a product that is satisfactory.

 The testing phase involves the testing of development system using various

data. Preparation of the test data plays a vital role in system testing. After

preparing the test data, the system under study was tested using those data. While

testing the system, by using the test data, errors were found and corrected by

using the following testing steps and corrections were also noted for future use.

Thus, a series of testing is performed on the proposed system before the system is

ready for implementation.

 The various types of testing done on the system are:

 Integration testing

 Validation testing

 Unit testing

 Output testing

 User Acceptance testing

Unit testing:

 Unit testing focuses on verification effort on the smallest unit of software

design module. Using the unit test plans prepared in the design phase of the

system development as a guide, important control paths are tested to uncover

errors with in the boundary of the modules. The interfaces of the modules are

tested to ensure proper flow of information into and out of the modules under

consideration boundary conditions were checked. All independent paths were

exercised to ensure that all statements in the module have been executed at least

once and all error-handling paths were tested.

 Each unit is thoroughly tested to check if it might fail in any possible

situation. This testing is carried during the programming state itself. At the end of

this testing phase each module is found to be have an adverse effect working

satisfactorily, as regard to the expected output from the module.

Integration Testing:

 Data can be lost across an interface, one module can on another; sub-

functions when combined may not produce the desired major function: global data

structures can present problems. Integration testing is a systematic technique for

the program structure while at the same time concluding tests to uncover errors

associated with interface. All modules are combined in this testing step. Then the

entire program is tested as a whole. Each of the module is integrated and tested

separately and later all modules are tested together for sometime to ensure the

system as a whole works well without any errors.

Validation Testing:

 At the culmination of the integration testing, the software is completely

assembled as a package, interfacing errors have been uncovered and corrected,

and a final series of software validation testing began. Here we test if the system

functions in a manner that can be reasonably expected by the customer. The

system is tested against the system requirement specification.

Output Testing:

 After performing validation testing, the next phase is output testing of the

proposed system, since no system can be useful if it does not produce the desired

output in the specified format. The output generated or displayed by the system

under consideration is tested by asking the user about the format required by

them, here, the output format is considered in two ways: One is on the screen and

the other is on the printed form. Beta testing is carried output by the client, and

minor errors that have been discovered by the client are rectified to improve the

user friendliness of the system.

Object-Oriented Testing

 The overall objectives of the object-oriented testing – to find the maximum

number of errors with a minimum amount effort – is identical to the to the

objective of conventional software testing. But the strategy and tactics for OO

testing differ significantly. The view of testing broadens to include the review of

both the analysis and design model. In addition, the focus of testing moves away

from the procedural component and toward the class.

 Because the OO analysis and design models and the resulting source code

are semantically coupled, testing begins during these engineering activities. For this

reason, a review of CRC, object relationships, and object behavior models can be

viewed as first stage testing. As a result of this first stage testing, we encountered

few problems in OOA done at analysis time. We have gone back and remodeled

with new errorless classes and their relationships. The documented model is the

revised model of earlier analysis model.

 Once OOP has been accomplished, unit testing is applied for each class. Class

testing uses a variety of methods: fault-based, random, and partition test methods.

Each of those methods exercises the operations encapsulated by the class. Test

sequences are designed to ensure that relevant operations are exercised. The state

of the class, represented by the values of its attributes, is examined to determine if

errors exist.

 Integration test can be accomplished using a thread-based or use-based

strategy. Thread-based strategy integrates the set of classes that collaborate to

respond to one input or event. Use-based testing constructs the system in layers,

beginning with those classes that do not make use of server classes. Integration

test case design methods can also make use of random and partition tests. In

addition, scenario based testing and the tests derived from behavioral models can

be used to test a class and its collaborators. A test sequence tracks the flow of

operations across class collaborations.

 OO system validation testing is black box oriented and can be accomplished

by applying the same black box methods known for conventional software. However

scenario based testing dominates the validation of OO systems, making the use

case a primarily driver for validation testing.

 We mainly concentrated on scenario based testing strategy. Some of the test

cases for scenario based testing are given below.

Test case #1

Use Case: download a file

Background: User wants to download a file from Criminal Face Identification

System

Event Sequence:

1. Select file to down load in remote tree panel.

2. Right click and then click download.

Test case #2

Use Case : upload a file

Background : User wants to upload a file to the server from client.

Event Sequence:

1. Click file in local file view tree.

2. Right click and select upload.

Test case #3

Use Case : Remove file on remote server

Background : User wants to delete a file on the server..

Event Sequence:

1. Select file on remote file view tree panel.

2. Right click and select ‘Delete’.

Test case #4

Use Case : Disconnect to server

Background : User wants to close the session.

Event Sequence:

 1. Click disconnect option in menu

In this way we tested using different test cases that found lot of errors which were

corrected by recoding of that related procedures.

SCREENS

 FUTURE ENHANCEMENTS

The Future enhancements of this project include the following:

 The criminal photos may be of any size.

 By selecting any one cropped part of the criminal, we can get the full image

of the criminals along with details.

 New face constructed by different cropped parts can be saved.

BIBLIOGRAPHY

Java (Swing & XML):

Java in a Nut Shell O’Rielly

Using Java2 Platform Joseph Weber

The Complete Reference Java 1.2 Herbert Schildt

Core Java Kenneth Paul

System Development:

Fundamentals Of System Concepts Jerry Fitz Gerald

System Analysis And Design Elias M. Awad

Object Oriented Modeling And Design James Rumabah

